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prove that every F-injector of G covers each F-central chief
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Fitting class F has an integrated and invariable H-function. As an
application, we also give a new method to define local Fitting
classes, that is, we use local functions but not H-functions to
define local Fitting classes.
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1. Introduction

Throughout this paper, all groups are finite and soluble and G denotes a finite soluble group.
It is well known that a group G is nilpotent if and only if every chief factor H/K of G is central,

that is, H/K ⊆ Z(G/K ). Developing this result, Gaschütz [6] firstly introduced the general theory of
central factors for the class of all soluble groups. Let f : P → {formation of groups} be a formation
function. Then a p-chief factor H/K of G is said to be f -central in G if G/CG(H/K ) ∈ f (p). Following
[4,6], a class F of groups is called a formation if it is closed under homomorphic images and subdirect
products. Let LF( f ) = {G | G/CG (H/K ) ∈ f (p), for every p-chief factor H/K and every p | |H/K |}.
A formation is said to be a local formation if there exists a formation function f such that F = LF( f ).
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Note that if a formation function f is such that f (p) = (1), where (1) is the class of identity
groups, for all primes p ∈ P, then LF( f ) = N is the class of all nilpotent groups.

For a local formation F = LF( f ), Huppert [11] introduced the concept of F-hypercentre of a
group G: a normal subgroup N of G is called F-hypercentral if every G-chief factor H/K of N is
f -central in G . It is easy to know that the product of any two F-hypercentral normal subgroups is an
F-hypercentral normal subgroup of G . Therefore, every group G has a unique maximal F-hypercentral
normal subgroup, which is called F-hypercentre of G and denoted by ZF(G). When F is the class N

of all nilpotent groups, the F-hypercentre is Z∞(G).
Recall that a class F of groups is said to be a Fitting class if the following two conditions hold: (i)

if G ∈ F and N � G , then N ∈ F; (ii) if N1, N2 � G and N1, N2 ∈ F, then N1N2 ∈ F.

The concept of Fitting class is actually the dual concept of formation.
In 1967, Fischer, Gaschütz and Hartley found an important generalization of Sylow theorem and

Hall theorem in the theory of Fitting classes (see [5]). Based on this, Hartley [9] and D’Arcy [3]
established the theory of local Fitting classes, as follows. Let f be a function P → {Fitting classes},
which was later called a Hartley function or, for brevity, an H-function (see, for example, [15]), and
let Supp( f ) = {p ∈ P | f (p) �= ∅}, which is called the support of f . Let π = Supp( f ) and LR( f ) =
Sπ ∩ (

⋂
p∈π f (p)NpSp′ ). Then a Fitting class F is said to be local if there exists an H-function f

such that F = LR( f ).
It is well known that the f -hypercentre in the theory of local formations plays an important role

in the research in finite groups, and a large number of interesting results have been obtained by using
it (see, for example, [1,4,7,10–12]). In this connection, naturally, the following problem arises.

Problem 1.1. Would we establish the theory of F-centrality of chief factors and F-hypercentre of a
group for local Fitting classes F?

This problem was proposed at Gomel seminar many years ago. But, up to now, this problem has
not been resolved. If the answer to this problem is positive, then the new idea would play a positive
role in the research in group theory.

Recall that for a class X of groups, a subgroup V of G is said to be an X-injector of G if V ∩ K
is an X-maximal subgroup of K for any subnormal subgroup K of G . It is well known that for a
Fitting class F, every F-injector V of G possesses the cover–avoidance property, that is, V either
covers or avoids each chief factor of G (see [4, VIII.2.14(c)]). For any local formation F, Carter and
Hawkes [2] proved that every F-normalizer covers each F-central chief factor of G and avoids each
F-eccentric chief factor of G . Note that a subgroup R of G covers (avoids) a chief factor H/K if
H ⊆ R K (correspondingly, H ∩ R ⊆ K ). This leads to the following problem.

Problem 1.2. Let F = LR( f ) be a local Fitting class. Is it true that every F-injector of G covers each
F-central chief factor of G and avoids each F-eccentric chief factor of G?

The purpose of this paper is to give answers to the above two problems.
In Sections 3 and 4, we will establish the theory of F-central factors and F-hypercentre for any

local Fitting class F = LR( f ) and so give the positive answer to Problem 1.1.
In Section 5, we give the answer to Problem 1.2 in the case where F has an integrated and invari-

able H-function f .
As an application of our results, in Section 6, we give a new method to define local Fitting classes.

In fact, we use local functions but not H-functions to define local Fitting classes.
All unexplained notation and terminology are standard. The reader is referred to [4] and [12] if

necessary.

