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1. Introduction

Let A = A0 ⊕ A1 be an associative superalgebra over a commutative unital ring of scalars R such
that 1

2 ∈ R . An element a of A is said to be homogeneous (of degree i) if a ∈ Ai (and we write
a = i). Let us denote by A− the Lie superalgebra obtained from A via the Lie superbracket [a,b]s :=
ab − (−1)abba, for all homogeneous elements a,b ∈ A (the expression extends over the rest of the
elements by linearity). If A has a superinvolution ∗, let K be the subalgebra of the Lie superalgebra A−
consisting of skew elements of A with respect to ∗, namely K := {a | a ∈ A, a∗ = −a}. When A is trivial,
i.e. A1 = 0, A is nothing but an associative algebra with involution and the Lie superbracket [ , ]s
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coincides with the usual Lie bracket [ , ]. In this setting, an interesting question is to decide if crucial
information on the algebraic structure of A can be deduced from properties of A− or K . This interplay
has been the subject of a good deal of attention over the decades.

In the last years the relation between A, A− and K has been profusely investigated by several
authors for non-trivial superalgebras as well. The motivations for this line of research mainly come
from the classification of the finite-dimensional simple Lie superalgebras over an algebraically closed
field of characteristic zero given by Kac [7]. In fact, we can find in it examples that are superalge-
bras of skew elements with respect to a superinvolution in a simple associative superalgebra or Lie
superalgebras associated to a simple associative superalgebra. This result suggests that the structure
of A as associative superalgebra and A− and K as Lie superalgebras could be related. In this di-
rection, Gómez-Ambrosi and Shestakov [5] studied the Lie structure of K when A is simple. Later
these results were extended to the context of prime and semiprime associative superalgebras in [3]
and [10], respectively. More recently, Laliena and Sacristán explored the structure of semiprime asso-
ciative superalgebras with superinvolution under certain additional regularity condition on symmetric
and skew elements [12] and when [K 2, K 2]s = 0 [11]. We notice that the Lie structure of simple and
prime associative superalgebras without superinvolution was previously studied by Montgomery [15]
and Montaner [14], respectively.

On the other hand, one can consider the Jordan superalgebra A+ obtained from A via the circle
operation a ◦s b := ab + (−1)abba for all homogeneous elements a,b of A (also in this case, the expres-
sion extends over the rest of the elements by linearity). When A is equipped with a superinvolution ∗,
let H := {a | a ∈ A, a∗ = a} be the subalgebra of the Jordan superalgebra A+ consisting of symmetric
elements of A with respect to ∗. In the Kac’s classification [8] of finite-dimensional simple Jordan su-
peralgebras over an algebraically closed field of characteristic zero we find examples of simple Jordan
superalgebras of the form A+ and of the form H(A,∗), where A is a simple associative superalgebra
(with a superinvolution ∗ in the latter case). This is one of the reasons for which A+ and H have
been the subject of a good deal of attention as well (we refer, for instance, to [2] and [4]).

The goal of this paper is to investigate semiprime associative superalgebras with superinvolution
whose subspaces of skew elements or symmetric elements are Lie nilpotent or Lie solvable. We re-
call that a graded subspace S of a superalgebra A is said to be Lie nilpotent if, set [x1, . . . , xn]s :=
[[x1, . . . xn−1]s, xn]s for all n � 2, there exists an integer m such that

[x1, . . . , xm]s = 0

for all x1, . . . , xm ∈ S , and Lie solvable if, set [x1, x2]◦s := [x1, x2]s and inductively

[x1, . . . , x2n+1 ]◦s := [[x1, . . . , x2n ]◦s , [x2n+1, . . . , x2n+1 ]◦s
]

s,

there exists an integer m such that

[x1, . . . , x2m+1 ]◦s = 0

for all x1, . . . , x2m+1 ∈ S .
We notice that in every semiprime associative superalgebra A the intersection of all the prime

ideals of A is zero. Consequently A is a subdirect product of its prime images. If each prime image of
A is a central order in a simple superalgebra at most n2-dimensional over its centre, we say that A is
S(n). This definition is required to state the main result on Lie solvability condition.

Theorem 1.1. Let A be a non-trivial semiprime associative superalgebra over a commutative unital ring of
scalars R such that 1

2 ∈ R endowed with a superinvolution. If H is Lie solvable, then A is S(2).

