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a numerical relationship between an ordinary character of GF and
its unipotent support), to the case where Z(G) is disconnected.
We then use this observation in some applications to the ordinary
character theory of GF .
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Throughout this article G will be a connected reductive algebraic group over Fp , an algebraic
closure of the finite field Fp , where p is a good prime for G. Furthermore, we assume G is defined
over Fq ⊂ Fp (where q is a power of a p) and F : G → G is the associated Frobenius endomorphism.
Throughout we will denote an algebraic group in bold and its corresponding rational structure in
roman, for instance G := GF .

1. Introduction

Let Irr(G) denote the set of ordinary irreducible characters of G . In [1] Lusztig has associated to
every χ ∈ Irr(G) a unique F -stable unipotent class of G called the unipotent support of χ , which we
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denote by Oχ . This was originally done under the assumption that p and q are sufficiently large,
however the assumptions on p and q were later removed in [2]. A consequence of the existence of
unipotent supports is that we have a surjective map

ΦG : Irr(G) → {F -stable unipotent conjugacy classes of G}
given by ΦG(χ) :=Oχ .

Recall that Lusztig has shown for each χ ∈ Irr(G) there is a well-defined integer nχ such that
nχ ·χ(1) is a polynomial in q with integer coefficients. If x ∈ G then we write AG(x) for the component
group CG(x)/C◦

G(x). The following result was observed by Lusztig in [3, 13.4.4] and later verified by
Hézard and Lusztig through a detailed case by case analysis (see [4] and [5]).

Theorem 1.1 (Hézard, Lusztig). Assume G/Z(G) is simple, Z(G) is connected and O is an F -stable unipotent
class of G. There exists a character χ ∈ Irr(G) such that ΦG(χ) =O and nχ = |AG(u)| for any u ∈O.

The usefulness of characters satisfying this technical condition can be seen in Kawanaka’s theory of
generalised Gelfand–Graev representations (GGGRs). In particular, if χ satisfies this technical condition
then it severely limits the appearance of χ as a constituent of the character of a GGGR associated to
a unipotent element in OF

χ . The main result of this article is an extension of Theorem 1.1 to include
all simple groups, see Theorem 3.1.

The layout of this paper is as follows. In Section 2 we will show there exist class representatives
of each F -stable unipotent class such that a sensible generalisation of Theorem 1.1 can be made (we
call such representatives well chosen). In Section 3 we will state and prove our main result. Using this
result we prove in Sections 4 and 6 (under the assumption p and q are large), that a conjecture of
Kawanaka on unipotently supported class functions holds for simple groups which are not spin/half-
spin groups. This is based on the work of Geck and Hézard in [6] which uses Theorem 1.1. Finally, in
Sections 7 and 8 we give an expression of a certain fourth root of unity that is associated to GGGRs
when G is a special orthogonal or symplectic group. This is based on an argument used by Geck in [7]
which uses Theorem 1.1.

2. Component groups

For the remainder of this article, unless otherwise stated, we will assume G is simple. We fix a
regular embedding ι : G → G̃ (as defined in [8, §7]), where G̃ is a connected reductive group such
that Z(G̃) is connected. We now fix a dual group of G (resp. G̃), which we denote by G� (resp. G̃�),
and a Frobenius endomorphism F � : G� → G� such that the pairs (G, F ) and (G�, F �) are in duality.
Similarly we denote again by F and F � compatible Frobenius endomorphisms of G̃ and G̃� . Recall
that ι determines a corresponding surjective morphism ι� : G̃� → G� between dual groups, which is
defined over Fq . For smoothness of the exposition if Z(G) is connected then we will take G̃ to be G
and ι to be such that ι(g) = g for all g ∈ G.

The embedding ι defines a bijection between the unipotent conjugacy classes of G and the cor-
responding classes in G̃. If u is a unipotent element of G then we will implicitly identify u with its
image ι(u) ∈ G̃. The purpose of this section is to show that in a simple algebraic group we can always
pick representatives of an F -stable unipotent class such that they are well chosen. By this we mean
the following.

Definition 2.1. Let O be an F -stable unipotent class of G. We say a class representative u ∈OF is well
chosen if |AG(u)F | = |ZG(u)F ||AG̃(u)|, where ZG(u) is the image of Z(G) in AG(u).

Lemma 2.2. Let G be a connected reductive algebraic group and C an F -stable conjugacy class of G such that
AG(x) is abelian for some x ∈ C F . Then the following are equivalent:

(i) the number of G-conjugacy classes contained in C F is |AG(x)|,
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(ii) AG(x)F = AG(x),
(iii) AG(x′)F = AG(x′) for all x′ ∈ C F .

Proof. By [9, Theorem 4.3.5] we know the G-classes contained in C F are in bijective correspondence
with the F -conjugacy classes of AG(x). Therefore the number of G-classes contained in C F is the
same as |AG(x)| if and only if every F -conjugacy class of AG(x) contains only one element. As AG(x)
is abelian this proves the equivalence of the first two statements. If (i) is true for x ∈ C F then it
is true for all x ∈ C F as |AG(x)| is independent of the choice of x. Therefore this together with the
equivalence of (i) and (ii) gives the equivalence of (i) and (iii). �
Lemma 2.3. Let G be a connected reductive algebraic group and C an F -stable conjugacy class of G. If the
automorphism of AG(x) induced by F , for some x ∈ C F , is an inner automorphism then there exists x′ ∈ C F

such that AG(x′)F = AG(x′).

Proof. Assume there exists an element y ∈ CG(x) such that for all zC◦
G(x) ∈ AG(x) we have

F (zC◦
G(x)) = y−1zyC◦

G(x). As y ∈ G, by the Lang–Steinberg theorem, there exists g ∈ G such that
y = g−1 F (g) ⇒ F (g) = gy. Clearly AG(g x) = g AG(x) so gzC◦

G(x)g−1 ∈ AG(g x). Furthermore we have

F
(

gzC◦
G(x)g−1) = gy

(
y−1zy

)
C◦

G(x)y−1 g−1 = gzC◦
G(x)g−1,

so F acts trivially on AG(g x). Taking x′ = g x ∈ C F we have AG(x′)F = AG(x′) as required. Note x′ is
fixed by F because y ∈ CG(x). �
Proposition 2.4. Let G be a connected reductive algebraic group with connected centre such that G/Z(G) is
simple, then for any F -stable unipotent class O ⊂ G we have AG(u)F = AG(u) for some unipotent element
u ∈OF .

Proof. The natural surjective morphism of algebraic groups π : G → G/Z(G) induces a bijection be-
tween the unipotent classes of G and G/Z(G). If u ∈ G is unipotent then the restriction of π to CG(u)

induces an isomorphism AG(u) ∼= AG/Z(G)(π(u)), which is defined over Fq . Therefore we may prove
this result using any group G which has a connected centre and simple quotient G/Z(G).

The structure of the component groups AG(u) has been determined on a case by case basis. In the
case where G is an adjoint exceptional group it is known that AG(u) is either trivial or isomorphic to
a symmetric group S2, S3, S4 or S5 (see for example the tables in [10, §13.1]). Every automorphism
of such a group is an inner automorphism, so the result holds by Lemma 2.3.

We now turn to the classical groups. The case of type An is trivial as all component groups are
trivial. Assume Ḡ is either a symplectic or special orthogonal group and Ō ⊂ Ḡ is an F -stable unipo-
tent class with representative ū ∈ ŌF . The component group AḠ(ū) is an elementary abelian 2-group
whose order is given in [11, IV, 2.26 and 2.27]. By inspecting the descriptions of |AḠ(ū)| we see
by [12, p. 38] (resp. [12, p. 42]), for the symplectic groups (resp. special orthogonal groups), that
the number of Ḡ-classes contained in ŌF is the same as |AḠ(ū)|. Note the statement given in [12]
is for the orthogonal groups but the maximal number of Ḡ-classes contained in ŌF is |AḠ(ū)| and
there can only be less classes in the orthogonal group so this suffices. As AḠ(ū) is abelian we have
AḠ(ū)F = AḠ(ū) by Lemma 2.2. The odd dimensional special orthogonal groups are adjoint groups of
type Bn , so this case is covered.

Let G be an adjoint group of type Cn or Dn then there exists a symplectic or special orthogonal
group Ḡ such that we have an isogeny π : Ḡ → G which is defined over Fq . Let ū be a unipotent
element of Ḡ and set u := π(ū). The restriction of π to CḠ(ū) induces a surjective morphism AḠ(ū) →
AG(u) defined over Fq , therefore AḠ(ū)F = AḠ(ū) implies AG(u)F = AG(u) so we are done. �
Remark 2.5. The statement of Proposition 2.4 is not a new result. It follows in most cases from a
much stronger statement concerning the existence of so-called split elements, see [13, Remark 5.1].
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However, we include this here as it gives a simpler argument for this statement and also circumvents
the caveat that split elements do not always exist in type E8.

