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Introduction

In a recent paper [6], motivated by the study of G. Malle in [10], we considered the problem of
describing the structure of the finite groups whose p-Brauer character table, for a fixed prime p, does
not contain any zero.

As Malle shows [10, Theorem 1.3], the groups satisfying this condition are solvable if p �= 2,
whereas for p = 2 nonsolvable examples occur. The nonabelian simple composition factors of such
groups are classified [10, Theorem 1.2] as the simple groups in the class

L = {
L2

(
2a), a � 2; L2(q), q = 2a + 1 � 5; 2 B2

(
22a+1), a � 1; S4

(
2a), a � 2

}
.

While in [6] we considered characteristics p � 5, here we complete the analysis by addressing the
cases p = 2 and p = 3. In the following statements, F(G) denotes the Fitting subgroup of the group G
and lp′ (G) the p′-length of G (p a prime). Note also that, as Op(G) lies in the kernel of every Brauer
character, we are allowed to assume Op(G) = 1.

✩ The authors are partially supported by the MIUR project “Teoria dei gruppi e applicazioni”.

* Corresponding author.
E-mail addresses: dolfi@math.unifi.it (S. Dolfi), emanuele.pacifici@unimi.it (E. Pacifici).
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.09.047

http://dx.doi.org/10.1016/j.jalgebra.2013.09.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:dolfi@math.unifi.it
mailto:emanuele.pacifici@unimi.it
http://dx.doi.org/10.1016/j.jalgebra.2013.09.047


344 S. Dolfi, E. Pacifici / Journal of Algebra 399 (2014) 343–357
Theorem A. Let G be a finite group and p ∈ {2,3}. Assume that Op(G) = 1 and that the p-Brauer character
table of G does not contain any zero. Then the following conclusions hold.

(a) If p = 2 and G is solvable, then G/F(G) is a {2,3}-group with elementary abelian Sylow 3-subgroups and
2′-length at most 1.

(b) If p = 2 and G is nonsolvable, then there exist normal subgroups R, N of G, R � N, with R solvable,
l2′ (R) � 4, N/R a direct product of simple groups belonging to the class L and G/N a group of 2-power
order.

(c) If p = 3, then G/F(G) is a subgroup of a direct product A × B, where A is a {2,3}-group with elementary
abelian Sylow 2-subgroups and 3′-length at most 1 and B � (Sym(3) � Sym(3)) � P , where P is a 3-group.
In particular, G/F(G) is a {2,3}-group of 3′-length at most 2.

Theorem B. Let G be a finite solvable group and p ∈ {2,3}. Assume that the p-Brauer character table of G
does not contain any zero. Then the following conclusions hold.

(a) If p = 2, then l2′ (G) � 2, l2(G/O2(G)) � 2 and O2(G/O2(G)) = A × B, where A is a {2,3}-group and B
is a nilpotent {2,3}′-group.

(b) If p = 3, then l3′ (G) � 3, l3(G/O3(G)) � 3 and O3(G/O3(G)) = A × B, where A is a {2,3}-group and B
is a nilpotent {2,3}′-group.

Theorem A and Theorem B should be paired, respectively, with Theorem A and Corollary B of [6].
Note that in Theorem B above the solvability assumption is redundant for p = 3, but needed if p = 2.

We remark that we have no examples of groups with no zeros in the 3-Brauer character table and
with 3′-length greater than 2. So, part (b) of Theorem B can possibly be improved.

The study of groups with no zeros in the Brauer character table can be approached by considering
some particular linear actions. Namely, denoting by V a faithful irreducible module over a prime field
for a finite solvable group G , it is relevant to keep under control the situation when every p′-element of
G fixes at least one element in each G-orbit on V . As customary, the analysis of the “primitive case” turns
out to be a crucial step. The following statement encloses Theorems 2.1 and 3.1 of this paper and,
paired with Theorem 3.1 of [6], should be compared with Corollary 10.6 of [11] (see Theorem 1.3).

As usual, we denote by Γ (qn) the semilinear group on the field of qn elements.

Theorem C. Let G be a finite solvable group, p ∈ {2,3} and V a faithful primitive G-module of order qd, q a
prime. Assume that G is not a p-group, and that every p′-element of G fixes an element in each G-orbit on V .
Then one of the following conclusions holds.

(a) p = 2, qd = 32 , and G is isomorphic either to GL(2,3) or to SL(2,3), acting naturally on V .
(b) p = 3, q = 2, d ∈ {2,6}, and G is isomorphic to Γ (22) if d = 2, whereas G is isomorphic to a Hall

{2,3}-subgroup of Γ (26) if d = 6. In both cases, G acts naturally on V .

By means of the previous result, we are able to classify the irreducible actions with the relevant
orbit property for p ∈ {2,3}. This is done in Theorem 2.2 and Theorem 3.3, which complete the
analysis of [6, Theorem C].

1. Preliminaries

Every group considered throughout the paper is meant to be a finite group. The preliminary no-
tation and results that are relevant for our purposes are essentially those of [6], and here we shall
recall only few of them. We start by introducing an orbit property that will play a central role in our
discussion.

Definition 1.1. Let Σ be a finite nonempty set, and let G be a subgroup of Sym(Σ). Also, let O be an
orbit of the action of G on Σ , and π a set of prime numbers. We say that the orbit O is π -deranged
if there exists a π -element of G which does not fix any element in O.
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For the purposes of the present paper, we will have π = p′ , that is the set of prime numbers
different from a fixed prime p. We shall consider p′-deranged orbits both in the general case of
permutation actions and in the case of linear actions on modules.

We recall that a G-module V is said to be primitive if V is irreducible and V is not induced
by a submodule of any proper subgroup of G . By Clifford Theory, it follows that if V is a primitive
G-module, then the restriction V N is a homogeneous module (i.e. direct sum of isomorphic modules)
for every normal subgroup N of G .

Also, following [11], we say that a (not necessarily irreducible) G-module V is pseudo-primitive if
V N is homogeneous for every characteristic subgroup N of G .

The structure of primitive solvable groups of linear transformations is rather tight. We collect the
relevant facts in the following proposition (see for instance [14, Theorem 2.2], [11, Lemma 0.5 and
Theorem 1.9]).

Proposition 1.2. Let G be a solvable group, and V a faithful primitive G-module over a finite field K. Then
there exist subgroups Z � U � F � A, and E, all normal in G, with the following properties.

(a) U is cyclic, and E is a product of subgroups Ei � G of pairwise coprime orders, such that, for every i, Ei is
cyclic of prime order pi or an extraspecial pi -group (of exponent pi if pi �= 2, and of order p2ni+1

i for
a suitable integer ni). Also, F = EU is a central product, Z = E ∩ U = Z(E) and CG(F ) � F . Moreover,
F = F(G) ∩ A and |F(G) : F | � 2.

(b) F/U � E/Z is a direct sum of completely reducible G/F -modules.
(c) A = CG(U ), so that G/A embeds into the abelian group Aut(U ).
(d) A/F acts faithfully on E/Z , and A/CA(Ei/Z(Ei)) embeds into the symplectic group Sp(2ni, pi).
(e) Setting e = √|E : Z |, we have that e divides dimK(V ).