2. Preliminaries

From the definition of formations and Fitting classes, we see that

(1) for a formation F, every group G has the smallest normal subgroup whose quotient is in F, which
is called the F-residual of G and denoted by GF;
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(2) for a Fitting class F, every group G has the largest normal F-subgroup, which is called the F-
radical of G and denoted by GF .

The product FH of two Fitting classes F and H is the class (G | G/GF ∈ H). It is well known that
the product of any two Fitting classes is also a Fitting class and the multiplication of Fitting classes
satisfies associative law (see [4, IX.1.12]).

We denote by S the class of all finite soluble groups; Sπ denotes the class of all finite soluble π -
groups; N denotes the class of all finite nilpotent groups; Nπ denotes the class of all finite nilpotent
π -groups. In particular, Np is the class of all finite p-groups. It is well known that S, Sπ , N, Nπ

and Np are all local Fitting classes.
Note that if ϕ and ψ are any two H-functions of a local Fitting class F, then Supp(ϕ) = Supp(ψ) =

π(F) (see [8, Lemma 2.3]).
Let F = LR( f ) for some H-function f . Then f is called

(i) integrated if f (p) ⊆ F for all p ∈ P, and
(ii) full if f (p) = f (p)Np for all p ∈ P.

Let Ω = { f i | i ∈ I} be some nonempty set of H-functions. Suppose that f i, f j ∈ Ω . Then we write
f i � f j if f i(p) ⊆ f j(p) for all p ∈ P.

The following known results will be frequently used in this paper.

Lemma 2.1. (See [13].) Let F = LR( f ) for some H-function f . Then

(1) F = LR(ϕ) for some integrated H-function ϕ;
(2) F = LR(ψ) for some full and integrated H-function ψ .

Lemma 2.2. (See [4, VIII.2.4(d)].) If F is a nonempty Fitting class and N is a subnormal subgroup of G, then
NF = GF ∩ N.

Lemma 2.3. (See [14].) The product of any two local Fitting classes is a local Fitting class.

It is also well known that for any Fitting class F, every soluble group has a unique conjugate class
of F-injectors (see [5] and [7, Theorem 2.5.2]).

3. F-central factors

In this section, we establish the theory of F-central factors for local Fitting classes.
Let F be a local Fitting class, that is, F = LR( f ) = Sπ ∩ (

⋂
p∈π f (p)NpSp′ ) for some H-function

f , where π = Supp( f ).

Definition 3.1. A p-chief factor H/K of G is said to be f -central if p ∈ π and G f (p)Np covers H/K ;
otherwise, it is said to be f -eccentric.

Lemma 3.2. Let F = LR( f ) and p ∈ π = Supp( f ). Then a p-chief factor H/K is f -central if and only if
H = K H f (p)Np .

Proof. Assume that the p-chief factor H/K of G is f -central. Then H ⊆ K G f (p)Np . By Dedekind mod-
ular law, we have

H = H ∩ K G f (p)Np = K (H ∩ G f (p)Np ).

It follows from Lemma 2.2 that H = K H f (p)Np . The converse is clear.
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Remark 3.3. The definition of f -central chief factors depends on the choice of H-functions of F. In
order to show it, we give the following example.

Example 3.4. Let F = N3S3′ . Since N3 and S3′ are local Fitting classes, by Lemma 2.3, F is also a
local Fitting class. By a direct check, we can see that F can be defined by each of the following two
H-functions ϕ and ψ , where

ϕ(p) =
{

N3 if p = 3,

F if p �= 3,

ψ(p) =
{

N3 if p = 3,

S if p �= 3.

for every prime p.

Let G = S4 be the symmetric group of degree 4 and A = A4 the alternating group of degree 4.
Then G/A is a chief factor of G , Gϕ(2)N2 = K is Klein 4-group and Gψ(2)N2 = G . Clearly, G has a
unique chief series 1 � K � A � G . Since AGϕ(2)N2 = AK = A < G , the 2-factor G/A is not ϕ-central
by Lemma 3.2. But, since AGψ(2)N2 = AG = G , G/A is a ψ-central 2-chief factor of G .

However, the following theorem shows that the concept of f -central chief factor does not depend
on the choice of H-functions f of F if the H-functions f are integrated.

Theorem 3.5. Suppose that F = LR(ϕ) = LR(ψ) for some integrated H-functions ϕ and ψ , and H/K be a
p-chief factor of G. Then the following two statements are equivalent.

(i) H/K is ϕ-central in G;
(ii) H/K is ψ-central in G.

Proof. By Lemma 2.1, every local Fitting class can be defined by an integrated H-function. Hence the
integrated H-function of F exists. Without loss of generality, we may assume that ϕ � ψ . In fact,
since F = LR(ϕ ∩ψ) and ϕ ∩ψ is an integrated H-function of F, we can always choose two integrated
H-functions ϕ and ψ such that ϕ � ψ . Let π = Supp(ϕ) = Supp(ψ). Then we have Gϕ(p) ⊆ Gψ(p) for
all p ∈ π and so every ϕ-central chief factor is a ψ-central p-chief factor.