We stress that if K is Lie solvable, so is H . Thus the result still holds by replacing H with K .
Furthermore it is true if H is Lie nilpotent as well: indeed, the latter fact implies that H is Lie
solvable (obviously, the same holds also for K , which has the structure of Lie superalgebra).
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In the case in which H or K are Lie nilpotent, we are able to provide a characterization in terms
of identities satisfied by the symmetric or skew elements of A.

Theorem 1.2. Let A be a non-trivial semiprime associative superalgebra over a commutative unital ring of
scalars R such that 1

2 ∈ R endowed with a superinvolution. Then

(a) H is Lie nilpotent if, and only if, the elements of H commute;
(b) K is Lie nilpotent if, and only if, the elements of K commute.

Classically, this situation has been studied in the context of semiprime algebras with involution
by Giambruno and Sehgal (Theorem 1 of [1]) and Lee, Sehgal and Spinelli (Propositions 2.4 and 2.6
of [13], although there the authors consider algebras over fields, the statements still hold for algebras
over rings). Their results can be summarized in the following

Theorem 1.3. Let A be a semiprime associative algebra over a commutative unital ring of scalars R such that
1
2 ∈ R endowed with an involution. The following statements are equivalent:

(i) K is Lie nilpotent;
(ii) K is Lie solvable;

(iii) K is commutative.

Theorem 1.4. Let A be a semiprime associative algebra over a commutative unital ring of scalars R such that
1
2 ∈ R endowed with an involution. Then

(a) H is Lie nilpotent if, and only if, H is commutative;
(b) H is Lie solvable if, and only if, H is Lie metabelian.

In particular, if H is Lie solvable, then A is S(2).

We notice that only a partial superanalogous of Theorem 1.3 is obtained. In fact, in non-trivial
superalgebras setting the Lie solvability of K does not imply the Lie nilpotency of K , not even if the
superalgebra is simple. An easy example is provided by the superalgebra of (2 × 2)-matrices M1,1(F )

over a field F of characteristic not 2 equipped with the transposition superinvolution. Furthermore,
we cannot expect that the Lie nilpotency of K or H forces them to be supercommutative (namely,
[a,b]s = 0 for all a,b in K or H).

2. Preliminaries and notations

Throughout the sequel, unless otherwise stated, A = A0 ⊕ A1 will denote a non-trivial associative
superalgebra over a commutative unital ring of scalars R such that 1

2 ∈ R . A subspace V ⊆ A is called
graded if V = (V ∩ A0) ⊕ (V ∩ A1). For instance, the centre Z(A) is a graded subalgebra of A and we
will use Z to denote Z(A)0. By an ideal of A we mean a graded ideal of A. The superalgebra A is said
to be simple if it has no non-zero ideals and the multiplication is non-trivial, prime if I J = 0 for I , J
ideals of A implies that either I = 0 or J = 0, and semiprime if it has no non-zero nilpotent ideals.

A superinvolution of A is a Z2-graded linear map ∗ : A → A such that, for all homogeneous ele-
ments a,b ∈ A, (a∗)∗ = a and (ab)∗ = (−1)abb∗a∗ . When A is equipped with a superinvolution ∗, let
H denote the Jordan superalgebra (with respect to the circle product ◦s) of symmetric elements of
A and let K be the Lie superalgebra (with respect to the usual superbracket [ , ]s) of skew elements
of A. In particular, we recall that, if a,b are homogeneous elements of A, [a,b]s coincides with the
classical Lie bracket [a,b] := ab − ba if at least one of the arguments is in A0. Obviously, H and K
are graded subspaces and A = H ⊕ K . If P is any subset of A, set P H := P ∩ H and P K := P ∩ K . The
superinvolution ∗ is said to be of the first kind if Z H = Z and of the second kind otherwise.
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In case Z 	= 0, we can consider the localization Z−1 A := {z−1a | 0 	= z ∈ Z , a ∈ A}. If A is prime, it
is a central prime associative superalgebra over the field Z−1 Z , which we call the central closure of A
(it should be pointed out that this terminology is not the standard one, which involves the extended
centroid). We also say that A is a central order in Z−1 A. In particular A is called a central order
in C(n) if Z 	= 0 and Z−1 A is isomorphic to the Clifford superalgebra C(W ,q) of a non-degenerate
quadratic space (W ,q) of dimension n over Z−1 Z (see Example 1.5 of [5]). Set V := Z H \ {0} (which
is non-zero if Z 	= 0), it is well-known that Z−1 A = V −1 A. For our aims it will be more convenient to
represent the central closure of A in the form V −1 A. In fact, if A has a superinvolution ∗, V −1 A is an
associative superalgebra over the field V −1 Z H that can be endowed with a superinvolution ∗̂ of the
same kind of the superinvolution ∗ of A via (v−1a)∗̂ := v−1a∗ for all a ∈ A. It is then easy to check
that H(V −1 A, ∗̂) = V −1 H and K (V −1 A, ∗̂) = V −1 K . The superalgebra V −1 A over the field V −1 Z H