If q is a prime and V is a finite vector space of order qn , then Γ (V ) denotes a subgroup of Aut(V )

isomorphic to the semilinear group Γ (qn), obtained by identifying V with GF(qn) (see [11, p. 38]). We
shall write Γ0(V ) for the subgroup of Γ (V ) consisting of the multiplication maps. In the setting of
Proposition 1.2, if e = 1, then Corollary 2.3(a) of [11] yields that G can be identified with a subgroup
of Γ (V ) acting naturally on V ; it is easy to see that, conversely, G � Γ (V ) implies e = 1.

We recall next a result by T. Wolf, concerning module actions where all orbits have size not di-
visible by any prime in a fixed set π . Observe that, if π is the set of prime numbers different from
a given prime p, this is a special kind of action without p′-deranged orbits. In fact, the two condi-
tions coincide when the acting group has cyclic Hall p′-subgroups. Moreover, somewhat surprisingly,
the two conditions turn out to be equivalent also when the action is primitive, as one can check by
comparing the following Theorem 1.3 with Theorem 3.1 of [6] and Theorem C of the present paper.

Theorem 1.3. (See [11, Corollary 10.6].) Let V be a finite faithful and pseudo-primitive G-module, for a solvable
group G. Let π be a set of primes such that π ∩π(G) �= ∅, and assume that CG(v) contains a Hall π -subgroup
of G for all v ∈ V . Then V is an irreducible G-module and one of the following occurs.

(a) G � Γ (V ).
(b) π = {3}, |V | = 32 and G is isomorphic either to GL(2,3) or to SL(2,3).
(c) π = {2}, |V | = 26 , F = F(G) is extraspecial of order 33 and exponent 3 and G/F is a group of order 2

that acts inverting all elements of F/Z(F ) and trivially on Z(F ).

We stress that the group G in part (c) of Theorem 1.3 is determined up to conjugation in GL(6,2)

(see [11, Example 10.3]) and that the module V is not primitive (in fact G has a non-cyclic normal
subgroup of order 9).

We now prove a proposition concerning semilinear groups acting with no p′-deranged orbits on
finite vector spaces, with p = 2 or p = 3; this completes the analysis carried out in Theorem 3.1(b)
of [6], where the case p � 5 is treated.
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Proposition 1.4. Let q be a prime, V a vector space of order qd, and G a subgroup of Γ (V ) acting irreducibly
on V . For a fixed prime p, assume that G is not a p-group, and that there are no p′-deranged orbits for the
action of G on V . Then the following conclusions hold.

(a) p �= 2.
(b) If p = 3, then q = 2 and d ∈ {2,6}. More precisely, if d = 2 then G = Γ (22), whereas if d = 6 then either

G is a Hall {2,3}-subgroup of Γ (26), or G � Γ (26) is a Frobenius group of order 18.

Conversely, the groups in conclusion (b) act irreducibly and with no 3′-deranged orbits on the natural mod-
ule V .

Proof. Set Γ0 = Γ0(V ), and G0 = G ∩ Γ0; we know that G/G0 � Γ0G/Γ0 is cyclic. Now, if R is a Hall
p′-subgroup of G , we get R ∩ G0 = 1, because G0 acts fixed-point freely on V ; thus G0 is a cyclic
p-group. This implies that R � G0 R/G0 is cyclic, and also that r := |R| divides |Γ (V ) : Γ0| = d.

Next, we observe that CV (R)∩CV (R g) = {0} for every g ∈ G such that R g �= R . In fact, if v ∈ V \{0},
then CG(v) ∩ G0 = 1; therefore CG(v) is cyclic, and it cannot contain two distinct Hall p′-subgroups
of G . Since R is cyclic, the assumption on p′-deranged orbits implies that the centralizer of every
nontrivial element of V contains one (and hence only one) Hall p′-subgroup of G . Thus, V \ {0}
is partitioned by the sets CV (R) \ {0} for R ∈ Hallp′ (G). It follows that qd − 1 = h(|CV (R)| − 1) =
h(qd/r − 1), where h is the cardinality of the set of Hall p′-subgroups of G and the second equality
follows from Lemma 3(ii) of [4].

By coprimality, G0 = CG0 (R) × [G0, R] and, G0 being a cyclic p-group not centralized by R , it
follows CG0 (R) = 1 and h = |G0| = pa , for a suitable integer a. Hence

pa = qd − 1

qd/r − 1
.

Next, assume that there exists a Zsigmondy prime divisor of qd − 1 (see [11, Theorem 6.2]), i.e.,
p is in fact the unique Zsigmondy prime divisor of qd −1. In particular, d divides p −1. Since d cannot
be 1 (otherwise G would be a p-group), p is not 2. If p = 3, then d, r and q must be 2, and so G is a
subgroup of Γ (22). As G is not a 3-group, it must be the whole Γ (22).

On the other hand, assume there does not exist a Zsigmondy prime divisor of qd − 1. If d = 2, then
also r must be 2, and this yields p �= 2 (recall that r is a p′-number). Also, if d = 2 and p = 3, then
3a = q + 1 is a power of 2 (by Zsigmondy’s Theorem [11, 6.2]), a contradiction. It remains to treat the
case d = 6 and q = 2. In this situation too, p is clearly not 2. If p = 3, then r = a = 2 (as 26 − 1 and
(26 − 1)/(22 − 1) are not powers of 3). Recalling that |G0| = h = 32, we have |G| ∈ {2 · 32,2 · 33}, and
conclusions (a), (b) follow. The last claim of the statement is straightforward. �
Remark 1.5. We observe that, if G � Γ (26) has order 18, then the action of G on the natural module
V is not primitive. In fact, as can be easily checked, G has a subgroup H � Sym(3), and V H has a
submodule W of dimension 2, such that V � W G .

The other two groups appearing in conclusion (b) of Proposition 1.4 do act primitively on the
natural module V .

2. Linear actions with no 2′-deranged orbits

In the next result, we describe the solvable groups acting faithfully, primitively and without
2′-deranged orbits on a finite vector space over a prime field. In fact, it turns out that there are
only two of them.

Theorem 2.1. Let G be a solvable group, q a prime number, and V a faithful primitive G-module of order qd.
Assume that G is not a 2-group and that there are no 2′-deranged orbits for the action of G on V , i.e., for every
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v ∈ V and x ∈ G of odd order, there exists g ∈ G such that x ∈ CG(v g). Then q = 3, d = 2, and G is isomorphic
either to GL(2,3) or to SL(2,3), acting naturally on V .

Proof. We shall take into account the fact that, by Lemma 2.9 of [6], the Fitting subgroup of G is
a 2-group; also, we shall use the description of the structure of G provided by Proposition 1.2, and
the notation introduced therein. Observe that, since in the present context U is a cyclic 2-group, the
factor group G/A embeds in the abelian 2-group Aut(U ); in particular, F is properly contained in A,
as otherwise G would be a 2-group.

Let N be a subgroup of A such that N/F is a chief factor of G , say of order rk for a suitable
prime r. Note that r �= 2, as otherwise N � F . Now, denote by X a subgroup of order r of N . By
Lemma 2.2 of [5] (and as CA(E) � F ), the group [X, E] is an extraspecial 2-group of order 22m+1 for a
suitable m ∈ {1, . . . ,n}, where 22n+1 = |E|. Moreover, as can be deduced from the proof of Lemma 2.4
of [14] (or [5, Lemma 2.4]), we have |CV (X)| � |V |αm , where

αm =
{

1
r ( 2m+r−1

2m ) if r | 2m − 1;
1
r ( 2m+1

2m ) if r | 2m + 1.