Now we only need to show that (ii) ⇒ (i). Let H/K be a ψ-central p-chief factor of G . Then by
Lemma 3.2, we have

H/K = (H ∩ Gψ(p)Np )K/K . (3.1)

We fist prove that ψ(p)Np ⊆ F. For the purpose, we construct an H-function f of F such that
f (r) = ψ(r)Nr if r ∈ π and f (r) = ∅ if r /∈ π . Obviously, Supp(ψ) = Supp( f ) = π. Since F = LR(ψ) =
Sπ ∩ (

⋂
p∈π ψ(p)NpSp′ ), by the multiplicative associative law of Fitting classes, we have LR( f ) =

Sπ ∩ (
⋂

p∈π f (p)NpSp′ ) = Sπ ∩ (
⋂

p∈π ψ(p)NpNpSp′ ) = Sπ ∩ (
⋂

p∈π ψ(p)NpSp′ ) = F. This means
that f is also an H-function of F. Let L ∈ f (p). Since f (p) ⊆ f (p)NpSp′ , we have L ∈ f (p)NpSp′ .

Assume that q is an arbitrary prime in π different from p. Then Np ⊆ Sq′ and so LSq′ ⊆ LNp . But
since L ∈ f (p) = ψ(p)Np, L/Lψ(p) ∈ Np . Hence LNp ⊆ Lψ(p). Since ψ is an integrated H-function
of F, LNp ∈ F. Hence LSq′ ∈ F. Then by F = LR( f ), we obtain that LSq′ /(LSq′ ) f (q) ∈ NqSq′ . It follows

that (LSq′ )NqSq′ ∈ f (q). Since (LSq′ )NqSq′ = LNqSq′Sq′ (see [4, IV.1.8(b)], we have LNqSq′ ∈ f (q).

Hence

L/L f (q) � (
L/LNqSq′ )/(

L f (q)/LNqSq′ ) ∈ NqSq′
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and so L ∈ f (q)NqSq′ for q �= p and q ∈ π. This implies that L ∈ Sπ ∩ (
⋂

p∈π f (p)NpSp′ ). Thus
ψ(p)Np ⊆ F. It follows that

Gϕ(p)Np ⊆ Gψ(p)Np ⊆ GF. (3.2)

Consequently, Gψ(p)Np ∈ F and thereby Gψ(p)Np /(Gψ(p)Np )ϕ(p)Np ∈ Sp′ . But since (Gψ(p)Np )ϕ(p)Np =
Gψ(p)Np∩ϕ(p)Np and ϕ � ψ , we have Gψ(p)Np /Gϕ(p)Np ∈ Sp′ . This means that every Sylow p-
subgroup P of Gϕ(p)Np is a Sylow p-subgroup of Gψ(p)Np . Now because H/K is a p-factor of G ,
by comparing the orders of K (H ∩ Gϕ(p)Np ) and K (H ∩ P ), we see that

K (H ∩ Gϕ(p)Np ) = K (H ∩ P ). (3.3)

Thus by (3.1) and (3.2), we obtain that

H/K = (Gψ(p)Np ∩ H)K/K = (P ∩ H)K/K = (Gϕ(p)Np ∩ H)K/K .

This induces that K Hϕ(p)Np ⊇ H . Therefore, H/K is ϕ-central in G . This completes the proof. �
This theorem shows that the f -centrality of chief factors in the theory of Fitting classes does not

depend on the choice of integrated H-functions of the Fitting class F. In connection with this, we call
an f -central chief factor an F-central chief factor when f is an integrated H-function of F.

In the theory of formations, there exists an analogue of Theorem 3.4. In fact, Carter and Hawkes
[2] proved that if f1 and f2 are two integrated formation functions of a formation F, then a chief
factor is f1-central in G if and only if it is f2-central in G . Moreover, Carter and Hawkes [2] proved
that for a local formation F = LF( f ), a group G ∈ F if and only if every chief factor of G is f -central
in G (see also [4, Theorem IV.3.2]). Now we give the following theorem which is an analogue of the
result of Carter and Hawkes.

Theorem 3.6. Let F = LR( f ) be a local Fitting class, where f is an H-function of F. Then G ∈ F if and only if
every chief factor of G is f -central.