is called the ∗-central closure of A. Directly from the structure of V −1 A and its skew and symmetric
elements one deduces that

(a) A is Lie nilpotent (solvable, respectively) if, and only if, V −1 A is Lie nilpotent (solvable, respec-
tively);

(b) K is Lie nilpotent (solvable, respectively) if, and only if, K (V −1 A, ∗̂) is Lie nilpotent (solvable,
respectively).

(b′) H is Lie nilpotent (solvable, respectively) if, and only if, H(V −1 A, ∗̂) is Lie nilpotent (solvable,
respectively).

We shall use these facts without further reference in the sequel.
For any C , D subspaces of A let us denote by [C, D]s the subspace generated by all the elements of

the form [c,d]s , with c ∈ C and d ∈ D . If S is a graded subspace of A, set γ1(S) := S and δ[0](S) := S ,
for all i � 1 we define by induction

γi+1(S) := [
γi(S), S

]
s

and

δ[i](S) := [
δ[i−1](S), δ[i−1](S)

]
s.

Obviously, the γi(S)’s and the δ[ j](S)’s are graded subspaces of A and S is Lie nilpotent (Lie solvable)
if, and only if, there exists an integer n such that γn(S) = 0 (δ[n](S) = 0). In the case in which S is
Lie solvable, the smallest integer m such that δ[m](S) = 0 will be denoted by dlL(S). When S = A
or, if A has a superinvolution, S = K the corresponding γi(S)’s and δ[ j](S)’s are Lie ideals of A and K
respectively, namely graded ideals of the Lie superalgebras A− and K . Obviously, if A (K , respectively)
is Lie nilpotent, then A (K , respectively) is Lie solvable. For what concerns H and its possible link with
the Lie structure of K , it is well-known that [H, K ]s ⊆ H and [H, H]s ⊆ K . Therefore, for any integer i,
γ2i+1(H) ⊆ H and γ2i(H) ⊆ K , whereas δ[i](H) ⊆ K , except for i = 0. Easy consequence of the last
relations is that the Lie solvability of K implies that of H .

On the other hand, even if there is no obvious inclusion among the consecutive terms of the
sequence of the γi(H)’s, a standard induction argument allows to conclude (also in the case in which
A is trivial) that, for any i, j � 1,

[
γi(H), γ j(H)

]
s ⊆ γi+ j(H).

Consequently, one has that, for all i � 0,

δ[i](H) ⊆ γ2i (H),

which proves the following
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Lemma 2.1. Suppose that A is non-necessarily non-trivial and has a superinvolution ∗. If H is Lie nilpotent,
then H is Lie solvable.

An interesting case to deal with, which will be the main obstruction to a superanalogous of The-
orem 1.3, is that of the (generalized) quaternion superalgebra Q (α,β) over a field F of characteristic
not 2, with basis {1, u, v, w} such that u2 = α, v2 = β and uv = −vu and Z2-grading given by
Q (α,β)0 = F .1 + F .uv and Q (α,β)1 = F .u + F .v . It represents the special case of the Clifford su-
peralgebra C(W ,q) with dim W = 2 (see Example 1.5 of [5]). Set Q := Q (α,β), it is easily seen that
[Q , Q ]s = F .1 + Q 1. Hence [Q 0, Q 1]s = Q 1 and therefore

δ[2](Q ) = [F .1 + Q 1, F .1 + Q 1]s = [Q 1, Q 1]s ⊆ F .1.

Obviously, this forces to be δ[3](Q ) = 0. On the other hand, an easy induction argument shows that
Q 1 ⊆ γn(Q ), for all n. We have so proved the following

Lemma 2.2. The quaternion superalgebra over a field of characteristic not 2 is Lie solvable, but not Lie nilpotent.