(Observe that X acts fixed-point freely on [X, E]/Z , therefore r is a divisor of 22m − 1.) In any case,
αm is at most 1/2. Observe also that the number of N-conjugates of X is at most 22m; in fact

∣∣N : NN(X)
∣∣ = ∣∣F : NF (X)

∣∣ �
∣∣F : CF (X)

∣∣ = ∣∣E : CE(X)
∣∣

= ∣∣E/Z : CE(X)/Z
∣∣ = ∣∣[X, E]/Z

∣∣ = 22m.

Denote by R a Sylow r-subgroup of N (say |R| = rk), and by λm the number of subgroups X of R such
that |X | = r and |[X, E]| = 22m+1. We conclude that, if

n∑
m=1

λm22m|V |αm < |V | (1)

holds, then in particular the centralizers in V of the elements of order r in N do not cover the
whole V . In other words there exists an element v in V such that, for x ∈ N with o(x) = r, we have
x /∈ ⋃

g∈G CG(v g), against our assumptions.

Taking into account that
∑n

m=1 λm equals rk−1
r−1 (the total number of subgroups of order r in R), and

that αm � 1/2, the left-hand side of inequality (1) is bounded above by rk−1
r−1 ·e2 · |V |1/2 = rk−1

r−1 ·e2 ·q
ef
2 ,

for a suitable f ∈ N. Thus, also the inequality

rk − 1

r − 1
· e2 < q

ef
2 (2)

would yield a contradiction. This will be enough for most instances of the following analysis.
Since G is not a 2-group and it has no 2′-deranged orbits on V , then G cannot have regular orbits

on V . Hence, as e is a power of the prime 2, Theorem 3.1 of [14] yields e ∈ {1,2,4,8,16}. (But the
value 1 is of course not a possibility, as in that case we would get F = U = A, thus G/F would be a
2-group, as well as G itself.) We shall work to show that e = 2 is in fact the only possible value, and
in that case we get either G � GL(2,3) or G � SL(2,3).

We start by considering the case e = 2. In this situation, we have A/F � Sp(2,2) � Sym(3), there-
fore the prime r must be 3 and the elementary abelian 3-subgroup N/F of A/F is in fact cyclic.
Also, since G/A is a 2-group, the Sylow 3-subgroups of G have order 3. Now, our assumptions imply
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that every v ∈ V is centralized by a Sylow 3-subgroup of G: therefore we are in a position to apply
Theorem 1.3, obtaining qd = 32 and G � GL(2,3) or G � SL(2,3), as wanted.

Since N � G and V is a primitive G-module, then V N is a pseudo-primitive N-module. So, by
Theorem 1.3 we can assume that N/F is non-cyclic.

Set now e = 4, so that A/F � Sp(4,2) � Sym(6). More precisely, A/F � O−(4,2) � S5 if E �
Q 8 � D8, and A/F � O+(4,2) � S3 � S2 if E � Q 8 � Q 8 (see for instance [13, Theorem 2.4.6 and Ap-
pendix B]). Since the Sylow r-subgroups of S5 are cyclic for r �= 2, by the paragraph above we can
rule out the case E � Q 8 � D8, therefore we can assume E � Q 8 � Q 8 and r = 3. Also, the rank k of
N/F is at most 2, hence inequality (2) is satisfied (and our assumptions are not) for every q f � 9. We
conclude that f = 1 and q ∈ {3,5,7}, i.e., G is isomorphic to a subgroup of GL(4,3), or GL(4,5), or
GL(4,7). Now, consider a subgroup E � Q 8 � Q 8 of GL(4,q), for q ∈ {3,5,7} (by [13, Theorem 2.4.7],
there is exactly one conjugacy class of such subgroups), and let H = NGL(4,q)(E). One checks with GAP
[8] that for q ∈ {5,7} there exists an element x of the natural module V such that CH (x) is a 3′-group.
As G � H , this yields a 2′-deranged orbit for the action of G on V , against the assumption. For q = 3,
one checks that H has two conjugacy classes C1, C2 of elements of order 3 and that they are real.
Also, there exists an element x of the natural module V such that CH (x) has Sylow 3-subgroups of
order 3. Thus, CH (x) intersects just one class among C1 and C2. As |H : G| is coprime to 3, G ∩ C1
and G ∩ C2 are both nonempty. It follows that x lies in a 2′-deranged orbit for the action of G on V ,
a contradiction.

As for the case e = 8, we get A/F � Sp(6,2). Using the information in the Atlas [1], we see that
the prime r lies in {3,5,7}, and the rank k of N/F is at most 3 for r = 3, whereas it is 1 for r �= 3.
In fact, in the latter situation, the r-part of |Sp(6,2)| is r, and we can exclude this case as above. On
the other hand, for r = 3, inequality (2) is satisfied whenever q f � 7; therefore we have f = 1 and
q ∈ {3,5}, i.e., G is isomorphic to a subgroup of GL(8,3) or GL(8,5). Assume first that G � GL(8,3)

and let E be an extraspecial 2-subgroup of GL(8,3), with |E| = 27 (there are just two of them, up to
conjugation). Let H = NGL(8,3)(E) and Q be a Sylow 3-subgroup of H . Then with GAP [8] one checks
that for every N = E T , where T varies among the representatives of conjugacy classes of elementary
abelian subgroups of Q , there exists an element v ∈ V with 3 � |CN (v)|, against our assumptions.

If G � GL(8,5), then we have to consider the finer inequality (1): the maximum value of
22m|V |αm = 22m58αm , for m ∈ {1,2,3}, is attained when m = 2 (and it is 24 · 54). Nevertheless, even if
m is 2 for every X � N with |X | = 3, the left-hand side of inequality (1) (that is, 24 · 54 · 13) is still
smaller than |V | = 58, again a contradiction.

Finally, consider the case e = 16. We have A/F � Sp(8,2), thus r ∈ {3,5,7,17}. Moreover, the
r-part of |Sp(8,2)| is r if r ∈ {7,17}, so these cases cannot occur. As for r = 3 or r = 5, by Atlas [1] we
have k � 4 and k � 2 respectively. If r = 5, then inequality (2) is satisfied for every q f � 3, therefore
also this case does not occur. It remains to consider the case r = 3: here inequality (2) holds whenever
q f � 5, or q f � 3 and k � 3, so only the case k = 4, f = 1 and q = 3 is left. In other words, G embeds
into GL(16,3). Now, consider inequality (1): the maximum value of 22m|V |αm = 22m316αm , for m ∈
{1,2,3,4}, is attained when m = 4 (and it is 28 · 36). But even if m is set to be 4 for every X � N
with |X | = 3, the left-hand side of inequality (1) (that is, 211 · 36 · 5) is still smaller than |V | = 316.
This is the final contradiction, and the proof is complete. �

We are now ready to describe the structure of solvable groups acting irreducibly and with no
2′-deranged orbits (compare with [6, Theorem C]). In the following, we will denote by P(Σ) the set
consisting of the subsets of a set Σ .

