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1. Introduction

Let M be a finitely generated additive submonoid of Z? (i.e., M is an affine semigroup)
with ZM 2 Z4, and C(M) := R>oM C Z¢®zR = R? the polyhedral cone spanned by M.
Set M := ZM N C(M). Throughout the paper, we assume that M is positive, that is,
M has no invertible element except 0.

In the former half of the present paper, we study the affine semigroup ring k[M] =
P kz? of M over a field k. Now we have dimk[M] = d. It is a classical result by
Hochster, Stanley and Danilov that if R = k[M] is normal (equivalently, M = M),
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then R is Cohen—Macaulay and the canonical module wgr has an easy description
(cf. [3, Theorem 6.3.5]). On the other hand, the behavior of non-normal affine semigroup
rings is delicate and complicated, and many works have been done on this subject.

Definition 1.1. Let A be a reduced noetherian commutative ring, and Q(A) its total
quotient ring. We say A is seminormal, if a € Q(A) and a?,a® € A imply a € A.

This notion is much more natural than it seems. In fact, it is known that R is semi-
normal if and only if Pic R 2 Pic(R[z]). See [17] and the references cited therein.

The seminormality of an affine semigroup ring R = k[M] is characterized in a combina-
torial (resp. homological) way by Reid and Roberts [14] (resp. Bruns, Li and Rémer [5]).
In the present paper, we will give a new characterization using the dualizing complex.
Our characterization is relatively closer to that in [5]. However, contrary to their result,
ours does not use the Z%grading of the local cohomology modules (or the dualizing
complex). To introduce our result, we need some preparation.

For a face F' of the cone C(M), Mp := M N F is a submonoid of M. The semigroup
ring k[Mr] can be seen as a quotient ring of R, and its normalization k|Mp| has the
natural R-module structure. Then we have the following complex.

I8 0 — IRt — T s T 0,

It = &y k[Mpg].
F': aface of C(M)
dim F=i
The differential map 0 : *Igi — +I§i+1 is the combination of the natural surjections
k[Mp] - k[Mg] for faces F, G with F D G and dim F = dim G + 1.

Proposition 2.3. For a semigroup ring R = k[M], it is seminormal if and only if T1I3, is
quasi-isomorphic to the dualizing complexr DY,

We can characterize the normality of k[M] using the dualizing complex in a similar
way. As a byproduct of this observation, we have the following (unexpected) result.

Theorem 3.1. For R = k|[M], the following are equivalent.

(a) R is normal.
(b) R is Cohen—Macaulay and the canonical module wr is isomorphic to the ideal
(z% | a e MNint(C(M))) of R as (graded or nongraded) R-modules.

The implication (a) = (b) is a classical result (see above).

Stanley—Reisner rings and affine semigroup rings are important subjects of combina-
torial commutative algebra. The notion of toric face rings, which originated in an earlier
work of Stanley [16], generalizes both of them, and has been studied by Bruns, Romer,
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and their coauthors (e.g. [2,4,9]). Roughly speaking, to make a toric face ring k[M] from
a (locally) polyhedral CW complex X, we assign each cell ¢ € X' an affine semigroup
M, C Z4m o+l and “glue” their semigroup rings k[M,] along with X

Recently, Nguyen [12] studied seminormal toric face rings mainly focusing on the local
cohomology modules, but he also remarked that k[M)] is seminormal if and only if k[M,]
is seminormal for all o. In this sense, the seminormality is a natural condition for toric
face rings.

Generalizing the construction for affine semigroup rings, a toric face ring k[M] of
dimension d admits the cochain complex I}, of the form

0— T — TI" — . — TI% —0

with

where k[M,] is the normalization of k[M,].

Theorem 5.2. If a toric face ring R = k[M)| is seminormal, then * I}, is quasi-isomorphic
to a dualizing complex D%,. (The converse is also true. See Proposition 5.12.)

Under the assumption that each k[M,] is normal (of course, " I5,"'= € 4i, o—i 1 KMo ],
in this case), the above theorem was proved by the present author and Okazaki
[13, Theorem 5.2]. Even in this case, the proof requires quite technical argument, since
R is not a graded ring in the usual sense. The proof of Theorem 5.2 heavily depends on
[13, Theorem 5.2], but we have to make more effort.

Finally, for an arbitrary toric face ring R = k[M], we study the local cohomology
modules H (R) at the “graded” maximal ideal m. Let * R (resp. R) be the seminormal-
ization (resp. cone-wise normalization) of R. Both of them are toric face rings supported
by the same CW complex X as R, but the construction of the latter is not straightfor-
ward (see Example 5.3). In Section 6, we show that Hi (*R) C HE (R), and Hi (R) #0
implies H{ (R) # 0. Hence we have;

R is Cohen-Macaulay = TR is Cohen-Macaulay =— R is Cohen—Macaulay.

We remark that the Cohen—Macaulay property of R only depends on the topology of the
underlying space of X' (and char(k)).

Convention. In this paper, we use the following notation: For a commutative ring A,
Mod A denotes the category of A-modules.

For cochain complexes M*® and N°®, M*® = N°® means that two complexes are isomor-
phic in the derived category, and M*® = N*® means that these are isomorphic as (explicit)
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complexes. If M*®* =2 N°* we say these two complexes are quasi-isomorphic (especially
when a direct quasi-isomorphism M® — N*® or N®* — M* exists).