When Q is split, it is isomorphic to M1,1(F ), the superalgebra of the (2×2)-matrices over the field
F endowed with the grading M1,1(F )0 := ( F 0

0 F

)
and M1,1(F )1 := ( 0 F

F 0

)
. The only two superinvolutions

of this superalgebra have been described in Theorem 3.2 of [5] and are the maps ∗ and � defined by

(
a b
c d

)∗
=

(
d −b
c a

)
,

(
a b
c d

)�

=
(

d b
−c a

)
.

Let us consider the skew elements K (M1,1(F ),∗) and K (M1,1(F ), �). Now, K (M1,1(F ),∗) is the sub-
space generated by the elements x := ( 1 0

0 −1

)
and y := ( 0 1

0 0

)
. Since [y, x]s = −2y, for any n � 1 we

get

[y, x, . . . , x︸ ︷︷ ︸
n times

]s 	= 0.

On the other hand, K (M1,1(F ), �) is generated by the elements x and k := ( 0 0
1 0

)
. In this case

[k, x]s = 2k and, consequently, for any n, [k, x, . . . , x︸ ︷︷ ︸
n times

]s 	= 0. Furthermore, set h := ( 1 0
0 1

)
, h and k gener-

ate H(M1,1(F ),∗), whereas h and y generate H(M1,1(F ), �). Consequently, in any case the symmetric
elements of M1,1(F ) commute (both in graduate and in non-graduate sense). As M1,1(F ) is Lie solv-
able, we have proved

Lemma 2.3. Let F be a field of characteristic not 2. Then, with respect to any superinvolution of M1,1(F ),

(a) the skew elements of M1,1(F ) are Lie solvable, but not Lie nilpotent;
(b) the symmetric elements of M1,1(F ) are Lie nilpotent (hence Lie solvable as well). In particular, they com-

mute and supercommute each other.

Another useful result concerning with the subspaces γ2(H) and γ2(K ) when A is not a quaternion
superalgebra is quoted from [2].

Lemma 2.4. (See 2 of [2].) Suppose that A is unital simple over a field of characteristic not 2. If A has a
superinvolution ∗ and is not a quaternion superalgebra, then [K , K ]s ⊆ [H, H]s .
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Also in view of Lemma 2.4, as we have enough information on the structure of Lie ideals of K and
[K , K ]s , an obvious way of proceeding is to investigate the sequences of the γi(K )’s and δ[i](K )’s, in-
stead of working with the identities defining the Lie nilpotency or solvability of A, K or H . We confine
ourselves to report here the following result showing that, in general, K cannot be supercommutative.

Lemma 2.5. (See 4.1 of [3].) Suppose that A is prime and has a superinvolution ∗. If A is not a central order in
C(2), then [K , K ]s 	= 0.

Finally, a rather simple, but very useful, remark is in order now. Assume that A has a superinvo-
lution and the set of its symmetric elements H is Lie solvable. Then A0 is an algebra with involution
whose symmetric elements A0 ∩ H are still Lie solvable. Hence A0 satisfies a ∗-polynomial identity. By
a Theorem of Amitsur (6.5.1 of [6]), we conclude that A0 satisfies an ordinary polynomial identity. As
A is 2-torsion free, from a result of Kharchenko (Theorem 4 of [9]) it follows that A is a PI-algebra.
The structure of prime superalgebras (non-necessarily equipped with superinvolutions) satisfying a
polynomial identity was described by Montaner.

Lemma 2.6. (See 1.7 of [14].) Assume that A is prime. If A is a PI-algebra, then any non-zero ideal of A inter-
sects Z non-trivially. Moreover, A is a central order in its central closure Z−1 A which is a finite-dimensional
central simple superalgebra over Z−1 Z .

In particular, from Lemma 2.6 we deduce that, if A is prime and K or H is Lie solvable, then Z 	= 0.
Obviously, we can apply Lemma 2.6 to prime superalgebras (without superinvolution) which are Lie
solvable.

3. Prime superalgebras

The first part of this section is devoted to characterize non-trivial prime associative superalgebras
with superinvolution whose skew elements or symmetric elements are Lie nilpotent or Lie solvable.
We first deal with Lie solvability conditions.

Theorem 3.1. Suppose that A is prime and has a superinvolution ∗. The following statements are equivalent:

(i) H is Lie solvable;
(ii) K is Lie solvable;

(iii) one of the following conditions occurs:
(a) A is a central order in C(2);
(b) ∗ is of the second kind and A is commutative (as algebra).