Proof. Assume that G ∈ F and let π = Supp( f ). Then G ∈ f (p)NpSp′ for all primes p ∈ π. Let H/K
be a p-chief factor of G and H f (p)Np be an f (p)Np -radical of H . Since H ∈ F, H/H f (p)Np′ ∈ Sp′ .
Let P be a Sylow p-subgroup of H . Then P H f (p)Np /H f (p)Np is a Sylow subgroup of H/H f (p)Np .
Hence P H f (p)Np /H f (p)Np ∈ Sp′ ∩Np = (1). It follows that P H f (p)NP = H f (p)Np and so P ⊆ H f (p)Np .
This implies that P is also a Sylow p-subgroup of H f (p)Np . But since H/K ∈ Np , H/K = P K/K �
H f (p)Np K/K � H/K . It follows that H = H f (p)Np K . Therefore, by Lemma 3.2, the p-chief factor H/K
is f -central in G .

Now assume that G /∈ F. Then there exists some prime p ∈ π such that G /∈ f (p)Np . Hence there
exists a p-chief factor H/K above G f (p)Np such that G f (p)Np does not cover H/K . This shows H/K
is not f -central. The theorem is proved. �
Corollary 3.7. Suppose that F = LR( f ) is a local Fitting class, where f is an integrated H-function of F. Then
G ∈ F if and only if every chief factor of G is F-central.

Obviously, the description of F-central chief factors in the theory of formations is different from
the description of F-central chief factors in the theory of Fitting classes. Recall that for the formation
N of all nilpotent groups, a chief factor H/K of G is N-central in G if and only if H/K ⊆ Z(G/K ), that
is, it is central in G . Hence, a group G is nilpotent if and only if every chief factor of G is N-central in
the theory of formations. The following Corollary 3.8 shows that though the method of the description
of N-central chief factors in the theory of formations is different from the method of the description
of N-central chief factors in the theory of Fitting classes, they both can give the characterization of a
group belonging to the class N of all nilpotent groups by using each method.



W. Guo, N.T. Vorob’ev / Journal of Algebra 344 (2011) 386–396 391
Corollary 3.8. Every chief factor of G is N-central in the theory of Fitting classes if and only if every Sylow
subgroup of G is normal.

Proof. Obviously, N = LR( f ) is the local Fitting class for the integrated H-function f such that f (p) =
Np for every prime p ∈ π = Supp( f ). Hence, by Theorem 3.6, every p-chief factor of G is N-central
in G in the theory of Fitting classes if and only if G ∈ NpSp′ . It follows that every Sylow p-subgroup
of G is normal in G . �
Corollary 3.9. Every chief factor of G is N2-central in the theory of Fitting classes if and only if all Sylow
subgroups of G/F (G) are normal in G/F (G).

Proof. It is easy to see that the class N2 of all metanilpotent groups is a local Fitting class such that
F = LR( f ), where f is the H-function such that f (p) = NNp for all primes p. Hence by Theorem 3.6,
every chief factor of G is N2-central if and only if G ∈ NNpSp′ for all p ∈ π. But it is possible only
in the case that every Sylow p-subgroup of G/F (G) is normal in G/F (G). �
4. F-hypercentre

In this section, we establish the theory of F-hypercentre for local Fitting classes F.
By Theorem 3.5, we see that the concept of F-central chief factor for a local Fitting class F does

not depend on the choice of integrated H-functions of F. Hence, in this section, we always assume
that any local Fitting class F = LR( f ) is defined by an integrated H-function f .

Definition 4.1. Let F be a local Fitting class.

(i) Suppose that L is a normal subgroup of G . Then the factor group G/L is said to be F-hypercentral
in G if there exists a series

L = L0 � L1 � · · · � Lk = G (4.1)

such that every factor Li+1/Li is a G-chief factor and it is F-central in G , for all i ∈ {0,1, . . . ,k−1}.
(ii) The intersection of all normal subgroups K of G such that G/K is F-hypercentral is called the

F-hypercentre of G and denoted by ZF(G).

In general, G/ZF(G) is not F-hypercentral (see Example 4.3).
In the theory of formations, it is well known that if F is a local formation with full and inte-

grated local function F and F is closed with respect to normal subgroups, then ZF(G) ∈ F (see [4,
Theorem IV, 6.15]). We now establish an analogous result in the theory of Fitting classes.

Theorem 4.2. Let F = LR( f ) be a local Fitting class, where f is an integrated H-function. Then for any group
G and any normal subgroup L of G, the following statements hold:

(a) If G/L is F-hypercentral in G, then G = LGF;
(b) If F is closed under homomorphic images and G/L is F-hypercentral in G, then G/L ∈ F;
(c) If F is a formation as well, then G/ZF(G) ∈ F;
(d) Assume that the integrated H-function is also full and Supp( f ) = P. If G/L is F-hypercentral in G, then

every chief factor above L is F-central.