While the word “dualizing complex” sometimes means its isomorphism class in the
derived category, we use the convention that a dualizing complex D% of a noetherian
ring A is the one of the form

0— D94 ... D' —DY —0
with

Dii= @ B/, (1)
pESpec A
dim A/p=1

where E(A/p) is the injective envelope of A/p.
In this paper, we freely use the Z%-graded versions of Matlis duality and local duality.
These are implicit in Chapters 5 and 6 of [3], but the detailed argument is found in [7].

2. Dualizing complexes of seminormal affine semigroup rings

For the convention and notation about an affine semigroup M C Z¢ and the cone
C(M) c R? spanned by M, see the end of the previous section.

Let
k[M] := @ kz® C k[mlil, e ,xfiﬂ]
aeM
be the semigroup ring of M over a field k. Here, for a = (a1,...,aq) € Z%, 2 denotes

the monomial H?Zl z$". Clearly, R :=k[M] is a Z?-graded ring, and *ModR denotes the
category of Z%-graded R-modules.
For M = @, ¢4 M, € *ModR, set

MC(M) = @ Ma.
a€ZiNC(M)

It is clear that M) is a Z%-graded R-submodule of M, and we call it the C(M)-graded
part of M. Similarly, for a cochain complex M*® in *ModR, we can define a subcomplex

(M®)cm)-
For a face F of C(M),
Mp:=MnNF

is a submonoid of M. Consider the monomial ideal (i.e., Z?-graded ideal)
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pr = (m“|a€M\Mp)

of R. Since R/pr is isomorphic to the affine semigroup ring k|Mp] of Mg, pr is a prime
ideal. Conversely, any monomial prime ideal coincide with ppr for some F. We regard
k[Mp] as an R-module through R/pr = k[Mp].

For a face F of C(M), Tr := {2 | a € M} C R is a multiplicatively closed subset. So
we have the localization T 'R of R by Tr. The Céch complex Cv’}'% is defined as follows:

o 41 0 o
Cy:0—C% % ChL-= .. 5 CE—0,
where
Nt -1
Ch== @ T:'R
F': a face of C(M)
dim F=i

The differential map 0 : CV'}% — CV'?'I is given by

() = Z (G, F) - ig r(x),
dimGG?:Fi+1

where (g r is the natural injection TIZlR — TglR for G D F, and ¢(G,F) is
the incidence function of the regular CW complex given by a cross section of C(M).
The precise information on (G, F) is found in [3, §6.2], and we will use this func-
tion later in a more general situation. Here we just remark that ¢(G, F) = %1 for all
F, G with G D F and dimG = dim F' + 1, and this sign makes CV'I’;c a cochain com-
plex.

As shown in [3, Theorem 6.2.5], the local cohomology module H: (R) at the graded
maximal ideal m := (z* | 0 # a € M) is isomorphic to Hi(él‘%) in *ModR. Moreover,
O3, is a (Z%-graded) flat resolution of Ry R.

The Z4-graded Matlis dual (T;'R) of T5' R is of the form

(17'R) = P ke,
aEMp—-M

where e, is a basis element with the degree a, and
Mprp—-M={b—c|be My and c € M}.

The multiplication map % x (=) : [(Ta'R)V]y — [(Tz'R)Y]ass is surjective for all
a €M and b € Z% By the flatness of T 'R and [11, Lemma 11.16], (T R)" is an
injective object in *ModR, moreover, it is the injective envelope *E(k[Mp]) of k{Mp| =
R/pF in *ModR.
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The Z%graded Matlis dual J§ := (Cg)" of C' is of the form

Jp 0 — Jpt — Jpt — o T 0,

Jpt= P *BE(k[MF]).
F': a face of C(M)
dim F'=i

The differential map 0 : Jgi — Jg”l is given by

)= > elF,G) par(x)

GCF
dim G=i—1

for x € *E[Mp] C Jg"'. Here pa r : *E(k[Mp]) — *E(k[Mg¢]) is the Matlis dual of 1 g,
and also induced by the map k[Mp] — *E(k[Mg¢g]) which is the composition of the
natural surjection k[Mp| — k[M¢] and the inclusion k[M¢g| — *E(k[Mg]).

As is well-known, J}, is quasi-isomorphic to the dualizing complex D% of R, moreover,
it is nothing other than the dualizing complex of R in the Z%graded context (see [15,
Proposition 4.4], also [10]).

For a face F of the polyhedral cone C(M), we regard

KZMpnFl:= @ ka*
beZMpNF

as a Z%graded R-module by

a b Zotb if a € Mp,
0 otherwise,

for z¢ € R = k|M] and z® € k[ZMp N F]. Note that k|[ZMpg N F| is the normalization
of k[MF], and

“BE(k[MF)) o np = K[ZMp 0 F)

c(M)
as R-modules. Let F, G be faces of C(M) with F' D G. As R-modules, k|ZMg NG| is a
quotient module of K[ZMp N F] (note that ZMyg is a sublattice of ZMp N G). Hence
there is the Z?-graded surjection mg r : k[ZMp N F] — k[ZMg N G), which is the
C(M)-graded part of pg p (if dimG = dim F' — 1).