We want to discuss how to relate the component group AG(u) to the component group AG̃(u) (for

this we follow [14, p. 306]). The group G̃ is an almost direct product G̃ = GZ(G̃) so we get an almost
direct product CG̃(u) = CG(u)Z(G̃) and the restriction of ι to the centraliser CG(u) induces a surjective
map AG(u) → AG̃(u). It is easy to see that the kernel of this map is the image of Z(G) in AG(u) so
we obtain a sequence of maps

Z(G) → AG(u) → AG̃(u), (2.1)

which is exact at AG(u). As all morphisms are defined over Fq this induces a sequence

Z(G)F → AG(u)F → AG̃(u), (2.2)

which is again exact at AG(u)F (where here we assume u is chosen such that AG̃(u)F = AG̃(u)).
Although the map AG(u) → AG̃(u) in (2.1) is surjective it is not necessarily the case that the map
AG(u)F → AG̃(u) in (2.2) is surjective. If we can show that this is the case then the existence of
well-chosen elements will be assured.

There are two cases where this is trivial to show. If |AG̃(u)| = 1 then it is obvious that such a map
is surjective. The second case is when |AG(u)| = |AG̃(u)| because then we must have AG(u) ∼= AG̃(u),
which implies AG(u)F ∼= AG̃(u)F . In fact we are almost always in the situation of these two trivial
cases (see for example the information gathered in [15, Chapter 2]). We deal with the remaining
cases in exceptional groups in two lemmas. In the following lemmas we label the unipotent conjugacy
classes as in [10, §13.1].

Lemma 2.6. Let G be the simply connected group of type E6 and O the unipotent class E6(a3). For any u ∈OF

we have AG̃(u)F = AG̃(u) and AG(u)F → AG̃(u) is surjective.

Proof. We see that AG(u) is isomorphic to Z3 × Z2, as it is a finite group of order 6 with a non-
trivial centre. The group AG̃(u) is abelian and AG̃(u)F = AG̃(u) by Proposition 2.4 and Lemma 2.2. Let
Z(G) = 〈z〉 and x ∈ AG(u) be the element of order 2 such that AG(u) = 〈z, x〉. As the action of F on
AG̃(u) is trivial we must have F (x) ∈ {x, xz, xz2}. However the element x is of order 2 but xz and xz2

are of order 6, so F (x) = x. �
Lemma 2.7. Let G be the simply connected group of type E7 and O the unipotent class D4(a1) + A1 , E7(a3),
E7(a4) or E7(a5). Then for some u ∈OF we have AG̃(u)F = AG̃(u) and AG(u)F → AG̃(u) is surjective.

Proof. Let u ∈OF be an element such that its image u ∈ ÕF has the property AG̃(u)F = AG̃(u), which
is possible because of Proposition 2.4. We use the work of Mizuno [16] to confirm that F only acts
non-trivially on ZG(u). By

(i) [16, Lemma 30] for D4(a1) + A1 – Mizuno label D4(a1) + A1,
(ii) [16, Lemma 13] for E7(a3) – Mizuno label D6 + A1,

(iii) [16, Lemma 17] for E7(a4) – Mizuno label D6(a1) + A1, and
(iv) [16, Lemma 21(2)] for E7(a5) – Mizuno label D6(a2) + A1,

we know the number of G-classes contained in OF is |AG(u)|. If O is not E7(a5) then the group
AG(u) is abelian so the result follows by Lemma 2.2.

Assume O is the class E7(a5), by [16, Table 9] we see AG(u) is isomorphic to S3 × Z2. Let
Z(G) = 〈z〉, then z is a generator for the Z2 component of AG(u). We know the action of F on
the component group AG̃(u) is trivial so we need only show F (x) �= xz for all x ∈ AG(u) − ZG(u). If x
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is a 3-cycle of AG(u) then we cannot have F (x) = xz because x and xz are of different orders. If x is
a 2-cycle such that F (x) = xz then the number of F -conjugacy classes of AG(u) would be less than 6
and this cannot possibly happen. �

We now deal with the cases of classical type. Let G be a spin group (in other words a simply
connected group of type Bn or Dn), and let O be a unipotent class of G. Recall that to every unipotent
class of G we have a corresponding partition λ of N , where N is the dimension of the spin group,
such that any even number in λ occurs an even number of times. This partition is determined by the
Jordan blocks of a corresponding class in a special orthogonal group. The non-trivial cases we need to
consider occur when the partition λ contains at least one odd number and any odd number occurs
at most once (equivalently these are the classes such that Z(G) embeds into AG(u)). We assume now
that O is a class with such a partition. In [17, §14.3] Lusztig gives a description of the component
group AG(u), which we recall here.

First of all let Ḡ be a special orthogonal group such that we have an isogeny π : G → Ḡ. Recall that
the kernel of this isogeny is a central subgroup of order 2, which we denote Ker(π) = {1, ϑ}. Every
non-trivial element of Z(G) determines a non-trivial element of AG(u), in particular ϑ determines a
non-trivial element of AG(u). Let I := {a1, . . . ,ak} be the set of odd numbers occurring in λ. We let S
be the group generated by the elements ϑ, x1, . . . , xk , which satisfy the relations

ϑ2 = 1, x2
i = ϑai(ai−1)/2, xi x j = x jxiϑ, ϑxi = xiϑ

for all i �= j. The group AG(u) is then isomorphic to the subgroup of S which consists of all elements
that can be expressed as a word in an even number of the generators x1, . . . , xk . For the remainder
of this discussion we will identify AG(u) with its image in S . For all 2 � i � k let yi = x1xi then
{ϑ, y2, . . . , yk} is a set of generators for AG(u).

Consider the image ū = π(u) of u in the special orthogonal group Ḡ. The map π induces a surjec-
tive map AG(u) → AḠ(ū) with kernel {1, ϑ}. By Proposition 2.4 and Lemma 2.2 we know the action of
F on AḠ(ū) must be trivial for any class representative u ∈OF . Therefore given any element x ∈ AG(u)

we have F (x) ∈ {x, xϑ}, however we always have F (ϑ) = ϑ . Any automorphism of AG(u) is uniquely
determined by its action on the generators, so we break the study of F into two possible cases:

(a) F (yi) = yiϑ for an even number of yi ’s,
(b) F (yi) = yiϑ for an odd number of yi ’s.

In case (a) we claim that the automorphism is an inner automorphism. We start by noticing that
if i1, i2, j1, j2 are all distinct then xi1 xi2 and x j1 x j2 commute. Let σi j be the automorphism such
that σi j(yi) = yiϑ and σi j(y j) = y jϑ but σi j(y
) = y
 whenever i, j, 
 are all distinct. It is easy to
verify that σi j is conjugation by xi x j , so is inner. As F must be a composition of automorphisms of
the form σi j we have F is also inner.

We now consider case (b). Assume G is of type Dn and by composing with a sufficient number of
inner automorphisms let us assume that F acts non-trivially on precisely one generator yi . As F acts
non-trivially only on yi it will be true that AG(u)F is the subgroup 〈ϑ, y2, . . . , yi−1, yi+1, . . . , yk〉, in
particular |AG(u)F | = 2|I|−1. As G is of type Dn we have

∣∣AG(u)F
∣∣/∣∣AG̃(u)

∣∣ = 2|I|−1/2|I|−2 = 2. (2.3)

We claim that we also have |ZG(u)F | = 2. By the third paragraph of [18, §3.7(a)] we know the centre
of AG(u) is given by {1, ϑ, z, zϑ} where z is the element x1x2 · · · xk−1xk . Note that this means the
centre of AG(u) coincides with the image of Z(G). We have the following expression of z in terms of
our chosen generating set

z = x1x2 · · · xk = y2 y3 · · · ykϑ
c

for some c ∈ {0,1}. Therefore we have F (z) = zϑ and F (zϑ) = z so ZG(u)F = {1, ϑ} as required.
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Assume now G is of type Bn . Recall that λ partitions an odd number so k−1 is even. By composing
with a sufficient number of inner automorphisms let us assume that F acts on all but one generator
non-trivially. Assume yi is the generator such that F (yi) = yi then it is easy to check that yx1xi

j = y jθ

whenever j �= i and clearly yx1xi
i = yi . In particular F is an inner automorphism. With this in hand

we can prove the following proposition, which is vital for extending Theorem 1.1.

Proposition 2.8. Assume G is a simple algebraic group then any F -stable unipotent class O of G contains a
well-chosen representative.