Proof. (a) Since G/L is F-hypercentral in G , there exists a G-chief series between L and G such that
every p-chief factor in this series is F-central in G . Hence G f (p)Np covers every p-chief factor in
this series, for all primes p ∈ π = Supp( f ). By the proof of “(ii) ⇒ (i)” in Theorem 3.5, we see that
G f (p)Np ⊆ GF for every p ∈ π . Therefore, GF covers every p-chief factor of G in this series and so it
also covers G/L. Thus G = LGF .
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(b) Assume that F is closed under homomorphic images and G/L is F-hypercentral in G . Then
by (a), G = LGF and so G/L = LGF/L � GF/L ∩ GF . Since GF ∈ F and F is closed under homomorphic
images, GF/L ∩ GF ∈ F and consequently G/L ∈ F.

(c) Assume that F is a formation. Then, since ZF(G) = ⋂{L � G | G/L is F-hypercentral in G}, we
obtain that G/ZF(G) ∈ F by (b).

(d) Supposed that G/L is F-hypercentral in G and H/K is a p-chief factor of G between L
and G . Then by (a), the F-radical GF of G covers G/L. Hence GF covers H/K . Since H/K ∈ Np ,
a Sylow p-subgroup P of GF covers H/K . Because f is an integrated and full H-function, we have
f (p) ⊆ F ⊆ f (p)NpSp′ = f (p)Sp′ for every p ∈ P. Hence GF/(GF) f (p) ∈ Sp′ . But since (GF) f (p) =
GF∩ f (p) = G f (p) , the Sylow p-subgroup P of GF is also a Sylow p-subgroup of G f (p) . Since P covers
H/K , G f (p) covers H/K . Thus H/K is F-central. This completes the proof. �

The following example shows that G/ZF(G) is not F-hypercentral, in general.

Example 4.3. Let F = N. Then N = LR( f ), where f is the H-function such that f (p) = Np for every
prime p ∈ P. Put G = S3 × Z2, in which the symmetric group S3 = 〈s, t〉, where s3 = 1 and t2 = 1. Let
Z2 = 〈z〉 and α be the map from S3 to Z2 such that α(s) = 1 and α(t) = 2. Let H = {(k,α(k)) | k ∈ S3}.
Then |G : H| = 2 and so H � G .

Consider all possible chief series of G:

1 � A3 × 1 � S3 × 1 � G,

1 � A3 × 1 � H � G,

1 � A3 × 1 � A3 × Z2 � G,

1 � 1 × Z2 � A3 × Z2 � G.

It is easy to see that G/H and G/S3 × 1 are N-hypercentral in G since they are covered by G f (p) =
GN2 = 1 × Z2. Besides, the chief factor G/A3 × Z2 is N-eccentric since G f (2) avoids it. Analogously,
S3 × 1/A3 × 1 and H/A3 × 1 are not N-hypercentral in G . This shows that G/H and G/S3 × 1 are
the only two N-hypercentral factors of G . Therefore, ZN(G) = A3 × 1. Obviously, G/ZN(G) is not
N-hypercentral in G .

Remark 4.4. If a class F of finite groups is both a local formation and a local Fitting class, then the
F-hypercentre of a group G in the theory of formations is different from the F-hypercentre of G in
the theory of Fitting classes, in general. For instance, let F = N be the class of all finite nilpotent
groups. Then N is both a local formation and a local Fitting class. Let G = S3 × Z2. Then, obviously,
the N-hypercentre ZN(G) of G is 1 × Z2 if N is regarded as a formation. However, by the above
Example 4.3, we see that the N-hypercentre ZN(G) of G is A3 × 1 if we regard N as a Fitting class.

5. On the problem of cover–avoidance properties for F-injectors

Suppose that f is an H-function of a local Fitting class F, that is, F = LR( f ), and let π = Supp( f ).
If f (p) = f (q) for all primes p,q ∈ π, then f is said to be invariable.

In this section, we give the answer to Problem 1.2 in the case where F has an invariable H-function
(see the following Theorem 5.4(3)).

Definition 5.1. Let F = LR( f ) for some H-function f with Supp( f ) = π and p ∈ π . We say that a p-
chief factor H/K of G is f (p)-covered in G if H = K (V f (p) ∩ H), and f (p)-avoided if K = K (V f (p) ∩ H)

for some F-injector V of G .

Lemma 5.2. Let F = LR( f ) for some H-function f and π = Supp( f ). If X is a non-empty Fitting class and
X ⊆ ⋂

p∈π f (p), then CG(GF/GX) ⊆ GF for any group G.



W. Guo, N.T. Vorob’ev / Journal of Algebra 344 (2011) 386–396 393
Proof. The proof is analogous to the proof of [8, Theorem 3.2] and we omit the details. �
Lemma 5.3. Let F = LR( f ) for some invariable H-function f and Supp( f ) = π . If V is an F-injector of G,
then V f (p) = G f (p) for all p ∈ π .