Hence the C(M)-graded part

Iy = (Jl.%)c(M)

of the complex J3, is of the form
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I 0 — TIRt — I 1Y 0,
It = D k[ZMp N F).
F': a face of C(M)
dim F'=1

The differential map 9 : 15" — *I5"! is given by

)= > e(FG) mar()

GCF
dim G=i—1

for v € kK[ZMp N F) C *15".
As is well-known, R = k[M] is normal if and only if M = M := ZM N C(M). We

can characterize the seminormality of R in a similar way. For a face F of C(M), int(F)
denotes its relative interior. Clearly,

c(M) = || int(F).

F': a face of C(M)

Set

M = | ] ZMp Nint(F). (2.1)
F: aface of C(M)

Then M is an affine semigroup with M C TM C M and *(*M) = *M.

Theorem 2.1. (See L. Reid and L.G. Roberts [1/], Bruns, Li and Rémer [5].) For an
affine semigroup ring R = k[M], the following are equivalent.

(i) R is seminormal.
(i) M =*tM.
(iii) Hi(R)q # 0 for a € Z% implies —a € C(M).

Hence TR :=k[tM] is the seminormalization of R = k[M].

In the above theorem, the equivalence between (i) and (ii) (resp. (i) and (iii)) is [14,
Theorem 4.3] (resp. [5, Theorem 4.7]).

Example 2.2. For the additive submonoid
M= {(m,n) | m>0,n>1}U{(2m,0) | m >0}

of N2, k[M] is seminormal, but not normal.
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Proposition 2.3. If R = k[M] is seminormal, then T I}, is isomorphic to the Z4-graded du-
alizing complex J§, in the derived category D®(*ModR), hence *I§ = D%, in D*(Mod R).
Conversely, if *I% = D% in D®(Mod R) then R is seminormal.

Proof. We start from the proof of the first assertion. Since H:(R)Y = H~'(J}) by
the local duality theorem, H*(J}), # 0 implies a € C(M) by Theorem 2.1. Hence the
C(M)-graded part TI§, of J}, is quasi-isomorphic to Jp, itself.

Next, we show the last assertion. For the seminormalization TR of R, the explicit com-
putation gives the isomorphism T1I, = *I? , as cochain complexes of R-modules. We just
shown that 712, = D%, in D’(Mod T R). Hence "I, = D%, also in D?(Mod R). Since
* R is a finitely generated R-module, Hom% (1%, D%) = TR in D*(Mod R). Clearly, we
also have Hom% (11}, D},) = R. So taking the functor Homy(—, Dy) to "Iy = 713,
we have R = TR as R-modules. It means that R = TR, and hence R is seminormal. O

3. The normality and the canonical module of an affine semigroup ring
Consider the following subcomplex of *I$:

I5:0 — I — I — o 19— 0,

I;' = P k[Mp].

F: aface of C(M)
dim F=3

If R is normal, then k[Mg] is normal for all F and I}, = *I§,. Hence, in this case, I}, is
quasi-isomorphic to the dualizing complex D%. This is a well-known result essentially
appears in [3, §6.3]. The next result states that the converse also holds.

Theorem 3.1. For an affine semigroup ring R = k[M], the following are equivalent.

(i) R is normal.
(ii) The complex Iy, is quasi-isomorphic to the dualizing complex DY,
(iii) R is Cohen—Macaulay and the canonical module wg is isomorphic to the ideal W :=
(% | a € M Nint(C(M))) of R in Mod R.
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The implication (i) = (iii) is a classical result due to Hochster, Stanley and Danilov.
Note that if R is normal then wr = Wg even in *ModR.

Proof. (i) = (ii): We have mentioned above.

(ii) = (iii): The assertion follows form direct computation similar to the proof of
[3, Theorem 6.3.4] (but we have to take the Z?-graded Matlis dual).

(iii) = (i): Since Wg and wg are Z%-graded modules, Homp(Wg,wr) has the
natural Z9-grading. On the other hand, since Wi = wg in Mod R now, we have
Hompr(Wg,wr) = R in Mod R. Since the unit group of R is k\ {0}, the way to equip the
(ungraded) module R with a Z%-grading is unique up to a shift. Hence there is a € Z4
such that Homp(Wg,wr) = R(—a) in *ModR. We use a in this meaning throughout
this proof.

By [3, Proposition 3.3.18], R/Wg is a Gorenstein ring of dimension d — 1 and
Extp(R/Wr,wr) = R/Wg in Mod R. By an argument similar to the above, these are iso-
morphic even in *ModR up to a degree shift. Since Hompr (Wgr,wr) = R(—a) in *ModR,
the short exact sequence 0 — Wr — R — R/Wxr — 0 yields

Exth(R/Wg,wr) = (R/Wg)(—a). (3.1)

Note that J3 v, = Hom¥y(R/Wg, Jg) is the Z?-graded dualizing complex of R/Wp,
and

H=" (I3 ) = Ext(R/Wr,wh) (3.2)

in *ModR. Since

0 if F =C(M),

Homp(R/Wa, "E(KM])) = { *E(k[Mp]) if F is a proper face of C(M),

Jy IWh coincides with the brutal truncation JEid of J}, (for this assertion, we do not
use any assumption on R = k[M]).
Let TR = k[TM] be the seminormalization of R. Since

(']Ii%/WR)C(M) = (‘]}%)C(M) ="Iig
for all i > —d, we have

(JIR/W+R)C(M) = +If§d (JI.%/WR)C(M)’

where J$ SWi is the Z?-graded dualizing complex of * R/W4 . Hence we have

[H_dH(Jz'%/WR)]c(M) = [H_d+1(JJ:R/W+R)]c(M) = [EXt}%(+R/W+R’WR)]c(M)'
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If TR is normal, then Wi g is its canonical module, and
[ (T yw) leny = Extr(TR/Weg,wr) = *R/Wp.