Proof. If G is adjoint then the existence of well-chosen representatives follows from Proposition 2.4,
hence we may assume Z(G) is disconnected. We have already covered the two trivial cases where
|AG(u)| = |AG̃(u)| or |AG̃(u)| = 1, which covers the case of type An . If G is an exceptional group
then the only cases left to consider are those covered by Lemma 2.6 and Lemma 2.7. Assume G is a
symplectic group or a special orthogonal group of type Dn then the statement was proved as part of
the proof of Proposition 2.4. If G is a spin group then the result follows from the above discussion
and Lemma 2.3. Finally assume G is a half-spin group and π : Gsc → G is a simply connected cover
of G. We need only comment that case (b) above cannot happen because the Frobenius cannot act
non-trivially on the centre of Gsc as it must preserve Ker(π). In other words the map AG(u)F → AG̃(u)

is always surjective. �
From now on we assume for each F -stable unipotent class O of G that u ∈OF is a fixed
well-chosen class representative of O.

3. The main result

Let Q
 be an algebraic closure of the field of 
-adic numbers where 
 > 0 is a prime distinct
from p. We assume fixed once and for all an automorphism Q
 → Q
 of order two denoted by x �→ x
such that ω = ω−1 for all roots of unity ω ∈ Q×


 . If H is a finite group we denote by Cent(H) the
space of all class functions f : H → Q
 . This is an inner product space with respect to the standard
inner product 〈−,−〉H : Cent(H) × Cent(H) → Q
 given by

〈
f , f ′〉

H = 1

|H|
∑
h∈H

f (h) f ′(h)

(we will write 〈−,−〉 when H is clear from the context). We have a set of irreducible characters
Irr(H) ⊂ Cent(H) which forms an orthonormal basis of Cent(H). If K is a subgroup of H then we
denote by ResH

K : Cent(H) → Cent(K ) and IndH
K : Cent(K ) → Cent(H) the standard restriction and in-

duction maps.
From now on representatives of F -stable unipotent classes will be assumed well chosen. Before

we can state and prove the main result of this paper we must first recall some facts regarding the
character theory of G . Let s ∈ G� be a semisimple element then we denote by E(G, s) the ratio-
nal Lusztig series determined by the G�-conjugacy class of s. We denote by C◦

G� (s) the fixed point
group C◦

G� (s)F �
then this forms a normal subgroup of the full centraliser CG� (s). As such we have the

quotient group AG� (s) := CG� (s)/C◦
G� (s) acts on Irr(C◦

G� (s)) by conjugation. This action stabilises each
Lusztig series and we let E(C◦

G� (s),1)/AG� (s) denote the orbits of the unipotent characters under the
action of AG� (s).

We remark also that as G is a normal subgroup of G̃ we have a natural action of G̃/G · Z(G̃) on
Irr(G) by conjugation. This action stabilises each Lusztig series of G . In [8, Proposition 5.1] Lusztig
shows that there exists a bijection

Ψs : E(G, s) → E
(
C◦

G� (s),1
)
/AG� (s) (3.1)
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such that:

(i) the fibres of Ψs are the orbits of the action of G̃/G · Z(G̃) on E(G, s);
(ii) if Θ ∈ E(C◦

G� (s),1)/AG� (s) is an orbit and Γ is the stabiliser of an element of Θ in AG� (s) then
|Ψ −1

s (Θ)| = |Γ |.

This is a generalisation of the Jordan decomposition of characters. To prove the above result Lusztig
shows that the restriction of every irreducible character of G̃ to G is multiplicity free. With this
framework in mind we can now state and prove the main result of this article.

Theorem 3.1. Assume G is a simple algebraic group and O is an F -stable unipotent class of G. There exists
a character χ ∈ Irr(G) such that ΦG(χ) = O and nχ = |AG(u)F | = |ZG(u)F ||AG̃(u)|, where u ∈ OF is a
well-chosen representative.

Proof. If G is an adjoint group then this is merely the statement of Theorem 1.1, so we may assume
Z(G) is disconnected. We write (s̃,ψ) for a pair such that s̃ ∈ G̃� is a semisimple element (s :=
ι�(s̃) ∈ G�), and ψ ∈ E(C◦

G� (s),1) is a unipotent character. We denote by ψ̃ ∈ E(G̃, s̃) the character
uniquely determined by the sequence of bijections

E(G̃, s̃) → E
(
CG̃� (s̃),1

) → E
(
C◦

G� (s),1
)
, (3.2)

where the first bijection comes from the usual Jordan decomposition of characters and the last bijec-
tion comes from [19, Proposition 13.20].

Let us assume that (s̃,ψ) is a pair which satisfies the following properties:

(P1) nψ = |AG̃(u)|.
(P2) |StabAG� (s)(ψ)| = |ZG(u)F |.
(P3) ΦG̃(ψ̃) =O, where here we identify O with its image ι(O) in G̃.

By the Jordan decomposition of characters the character degree of ψ satisfies ψ̃(1) = ψsc(1)ψ(1),
where ψsc ∈ E(G̃, s̃) is the unique semisimple character contained in the Lusztig series. By [10,
Theorem 8.4.8] we have |G̃�|p′ = |CG̃� (s̃)|p′ψsc(1) and by the order formula for finite reductive
groups (see [10, p. 75]), both |G̃�|p′ and |CG̃� (s̃)|p′ are monic polynomials in q. In particular ψsc(1)

must also be a monic polynomial in q hence nψ̃ = nψ = |AG̃(u)| by (P1). Using the multiplicity

free property mentioned above we have ResG̃
G(ψ̃) = χ1 + · · · + χk , where χi ∈ E(G, s) and χi(1) =

|StabAG� (s)(ψ)|−1ψ̃(1). For any 1 � i � k we have by (P2) that

nχi = ∣∣StabAG� (s)(ψ)
∣∣ · nψ̃ = ∣∣ZG(u)F

∣∣∣∣AG̃(u)
∣∣ = ∣∣AG(u)

∣∣.
By (P3) and [2, Theorem 3.7] we know O is the unipotent support of each χi hence any χi will satisfy
the statement of the theorem. �

Our proof of Theorem 3.1 will be complete once we have verified the following result.

Theorem 3.2. For every simple algebraic group G with a disconnected centre and every F -stable unipotent
class O of G there exists a pair (s̃,ψ) (as specified in the proof of Theorem 3.1), satisfying (P1) to (P3). Further-
more s̃ can be chosen such that the image of s under an adjoint quotient of G� is a quasi-isolated semisimple
element. Let F ⊆ E(C◦

G� (s),1) be the family of unipotent characters containing ψ then the following extra
conditions hold, unless G is a spin/half-spin group and AG(u) is non-abelian:

(P4) the pair (s̃,W�(F̃)) is d-good ( for a definition see [20, Definition 2.4] and [7, 4.4]).
(P5) XF := {ψ ∈F | |StabAG� (s)(ψ)| �= |ZG(u)F |} =∅.
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We will see that (P4) and (P5) will be used in applications below, in particular (P4) is required so
that [7, Theorem 4.5] is applicable. The detailed case by case verification of Theorem 3.2 is the main
result of [20], which also forms the main content of the authors PhD thesis. The techniques used are
those described in [6, §2] together with Clifford theory.

Remark 3.3. In [20] the author works with geometric conjugacy classes of semisimple elements with
representatives in a fixed maximal torus of G̃� . One can do this if one modifies the action of the
Frobenius endomorphism on the centraliser of the semisimple appropriately (i.e. by twisting with an
element of the Weyl group – see [20, §2]). It is an easy exercise for the reader that [20, Theorem 2.5]
gives a pair as in Theorem 3.2 (see also the proof of [15, Theorem A]).

4. Generalised Gelfand–Graev representations

Following [6] we will use the result of Theorem 3.1 to prove Kawanaka’s conjecture holds for most
simple groups G with a disconnected centre. Firstly let us recall that in [21, §3.1] Kawanaka asso-
ciates to every unipotent element u ∈ G a GGGR which we denote Γu . This is a representation of G
whose construction depends only on the G-conjugacy class of u. Furthermore, these representations
are such that Γ1 is the regular representation (where 1 ∈ G is the identity), and Γu is a Gelfand–Graev
representation if u is a regular unipotent element.

If Γu is a GGGR of G then we will write γu for the character of G admitted by Γu and we use the
term GGGR to refer to both Γu and γu . We can now state Kawanaka’s conjecture.

Conjecture 4.1. (See Kawanaka [22, 3.3.1].) Let G be a connected reductive algebraic group and p a good prime
for G. Let u1, . . . , ur be representatives for the unipotent conjugacy classes of G, then the set {γui | 1 � i � r}
forms a Z-basis for the Z-module of all unipotently supported virtual characters of G.