Proof. Assume that H is Lie solvable. If A is a central order in a quaternion superalgebra, A is Lie
solvable and, consequently, so is K . Therefore suppose that A is not a central order in C(2). According
to Lemma 2.6, A is a central order in its central closure Z−1 A which is a finite-dimensional central
simple superalgebra over Z−1 Z . Hence also the ∗-central closure V −1 A of A is simple as superalgebra
over V −1 Z H . Moreover, the extension ∗̂ of ∗ on V −1 A is a superinvolution (of the same kind of ∗)
of V −1 A such that H(V −1 A, ∗̂) is Lie solvable. But we may apply Lemma 2.4 to V −1 A and conclude
that K (V −1 A, ∗̂) is Lie solvable. Consequently, K must be Lie solvable.

In such an event, set m := dlL(K ). Again under the assumption that A is not a central order in
C(2), from Lemma 2.5 we know that m � 2. Suppose, if possible, that ∗ is of the first kind. As
[δ[m−1](K ), δ[m−1](K )]s = 0, Lemma 4.5 of [3] forces to be δ[m−1](K ) = 0, which is a contradiction.
Thus ∗ must be of the second kind. By using the same above arguments, we get that the extension ∗̂
of ∗ to the ∗-central closure V −1 A of A is a superinvolution of the second kind of V −1 A such that
K (V −1 A, ∗̂) is Lie solvable. This implies that (V −1 A)0 is commutative, otherwise, by invoking Corol-
lary 5.1 of [5], one has that δ[1](K (V −1 A, ∗̂)) ⊆ δ[2](K (V −1 A, ∗̂)), which is in contradiction with the
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Lie solvability of the skew elements of V −1 A. From Lemma 2.6 of [14] it follows that the elements of
V −1 A must commute, and we are done.

Finally, if A is a central order in C(2), by Lemma 2.2 A, and so H , is Lie solvable. Hence, assume
that the elements of A commute. Then [A, A]s = [A1, A1]s ⊆ A0. But this forces to be γ3(A) = 0.
Therefore A is Lie nilpotent and, consequently, Lie solvable, and this completes the proof. �

We stress that we cannot expect that the Lie solvability of H is equivalent to that of K when A is
trivial. To show this, it is sufficient to consider the algebra of (2 × 2)-matrices M2(F ) over a field F of
characteristic not 2 endowed with the symplectic involution. Indeed, the symmetric elements of this
algebra commute, whereas its skew elements are not Lie solvable.

In the case in which K is Lie nilpotent, A cannot be a central order in C(2), as proved in the
following

Theorem 3.2. Suppose that A is prime and has a superinvolution ∗. Then K is Lie nilpotent if, and only if, ∗ is
of the second kind and A is commutative (as algebra).

Proof. By virtue of Theorem 3.1, it remains only to show that, if K is Lie nilpotent, then A cannot be
a central order in a quaternion superalgebra. Suppose, if possible, the contrary. If ∗ is of the first kind,
its ∗-central closure is split, thus isomorphic to D := M1,1(V −1 Z H ). Moreover the skew elements
K (D, ∗̂) of D must be Lie nilpotent. But this is in contradiction with Lemma 2.3.

Therefore, assume that ∗ is of the second kind. According to Lemma 2.6, the central closure Z−1 A
of A over the field Z−1 Z is simple. Hence also the ∗-central closure V −1 A of A over V −1 Z H is simple.
Let us call B := V −1 A and consider the induced superinvolution ∗̂ on B . By applying Lemma 3.1 of [5]
we conclude that Z(B)0 is an extension of degree 2 of Z(B)0 ∩ H(B, ∗̂) and H(B, ∗̂) = qK (B, ∗̂), for
a non-zero skew element q of Z(B)0. Now, B = H(B, ∗̂) ⊕ K (B, ∗̂) = qK (B, ∗̂) ⊕ K (B, ∗̂). But K (B, ∗̂)

is Lie nilpotent. Thus B is Lie nilpotent. As Z−1 A = B , Z−1 A is still Lie nilpotent, but this is in
contradiction with Lemma 2.2. �

An extra condition is instead required when H is Lie nilpotent.

Theorem 3.3. Suppose that A is prime and has a superinvolution ∗. Then H is Lie nilpotent if, and only if, one
of the following conditions occurs:

(a) ∗ is of the second kind and A is commutative (as algebra);
(b) ∗ is of the first kind and A is a central order in M1,1(Z−1 Z).