In general, there might be gap between [H_d"’l(J]';z/WR)}c(M) and TR/W4 g, but an easy
computation shows that H *dH(JI'{ /WR) still contains a submodule which is isomorphic
to TR/W4 gk in *ModR. (Note that [H’dH(J}'%/WR)]c(M) is isomorphic to the kernel of
O : TI; At — +I17412 ) Combining this fact with (3.1) and (3.2), we have a Z?-graded

injection
TR/Wip — (R/Wg)(—a).

This implies that a = 0, and hence Wxr = wg in *ModR. Since HL(R)y(= (wr)_p =
(Wg)—p) # 0 implies b € —C(M), R is seminormal by Theorem 2.1.
Since R is seminormal, we have

M N int(C(M)) = ZM N int (C(M)) = M N int(C(M)),

and Wg coincides with the canonical module wg (= Wg) of R, where R = k[M] with
M = ZM N C(M) is the normalization of R. Hence we have

R = Hompg(wg,wr) = Homg(Wg,wr) = Hompg(wr,wr) = R
in Mod R. Hence R 2 R and R is normal. O

Remark 3.2. Let R = k[M] be the normalization of R = k[M]. For a face F of C(M),
ZMF is a sublattice of ZMp, and hence k[ZMp N F] is a direct summand of k|Mp] as
an R-module. So "I} is a submodule (actually, a direct summand) of I% for each i, but
it does not mean 1§, is a subcomplex of I3,

For example, consider the seminormal semigroup M given in Example 2.2. Then R
is of the form k[z?,y,zy]. In this case, *I;* = k[z,y], TI;' = k[z?] @ k[y], and the
degree (1,0) component of 9 : +I§2 — +11§1 is the zero map. On the other hand, the
normalization R of R is k[z,y]. Hence +I§2 = k[z, y], +IT;1 = k[z] ®k[y], and the degree
(1,0) component of 9 : +Il—;2 — +I§1 is non-zero.

Anyway, this phenomena makes the proof of Theorem 5.2 below complicated.

4. Preliminaries on toric face rings

Let X be a finite regular CW complex with the intersection property, and X
its underlying topological space. More precisely, the following conditions are satis-
fied.
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(1) ® € X (for the convenience, we set dim() = —1), X = |J . 0, and the cells 0 € X
are pairwise disjoint;

(2) If 0 # o € X, then, for some i € N, there exists a homeomorphism from the
i-dimensional ball {x € R? | ||z| < 1} to the closure & of o which maps {z € R’ |
|lz|| < 1} onto o;

(3) For o € X, the closure & is the union of some cells in X;

(4) For 0,7 € X, there is a cell v € X such that © = & N7 (here v can be 0).

We regard X as a partially ordered set (poset for short) by o > 7 &z

The following definitions of conical complexes and monoidal complexes are taken
from [13], and equivalent to the original ones in Bruns, Koch and Romer [4] under the
assumption that the cones C, contain no line (equivalently, the semigroups M, are all
positive). However, the notation has been changed a little from that of [13] for the usages
in the present paper.

Definition 4.1. A conical complex (X, X,{ts-}) on X consists of the following data.

(0) To each o € X, we assign an Euclidean space E, = Rdmo+1,
(1) ¥ ={C, | 0 € X}, where C, C E, = RYm+L i5 3 polyhedral cone with dim C,, =
dim o + 1. Here each cone C, contains no line.
(2) The injection ¢y, : Cr — C, for 0,7 € X with ¢ > 7 satisfying the following.
(a) tyr can be lifted to a linear map 7, : E; — E,.
(b) The image ¢, ,(C;) is a face of C,. Conversely, for a face C' of C,, there is a
sole cell T with 7 < ¢ such that ¢, -(C;) = C".
(¢) to, e =lde, and tor 0 try = top for o, 7,0 € X with 0 > 7 > v,

A polyhedral fan X' in R™ gives a conical complex. In this case, as an underlying CW
complex, we can take {int(C'NS"~1) | C € X}, where S"~! is the unit sphere in R, and
the injections ¢, » are inclusion maps.

Example 4.2. Consider the following cell decomposition of a Md&bius strip. Regarding
each rectangles as the cross-sections of 3-dimensional cones, we have a conical complex
that is not a fan (see [2, Example 1.36]).
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Let L, be the set of lattice points Z4m 7 +! of E, = RYm o+ Assume that i, ,(L,) =
lor(E-)NL, for all 0,7 € X with 0 > 7.

Definition 4.3. A monoidal complex supported by a conical complex (X, X, {5 ,}) is a
set of monoids M = {M, },cx with the following conditions:

(1) M, C L, = Z4™+! for each ¢ € X, and it is a finitely generated additive sub-
monoid (so M, is an affine semigroup);

(2) M, C Cy and R>oM, = C,, for each o € X;

(3) for 0,7 € X with ¢ > 7, the map ¢, : C; — C, induces an isomorphism M, =
M, Nty -(Cr) of monoids.