Theorem 2.2. Let G be a solvable group, q a prime number, and V a faithful irreducible G-module over GF(q).
Assume that G is not a 2-group, and that there are no 2′-deranged orbits for the action of G on V . Then q = 3
and G is isomorphic to a subgroup of H � K , where H is isomorphic either to GL(2,3) or to SL(2,3), and K is a
(possibly trivial) 2-group.

Proof. Choose a subgroup T of G and a primitive submodule W of V T such that V = W G (possibly
T = G). Denoting by H the factor group T /CT (W ), we first observe that, by Lemma 2.7 of [6], there
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does not exist any 2′-deranged orbit for the action of H on W . Therefore, by Lemma 2.9 in [6], F(H)

is a 2-group; moreover, if H �= F(H), then Theorem 2.1 yields H � GL(2,3) or H � SL(2,3).
In what follows, we shall keep in mind Remarks 2.1 and 2.3 of [6]. In particular, denoting by Σ a

right transversal for T in G , we recall that G can be identified with a subgroup of H � K , where K is
a transitive subgroup of Sym(Σ); also, setting s = |Σ |, the group H � K (thus G) acts naturally on the
direct sum W ⊕s of s copies of W , and the G-modules V and W ⊕s are isomorphic.

We first show that K is a 2-group. Assume, working for a contradiction, that K is not a 2-group.
By Lemma 2.8 of [6], there exists a subset A of Σ such that (A,Σ \ A) lies in a 2′-deranged orbit for
the action of K on P(Σ). Now, take a nonzero element w ∈ W , and consider the element v of W ⊕s

whose ith component is w if i ∈ A, whereas it is 0 if i /∈ A. We claim that v lies in a 2′-deranged orbit
for the action of G on W ⊕s . In fact, let k ∈ K be a 2′-element which does not fix any element in the
K -orbit of (A,Σ \ A), and let x ∈ G be a 2′-element that is a preimage of k along the top projection
of G onto K . Now, it is easy to see that x does not fix any element in the G-orbit of v . Our claim is
proved, yielding a contradiction.

Hence, K is a 2-group. As G is not a 2-group and G is isomorphic to a subgroup of H � K , we
conclude that H is not a 2-group. Therefore, as observed above, Theorem 2.1 applies to the action of
H on W , and we are done. �
3. Linear actions with no 3′-deranged orbits

In this section we deal with the case p = 3. As in the previous section, a key step is the analysis
of the primitive case, which is carried out in the following theorem.

Theorem 3.1. Let G be a solvable group, q a prime number, and V a faithful primitive G-module of order qd.
Assume that G is not a 3-group, and that there are no 3′-deranged orbits for the action of G on V . Then q = 2,
d ∈ {2,6}, and G is isomorphic to a subgroup of Γ (V ) acting naturally on V . More precisely, G is isomorphic
to Γ (22) if d = 2, whereas G is isomorphic to a Hall {2,3}-subgroup of Γ (26) if d = 6.

Proof. As in the proof of Theorem 2.1, we shall keep in mind Lemma 2.9 of [6], together with Propo-
sition 1.2 and the relevant notation. In particular, here F = F(G) is a 3-group.

Since G is not a 3-group and it has no 3′-deranged orbits on V , in particular G has no regular
orbits on V . Hence, as e is a power of 3, by Theorem 3.1 of [14] we get e ∈ {1,3,9}. As already
mentioned, the condition e = 1 is equivalent to the fact that G is isomorphic to a subgroup of Γ (V )

acting naturally on V ; therefore, in this case, we are in a position to apply Proposition 1.4 (taking also
into account Remark 1.5), achieving the desired conclusion. In view of that, the rest of the proof aims
to exclude the other two possibilities for the value of e.

Let N/F be a chief factor of G . We claim that, in both cases e = 3 and e = 9, there exist v ∈ V and
a 3′-element x ∈ N such that x does not fix any element in the G-orbit of v . In other words, we prove
the existence of a 3′-deranged orbit for the action of G on V , against the assumption.

First we show that N/F cannot be cyclic. In fact, let r be a prime divisor of |N/F | (clearly r �= 3);
if N/F is cyclic, then our assumption concerning 3′-deranged orbits implies that r does not divide
|N : CN (v)| for all v ∈ V . Since N � G and V is a primitive G-module, we have that V is a pseudo-
primitive N-module. As N is not a subgroup of Γ (V ), and V has characteristic different from 3, we
are in the situation described in case (c) of Theorem 1.3; in particular, e = 3 and G � GL(6,2). Now,
GL(6,2) has just one conjugacy class of extraspecial 3-groups of order 27 and exponent 3; let E be a
representative of this class and let H = NGL(6,2)(E). One sees that H , which is an extension of E by a
group isomorphic to GL(2,3), has just two orbits on the nonzero elements of the natural module V :
one of size 36 and one of size 27. The centralizers in H of vectors in the orbit of size 36 are iso-
morphic to S3 × S3. It follows that every subgroup of H that contains an element of order 4 has a
3′-deranged orbit. It is easily checked (for instance with GAP [8]) that if G � H has Sylow 2-subgroups
of exponent 2, then V is not primitive as a G-module. This contradiction excludes the possibility that
N/F is cyclic.

In particular, we get that N � A, as otherwise N/F is a group of automorphisms of the cyclic
3-group U and hence it is cyclic.
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Also, if e = 3, we have A/F � Sp(2,3) = SL(2,3), and again N/F would be cyclic. Therefore, e �= 3.
We henceforth assume e = 32. In this case, A/F is isomorphic to a subgroup of Sp(4,3). Write

N = F R , where R is a Sylow r-subgroup of N , with r �= 3. As |Sp(4,3)| = 27 · 34 · 5, it follows that R is
an elementary abelian 2-group. Now, if T is a Sylow 2-subgroup of Sp(4,3), then T � (Q 8 × Q 8) : C2
and hence |R| must be 4; so R contains three involutions. Let x ∈ R be an involution and let X = 〈x〉.
By Lemma 2.2 of [5], [X, E] is an extraspecial 3-group. Write |[X, E]| = 32m+1. As in the proof of
part (3) of Lemma 2.4 in [5] (or of Lemma 2.4 in [14]), one sees that |CV (x)| � |V |α , where

α � 1

2

(
3m + 1

3m

)
.

The eigenvalues of x are either 1 or −1. If x is not the central involution −I of Sp(4,3), then not
all the eigenvalues of x are −1, so (as x has determinant 1) x has exactly two eigenvalues 1 and
two eigenvalues −1. Thus, if x �= −I , we get that |[X, E]| = 33, α � 2/3 and there are at most 32

involutions conjugate to x in N (since |CE (X)| = 33). In particular, in N there are at most 3 · 32

involutions distinct from −I; in fact, if y ∈ N is an involution, then y is N-conjugate to an element
of R .

On the other hand, if x = −I , we have that |[X, E]| = 35, α � 5/9 and there are at most 34 involu-
tions conjugate to x in N .