If G is connected reductive with a connected centre and simple quotient G/Z(G) then, under the
assumption that p, q are large enough, this was proved by Geck and Hézard in [6, Theorem 4.5]. Here
p, q large enough means that the results of [1] are true. We will now assume that p, q are large
enough so that we may use the results of [6].

For the following discussion of GGGRs to make sense we must first make some choices. We fix an
F -stable Borel subgroup B̃ � G̃ which contains an F -stable maximal torus T̃ � G̃. We define B := B̃ ∩ G
and T := T̃ ∩ G, then these are similarly such groups for G. Let U be the common unipotent radical of
both B and B̃ then B̃ = T̃ � U and B = T � U. We denote the fixed points of B̃ (resp. T̃, B, T, U), under
the Frobenius endomorphism by B̃ (resp. T̃ , B , T , U ). Our GGGRs are then defined with respect to
these choices.

Remark 4.2. By [23, Remark 2.2] we know class representatives for all unipotent classes of G may
be found in U hence we assume this to be the case from this point forward. This means we may
also assume that our fixed well-chosen representatives lie in U , as any G-conjugate of a well-chosen
representative is well chosen.

When Z(G) is disconnected we will want to relate the GGGRs of G to the GGGRs of G̃ . If u ∈ G̃ is a
unipotent element then u is also a unipotent element of G . We will denote the GGGR of G̃ associated
to u by γ̃u and the GGGR of G associated to u by γu . With this in mind we have the following
observation, which follows immediately from the construction of GGGRs.

Lemma 4.3. Let Õ be a G̃-conjugacy class of unipotent elements and {ui} ⊆ Õ a collection of class represen-

tatives for the G-conjugacy classes contained in Õ ∩ G, then γ̃ui = IndG̃
G(γui ) for each i.

We will need another observation regarding the natural conjugation action of G̃ on a GGGR. The
group G̃ is the product T̃ · G , therefore we may assume that any left transversal of G in G̃ is contained
in T̃ . In particular, if χ is a class function of G then for any g ∈ G̃ there exists t ∈ T̃ such that χ g = χ t

(where χ g(x) = χ(gxg−1) for all x ∈ G). With this notation we have the following result.
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Proposition 4.4. (See Geck [24, Proposition 2.2].) For any unipotent element u ∈ U and any t ∈ T̃ we have
γ t

u = γtut−1 .

5. The case of abelian component groups

To prove Kawanaka’s conjecture we will follow the same line of argument as in [6, §4]. In particular
the focus will be on the following observation.

Lemma 5.1. (See Geck and Hézard [6, Lemma 4.2].) Let u1, . . . , ud be representatives for the unipotent con-
jugacy classes of G. Assume that there exist virtual characters χ1, . . . ,χd of G such that the matrix of scalar
products (〈χi, γu j 〉G)1�i, j�d is invertible over Z, then Conjecture 4.1 holds.

We will start by proving a result which is crucial in dealing with almost all cases. Let
DG : Cent(G) → Cent(G) denote the Alvis–Curtis duality map. It is known that DG is an isometry
of Cent(G) and DG ◦ DG is the identity (see for example [19, §8]). Hence, for any irreducible char-
acter χ ∈ Irr(G) there exists a sign εχ ∈ {1,−1} such that εχ DG(χ) ∈ Irr(G). For any χ we denote
εχ DG(χ) by χ∗ . It will be useful for us to know the following relationship between the Alvis–Curtis
duality maps DG̃ and DG .

Lemma 5.2. For any connected reductive algebraic group G we have

ResG̃
G ◦ DG̃ = DG ◦ ResG̃

G .

Proof. If H is a connected reductive algebraic group defined over Fq then we denote by rk(H) its
semisimple Fq-rank (see [19, Definition 8.6]). Also if L � G is an F -stable Levi subgroup contained in
an F -stable subgroup of G then we denote by RG

L the corresponding Harish-Chandra induction map.
By [19, Proposition 2.2] if H̃ is a Borel, parabolic or Levi subgroup of G̃ then H := H̃ ∩ G is also such a
subgroup of G and the map H̃ → H gives a bijection between the sets of such subgroups. Identifying
these groups in this way and using the statements in [25, Proposition 10.10] we have

ResG̃
G ◦ DG̃ =

∑
P̃�B̃

(−1)rk(P̃)
(
ResG̃

G ◦ RG̃
L̃

) ◦ ∗RG̃
L̃

=
∑
P̃�B̃

(−1)rk(P̃)RG
L ◦ (

ResL̃
L ◦ ∗RG̃

L̃

)

=
∑
P�B

(−1)r(P)
(

RG
L ◦ ∗RG

L

) ◦ ResG̃
G

= DG ◦ ResG̃
G .

To obtain the third equality we have used the fact that the inclusion morphism P → P̃ induces an
isomorphism between the derived subgroups of P and P̃ which is defined over Fq , hence rk(P) =
rk(P̃). �
Corollary 5.3. Let χ̃ ∈ Irr(G̃) and χi ∈ Irr(G) be such that

ResG̃
G(χ̃ ) = χ1 + · · · + χk,

then εχ̃ = εχi for all 1 � i � k. In particular ResG̃
G(χ̃∗) = χ∗

1 + · · · + χ∗
k .
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Proof. We know εχ̃ DG̃(χ̃ ) ∈ Irr(G̃), in particular it is a character of G̃ . This means

ResG̃
G

(
χ̃∗) = εχ̃

(
ResG̃

G ◦ DG̃

)
(χ̃ ) = εχ̃

(
DG ◦ ResG̃

G

)
(χ̃ ) = εχ̃ DG(χ1) + · · · + εχ̃ DG(χk)

is a character of G , where the second equality is obtained by Lemma 5.2. As it is a character all
coefficients of irreducible constituents must be positive, therefore we cannot have εχi �= εχ̃ for any
1 � i � k. The final statement is clear by definition. �

We temporarily fix the following notation. If O is an F -stable unipotent class of G then we denote
by Õi , for 1 � i � d, the G̃-classes such that OF = Õ1 � · · · � Õd . For each Õi we write Oi, j , for
1 � j � ki (where ki is a number depending upon the class Oi), for the G-classes such that Õi ∩ G =
Oi,1 � · · · �Oi,ki . Finally we fix G-class representatives ui, j ∈Oi, j for each 1 � i � d and 1 � j � ki .

Proposition 5.4. Let O be an F -stable unipotent class of G and assume AG(u) is abelian then for every 1 �
i � d we have ki = |ZG(u)F |. Furthermore let (s̃,ψ) be the pair prescribed by Theorem 3.2, then there exist
irreducible characters χi, j ∈ E(G, s) such that 〈χ∗

i, j, γux,y 〉 = δi,xδ j,y , for 1 � i, x � d and 1 � j, y � |ZG(u)F |
(here δ∗,∗ denotes the Kronecker delta).

Proof. Recall that u ∈ OF is a class representative such that AG̃(u)F = AG̃(u). The G̃-classes in OF

are in bijection with the F -conjugacy classes in AG̃(u), therefore d = |AG̃(u)| by [25, Exemple 1.1]. Let

F̃ ⊆ E(G̃, s̃) be the family of characters which, under the map in (3.2) is in bijection with the family
of characters containing ψ .

By [6, Proposition 4.3] (which we can use as properties (P1), (P3) and (P4) hold), there exist irre-
ducible characters χ̃1,1, . . . , χ̃d,1 ∈ F̃ such that 〈χ̃∗

i,1, γ̃ux,1 〉 = δi,x for all 1 � i, x � d. Using Lemma 4.3
followed by Frobenius reciprocity we see that

δi,x = 〈
χ̃∗

i,1, γ̃ux,1

〉
G̃ = 〈

χ̃∗
i,1, IndG̃

G(γux,1)
〉
G̃ = 〈

ResG̃
G

(
χ̃∗

i,1

)
, γux,1

〉
G .

As AG(u) is abelian we know (P5) holds, in particular using Corollary 5.3 we know the restriction has
the following decomposition into irreducible characters

ResG̃
G

(
χ̃∗

i,1

) = χ∗
i,1 + · · · + χ∗

i,|ZG(u)F | ⇒ δi,x =
|ZG(u)F |∑

j=1

〈
χ∗

i, j, γux,1

〉
.