If ¥ is a rational fan in R™, then {C' NZ"™ | C' € X'} gives a monoidal complex. More
generally, taking submonoids of C N Z" carefully, we can get a “non-normal” monoidal
complex.

For a monoidal complex M = {M, },cx, set

IM] = lim M,,
=
ocX

where the direct limit is taken with respect to ts - : M, — M, for 0,7 € X with o > 7.
Note that |M] is just a set and no longer a monoid in general. Since all ¢, , are injective,
we can regard M, as a subset of | M]|. For example, if {M, },cx comes from a fan in R",
then |M| =U,cxr Mo C Z™.

Let a,b € |M|. If there is some o € X with a,b € C,, there is a unique minimal cell
among these o’s. (In fact, if Cy,,Cy, € X contain both a and b, there is a cell 7 € X
with 7 = &1 N &2 by our assumption on X, and C, contains both a and b.) If o is the
minimal one with this property, we have a,b € M, and we can define a+b € M, C |M]|.
If there is no ¢ € X with a,b € C,, then a + b does not exist.

Definition 4.4. (See [4].) Let {M, },cx be a monoidal complex with [M| := lim M, and
k a field. Then the k-vector space

kM]:= P ka*,

a€|M|
where x is a variable, equipped with the following multiplication

R {xa+b if a + b exists,

0 otherwise,

has a k-algebra structure. We call k[ M] the toric face ring of M over k.
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Clearly, dimk[M] = dim X + 1. In the rest of this paper, we set d := dimk[M].
Stanley—Reisner rings and affine semigroup rings (of positive semigroups) can be estab-
lished as toric face rings. If M comes from a fan in R™, then k[M] admits a Z"-grading
with dimy k[M], <1 for all @ € Z™. But this is not true in general.

Example 4.5. (See [4, Example 4.6].) Consider the conical complex in Example 4.2.
Assigning normal semigroup rings of the form k[a, b, ¢, d]/(ac — bd) to each rectangles,
we have a toric face ring of the form

k[z,y, z, u,v,w]/(zv — uy, vz — Yyw, 2 — VW, VYW, UVZ),

which does not admit a nice multi-grading. We can also get a similar example whose
k[M,] are not normal.

We say a toric face ring R = k[M] is cone-wise normal, if k[M,] is normal for all
o € X. The notion of cone-wise normal toric face rings coincides with that of the ring
k[WF] associated with a weak fan WF introduced by Bruns and Gubeladze [1]. They
gave an example of a cone-wise normal toric face ring which does not admit a Z-grading
with Ry =k [1, Example 2.7].

For o € X, a monomial ideal p, := (2% | a € |IM]|\ M,) of R is prime. In fact, the
quotient ring R/p, is isomorphic to the affine semigroup ring k[M,]. We regard k[M,]
as an R-module, through R/p, = k[M,].

Set

geEX
dim o=i—1

fori=0,...,d, and define 9 : I;* — I+ by

a(?/) = Z 5(07 T) “Tro (y)

dim 7=i—2
<o
for y € k[M,] C I,", where 7., is the natural surjection k[M,] — k[M,] (note that if
7 < o then p, C p;) and ¢ is an incidence function of X. Then

d+1

I :0— Ip4 — I — o — 19— 0

is a cochain complex of finitely generated R-modules. The following is the main result
of [13].

Theorem 4.6. (See [13, Theorem 5.2].) If R is cone-wise normal, then Iy, is quasi-
isomorphic to a dualizing complex D%, of R.
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The proof of the main result in the next section largely depends on (the proof of)
Theorem 4.6, but the proof in [13] is long and technical. So we summarize it here for the
reader’s convenience. See [13] for details.

An outline of the proof of Theorem 4.6. To prove the theorem, we realize I} as a
subcomplex of DY%. Set ¢(0) := dimo + 1 = dimk[M,] for a cell . The proof is divided
into three steps.

Step 1. We have a canonical injection i, : k[M,] < D;cc(a).
We fix a cell o, and set ¢ := ¢(0). Since k|M,] is normal, it is Cohen-Macaulay and
admits the canonical module simply denoted by w,. Note that

H~¢(Hompg(ws, D})) = Extp®(we, D) = k[M,].

Since Homg(w,, D5 ") = 0, the cohomology H~¢(Hompg(w,, D%)) is the kernel of the
map

Hompg(ws,dps,) : Hompg (wg, D}_zc) — Homp (wU,DI_%CH). (4.1)
Through the identification,
HomR(wg,Dgc) = HomR(k[M(,LDgC) = {y € D5 | poy = 0},
the kernel of the map (4.1) is

i (k[MJ]) = {y € D}_%p | Poy = 0 and 8D7?(qay) = O},

where g, is the set {z* € R|a € (M, Nint(Cy))}. (Note that w, is the ideal of k[M,]
generated by q,.) Clearly, i, (k[M,]) = k[M,].

Of course, we just chose the subset i,(k[M,]) of D3¢, not an injection i, : k[My]| —
Dy°. However, the R-module k[M,]| is generated by a single element, and the choice of
a generator (i.e., the choice of i,) is unique up to constant multiplication. This small
ambiguity does not affect the argument below.

Step 2. @D, cxio(k[M,]) is a subcomplex of D3.