Proof. Suppose that H is Lie nilpotent. According to Lemma 2.1, H is Lie solvable. Hence, by invoking
Theorem 3.1, either A is central order in a quaternion superalgebra or ∗ is of the second kind and A
is commutative as algebra. In the latter case, we are done. Therefore, assume that it does not hold.

Thus A is a central order in C(2). If the superinvolution ∗ of A is of the second kind, by using
the same arguments of the proof of Theorem 3.2 one has that the ∗-central closure B := V −1 A of
A is a simple superalgebra with induced superinvolution ∗̂ (of the second kind) over V −1 Z H . Again
Lemma 3.1 of [5] says that Z(B)0 is an extension of degree 2 of Z(B)0 ∩ H(B, ∗̂) and K (B, ∗̂) =
pH(B, ∗̂), for a non-zero skew element p of Z(B)0. Now, B = H(B, ∗̂)⊕ K (B, ∗̂) = H(B, ∗̂)⊕ pH(B, ∗̂).
But H(B, ∗̂) is Lie nilpotent. Thus B is Lie nilpotent, which is in contradiction with Lemma 2.2.

We conclude that ∗ must be of the first kind. This implies that the ∗-central closure of A is split.
Hence A is a central order in M1,1(Z−1 Z).

Conversely, if the conditions in (a) are satisfied, as observed in the proof of Theorem 3.1, A is Lie
nilpotent. On the other hand, when A and ∗ are as in (b), we are done by virtue of Lemma 2.3. �

In the rest of the section we investigate the Lie structure of prime superalgebras without superin-
volution.
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Theorem 3.4. Suppose that A is prime. Then A is Lie solvable if, and only if, one of the following conditions
occurs:

(a) A is a central order in C(2);
(b) A is commutative (as algebra).

Proof. We have only to prove the necessary part of the statement (as the necessary conditions have
been already discussed at the end of the proof of Theorem 3.1). Hence, assume that A is Lie solvable
and A is not a central order in C(2). If A0 is not commutative, from Lemma 3 of [2] it follows that
A is not Lie solvable, but this cannot be the case. Therefore [A0, A0] = 0 and from Lemma 2.6 of [14]
we deduce that the elements of A must commute, and this concludes the proof. �

Assume now that A is Lie nilpotent. Thus A is Lie solvable. Hence we may apply the previous
theorem and conclude that either A is a central order in a quaternion superalgebra over a field or
the elements of A commute. But, according to Lemma 2.2, a quaternion superalgebra cannot be Lie
nilpotent. Therefore we have the following

Theorem 3.5. Suppose that A is prime. Then A is Lie nilpotent if, and only if, A is commutative (as algebra).

The following lemma extends to superalgebras a classical result in the setting of prime algebras.
For the sake of completeness its easy proof is included.

Lemma 3.6. Suppose that A is prime and let I be a non-zero ideal of A. If I is commutative, then A is commu-
tative (as algebra).

Proof. According to Lemma 1.2 of [14], A is a semiprime algebra. If A is prime as algebra, we are
done (see the corollary to Lemma 1.1.5 of [6], p. 7). Thus, suppose that A is not a prime algebra. The
above cited result of [6] shows that I ⊆ Z(A). Now, let a be a homogeneous element of I and x, y
homogeneous elements of A. Then, as ax and a are in I , hence in the centre of A, we get

0 = [y,ax] = a[y, x] + [y,a]x = a[y, x].

From the arbitrariness of a it follows that I[y, x] = 0. Therefore, for any non-zero homogeneous ele-
ment z of I one has that z A[y, x] = 0. Since A is a prime superalgebra, it must be [y, x] = 0, and this
concludes the proof. �
4. Proof of the main results and concluding remarks

We are now in position to prove our main results.