Proof. Since GF � V and f (p) ⊆ F, by Lemma 2.2, G f (p) = (GF) f (p) = GF ∩ V f (p) for all p ∈ π .
Hence [V f (p), GF] � G f (p) and thereby V f (p) � CG(GF/G f (p)). Since the H-function f is invariable,
CG(GF/G f (p)) � GF by Lemma 5.2. Therefore, V f (p) = G f (p) , for every p ∈ π . �
Theorem 5.4. Let F = LR( f ) with Supp( f ) = π and f be an integrated H-function of F. Then the following
statements hold:

(1) If p ∈ π , then every p-chief factor of G is either f (p)-covered or f (p)-avoided in G.
(2) Assume that f is invariable and p ∈ π . Then

(i) A p-chief factor of G is f (p)-covered if and only if it is f -central in G;
(ii) An F-injector of G covers every f (p)-covered chief factor of G.

(3) If f is a full and invariable H-function, then an F-injector of G covers each F-central chief factor of G and
avoids each F-eccentric chief factor of G.

Proof. (1) Suppose that H/K is a p-chief factor of G and let V be an F-injector of G . Since V ∩ H � V ,
by Lemma 2.2, we have

(V ∩ H) f (p) = V f (p) ∩ (V ∩ H) = V f (p) ∩ H .

But by [4, Theorem VIII.2.13], V ∩ H is an F-injector of H . Hence, by [4, Theorem VIII.2.9], every
conjugate subgroup of (V ∩ H) f (p) in G is a conjugate subgroup of (V ∩ H) f (p) in H . Hence by Frattini
argument, G = H NG((V ∩ H) f (p)) and so K (V ∩ H) f (p) � G . This implies that the p-chief factor H/K
is either f (p)-covered or f (p)-avoided.

(2) The statement (i) can be directly obtained by Lemma 5.3 and the definition of f -central chief
factor. We now prove (ii). Assume that V is an F-injector of G and H/K is an f (p)-covered chief
factor of G , that is, H = K (V f (p) ∩ H). Since the H-function f is invariable, by Lemma 5.3, V f (p) =
G f (p) for all primes p ∈ π . But since G f (p) ⊆ GF ⊆ F for every F-injector F of G , F covers H/K and
so (ii) holds.

(3) Let H/K be an F-central p-chief factor of G , where p ∈ π, and V an F-injector of G . Then
H � K G f (p)Np . Since f is integrated, by the proof of (ii) ⇒ (i) in Theorem 3.5, we see that G f (p)Np �
GF. Besides, by the definition of F-injector, GF � V . Hence H � K V and so V covers H/K .

Now assume that an F-injector V of G covers some p-chief factor H/K of G . Obviously, a Sylow
p-subgroup P of V covers H/K . If p /∈ π , then Np � F (see [3, Lemma 2.3] or [4, Theorem IX.1.9])
and so the Sylow p-subgroup P of V is trivial. It follows that H/K = 1, which contradicts the choice
of H/K . Hence, we can assume that p ∈ π . Since V ∈ F, we have V ∈ f (p)NpSp′ . Since f is full, we
have f (p)Np = f (p). This implies that V /V f (p) ∈ Sp′ and hence every Sylow p-subgroup P of V is
a Sylow p-subgroup of V f (p). Consequently, P � V f (p). By Lemma 5.3, V f (p) = G f (p) for every p ∈ π
and obviously G f (p) ⊆ G f (p)Np . Hence H/K is covered by G f (p)Np . This shows that H/K is F-central
in G . This completes the proof. �
6. Applications

Formerly, in the definition of local Fitting classes F = LR( f ), f (p) is always a Fitting class for all
p ∈ Supp( f ), that is, f is an H-function. In this connection, the following problem naturally arises.

Problem 6.1. Could a local Fitting class be defined by a local function f such that the value f (p) is
not necessarily a Fitting class, that is, f is not an H-function?
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In this section, we use the theory of F-centrality in the theory of Fitting classes given in the above
sections to resolve this problem. In fact, we will construct local Fitting classes by using some local
function f which is not an H-function.

Following [4], a map f : P → {class of groups} is said to be a local function and let π = Supp( f ) =
{p ∈ P | f (p) �= ∅}. For the local function f , we let LR( f ) = Sπ ∩ (

⋂
p∈π f (p)NpSp′ ). Analogously,

a local function f is said to be: (a) integrated if f (p) ⊆ F for all p ∈ π ; (b) full if f (p) = f (p)Np for
all p ∈ π.

Recall that a class X of groups is said to be Sn-closed if every normal subgroup of every X-group
is also a X-group. We say a local function f is Sn-closed if f (p) is Sn-closed for all p ∈ P.