The dualizing complex DS := DH:[MC,] of k[M,] coincides with Hompg(k[M,], D%,),
which can be seen as a subcomplex of D%. Since k[M,] is Z¢(?)-graded, we have the
77)_graded dualizing complex JS = Jk'[Md], and a quasi-isomorphism J3 — D?2. Com-
posing this morphism with D — D%, we get a chain map h, : J; — D% which
induces

H'(Hompg (w,, J3)) = H' (Hompg (we, D}))- (4.2)
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Applying the same argument as Step 1, we have an injection *iy , : k[M,] — J;C(T)

for a cell 7 with 7 < o. By (4.2), it is easy to see that
ir (kK[M;]) = ho 0 *igr (K[M,]).

On the other hand, we have that

(J2) ¢, = €D iowr (KIM]), (4.3)

o

where C, is the polyhedral cone spanned by M,. Since J? is a 79 _graded complex,

the right side of (4.3) is a subcomplex of J3. Since h, is a chain map, @ ., i (k[M;])

forms a subcomplex of D%. It implies that @ . y ic (k[M,]) is also a subcomplex of D3,
Since P, ¢ x io(k[M,]) is isomorphic to I}, it suffices to show the following.

Step 8. D¥ is quasi-isomorphic to its subcomplex @ v i (k[Ms]).

The argument for this step will be used around the proof of Theorem 5.11 after a
slight generalization. There, we explain this idea in detail, so we do not give a summary
here. O

5. Dualizing complexes of seminormal toric face rings

We start from the following fact pointed out by Nguyen [12].

Proposition 5.1. (See [12, Proposition 5.5].) For a toric face ring k|M)], the following
are equivalent.

(i) k[M] is seminormal.
(ii) k[M,] is seminormal for all o € X.

Recall the precise definition of a monoidal complex M given in the previous section.
For each o € X, let TM, C L, be the monoid constructed from M, by the operation
n (2.1), that is, k[tTM,] is the seminormalization of k[M,]. Then T M := {TM, },cx
forms a monoidal complex, and TR := k[T M] is the seminormalization of R := k[M].
In particular, R is seminormal if and only if M = T M.

On the other hand, k[ZM,NC,] is the normalization of k[M,] (since we do not assume
that ZM, = L, we have ZM, N C, # L, N C, in general), but {ZM, N C, },cx does
not form a monoidal complex. The monoidal complex M of Example 5.3 below gives a
counter example. In fact, the condition (3) of Definition 4.3 is violated.

We consider the following cochain complex

I 0 — IRt I T 0
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with

I= P KZM, NG,
oceX
dim o=i1—1

The differential map 0 is given by

a(y) = Z 5(07 T) ‘1o (y)

dim 7=i—2
7<o
for y € k[ZM, N C,] C Igi, where 7, is the natural surjection k[ZM, N C,] —
k[ZM, N C;]. Clearly, "I}, is a cochain complex of finitely generated R-modules.

Theorem 5.2. If a toric face ring R = k[M] is seminormal, then * I}, is quasi-isomorphic
to a dualizing complex DY,.

To prove the theorem, we need some preparation. For each o € X, set MU =L,NC,.
Then {M, }sex is a monoidal complex again. We can regard that [M]| := lim M, con-
tains | M| as a subset.

Example 5.3. While k[ﬁa] is always a normal semigroup ring, it is not the normalization
of k[M,]. For example, consider the monoidal complex M illustrated below. Let M, be
the monoid corresponding to the first quadrant, then k[M,] = k[z2, y] is normal, but we

have k[M,] = k[z, y] 2 k[M,].

Set R :=k[M]. The next result holds, even if k[M)] is not seminormal.

Lemma 5.4. For any M, R = k[Mv] is a finitely generated module over R = k[M].
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Proof. Tt suffices to show that k[M,] is finitely generated as a k[M,]-module for each
o € X. This must be a well-known result, but we give a proof here for the reader’s
convenience. If dimo = 0, then the assertion is clear (in fact, k[ﬁa] is a polynomial
ring with one variable in this case). If dimk[M,] > 1, set A := k[M,], and let A’ be
the A-subalgebra of k[M,] generated by {27 | a € M,, 7 < o,dim 7 = 0}. By the above
remark, A’ is a finitely generated A-module. Since k[ﬁg] is the normalization of A’, it
is a finitely generated as an A’-module, hence also as an A-module. O

We regard k[ﬁg} as an R-module by the compositions of the ring homomorphisms
R — R/p, (= k[M,]) < k[M,], which is the same thing as R < R — k|[M,].

As in the previous section, we set ¢(0) := dimo + 1 = dimk[M,]. For the simplicity,
the dualizing complexes Dy - (resp. D“:[MU]) of k[M,] (resp. k[ﬁg]) is denoted by D3
(resp. D2). Since both k[M,| and k[ﬁa] are Z°(7)-graded, they admit the Z¢(?)-graded

dualizing complexes J3 := JH;[MG] and J2 := Ju:[l\7[ | respectively. Similarly, we also set
12 = +[ﬂ:[Mg] and I := Iu:[ﬁa] (= +Iu:[1\710]) for the simplicity.

Since R is cone-wise normal, 1'-% is quasi-isomorphic to D1.51 by Theorem 4.6. Moreover,
we have the following.

Lemma 5.5. There is a quasi-isomorphism 1 : I}’% — D;i such that the induced map

I Hom%(k[ﬁg], V) : I3 — D3 is a quasi-isomorphism for all o € X.