Now,

27q6 f + 81q5 f < q9 f

is always satisfied, as q f � 4 (this follows from the fact that, denoting by W a simple submodule of
V U , q f is a power of |W |, and clearly U acts fixed-point freely on W ; see [14, Theorem 2.2 parts
(6) and (7)]). Therefore, there is a v ∈ V which is not centralized by any involution of N , giving a
3′-deranged orbit of G on V , the final contradiction. �

We shall also make use of the following notation.

Definition 3.2. Let Σ be a finite nonempty set. Given a positive integer k, we define Pk(Σ) to be
the set of ordered (k + 1)-tuples (Ξ1,Ξ2, . . . ,Ξk+1), where the Ξ j are (possibly empty) subsets of Σ

such that Ξ j ∩ Ξl = ∅ whenever j �= l, and
⋃k+1

j=1 Ξ j = Σ . If G is a permutation group on Σ , then an
action of G on Pk(Σ) can be defined in a natural way. Note that, by associating Ξ ⊆ Σ with the pair
(Ξ,Σ \ Ξ), we will identify P(Σ) with P1(Σ).

We are now ready to deal with the irreducible case for p = 3. The following statement should also
be compared with Theorem C of [6].

Theorem 3.3. Let G be a solvable group, q a prime number, and V a faithful irreducible G-module over GF(q).
Assume that G is not a 3-group, and that there are no 3′-deranged orbits for the action of G on V . Then q = 2
and one of the following conclusions hold.

(a) G is isomorphic to a subgroup of H � K , where either H = Γ (22) or H is a Hall {2,3}-subgroup of Γ (26),
and K is a (possibly trivial) 3-group.

(b) G is isomorphic to a subgroup of Γ (22) � (Sym(3) � P ), where P is a (possibly trivial) 3-group.

Proof. As in Theorem 2.2, choose a subgroup T of G and a primitive submodule W of V T such
that V = W G (possibly T = G). Denoting by H the factor group T /CT (W ), there are no 3′-deranged
orbits for the action of H on W . Therefore F(H) is a 3-group; moreover, if H is not a 3-group, then
H � Γ (W ) is one of the two groups in the conclusions of Theorem 3.1.
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Again, denoting by Σ a right transversal for T in G , we identify G with a subgroup of H � K , where
K is a transitive subgroup of Sym(Σ).

Let us consider the case when K is a 3-group. As G is not a 3-group and G is isomorphic to a
subgroup of H � K , we conclude that H is not a 3-group. Therefore, as observed above, Theorem 3.1
applies to the action of H on W , and we get conclusion (a).

In view of that, we shall henceforth assume that K is not a 3-group. If there exists a subset A of
Σ such that (A,Σ \ A) lies in a 3′-deranged orbit for the action of K on P(Σ), then we can argue
as in the third paragraph of the proof of Theorem 2.2, getting a contradiction. We conclude that there
does not exist any 3′-deranged orbit for the action of K on P(Σ).

As K is assumed not to be a 3-group, we are in a position to apply Lemma 2.8 of [6], getting that
K � Sym(3) � P where P is a (possibly trivial) 3-group, and that there exists a 3′-deranged orbit for
the action of K on P2(Σ). Let (A, B, C) be an element of P2(Σ) lying in such an orbit. Assume that
H is not transitive on W \ {0}, and choose two elements w , z of W \ {0} lying in distinct H-orbits.
Set now v to be the element of W ⊕s whose ith component is w if i ∈ A, it is z if i ∈ B , and it is 0
if i ∈ C . It is not difficult to see that v lies in a 3′-deranged orbit for the action of G on W ⊕s , again
contradicting our assumptions.

Therefore, the action of H on W \ {0} must be transitive. As we already observed, F(H) is a
3-group. Now, set |W | = qn: if H = F(H), then qn − 1 is a power of 3, so we get q = n = 2 and
|F(H)| = 3 (whence we get conclusion (b) of the statement). On the other hand, if H �= F(H) then
Theorem 3.1 applies to the action of H on W but, among the two groups in the conclusions of that
theorem, only Γ (22) acts transitively on W \ {0}. Therefore we get conclusion (b) as well. �
4. The nonsolvable case

We conclude our analysis of groups whose p-Brauer character table does not contain any zero by
considering nonsolvable groups satisfying this condition. As mentioned in the Introduction, only for
p = 2 this class of groups turns out to be nonempty.

Our first task is to keep under control the 2′-length of the solvable radical (i.e. the largest solvable
normal subgroup) in a group of this kind. Before stating and proving the relevant results, it will be
convenient to fix the following notation: for a given group G , we set Dk(G) to be the (2k + 1)th term
of the 2-series of G (i.e., Dk(G) = O2,2′,2,...,2′,2(G), where 2′ appears k times).

Lemma 4.1. Let Ω be a finite nonempty set, and let G be a primitive solvable subgroup of Sym(Ω). Then
there exist three subsets Ω1 , Ω2 and Ω3 of Ω , lying in pairwise distinct G-orbits of P(Ω), such that every
2′-element of the stabilizer GΩi lies in D2(G) for i ∈ {1,2,3}.

Proof. Since G is a solvable group acting faithfully and primitively on Ω , we know that G has a
unique minimal normal subgroup V and, denoting by S the stabilizer in G of a point, we have G =
V S with V ∩ S = 1 and CS (V ) = 1. Moreover, V acts regularly on Ω (so that |Ω| = |V | = pn for a
suitable prime p and n ∈ N), and the action of S on Ω is equivalent to the action by conjugation of
S on V .

Following [11, Lemma 5.1], for g ∈ G , we denote by n(g) the number of 〈g〉-orbits on Ω , and by
s(g) the number of fixed points of g on Ω . We claim that, for every nontrivial 2′-element g of G , we
have

n(g) � 2

3
|Ω|.

In fact, if s(g) = 0, then n(g) � |Ω|/3 because every 〈g〉-orbit on Ω has size at least 3. On the other
hand, if s(g) �= 0, then we can assume g ∈ S and we get s(g) = |CV (g)| � |Ω|/p (where the last
inequality holds because S acts faithfully by conjugation on V ). Thus,
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n(g) � s(g) + |Ω| − s(g)

3
� |Ω|

3
+ 2

3
· |Ω|

p
� 2

3
|Ω|,

as desired.
Now, a subset Ξ of Ω is (setwise) stabilized by an element g ∈ G if and only if Ξ is a union

of 〈g〉-orbits. Therefore, an element g ∈ G stabilizes 2n(g) subsets of Ω , and if g is a nontrivial

2′-element, then 2n(g) � 2
2
3 |Ω| . As a consequence, if

2|Ω| − |G| · 2
2
3 |Ω| � 3|G|, (3)

then there are at least three subsets Ω1, Ω2 and Ω3 of Ω , lying in pairwise distinct G-orbits of P(Ω),
such that GΩi is a 2-group for every i ∈ {1,2,3}. Taking into account that, by [11, Corollary 3.6], we

have |G| � 1
2 |Ω| 13

4 , it can be checked that inequality (3) holds provided |Ω| > 49.
We can therefore assume that |Ω| is either a prime p � 47, or a prime power in {22,23,24,25,

32,33,52,72}. In the former case, as S embeds in Aut(V ), the group G is metacyclic, whence
l2′ (G) � 1. In the latter case, in view of [11, Theorem 2.11, Theorem 2.12 and Corollary 2.15], we
get l2′ (G) � 2. Therefore, in any case, D2(G) = G and the desired conclusion follows. �
Proposition 4.2. Let Ω be a finite nonempty set, and let G be a transitive solvable subgroup of Sym(Ω). Then
there exists 	 ⊆ Ω such that every 2′-element of G	 lies in D2(G).