Theorem 6.2. Suppose that F = LR(F ) is a local Fitting class with a full and integrated H-function F and
Supp(F ) = π. Then F can be defined by a full Sn-closed local function f such that f is neither integrated nor
an H-function in general, where

f (p) =
{

(G | G F (p) covers every F-central chief factor of G) if p ∈ π ,

∅ if p /∈ π ′.

Proof. We proceed via the following steps.
(1) Let ϕ(p) = (G | GF ∈ F (p)) for all p ∈ P. Then f (p) = ϕ(p).
Obviously, if p /∈ π, then ϕ(p) = f (p) = ∅. Assume that G ∈ ϕ(p), where p ∈ π . Since F is full, by

Lemma 3.2, we see that every F-central r-chief factor of G is covered by G F (r) , for all r ∈ π. Since
F is integrated, F (r) ⊆ F for all r ∈ π . Hence G F (r) � GF and so the F-radical GF of G covers every
F-central r-chief factor of G . Besides, because GF ∈ F (p), we have GF � G F (p) . Hence GF = G F (p) and
thereby every F-central r-chief factor is covered by G F (p) . This shows that G ∈ f (p) and so ϕ � f .

Assume that f (p) �= ϕ(p) for some p ∈ π and let G be a group in f (p) \ ϕ(p) of minimal order.
Since G F (p) � GF and G /∈ ϕ(p), G F (p) < GF . Then there exists a q-chief factor H/K of G between
G F (p) and GF for some prime q. Obviously, GF covers H/K . Since GF ∈ F (q)NqSq′ = F (q)Sq′ and
F (q) ⊆ F, GF/(GF)F (q) = GF/G F (q) ∈ Sq′ . Hence every Sylow q-subgroup Q of GF is a Sylow q-
subgroup of G F (q). Consequently, Q covers H/K and so G F (q) = G F (q)Nq covers H/K . Hence H/K is
F-central. But since H/K is a chief factor between G F (p) and GF, obviously, G F (q) does not cover
H/K . This contradiction shows that f = ϕ.

(2) The local function f is full and Sn-closed.
Since f = ϕ by (1), we only need to prove that ϕ is full and Sn-closed.
We first show that ϕ is Sn-closed. Assume that X ∈ ϕ(p) and V � X . Then XF ∈ F (p). By

Lemma 2.2, NF = N ∩ XF ∈ F (p) and so N ∈ ϕ(p). Hence ϕ is Sn-closed.
Now we prove that ϕ(p)Np = ϕ(p) for all p ∈ P. Note that π = Supp(F ) = Supp( f ) = Supp(ϕ). If

ϕ(p) = ∅, then it is clear. Obviously, ϕ(p) ⊆ ϕ(p)Np for all p ∈ π . Assume that ϕ(p)Np �= ϕ(p) and
let G be a group in ϕ(p)Np \ ϕ(p) of minimal order. Now by the choice of G , we see that G has a
unique maximal normal subgroup M and |G : M| = p.

If G ∈ F, then G ∈ F (p)Sp′ and so G/G F (p) ∈ Sp′ . Since M is the unique maximal normal subgroup,
G F (p) ⊆ M . Hence (G/G F (p))/(M/G F (p)) � G/M ∈ Np ∩ Sp′ = (1), which contradicts |G : M| = p. Thus
G /∈ F. It follows that G F (p) ⊆ GF � M . This induces that GF = MF = M F (p) = G F (p) and so G ∈ ϕ(p).

This contradiction shows that ϕ is full.
(3) F is locally defined by f .
We only need to prove that F = M, where M = Sπ ∩ (

⋂
p∈π f (p)NpSp′ ) and π = Supp( f ). Ob-

viously, F (p) ⊆ (G | GF ∈ F (p)) = ϕ(p) = f (p) for all p ∈ π . Hence F � ϕ = f and so F ⊆ M. Now
we prove that M ⊆ F. If not, we let G be a group in M \ F of minimal order. Then GF is the unique
maximal normal subgroup of G and |G : GF| = p for some p ∈ π. Since G ∈ M and the local function
f is full by (2), G ∈ f (p)NpSp′ = f (p)Sp′ . Then there exists a normal subgroup K of G such that
K ∈ f (p) and G/K ∈ Sp′ . If K = G , then G ∈ f (p). Hence by (1), G ∈ ϕ(p). It follows that GF ∈ F (p)

and so G ∈ F (p)Np = F (p) ⊆ F. This contradiction shows that K �= G . Then, since GF is the unique
maximal normal subgroup of G , K ⊆ GF and so (G/K )/(GF/K ) � G/GF ∈ Sp′ . This implies that
G/GF ∈ Np ∩ Sp′ = (1). Hence G = GF ∈ F. This contradiction shows that F = M.
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(4) f is neither integrated nor an H-function, in general.
Let F = Nπ , where π is a set of primes such that {2,3} ⊆ π . It is easy to see that F = LR(F ),

where F is an H-function such that

F (p) =
{

Np if p ∈ π ,

∅ if p /∈ π ′.