Proof. This fact has been shown in the proof of [13, Theorem 5.2] (Theorem 4.6 of the
present paper). Recall the outline of the proof introduced in the previous section. O

Since R is finitely generated as an R-module by Lemma 5.4, we have DI’§ =

Hom}i(é, D%,). Via the canonical injection R — ﬁ, we have a chain map

A: D% = Hom} (R, D) — Hom}, (R, D) = Dp,.

Similarly, for each o, the injection k[M,| — k[ﬁa] induces a chain map A, : D — D3.
Since k[ﬁg] is a finitely generated Z°(?)-graded module over k|M,] and J¢ is the du-
alizing complex in the Z¢?)-graded context, we have Homn;[MU](]k[Ma], J3) = J2. The
injection k[M,] < k[mg] induces the Z(?)-graded chain map ., : J$ — J2.

Note that M, and M, span the same polyhedral cone C,. Since k[M,] is seminormal
and k[M,] is normal, we have J3 = (J3)c, = "Iy and J2 = (J2)¢c, = TI2 = 12 as
shown in the proof of Proposition 2.3. Taking the C,-graded part of u/, we have the
chain map

Uo o I3 — TI2.
Lemma 5.6. For the quasi-isomorphism v, : I3 — D% of Lemma 5.5, we have a quasi-
isomorphism ¢, : 713 — D% which makes the following diagram commutative.
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A p— L)

Proof. It is easy to see that there exists a quasi-isomorphism ¢, : J2 — D2 which is an
extension of 1, : I$ — DS. Since p, : I3 — TI3 is the restriction of ), : J& — J3, it
suffices to construct a quasi-isomorphism ¢ : J3 — D2 with

Py

JZ —— D2

| |

Jy — D3,

bo

In fact, the restriction of ¢/ to TI$ gives ¢, satisfying the expected condition.
Since J2 = D? in D*(Mod k|M,]), we have a quasi-isomorphism ¢ : J® — D$. Taking
Homy g, ) (k[M,], —), we get a chain map

€. J3 = Homypy, | (K[M,], J3) — Homyp,((K[M,], D) = DS.

Note that J? is a cochain complex of injective objects in the category *Mod(k[M,])
of Z¢“)-graded k[M,] modules, and k[M,] € *Mod(k[M,]). Hence &, is a quasi-
isomorphism.

Clearly, ¢, is k[M,]-linear, and can be extended to a k[M,]-linear automorphism &,
of D2 uniquely (of course, the same is true for ¢/,). Since

Homp, (o4 kai ) (D2, D) =k[M,]

and D? is a cochain complex of injective modules, the automorphism £, is homotopic to
the multiplication by ¢ for some 0 # ¢ € k. Moreover, since D2 is of the form (1.1), £,
is equal to the multiplication by c. Since the same is true for ¥/, we have ¢!, = ¢, for
some 0 # ¢ € k. Hence ¢/ := /¢ satisfies the desired condition. O

For eacht € Z, +I}é is an R-submodule of I;é. However " I3, is not a subcomplex of I}%.
This problem occurs even in the semigroup ring case. See Remark 3.2.

Let £ : TIp --» I}’i be the collection of the natural injections TI% < I]% (since
this is not a chain map, we use the symbol “--»”). The similar map s, : I3 --» I2
is not a chain map in general again. For each i, TI’ is a direct summand of I as a
k[M,]-module, the i-th component g’ : I: — TI of the chain map p, : IS — T1°
satisfies pi okt = Id.
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Lemma 5.7. The composition TIf, N I1.?2 N D}% 2 D%, is a chain map.
Proof. It suffice to check that
i+1 i VRS R S R E | i
8D;?O()‘ o O/{)(y)_()\ o' ok >08+I}.%(y)

for all “homogeneous” element y (i.e., y € (T1%), for some a € |[M|), since any element
of TI% is a sum of these elements. Then we can regard y € TI. for some o € X. We
have the following commutative diagram.

ot A

B e
+Ii [z; Di~ Di
R s R wi R A R

The commutativity of the left square is clear, that of the middle one is Lemma 5.5,
and that of the right one follows from the fact that the composition R < R —» lk[ﬁg]
coincides with the composition R — k[M,] < ]k[l\7[,,].

By Lemma 5.6, we have AL o 9! o k! = ¢ o ul o ki = ¢ . Since ¢, is a chain map,
we are done. O

Let ¢ denote the chain map Jp — D% constructed in Lemma 5.7. To prove Theo-
rem 5.2, we will show that ¢ is a quasi-isomorphism by a slightly indirect way.

Definition 5.8. Let R = k[M] be a toric face ring. We say an R-module M is |Mv|-graded
if the following are satisfied;

(i) M = GBGEIMI M, as k-vector spaces;

(i) Let a € |M| and b € |[M]|. If a + b exists (equivalently, a,b € M, for some o € X),
then z*My, C Myyp. Otherwise, %M = 0.

Let Mod 17 R denote the subcategory of Mod R whose objects are \/T/T |-graded and ho-
momorphisms are f: M — N with f(M,) C N, for all a € |M]|.

We say M € Mod i R is | M|-graded, if M = ®a€|M| M,. Let Moda R denote the
subcategory of Mod ; R consisting of |M|-graded modules.