Proof. We can clearly assume |Ω| > 1. Let Γ be a minimal nontrivial block for the action of G on Ω

(i.e. |Γ | > 1, but we allow Γ = Ω) and, denoting by L the pointwise stabilizer of Γ in G , set H =
GΓ /L. In this situation, H can be identified with a primitive subgroup of Sym(Γ ). Also, let Σ be
a right transversal for GΓ in G; in view of Remarks 2.1 and 2.2 of [6], G can be identified with
a subgroup of H � K , where K � Sym(Σ) is a homomorphic image of G acting transitively on Σ .
Furthermore, the group H � K (thus G , as well) acts naturally on the cartesian product Γ ×Σ , and the
G-sets Ω and Γ × Σ are equivalent. If |Σ | = s, then we identify Σ with {1,2, . . . , s} ⊆ N.

An application of [3, Corollary 4] to the action of K on Σ yields two disjoint subsets Ξ1, Ξ2 of Σ

such that KΞ1 ∩ KΞ2 is a 2-group, and we can consider the map θ : Σ → {1,2,3} defined by θ(i) = j if
i ∈ Ξ j (for j ∈ {1,2}), whereas θ(i) = 3 if i ∈ Σ \ (Ξ1 ∪Ξ2). Also, applying Lemma 4.1 to the primitive
action of H on Γ , we obtain three subsets Γ1, Γ2, Γ3 of Γ which satisfy the conclusions of that
proposition. Now, set

	 = {
(γ , i) ∈ Γ × Σ: γ ∈ Γθ(i)

};
we claim that every 2′-element of G	 lies in D2(G). In fact, let g be a 2′-element in G	 , and (accord-
ing to the identification of G with a subgroup of H � K ) write g as (h1,h2, . . . ,hs) ·k, where hr ∈ H for
every r ∈ {1, . . . , s} and k ∈ K ; it is easily seen that k must lie in KΞ1 ∩ KΞ2 , and that every hr must
lie in one of the HΓ j . We conclude that k = 1 and hr ∈ D2(H) for every r ∈ {1, . . . , s} (note that k and
the hr are elements of odd order). Our claim follows, and the proof is complete. �

Next, there are two results concerning group actions on modules over finite fields.

Lemma 4.3. Let G be a solvable group, and V a faithful primitive G-module over a prime field. If there are less
than five regular orbits for the action of G on V , then l2′ (G) � 2.

Proof. Taking into account the main result of [14], and following the notation introduced in Propo-
sition 1.2 (that we freely use throughout the proof), our assumption on the number of regular orbits
implies e � 10 or e = 16.

If e = 1 then, by [11, Corollary 2.3(a)], the group G is isomorphic to a subgroup of the semilinear
group on V , therefore it is metabelian, and l2′ (G) � 1.
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Assume now e ∈ {2,3,5,7}. In this case, by Proposition 1.2(d), the factor group A/F embeds into
Sp(2, e) = SL(2, e) (more specifically, into a subgroup which is maximal among the solvable subgroups
of SL(2, e)). Using for instance [1] for the cases e = 5 and e = 7, and setting T /F = O2,2′(A/F ), it can
be checked that |A/T | � 2. In particular, A/T is central in G/T . This, together with the fact that F is
nilpotent and G/A is abelian (by Proposition 1.2), yields the desired conclusion.

For the case e = 6, the factor group A/F embeds into SL(2,2) × SL(2,3) and we get the same
situation as in the paragraph above.

As regards the cases e ∈ {4,8,16}, we refer to the proof of Lemma 3.3 in [5] (parts (a), (b) and (c)
respectively). It turns out that, setting T /F = O2′,2,2′(A/F ), we get |A/T | � 2 (whence A/T is central
in G/T ). In any case, again taking into account that F is nilpotent and G/A is abelian, we are done
as well.

Finally, if e = 9, then A/F is isomorphic to a solvable and completely reducible subgroup of
Sp(4,3), and the possible structure of A/F is described in Lemma 3.2 of [5]. In particular it is easily
checked that, setting T /F = O2′,2,2′(A/F ), we get again |A/T | � 2, and the desired conclusion follows
as above. �
Proposition 4.4. Let G be a solvable group, and V a direct sum of irreducible G-modules over prime fields (pos-
sibly not in the same characteristic) such that CG(V ) = 1. Then there exists v ∈ V such that every 2′-element
of CG(v) lies in D3(G).

Proof. We start by proving the result under the additional assumption that V is an irreducible
G-module. As in Theorem 2.2, choose a subgroup T of G and a primitive submodule W of V T such
that V = W G . Denoting by H the factor group T /CT (W ) and by Σ a right transversal for T in G , we
identify G with a subgroup of H � K , where K is a transitive solvable subgroup of Sym(Σ). Also, if
|Σ | = s, then we identify Σ with the set {1, . . . , s} ⊆ N.

By [3, Corollary 4] there exist two disjoint subsets Ξ1, Ξ2 of Σ such that KΞ1 ∩ KΞ2 is a 2-group.
As in Proposition 4.2, we define a map θ : Σ → {1,2,3} by θ(i) = j if i ∈ Ξ j (for j ∈ {1,2}), whereas
θ(i) = 3 if i ∈ Σ \ (Ξ1 ∪ Ξ2).

If we can find three regular orbits for the action of H on W , then we choose an element from
each of them and we denote by x1, x2, x3 the relevant elements.

Now, consider the vector v = w1 + w2 +· · ·+ ws ∈ W ⊕s whose ith component is xθ(i) . It is easy to
see that, given an element g = (h1, . . . ,hs) · k ∈ G (with hr ∈ H and k ∈ K , according to the identifica-
tion of G with a subgroup of H � K ), the element g fixes v if and only if k stabilizes both Ξ1 and Ξ2,
and each hr centralizes wr . In other words, CG(v) is a 2-group and we are done in this case.

Assume now that there do not exist three regular orbits for the action of H on W ; in this situation,
by Lemma 4.3, we get l2′ (H) � 2. If there exist at least two H-orbits in W \ {0}, then take nonzero
elements u1, u2 ∈ W lying in distinct H-orbits and u3 = 0. Consider the vector v = w1 + w2 + · · · +
ws ∈ W ⊕s whose ith component is uθ(i) . As above, if g = (h1, . . . ,hs) ·k is a 2′-element in CG(v), then
k = 1 and hence g ∈ D2(G).

Finally, assume that H is transitive on W \ {0}. By Theorem 6.8 of [11], then l2′ (H) � 1. An
application of Proposition 4.2 to the action of K on Σ yields a subset 	 of Σ such that ev-
ery 2′-element of K	 lies in D2(K ). Choose any nonzero element x ∈ W , and define the vector
v = w1 + w2 + · · · + ws ∈ W ⊕s by setting wi = x if i ∈ 	 and wi = 0 otherwise. It is easily seen
that, if g = (h1, . . . ,hs) · k ∈ G centralizes v , then k stabilizes 	. As a consequence, if g has odd or-
der, then k lies in D2(K ) and therefore g lies in D3(G), as wanted. This concludes the proof for the
irreducible case.