Then by (1) and (3), we have that F is defined by the local function f such that

f (p) =
{

(G | GNπ ∈ Np) if p ∈ π ,

∅ if p /∈ π ′.

Let p = 3 and S3 be the symmetric group of degree 3. Then S3 ∈ f (3) and S3 /∈ Nπ . Hence the local
function f is not integrated in general.

We now prove that f (3) is not a Fitting class.
Let Y = SL(2,3) be the special linear group of degree 2 over the field GF(3). Then the order of Y

is 24 and Y contains the unique minimal normal group D = Z(Y ) of order 2. Let H = Y1 × Y2, where
Yi � Y for i = 1,2 and D̃ = {(d,d) | d ∈ D}. Then D̃ is a minimal normal subgroup of H with order 2.

By [4, B.9.16], there exists a faithful irreducible representation Φ of H/D over GF(3). Assume that
V is the space of the representation Φ . Then V is a 3-group. Hence the map Φ: H/D̃ → GL(V ) is a
isomorphism from H/D to some subgroup of the group GL(V ) of all automorphisms of the space V .
Let

ϕ : H → GL(V )

be such that ϕ(h) = Φ(hD̃) for all h ∈ H . Since

ϕ(h1h2) = Φ
(
(h1 D̃)(h2 D̃)

) = Φ(h1 D̃)Φ(h2 D̃) = ϕ(h1)ϕ(h2)

for any h1,h2 ∈ H , we see that ϕ is a homomorphism. Let G = [V ]H be a semidirect product, where
V is a normal subgroup of G and H acts on V by ϕ .

Let Kerϕ = {h ∈ H | ϕ(h) = 1} be the kernel of ϕ . We now prove that

Kerϕ = D̃.

If h ∈ D̃, then ϕ(h) = Φ(hD̃) = Φ(D̃) = 1 and hence D̃ ⊆ Kerϕ . Conversely, assume that h ∈ Kerϕ .
Then Φ(hD̃) = ϕ(h) = 1. Since Φ is a monomorphism, hD̃ = D̃ and so h ∈ D̃. This means that Kerϕ ⊆
D̃. Thus, Kerϕ = D̃.

Because π(Y ) = {2,3} and π(V ) = {3}, we have that π(G) = {2,3} and F (G) = O 3(G)O 2(G).
We now prove that O 3(G) = V and O 2(G) = D̃. In fact, since π(Y ) = {2,3} and F (Y ) is a Sylow

2-subgroup of Y , F (H) = F (Y1)F (Y2) = O 2(H). Hence O 3(H) = 1. Since V � G and π(V ) = {3}, V �
O 3(G) � G . Then by Dedekind modular law, O 3(G) ∩ V H = V (O 3(G) ∩ H). Since O 3(G) ∩ H � H and
O 3(G) = 1, we obtain that O 3(G) ∩ H = 1. This implies that O 3(G) = V .

Since π(V ) = {3}, O 2(G) � H . By the properties of semidirect product, we see that if N � H , then
N is a normal subgroup of G if and only if N � Kerϕ . Hence, by O 2(G) � G and Kerϕ = D̃, we have
O 2(G) � D̃. It follows from |D̃| = 2 that O 2(G) = D̃ . Hence F (G) = O 3(G)O 2(G) = V D̃.

Obviously, G = V Y1 V Y2 and V Yi � G for i = 1,2. By Lemma 2.2,

F (V Yi) = F (G) ∩ V Yi = V D̃ ∩ V Yi = V ∈ S3.

Then since {2,3} ⊆ π and π(V Yi) = {2,3}, we have
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(V Yi)Nπ = (V Yi)N{2,3} = O 2(V Yi)O 3(V Yi) = F (V Yi).

Analogously, GNπ = F (G). Hence (V Yi)Nπ ∈ N3 and GNπ = V D̃ /∈ S3. Therefore, by the definition
of f , we obtain that V Yi ∈ f (3) for i = 1,2 and G /∈ f (3). This shows that f (3) is not a Fitting class
and thereby f is not an H-function in general. This completes the proof. �

Note that the class N of all nilpotent groups is a local Fitting class with a full and integrated H-
function F such that F (p) = Np for all prime p ∈ P. Hence, as an immediate corollary of Theorem 6.2
and its proof, we have the following

Corollary 6.3. The class N of all nilpotent groups can be defined by a local function f such that f (p) = (G |
O p(G) covers all N-central chief factors of G), and f (p) = (G | F (G) = O p(G)) for all p ∈ P.
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