Without loss of generality we may assume the labelling to be such that 〈χ∗
i, j, γui,1 〉 = δ j,1. We will

write StabG̃(χ∗
i,1) for the stabiliser of χ∗

i,1 in G̃ under the natural conjugation action of G̃ on Irr(G). By

Clifford theory and the remark before Proposition 4.4 there exists a set {ti,1, . . . , ti,|ZG(u)F |} ⊆ T̃ (which

can be completed to form a left transversal of StabG̃(χ∗
i,1) in G̃), such that χ∗

i, j := χ∗
i,1

ti, j satisfies the
condition χ∗

i, j = χ∗
i,k if and only if j = k. We assume for convenience that ti,1 is the identity for all i.

Now as conjugation by elements of G̃ is an isometry of the space of all class functions we have

1 = 〈
χ∗

i,1
ti, j , γ

ti, j
ui,1

〉 = 〈
χ∗

i, j, γti, j(ui,1)t−1
i, j

〉
.

We claim that if j, k are distinct indices then we cannot have ti, j(ui,1)t
−1
i, j and ti,k(ui,1)t

−1
i,k are in the

same G-class. If they were in the same G-class then we would have γ
ti, j
ui,1 = γ

ti,k
ui,1 by Proposition 4.4,

which would mean

1 = 〈
χ∗

i,1
ti,k , γ

ti, j
ui,1

〉 = 〈
χ∗

i,1
ti,kt−1

i, j , γui,1

〉
. (5.1)
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Now χ∗
i,1

ti,kt−1
i, j = χ∗

i,
 for some 1 � 
 � |ZG(u)F | but of all the components of ResG̃
G(χ̃∗

i,1) only χ∗
i,1

satisfies the property in (5.1). In particular this implies that ti,k and ti, j have the same image in the
quotient G̃/StabG̃(χ∗

i,1) but this is a contradiction.

This argument shows that there are at least |ZG(u)F | conjugacy classes contained in Õi ∩ G for
each 1 � i � d, in other words |ZG(u)F | � ki . Conversely this clearly gives us an inequality

∣∣AG(u)F
∣∣ = ∣∣ZG(u)F

∣∣∣∣AG̃(u)
∣∣ = d

∣∣ZG(u)F
∣∣ �

d∑
i=1

ki = ∣∣AG(u)F
∣∣

so we must have ki = |ZG(u)F | for all i. By this argument we may now redefine our class representa-
tives to be such that, for all 1 � x � d and 1 � y � |ZG(u)F |, we have ux,y := tx,yux,1t−1

x,y . With all this
in mind the statement of the proposition is now simple. Indeed we first see that

〈
χ∗

i, j, γux,y

〉 = 〈
χ∗

i,1
ti, j , γ

tx,y
ux,1

〉 = 〈
χ∗

i,1
ti, j t

−1
x,y , γux,1

〉
but it is clear that 〈χ∗

i,1
ti, j t

−1
x,y ,ResG̃

G(χ̃∗
i,1)〉 = 1, which tells us the above inner product is 0 unless i = x.

Now assume i = x then 〈χ∗
i,1

ti, j t
−1
i,y , γui,1 〉 = 1 if and only if χ∗

i,1
ti, j t

−1
i,y = χ∗

i,1, which is true if and only if
j = y so we are done. �

For convenience we restate the above proposition with slightly less cumbersome notation.

Corollary 5.5. Let O be an F -stable unipotent class of G and assume AG(u) is abelian. Let d′ := |AG(u)F | and
denote by Oi the G-classes such that OF = O1 � · · · � Od′ , furthermore let ui ∈ Oi denote a class represen-
tative. Consider the pair (s̃,ψ) prescribed by Theorem 3.2 then there exist irreducible characters χi ∈ E(G, s)
such that 〈χ∗

i , γu j 〉 = δi, j , for all 1 � i, j � d′ .

Remark 5.6. Let us relax the condition that AG(u) is abelian in the above result but instead assume
AG̃(u) is abelian. In particular let G be a spin/half-spin group and let u be such that ZG(u) = Z(G)

then we are in the following situation. The family F̃ described in the proof of Proposition 5.4 has
order m2, where m is a power of 2. The group AG̃(u) is abelian so we may use [6, Proposition 4.3],

as in the above proof, to obtain m characters in F̃ satisfying the inner product condition. In this
situation (P5) fails and in fact there are only m characters in F̃ whose restriction to G contains the
correct number of irreducible constituents (see [20, Propositions 9.3 and 11.10]). The problem is that it
is not clear that the characters provided by the result of Geck and Hézard coincide with the characters
which have the correct restriction from G̃ to G . This is the key obstruction to showing Kawanaka’s
conjecture holds for spin/half-spin groups.

One way to fix this problem would be to make sure that the character sheaves used in the proof
of [6, Corollary 3.5] can be chosen to have the same labelling as the irreducible characters in F̃
whose restriction to G is not irreducible. The author considered this in the case where G is a spin
group of type Bn by trying to adapt the explicit results obtained in [26]. However it seems that trying
to understand the correspondence between the two labellings is significantly complicated.

6. Kawanaka’s conjecture

The result in the previous section will be crucial in determining Kawanaka’s conjecture when G is
of classical type. If G is of exceptional type and Z(G) is disconnected then we must have G is of type
E6 or E7. In these groups there are only three classes such that AG(u) is non-abelian and they are all
such that AG̃(u) ∼= S3. Assume O is one of these three classes and (s̃,ψ) is the pair prescribed by
Theorem 3.2.
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Write Õ1, Õ2 and Õ3 for the G̃-classes such that OF = Õ1 � Õ2 � Õ3 and fix representatives
ui ∈ Õi ∩ G . The matrix of multiplicities between the irreducible characters in E(G̃, s̃) and the Alvis–
Curtis duals of the characters of the GGGRs is given in [7, Proposition 6.7]. Using this table we see
that there exist three characters χ̃1, χ̃2, χ̃3 ∈ Irr(G̃) such that 〈DG̃(χ̃i), γ̃u j 〉 = 〈χ̃i, DG̃(γ̃u j )〉 = δi, j . In

particular εχ̃ = 1 for all χ̃ ∈ E(G̃, s̃), which means 〈χ̃∗
i , γ̃u j 〉 = δi, j . Two out of three of the classes sat-

isfy AG̃(u) ∼= AG(u). If this is the case then Oi := Õi ∩ G is a single G-class and OF = O1 �O2 �O3.

Let ui ∈ Oi denote a G-class representative then as (P5) holds we know χi := ResG̃
G(χ̃i) is irreducible.

In particular for each 1 � i, j � 3 we have 〈χ∗
i , γu j 〉 = δi, j .

For the remaining class we have |AG(u)| = 2|AG̃(u)|. The number of F -conjugacy classes in AG(u)

is equal to 6 = |AG(u)F |. We know (P5) holds for this class, so for each 1 � i � 3 we have ResG̃
G(χ̃i) =

χi,1 + χi,2 where χi, j ∈ Irr(G). Using the techniques in the proof of Proposition 5.4 it is easy to see
that each of the three G̃-classes Õi is such that ÕF

i ∩ G = Oi,1 � Oi,2, where Oi, j is a G-class for
1 � j � 2. Let us choose class representatives ux,y ∈ Ox,y for each 1 � x � 3 and 1 � y � 2 then the
following relation holds 〈χ∗

i, j, γux,y 〉 = δi,xδ j,y . In particular we have the following corollary.

Corollary 6.1. Let O be an F -stable unipotent class of G and assume AG̃(u) ∼= S3 . Let us write Oi , for
1 � i � d′ for the G-classes such that OF = O1 � · · · � Od′ and let ui ∈ Oi denote a class representative.
Consider the pair (s̃,ψ) prescribed by Theorem 3.2 then there exist irreducible characters χi ∈ E(G, s) such
that 〈χ∗

i , γu j 〉 = δi, j for all 1 � i, j � d′ .

We have now gathered all the preliminary information that we need to prove the following theo-
rem.

Theorem 6.2. Assume p, q are large enough and G is a simple algebraic group, which is not a spin or half-spin
group, then Conjecture 4.1 holds.

Proof. If G is adjoint then this is just the result obtained by Geck and Hézard so we may assume
that G has a disconnected centre. Let O1, . . . ,Od be the distinct F -stable unipotent classes of G and
for each 1 � i � d let (s̃i,ψi) be the pair prescribed by Theorem 3.2 for Oi . For each 1 � i � d we
write Oi,1, . . . ,Oi,ki for the G-conjugacy classes such that OF

i =Oi,1 � · · ·�Oi,ki . By Corollary 5.5 and
Corollary 6.1 we can find irreducible characters {χi,1, . . . ,χi,ki } ⊆ E(G, si) such that 〈χ∗

i, j, γui,y 〉 = δ j,y .
In particular the matrix of multiplicities (〈χ∗

i, j, γux,y 〉) (where we have 1 � i, x � d, 1 � j � ki , 1 �
y � kx), is a square block matrix with identity matrices on the diagonal. We may now argue as in the
proof of [6, Theorem 4.5] to show that all blocks in the lower triangular part of this matrix are zero.
In particular this matrix of multiplicities is invertible over Z so by Lemma 5.1 Kawanaka’s conjecture
holds. �
Remark 6.3. In [6, Proposition 4.6] Geck and Hézard give a characterisation of GGGRs in terms of
character values. This characterisation follows as a formal consequence of Kawanaka’s conjecture, so
this now also holds for all simple groups which are not a spin/half-spin group.