Finally, we go back to the general statement: assume V = V 1 ⊕ V 2 ⊕ · · · ⊕ Vn , where the V i are
irreducible G-modules. By our analysis in the irreducible case, for every i ∈ {1, . . . ,n} there exists
vi ∈ V i such that every 2′-element of CG/CG (V i)(vi) lies in D3(G/CG (V i)). Setting v = v1 +· · ·+ vn and
taking a 2′-element g in CG(v), we clearly get g ∈ ⋂

CG(vi). In particular, the image of g under the
canonical embedding of G into G/CG(V 1)×· · ·×G/CG (Vn) lies in D3(G/CG (V 1))×· · ·×D3(G/CG(Vn)),
and the conclusion easily follows. �



354 S. Dolfi, E. Pacifici / Journal of Algebra 399 (2014) 343–357
We are now in a position to provide an upper bound for the 2′-length of the solvable radical of G ,
under the assumption that the 2-Brauer character table of G has no zeros.

Theorem 4.5. Let G be a group, and assume that the 2-Brauer character table of G does not contain any zero.
Then the solvable radical of G has 2′-length at most 4.

Proof. Since the hypothesis is clearly inherited by the factor group G/O2(G), we can assume
O2(G) = 1. Therefore, denoting by S the solvable radical of G , the group V = F(S)/Φ(S) has odd
order. Moreover, by Gaschütz Theorem [9, III.4.5], V is a direct sum of irreducible S-modules; the
same holds for V̂ := Irr(V ) = IBr2(V ), where the last equality is due to the fact that |V | is an odd
number, and we have CS (V̂ ) = CS (V ) = F(S).

Now, by Proposition 4.4, we can find μ ∈ V̂ such that every 2′-element in CS/F(S)(μ) lies in
D3(S/F(S)). Thus, regarding μ as an element of IBr2(F(S)), every 2′-element in I S (μ) lies in D4(S).

Working for a contradiction, assume D4(S) �= S; then, as can be easily seen, there exists g ∈ S \
D4(S) such that g is a 2′-element. Clearly g does not lie in I S (μ), but, for every x ∈ G , it also does
not lie in I S(μ

x) (this follows from the fact that D4(S) is a normal subgroup of G). Therefore we have

g /∈
⋃
x∈G

IG(μ)x.

Finally, take φ ∈ IBr2(G) lying over μ; since φ is induced by an irreducible 2-Brauer character of
IG(μ), it vanishes on every 2′-element in G \ ⋃

x∈G IG(μ)x . But then we get φ(g) = 0, the final con-
tradiction which completes the proof. �

In order to complete our analysis, we will need one last result on permutation actions. Note that
in the following lemma we are not requiring that the permutation group is transitive (although we
are going to apply it to a transitive action).

Lemma 4.6. Let Ω be a finite nonempty set and let G be a subgroup of Sym(Ω). Assume that G is not a
2-group. Then there exists an odd prime divisor p of |G| and two disjoint subsets 	1 and 	2 of Ω such that p
does not divide |G	1 ∩ G	2 |.

Proof. By Theorem 2 of [3], it is enough to show that if G is primitive on Ω , then there exist (at
least) three p-regular orbits of G on P2(Ω), i.e., orbits of size divisible by the full p-part of |G|.

If Alt(Ω) � G or |Ω| � 4, this follows from part (b) of Lemma 1 in [3].
So we can assume that Ω = {1,2, . . . ,n} with n � 5, and that G is either An or Sn . As a conse-

quence of Bertrand’s Theorem, there exists a prime p � n, such that p > m = �n/2� (so m = n/2 if n is
even, and m = (n + 1)/2 if n is odd). Then ({1, . . . ,m}, {m + 1, . . . ,n},∅), ({1, . . . ,m},∅, {m + 1, . . . ,n})
and (∅, {1, . . . ,m}, {m + 1, . . . ,n}) are elements of three distinct p-regular orbits of G on P2(Ω). �

In the proof of the following theorem, we will make use of the results in [10]. As mentioned in
the Introduction, L will denote the class of the simple groups defined as follows:

L = {
L2

(
2a), a � 2; L2(q), q = 2a + 1 � 5; 2 B2

(
22a+1), a � 1; S4

(
2a), a � 2

}
.

Theorem 4.7. Let G be a group with no nontrivial normal solvable subgroups. Assume that the 2-Brauer char-
acter table of G does not contain any zero. Then the generalized Fitting subgroup F∗(G) of G is a direct product
of simple groups in L and G/F∗(G) is a 2-group.

Proof. Set N = F∗(G): as F(G) = 1, N is a direct product of nonabelian minimal normal subgroups.
Let M be a minimal normal subgroup of G , thus M = S1 × S2 × · · · × Sm where the subgroups Si are
isomorphic to a nonabelian simple group S .
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If S /∈ L, then by [10, Theorem 1.2] there exists a character φ ∈ IBr2(S) and a 2′-element x ∈ S
such that φa(x) = 0 for all a ∈ Aut(S). Let ψ = φ × φ × · · · × φ ∈ IBr2(M) and let η ∈ IBr2(IG(ψ)) be
a character lying above ψ . Then, by Clifford Correspondence, θ = ηG ∈ IBr2(G). Let g = x × x × · · · ×
x ∈ M . Since θ(g) is a sum of products whose factors are of the type φa(x) for some a ∈ Aut(S), we
get the contradiction θ(g) = 0.

Thus, N is a direct product of groups in the class L. It remains to prove that G/N is a 2-group.
Write N = M1 × M2 × · · · × Mk , where the Mi are the minimal normal subgroups of G . If k > 1,
then by induction G/MiCG(Mi) is a 2-group for each i = 1,2, . . . ,k. Since G/N is isomorphic to a
subgroup of the direct product of the factor groups G/MiCG(Mi), we can assume that N = M is the
unique minimal normal subgroup of G . Recalling that M = S1 × S2 × · · · × Sm , with Si � S ∈ L, set
L = ⋂m

i=1 NG(Si). We will first show that L/M is a 2-group. Now, L/M is a subgroup of a direct prod-
uct of copies of the outer automorphism group Out(S) of S . If S = L2(q) with q = 2a +1, then either q
is a Fermat prime or q = 9 and hence Out(S) is a 2-group (either C2 or C2 × C2, respectively). There-
fore, we can assume that S is either L2(2a), 2 B2(22a+1) or S4(2a). In this case O = Out(S) is cyclic
(and S has no nontrivial diagonal automorphism). We claim that O has a regular orbit on IBr2(S).
To show this, we recall that by Theorem 3.1 of [7], there exists an odd order element g ∈ S such
that CAut(S)(g) = 〈g〉. It follows that the S-conjugacy class g S of g is fixed only by inner automor-
phisms of S (in fact, if α ∈ Aut(S) fixes g S , then there exists an element x ∈ S such that gα = gx;
so αx−1 ∈ CAut(S)(g) � S and hence α is an inner automorphism of S). Since O is cyclic and the
2-Brauer character table is a non-singular matrix, by Brauer Permutation Lemma there exists a char-
acter φ ∈ IBr2(S) such that IAut(S)(φ) � S . Let ψ = φ × φ × · · · × φ ∈ IBr2(M). Then IG (ψ) ∩ L = M . Let
ψ̂ ∈ IBr2(IG(ψ)) be a character lying above ψ and θ = ψ̂G . Thus θ ∈ IBr2(G) and θ(y) = 0 for every
y ∈ L \ M , and hence we conclude that L/M is a 2-group.