Proof of Theorem 1.1. Let P be a prime ideal of A. If P∗ � P , then (P + P∗)/P is a non-zero (graded)
ideal of the prime superalgebra A/P . Moreover (P + P∗)/P is a prime superalgebra as well. Suppose
that δ[n](H) = 0. Working in (P + P∗)/P , we are clearly dealing with elements of the form x+ P , with
x ∈ P∗ . But for any such x we have x + x∗ ∈ H , hence

[
x1 + x∗

1, . . . , x2n + x∗
2n

]o
s = 0

for all xi ∈ P∗ . That is,

[x1 + P , . . . , x2n + P ]o
s = P ,
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hence δ[n]((P + P∗)/P ) = 0. If (P + P∗)/P has trivial grading, (P + P∗)/P must be commutative.
When (P + P∗)/P is a non-trivial superalgebra, the conclusions of Theorem 3.4 apply and one
has that either (P + P∗)/P is commutative or it is a central order in a quaternion superalge-
bra. If the elements of (P + P∗)/P commute, from Lemma 3.6 it follows that A/P is commuta-
tive, and is therefore a central order in a field. Thus suppose that (P + P∗)/P is a central order
in C(2). Now, A/P is a PI-algebra since that A is PI. By virtue of Lemma 2.6 we conclude that
Z(A/P )0 is non-zero and the central closure of A/P , we call W , is a finite-dimensional central
simple superalgebra over the field Z(A/P )−1

0 Z(A/P )0. But also (P + P∗)/P is a PI-algebra, thus
also Z((P + P∗)/P )0 is non-zero. Furthermore, as A/P is semiprime as algebra, Lemma 1.1.5 of [6]
shows that Z((P + P∗)/P ) ⊆ Z(A/P ). Let us consider the central closure S of (P + P∗)/P . Pick
non-zero elements z ∈ Z(A/P )0 and w ∈ Z((P + P∗)/P )0. If a ∈ A/P and x ∈ (P + P∗)/P , then
(z−1a)(w−1x) = (zw)−1ax. Now, wz ∈ Z((P + P∗)/P )0 and, consequently, (wz)−1ax ∈ S . Since S is
an additive subgroup and a Z(A/P )−1

0 Z(A/P )0-supermodule, S is a graded ideal of W . But W is
simple, thus S = W and therefore A/P must be an order in a quaternion superalgebra.

If P∗ ⊆ P , then A/P is a prime superalgebra with the induced superinvolution, we call again ∗,
such that H(A/P ,∗) is Lie solvable. If the grading on A/P is trivial, we are done by virtue of The-
orem 1.4. Thus, assume that A/P is non-trivial. But, in this case, from Theorem 3.1 it follows that
either A/P is a central order in a quaternion superalgebra over its centre or A/P is commutative,
therefore a central order in a field, and this concludes the proof. �
Proof of Theorem 1.2. (a) By following the same above strategy, let us consider a prime ideal P of A.
If P∗ � P , then (P + P∗)/P is a non-zero (graded) ideal of the prime superalgebra A/P . Moreover, it is
a Lie nilpotent prime superalgebra. Hence, by applying Theorem 3.5 when (P + P∗)/P has non-trivial
grading, we conclude that (P + P∗)/P is commutative and, by virtue of Lemma 3.6, so is A/P .

If P∗ ⊆ P , then the symmetric elements of A/P with respect to the induced superinvolution are
Lie nilpotent. If the grading on A/P is non-trivial, directly from Theorem 3.3 it follows that either
A/P is commutative or the induced superinvolution on A/P is of the first kind and A/P is a central
order in M1,1(Z(A/P )−1

0 Z(A/P )0). But the symmetric elements of this superalgebra commute, thus
also the elements of H(A/P ) must commute each other.

When A/P is a trivial superalgebra, from Theorem 1.4 one has that the symmetric elements
(H + P )/P of A/P must commute.

In any case, [H, H] is contained in the intersection of all the prime ideals of A, and we are done.
(b) It uses the same arguments of the proof of (a) replacing the reference to Theorems 3.3 and 1.4

with an appeal to Theorems 3.2 and 1.3. �
We conclude with a final remark. In [11] the authors determined the structure of a semiprime

superalgebra with superinvolution satisfying the identity [K 2, K 2]s = 0. This condition implies that
[[K , K ]s, [K , K ]s]s = 0, thus K must be Lie solvable and our result in Theorem 1.1 applies. Obviously,
the conditions [K 2, K 2]s = 0 and δ[2](K ) = 0 are not equivalent. To show this, it is sufficient to con-
sider the space A := Q(i) ⊕ Q(i)u with i2 = −1 and u2 = i, grading induced by setting u := 1 and
superinvolution

∗ : A −→ A, (q + pi) + (r + ti)u �−→ (q − pi) + (r − ti)u, q, p, r, t ∈Q.

Then A is a simple superalgebra and the set of its skew elements K = Qi ⊕Qiu is Lie nilpotent. But
u ∈ K 2 and [u, u]s = 2u2 	= 0.
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