7. GGGRs and fourth roots of unity

In this section we would like to use Theorem 3.1 together with the techniques of [7, §3] to com-
pute certain fourth roots of unity that arise in connection to GGGRs. We begin by recalling the setup
of [7]. Let NG denote the set of all pairs ι = (Oι,ψι), where Oι is a unipotent conjugacy class of G
and ψι ∈ Irr(AG(u)) for u ∈ Oι . We say a pair ι is F -stable if F (Oι) = Oι and ψι ◦ F = ψι . Note that
we assume u is well chosen, hence u ∈ OF so F induces an automorphism of AG(u). We denote the
subset of F -stable pairs by N F

G ⊆NG .
Assume now that ι is an F -stable pair. As ψι is invariant under the action of F we may extend ψι

to a character of the semidirect product AG(u)�〈F 〉, where F acts as a cyclic group of automorphisms.
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Let ψ̃ι be a fixed choice of such an extension. For each x ∈ AG(u) we write ux for an element of OF
ι

obtained by twisting u with the element x ∈ AG(u). We then define

Y ι(g) =
{

ψ̃ι(xF ) if g = ux for some x ∈ AG(u),

0 otherwise

for all g ∈ G . The function Y ι is a G-class function and the set Y = {Y ι | ι ∈N F
G } forms a basis for the

space of all unipotently supported class functions of G .
Let ι ∈ N F

G be an F -stable pair and let u1, . . . , ud ∈ OF
ι be class representatives for the G-classes

contained in OF
ι . We define, as in [1, 7.5], for any pair ι ∈N F

G the G-class function

γι =
d∑

r=1

[
AG(ur) : AG(ur)

F ]
Y ι(ur)γur .

The set X = {γι | ι ∈N F
G } is then also a basis for the space of all unipotently supported class functions

of G .
Recall that in [17] Lusztig has associated to every pair ι ∈ NG a unique pair (Lι, υι), up to G

conjugacy, where Lι is a Levi subgroup of G and υι ∈ NLι is a cuspidal pair. This is known as the
generalised Springer correspondence. Lusztig has shown that we have a disjoint union

NG =
⊔
(L,υ)

I (L,υ) where I (L,υ) = {
ι ∈ NG

∣∣ (Lι, υι) = (L,υ)
}
.

We call I (L,υ) a block of NG . A pair ι ∈ NG is a cuspidal pair if and only if it lies in a block of
cardinality 1. To each pair ι ∈NG we also assign the following value

bι = 1

2

(
dim G − dimOι − dim Z◦(Lι)

)
.

In [1, Theorem 7.3] Lusztig explicitly constructs the change of basis from X to Y . The expression
of the function γι ∈ X in terms of elements of Y involves an unknown fourth root of unity ζι . This
root of unity is defined in [1, Proposition 7.2] and it is shown there that ζι = ζι′ whenever ι, ι′ belong
to the same block. Following [1, 8.4] to each ι we define δι = (−1)rank(Lι/Z(Lι)) and ζ ′

ι = διζ
−1
ι . As δι

and ζι only depend on the block containing ι the same must be true for ζ ′
ι . Moreover we have the

following more precise statement.

Lemma 7.1. (See Lusztig [1, Proposition 7.2].) Let I (L,υ) be a block of NG and assume that υ ∈ N F
L . If ζ ′

υ is
the fourth root of unity associated to υ in LF then ζ ′

ι = ζ ′
υ for all ι ∈ I (L,υ).

There is one extreme case where we always know the value ζ ′
ι . If Lι is a maximal torus then from

the definitions it is clear that ζ ′
ι = 1. The results of [7] are based on the following two axioms (these

are known to be true when p and q are sufficiently large).

(A1) Let ι, ι′ ∈ N F
G be such that Oι = Oι′ then 〈DG(γι), Y ι′ 〉 = |AG(u)|ζ ′

ιq−bι δι,ι′ , where δι,ι′ denotes
the Kronecker delta.

(A2) If DG(γι)(x) �= 0 for some x ∈ G then 〈x〉 �Oι where 〈x〉 is the G-conjugacy class containing x.

As we will use the work of Geck we will also take these as axioms upon which our arguments are
built. Our main focus in this section is to show that using Theorem 3.1 statements similar to [7,
Theorem 3.8] can be made for symplectic and special orthogonal groups. To do this we need the
following easy extensions of results of Geck.
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Proposition 7.2. Let O be an F -stable unipotent class of G then there exists a character χ ∈ Irr(G) with
Oχ =O and an element x ∈ AG(u) such that ux ∈OF is well chosen and

〈
χ∗, γι

〉 = |AG(u)|
|AG(u)F | · Y ι(ux),

for all ι ∈ N F
G satisfying Oι = O. Furthermore we have 〈χ∗, γux 〉 = 1 and 〈χ∗, γu y 〉 �= 0 implies x and y are

F -conjugate (i.e. ux and u y are G-conjugate).

Proof. The proof of this result is similar in nature to that of Proposition 5.4 and with this in mind
we will assume that the G-class representatives of OF are enumerated as before Proposition 5.4. Let
(s̃,ψ) be the pair prescribed by Theorem 3.2 for the class O and denote by ψ̃ ∈ E(G̃, s̃) the character
corresponding to ψ under the bijection in (3.2). By the proof of Theorem 3.2 we have nψ̃ = |AG̃(u)|
so by [7, Proposition 3.1] there exists an index 1 � i � d such that 〈ψ̃∗, γ̃ux,1 〉G̃ = δi,x for all 1 � x � d.
Using the same argument as in Proposition 5.4 we see that there is a unique irreducible constituent χ

in ResG̃
G(ψ̃) satisfying 〈χ∗, γux,y 〉G = δi,xδ1,y for all 1 � x � d and 1 � y � ki (note we use here that

(P2) holds for ψ ). Recall our assumption that u ∈OF is a well-chosen element then by [7, 2.8(b)] and
the proof of Theorem 3.2 we have

〈
χ∗, γ(O,1)

〉 = |AG(u)|
nχ

= |AG(u)|
|AG(u)F | .

From the definition of γι we conclude that

〈
χ∗, γι

〉 =
〈
χ∗,

d∑
x=1

ki∑
y=1

|AG(ux,y)|
|AG(ux,y)F | Y ι(ux,y)γux,y

〉
= |AG(ui,1)|

|AG(ui,1)
F | · Y ι(ui,1)

and taking ι = (O,1) we see that |AG(ui,1)
F | = |AG(u)F |. As |ZG(u)F | = |ZG(ui,1)

F | this forces ui,1 to
be a well-chosen element, as required. �
Corollary 7.3. Let O, χ and x be as in Proposition 7.2 and assume that either AG(u) is abelian or AG(u) is
non-abelian and AG(u)F = AG(u) then

εχ · χ(ux) = 1

|AG(u)F |
∑

ι

ζ ′
ιqbιψι(1)2, (7.1)

where the sum is taken over all ι ∈ N F
G with Oι = O. In particular the expression on the right hand side is an

algebraic integer.

Proof. From [7, Corollary 2.6] we get

χ(ux) = 1

|AG(u)|
∑

ι

ζ ′
ιqbι Y ι(ux)

〈
χ, DG(γι)

〉

= εχ · 1

|AG(u)|
∑

ι

ζ ′
ιqbι Y ι(ux)

〈
χ∗, γι

〉

= εχ · 1

|AG(u)F |
∑

ζ ′
ιqbι Y ι(ux)Y ι(ux).
ι
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Table 1
Conditions for the existence of cuspidal pairs.