Finally, we show that G/L is a 2-group, too. First, we observe that, for every simple group S ∈ L,
there are at least three distinct degrees for irreducible 2-Brauer characters. For the groups in charac-
teristic 2, this follows by considering that the Steinberg character gives an irreducible Brauer character
(by restriction to the elements of odd order) and that not all nonprincipal characters can have 2-defect
zero. For S = L2(q), where q = 2a + 1, IBr2(S) has both a character of degree 2a (i.e. of 2-defect zero)
and of degree 2a−1 (see, for instance, [2, Section VIII (a)]). So, let a and b be distinct degrees of
nonlinear characters in IBr2(S). Assume, working by contradiction, that G/L is not a 2-group. Now,
G = G/L is a permutation group on Ω = {S1, S2, . . . , Sm} and by Lemma 4.6 there exist an odd prime
divisor p of |G| and disjoint subsets 	1,	2 ⊆ Ω such that p does not divide |G	1 ∩ G	2 |. Consider
ψ = φ1 × φ2 × · · · × φm , where φi ∈ IBr2(Si) is such that φi(1) = a if Si ∈ 	1, φi(1) = b if Si ∈ 	2, and
φi = 1Si otherwise. Since IG(ψ)L/L � G	1 ∩ G	2 is a p′-group, a p-element g ∈ G \ L cannot lie in any
G-conjugate of IG(ψ). Therefore, if θ ∈ IBr2(G) lies over ψ , we get θ(g) = 0, a contradiction. Hence
G/L is a 2-group, and the proof is complete. �
5. Brauer character tables with no zeros

As an application of the results in the previous sections, we can now derive Theorem A, that was
stated in the Introduction. For solvable groups, the argument is essentially the same as in Theorem A
of [6], except for the fact that the results about linear actions obtained there have to be replaced
with those of the present paper. However, for the convenience of the reader, we give here a complete
proof.

We start with a preliminary remark.

Remark 5.1. Let B and C be groups acting on disjoint sets Γ and 	. Then B × C acts in a natural
way on the union Γ ∪ 	 and, for any group A, the wreath product A � (B × C) is isomorphic to
(A � B) × (A � C).

Proof of Theorem A. We first consider the case of a solvable group G . Observe that our assumption
on the Brauer character table is obviously inherited by factor groups. In view of this fact, it will be
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enough to prove Theorem A in the case when the Frattini subgroup Φ(G) of G is trivial; this extra
assumption ensures that F := F(G) is a completely reducible G-module (possibly in mixed character-
istic).

Let V be a minimal normal subgroup of G . Then V̂ = Irr(V ) = IBrp(V ) (recall that p does not
divide |V |) is a faithful irreducible G/CG(V ) module. Take μ ∈ V̂ and let φ ∈ IBrp(G) lying over μ. By
Clifford Correspondence (see for instance [12, (8.9)]), φ is induced from an irreducible Brauer charac-
ter of IG(μ), and therefore it vanishes on every p′-element not belonging to the set S = ⋃

x∈G IG(μx).
Since the Brauer character φ has by assumption no value equal to zero, every p′-element of G lies in
S and hence we conclude that there are no p′-deranged orbits for the action of G/CG(V ) on V̂ .

If p = 2, then either G/CG(V ) is a 2-group or we can apply Theorem 2.2 and conclude that
G/CG (V ) is a {2,3}-group with elementary abelian Sylow 3-subgroups (moreover, V is a 3-group).

Assume now that p = 3 and that G/CG(V ) is not a 3-group. Then Theorem 3.3 yields that G/CG(V )

is a {2,3}-group (and V a 2-group); moreover, G/CG(V ) has elementary abelian Sylow 2-subgroups
and l3′ (G/CG(V )) � 1, unless G/CG(V ) is isomorphic to a subgroup of Γ (22) � (Sym(3) � P ) � (Sym(3) �
Sym(3)) � P , where P is a 3-group.

Writing F = V 1 × · · · × Vn where the V i are minimal normal subgroups of G , and observing that
F = ⋂n

i=1 CG(V i), conclusions (a) and (c) now follow (also taking into account Remark 5.1) because
G/F can be regarded as a subgroup of G/CG(V 1) × · · · × G/CG(Vn).

Assume now that G is nonsolvable. Then, by Theorem 1.3 of [10], p = 2. Let R be the solvable
radical of G . By Theorem 4.5, we get that l2′ (R) � 4. An application of Theorem 4.7 to the factor
group G/R yields conclusion (b). �

We believe that the structure description in case (b) of Theorem A could be improved. One possible
strategy is studying the action on the generalized Fitting subgroup. However, we did not pursue this
line of analysis, as we did not have sufficient information on primitive module actions of nonsolvable
groups.

Finally, we prove Theorem B.

Proof of Theorem B. The bounds on lp(G) and lp′ (G), for both p = 2 and p = 3, follow easily from (a)
and (c) of Theorem A.

Let p = 2 and assume (by factoring out O2(G)) that O2(G) = 1. Write H = O2(G). Note that F =
F(G) = F(H) is a 2′-group and let F = T × B , where T is a 3-group and B is a {2,3}′-group. Let Q be
a Sylow q-subgroup of F , for some prime divisor q of F (so, q �= 2).

Let N and M be normal subgroups of G such that Φ(Q ) � N � M � Q and M/N is a chief factor
of G . Let V = IBr2(M/N) be the dual group of M/N . As in the second paragraph of the proof of
Theorem A, one gets that the action of G/CG(V ) on V has no 2′-deranged orbits. So, by applying
Theorem 2.2 to the action of G on the dual groups V 1, . . . , Vn of a G-chief series of Q /Φ(Q ) we
conclude that G/C , where C = ⋂n

i=1 CG(V i) coincides with the stabilizer of the series, is a 2-group if
q �= 3 and a subgroup of a direct product of copies of GL(2,3) if q = 3.

Therefore, recalling that C/CG(Q ) is a q-group, we conclude that H/CH (Q ) is a (possibly trivial)
q-group if q �= 3 and that it is a {2,3}-group if q = 3. We deduce that

H

F
= F CH (B)

F
× F CH (T )

F

where F CH (B)/F is a {2,3}-group and F CH (T )/F is a nilpotent {2,3}′-group. For a prime divisor q �= 3
of |F |, let Q 0 be a Sylow q-subgroup of H . Then Q 0 F � H and Q 0 acts trivially on the q-complement
of F . It follows that Q 0 is normal in Q 0 F and hence Q 0 = Q . So, q does not divide |H/F | for all
primes q �= 2,3. Hence, we conclude that H = F CH (B) and hence that H = A × B where A is a
{2,3}-group and B is a nilpotent {2,3}′-group.

When p = 3, one argues similarly, using Theorem 3.3. �
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