Group Condition Partition |AG(u)|
Sp2n n = 1 + · · · + k (2,4,6, . . . ,2k) 2k

SO2n n = 2k2 (1,3,5, . . . ,4k − 1) 22k−1

Assume first that AG(u) is abelian and recall Y ι(ux) = ψ̃ι(xF ). As ψ̃ι will be a linear character every
character value will be a root of unity, in particular Y ι(ux)Y ι(ux) = 1 = ψι(1)2. We assume now that
AG(u) is non-abelian and AG(u)F = AG(u) then as ux is a well-chosen element we must also have
AG(ux)

F = AG(ux). Let g ∈ G be such that ux = gug−1 (i.e. g−1 F (g) �→ x ∈ AG(u)), then the component
group has the form AG(ux) = {gyC◦

G(u)g−1 | y ∈ AG(u)}. If every element of AG(ux) is fixed by F
then

F (gy)C◦
G(u)F (g)−1 = gyC◦

G(u)g−1 ⇒ (
g−1 F (g)

)
yC◦

G(u)
(

g−1 F (g)
)−1 = yC◦

G(u)

for all y ∈ AG(u). As the image of g−1 F (g) in AG(u) is x this implies that x is in the centre of AG(u).
From the description of the component groups we see that we must have x2 = 1 hence ψι(x) =
±ψι(1) which ensures Y ι(ux)Y ι(ux) = ψι(1)2. �

This corollary is the key ingredient for our argument. It provides a divisibility criterion for the
fourth root of unity ζ ′

ι in the ring of algebraic integers, which will lead to a divisibility criterion in Z.

8. The special orthogonal and symplectic groups

We want to adapt the argument of [7, Theorem 3.8] to symplectic groups and even dimensional
special orthogonal groups. Recall that we assume p is a good prime, in particular p �= 2. Our compu-
tation of the fourth root of unity will use a result of Digne–Lehrer–Michel using Gauss sums which
depends upon two choices, the first being a choice of primitive fourth root of unity in Q
 . Follow-
ing [25, §1.B] we fix an injective homomorphism of groups ϕ : Q/Z → Q×


 and denote by ϕ̃ : Q → Q×



the composition of ϕ with the natural quotient map Q → Q/Z; we have Ker(ϕ̃) = Z. We now define
j to be ϕ̃(1/4), which is a primitive fourth root of unity in Q
 .

The second choice we need to make is of a square root of p in Q
 , which we will now do follow-
ing [25, §36]. We fix a non-trivial additive character χ1 : Fp → Q×


 and denote by χs : Fps → Q×

 the

additive character χs = χ1 ◦ Trs where Trs : Fps → Fp is the field trace. We denote by θs : F×
ps → Q×




the unique linear character of degree 2 and define the associated Gauss sum to be

Gs(θs) =
∑

x∈F×
ps

θs(x)χs(x).

We denote by p
1
2 our fixed square root of p in Q
 , which is chosen in the following way

p
1
2 =

{G1(θ1) if p ≡ 1 (mod 4),

j−1G1(θ1) if p ≡ 3 (mod 4).

Now given any a ∈ Z we denote by p
a
2 the term (p

1
2 )a .

In Table 1 we have listed the conditions for the existence of a cuspidal pair in special orthogonal
and symplectic groups. This information has been adapted from [17] and we see that in any given
case there is only one cuspidal pair. The argument we will employ is based on induction and for this
to work we will need to know ζ ′

ι0
where ι0 is the unique cuspidal pair of G = SL2(Fp) and G = SL2(q).

However this can be deduced from a result of Digne, Lehrer and Michel.
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Lemma 8.1 (Digne–Lehrer–Michel). Assume G = SL2(Fp) where p �= 2 and G = SL2(q) with q = pa. Let ι0 be
the unique cuspidal pair of G then

ζ ′
ι0

=
{

(−1)a if p ≡ 1 (mod 4),

(− j)a if p ≡ −1 (mod 4).

Proof. Taking n = e = 2 in [27, Proposition 2.8] and using [25, 36.3] for the computation of the Gauss
sum Gs(θs) we have

ζι0 =
{

(−1)a−1 if p ≡ 1 (mod 4),

(−1)a−1 ja if p ≡ −1 (mod 4).

As δι0 = −1 the statement clearly follows by the definition of ζ ′
ι0

. �
Remark 8.2. It should be noted that the statement of [27, Proposition 2.8] depends upon the validity
of (A1). However as the full character table of SL2(q) is known, this could be computed without this
result.

We now turn to the final piece of information we will need regarding the symplectic groups, which
involves a simple counting argument. Let ι0 ∈ NG be a cuspidal pair then we define Xι0 = {ι ∈ N F

G |
Oι =Oι0 }.

Lemma 8.3. Let G = Sp2n(Fp) and assume n = 1 + 2 + · · · + k, for some k � 1. Under this assumption there
exists a unique cuspidal pair ι0 in NG and we have

∣∣{ι ∈ Xι0 | mι is even}∣∣ = ∣∣{ι ∈ Xι0 | mι is odd}∣∣ = 2k−1,

where mι = rank(Lι/Z(Lι)) = rank(Lι) − dim(Z◦(Lι)).

Proof. By [17, 11.6.1] the elements of Xι0 are parametrised by certain unordered pairs (A, B), where
A is a finite subset of Z�0 and B is a finite subset of Z�1 such that |A| + |B| is odd. Specifically we
have the following, which follows as a consequence of [17, Corollary 12.4].

Let dι0 = −k if k is odd and k+1 if k is even then dι0 is an odd number satisfying n = 1
2 dι0 (dι0 −1).

If k is even we have a bijection ι �→ (Aι, Bι) between Xι0 and the set of all symbols (Aι, Bι) satisfy-
ing

(i) Aι ⊆ {0,2,4, . . . ,2dι0 − 2},
(ii) Bι ⊆ {2,4, . . . ,2dι0 − 2},

(iii) Aι ∩ Bι = ∅ and Aι ∪ Bι = {0,2,4, . . . ,2dι0 − 2}.

In particular this bijection is such that ι0 �→ ({0,2,4, . . . ,2dι0 − 2},∅). If k is odd we again have a
bijection ι �→ (Aι, Bι) between Xι0 and the set of all symbols (Aι, Bι) satisfying

(i) Aι, Bι ⊆ {1,3,5, . . . ,1 − 2(dι0 + 1)},
(ii) Aι ∩ Bι =∅ and Aι ∪ Bι = {1,3,5, . . . ,1 − 2(dι0 + 1)}.

In particular this bijection is such that ι0 �→ (∅, {1,3,5, . . . ,1 − 2(dι0 + 1)}). We define the defect of
a pair (Aι, Bι) to be the value dι := |Aι| − |Bι|. In both cases we have (Aι0 , Bι0 ) is the unique symbol
of defect dι0 . The reason for introducing the defect of a symbol is that it is related to the value mι

via the formula

mι = 1
dι(dι − 1).
2
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We can now consider the number of pairs ι ∈ Xι0 such that mι is even and the number of pairs such
that mι is odd. Note that dι is always an odd number, say 2yι + 1, and we have mι ≡ yι (mod 2).

Assume k = 2y is even then for each 0 � x � k there are precisely
(k

x

)
subsets Bι ⊆ {2,4, . . . ,

2dι0 − 2} such that |Bι| = x. The defect of the symbols (Aι, Bι) associated to these subsets is dι =
k + 1 − 2x = 2(y − x) + 1. By the above we have mι ≡ y − x (mod 2). The result then follows from the
following basic fact of binomial coefficients

∑
x even

(
k

x

)
=

∑
x odd

(
k

x

)
=

k−1∑
z=0

(
k − 1

z

)
= 2k−1. (8.1)

Assume k = 2y + 1 is odd then for each 0 � x � k there are precisely
(k

x

)
subsets Aι ⊆ {1,3, . . . ,1 −

2(dι0 + 1)} such that |Aι| = x. The symbols (Aι, Bι) associated to these subsets have defect dι =
2x −k = 2(x − y − 1)+ 1. Again by the above remark we have mι ≡ y − x + 1 (mod 2). The result then
follows from (8.1). �
Remark 8.4. It should be noted that some of the statements of [17, Corollary 12.4] are not quite
correct. In particular the description of the symbol corresponding to the cuspidal pair in the case k
is odd. This was corrected by Shoji in [28, Remark 5.8] and we have used the corrected statement
above. Finally we know [17, Corollary 12.4(c)] is correct by the remark at the end of [2, §2.B], where
the work of Shoji is also referenced. This is all we have used from this reference.

We are now in a state where we may prove the final result of this paper. The following fourth
roots of unity were computed by Waldspurger for symplectic/special orthogonal groups in [29, §V.8,
Proposition]. Here we merely give an alternative proof for these values (note that one easily checks
that the expressions coincide).

Theorem 8.5. Assume Gn is Sp2n(Fp) or SO2n(Fp) and, if such a pair exists, let ι0 be the unique cuspidal pair
in NGn . Let ε ∈ {±1} be such that p ≡ ε (mod 4), then we have

ζ ′
ι0

=

⎧⎪⎨
⎪⎩

ε
an
2 if n is even,

(−1)an if n is odd and ε = 1,

(− j)an if n is odd and ε = −1.

Proof. The proof of this statement is an adaptation of the proof of [7, Theorem 3.8], which is a
proof by induction on n. The proof is identical for the case of special orthogonal groups but requires
slightly more work for the case of symplectic groups. Note we will let k be the appropriate value
as described in Table 1. If n = 0 then Gn is a torus and the formula is trivially true. If n = 1 then
Gn = Sp2(Fp) ∼= SL2(Fp) and we can see that the formula coincides with that given by Lemma 8.1.
If n = 2 then Gn = SO4(Fp) and the simply connected covering Gsc of Gn is isomorphic to SL2(Fp) ×
SL2(Fp). By [17, §10.1] ι0 is the image of the direct product υ0 ×υ0, where υ0 is the unique cuspidal
pair of SL2(Fp). There are two possible rational structures on Gsc, either GF

sc = SL2(q) × SL2(q) or
GF

sc = SL2(q2). However, in both cases we have ζ ′
ι0

= (ζ ′
υ0

)2 and by Lemma 8.1 we can see the formula
is valid.

Now we assume that n � 3 and the statement is true for all Gm with m < n. If ι ∈ Xι0 then by [17,
§10.4 and §10.6] we have Lι/Z◦(Lι) is isomorphic to Gmι for some mι � n. Let N be the number of
positive roots of G then as rank G = rank Lι for all ι we can express bι in the following way

bι = 1

2

(
dim G − dimOι − dim Z◦(Lι)

)
= 1 (

2N + rank G − dimOι − dim Z◦(Lι)
)

2
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= 1

2
(2N − dimOι) + 1

2

(
rank Lι − dim Z◦(Lι)

)
= dimBu + mι

2
,

where we have used the dimension formula given in [30, II, 2.8] to obtain the last equality.
We now consider the criterion given to us from Corollary 7.3. Recall that u is a well-chosen ele-

ment of a symplectic or special orthogonal group, so in particular AG(u)F = AG(u). Furthermore the
component group AG(u) is abelian which means ψι(1) = 1 for all ι. Using the information we have
gathered we may rewrite the sum in Corollary 7.3 in the following way

∑
ι

ζ ′
ιqbιψι(1)2 = ζ ′

ι0
qdimBu+ n

2 +
∑
ι �=ι0

ζ ′
ιqdim Bu+ mι

2 = qdim Bu

(
ζ ′
ι0

q
n
2 +

∑
ι �=ι0

ζ ′
ιq

mι
2

)
.

The statement of Corollary 7.3 says that |AG(u)| divides the expression on the right hand side in the
ring of algebraic integers. The order of the component group is a power of 2, therefore as q is a power
of an odd prime we must have

∣∣AG(u)
∣∣ divides ζ ′

ι0
p

an
2 +

∑
ι∈Xι0 \{ι0}

ζ ′
ι p

amι
2 (8.2)

in the ring of algebraic integers. As n � 3 we have |AG(u)| � 4 so 4 divides the expression on the
right which means we may consider the expression modulo 4. However we must be careful only to
reduce integer powers of p modulo 4 and never rational powers.

We wish to consider the possibilities for the terms in the sum modulo 4. Let us assume
ι ∈ Xι0 \ {ι0} then reducing only integer powers of p modulo 4 we see

ζ ′
ι p

amι
2 ≡

⎧⎪⎨
⎪⎩

1 (mod 4) if mι is even,

(−1)a p
a
2 (mod 4) if mι is odd and ε = 1,

(− j)a p
a
2 (mod 4) if mι is odd and ε = −1.

Let us assume Gn = SO2n(Fp). From Table 1 we see mι is even for all ι ∈ Xι0 then (8.2) tells us

4 divides ζ ′
ι0

p
an
2 − 1 (8.3)

in the ring of algebraic integers. Multiplying the term on the right by the same term with − ex-
changed by + we have

4 divides
(
ζ ′
ι0

)2
pan − 1.

All the terms on the right are integers so we must have 4 divides this term in Z. In other words
(ζ ′

ι0
)2 pan − 1 ≡ 0 (mod 4) ⇒ (ζ ′

ι0
)2 ≡ 1 (mod 4) as n is even, hence ζ ′

ι0
= ±1. Returning to (8.3) we

see that all the values in the expression are integers, so it must be true that 4 divides this term in Z.
In particular ζ ′

ι0
ε

an
2 ≡ 1 (mod 4), which provides the desired formula.

Now assume Gn = Sp2n(Fp). Using Lemma 8.3 we have the sum in (8.2) can be expressed as

ζ ′
ι0

p
an
2 +

∑
ι∈Xι \{ι0}

ζ ′
ι p

amι
2 =

{
ζ ′
ι0

p
an
2 + (2k−1 − 1) + 2k−1ηa p

a
2 if n is even,

ζ ′
ι0

p
an
2 + 2k−1 + (2k−1 − 1)ηa p

a
2 if n is odd,

(8.4)
0
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where η = −1 or − j depending upon the congruence of p modulo 4. We would like to eliminate the
rational powers of p. Assume for the moment that k > 2 then 4 divides 2k−1, so we may simplify
extensively the expressions in (8.4). Let us consider the following products

(
ζ ′
ι0

p
an
2 − 1

)(
ζ ′
ι0

p
an
2 + 1

)
and

(
ζ ′
ι0

p
an
2 − ηa p

a
2
)(

ζ ′
ι0

p
an
2 + ηa p

a
2
)

where the left comes from the case n is even and the right comes from the case n is odd. By (8.2)
and (8.4) we have 4 divides these products in the ring of algebraic integers. Expanding the brackets
we see all terms in the expression are in Z, hence 4 must divide these expressions in Z. Reducing
modulo 4 we get (ζ ′

ι0
)2 pan − 1 ≡ 0 (mod 4) (because η2 = ε and εa pa ≡ 1 (mod 4)), in particular

(ζ ′
ι0

)2 ≡ εan (mod 4).

If n is even then the argument is identical to the above argument for SO2n(Fp). Therefore let us
assume n is odd, then (ζ ′

ι0
)2 ≡ εa (mod 4) hence ζι0 = ±ηa where η is as in (8.4). Returning to (8.2)

and (8.4) we see

4 divides ζ ′
ι0

p
an
2 − ηa p

a
2

in the ring of algebraic integers. Assume n = 2x + 1 then we have p
an
2 = pax p

a
2 ≡ εax p

a
2 (mod 4). This

implies

4 divides
(
ζ ′
ι0
εax − ηa)p

a
2

in the ring of algebraic integers. Assume for a contradiction that ζ ′
ι0

= −εaxηa then this says 4 divides

−2ηa p
a
2 in the ring of algebraic integers. In particular there exists an algebraic integer y such that

2ηa p
a
2 = 4y ⇒ ηa p

a
2 = 2y. Squaring this expression we see η2a pa = 4y2 but η2a pa ∈ Z and as 2

divides the right hand side we must have 2 divides pa in Z but this is impossible as p is odd.
Therefore ζ ′

ι0
= εaxηa and the result follows by noticing ηan = η2axηa = εaxηa .

To finish the proof we must deal with the case where k = 2, in other words n = 3 and Gn =
Sp6(Fp). In this case 2k−1 = 2, so returning to (8.4) we see

ζ ′
ι0

p
an
2 +

∑
ι∈Xι0 \{ι0}

ζ ′
ι p

amι
2 = ζ ′

ι0
p

an
2 + 2 + ηa p

a
2 . (8.5)

Again we consider the product

(
ζ ′
ι0

p
an
2 + 2 + ηa p

a
2
)(

ζ ′
ι0

p
an
2 − 2 − ηa p

a
2
) = (

ζ ′
ι0

)2
pan − 4 − 4ηa p

a
2 − η2a pa.

Reducing this modulo 4 we see (ζ ′
ι0

)2 ≡ εa (mod 4), hence ζι0 = ±ηa as before. Again we write
n = 2x + 1 then returning to (8.5) and reducing modulo 4 we have

4 divides 2 + (
ζ ′
ι0
εax + ηa)p

a
2

in the ring of algebraic integers. If ζ ′
ι0

= −εaxηa then the above statement says 4 divides 2 in the ring
of integers, a contradiction. Hence we must have ζ ′

ι0
= εaxηa and as above this is ηan as required. �

One would hope that the above argument may work for other simple groups with a disconnected
centre, unfortunately this is not the case. For example when G is a spin group the degree of ψι0 is a
power of 2, where ι0 is the cuspidal pair not coming from the generalised Springer correspondence
of the corresponding special orthogonal group. In particular when we reduce modulo 4 in the above
argument the term containing the unknown fourth root of unity will become zero.
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