Clearly, Mod 7 R and Moda R are abelian categories. It is easy to see that R €
Modm R and R € Mod j; R. Moreover, I}, (resp. TI§) is a cochain complex in Mody R
(resp. Mod i R).
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Definition 5.9. For each a € | M|, there is a unique cell ¢ € X with a € int(C,) (equiva-
lently, a € MU and o is the minimal one with this property). This cell o is denoted by
supp(a). N

An R-module M € Mod R is said to be squarefree if it is | M|-graded (not | M|-graded),
finitely generated, and the multiplication map M, > y — xby € M,y is bijective for
all a,b € |M| with supp(a) D supp(b).

For example, k[M, ]| and R itself are squarefree R-modules. In [13], squarefree modules
over a cone-wise normal toric face ring play a key role. Many properties are lost in the
non-normal case. For example, 71§, is no longer a complex of squarefree modules. In fact,
I is | M|-graded, not |M|-graded. However, the next result still holds.

Lemma 5.10. (Cf. [13, Lemma 4.2].) Let Sq R be the full subcategory of Modaq R con-
sisting of squarefree modules. Then Sq R is an abelian category with enough injectives,
and indecomposable injectives are objects isomorphic to k[M,| for some o € X. The
injective dimension of any object is at most d.

The proof is similar to the cone-wise normal case [13], and we omit it here. We just
remark that Sq R is equivalent to the category of finitely generated left A-modules, where
A is the incidence algebra of X (as a poset) over k.

Let Inj-Sq be the full subcategory of Sq R consisting of all injective objects, that is,
finite direct sums of copies of k[M,] for various o € X. Then the bounded homotopy
category K®(Inj-Sq) is equivalent to D’(Sq R). We have an exact functor

Hom% (—, t13) : K®(Inj-Sq) — D®(Mod R)°P.
Similarly, we have an exact functor
Hom$, (—, D) : K*(Inj-Sq) — D’ (Mod R)”.
The chain map ¢ : 71}, — D%, gives a natural transformation
@ : Homy, (—, TI}) — Hom}y (—, D).
Theorem 5.11. If R is seminormal, @ is a natural isomorphism.
Proof. By virtue of [8, Proposition 7.1], it suffices to show that
(KM, ]) : +13 = Homp, (kM ], * I3) — Hom$, (kM) D) = D}

is a quasi-isomorphism for all o € X. Since $(k[M,]) = Hom% (k[M,], ¢), it is factored
as tI3 R I RN D2 2o, D3. As shown in the proof of Lemma 5.7, this coincides with
the quasi-isomorphism ¢, of Lemma 5.6. O
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The proof of Theorem 5.2. The assertion follows from Theorem 5.11. In fact, since R €
Sq R, we have an isomorphism ¢(R) : Hom%(E®, tI5,) — Hom%(E*®, D%,), where E* is an
injective resolution of R in Sq R. It is clear that Hom$%(E®, D%) = Homy (R, D%;) = D3,
but we can also show that Hom$% (E®, TI,) = T1§, by the usual double complex argument.
The key fact is that Hom¥y(E®, T1%) is an acyclic complex whose Oth cohomology is T1%
for each i. To see this, note that an indecomposable components of E* and *I% are
k[M,] and k[ZM, N C;] respectively for some o, 7 € X, moreover

k[ZM.NnC;] ifo >,

Homp (k[Ma]vk[ZMT N CT]) = {0 otherwise

Take a € | M| with supp(a) = 7. Then, ¢ > 7 if and only if k[M,], # 0. Hence we have
Hom%(E®, k[ZM, N C;]) = Homg ([E®]q, k) @ k[ZM, N C;]. Since [E*], is an acyclic
complex whose Oth cohomology is k, Hom%(E®, k[ZM, N C;]) is an acyclic complex
whose Oth cohomology is k[ZM, N C;].

Anyway, we have "1y, = Hom%(E®, TIy,) = Hom%(E®, Dy,) = D%, where the middle
isomorphism is given by #(R). O

The converse of Theorem 5.2 also holds.

Proposition 5.12. Let R = k[M)] be a toric face ring. If I}, is quasi-isomorphic to the
dualizing complex DY, then R is seminormal.

Proof. Recall that M := {*M,},cx forms a monoidal complex, and the toric face
ring TR = k[t M] is the seminormalization of R. Since *I%, = *I},, the proof of the
latter half of Theorem 5.2 also works here. O

6. Local cohomologies

Recall that a monoidal complex M = {M, },cx is a collection of additive submonoids
M, of lattices L, = Z4mo+! for each 0 € X, and we have an injective homomorphisms
Ig,r : Ly = L, for all 0,7 € X with 0 > 7. Set

L:= lim L,.
—
cEX
Note that £ is no longer a group in general. Since all 7, ; is injective, we can regard L, as
a subset of L. Let a,b € L. If there is some ¢ € X with a,b € L, we have a+b € L, C L.
If there is no 0 € X with a,b € L,, then a + b does not exist. However, any a € £ has

—a € L. We can regard that |.Mv | C £, and the structure of £ defined above and that of
| M| are compatible with this injection.

Definition 6.1. Let R := k[M] be a toric face ring. Then M € Mod R is said to be
L-graded if the following conditions are satisfied;
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i)y M= M, as k-vector spaces;
acLl
(ii) My, C Myqp if a € M, and b € L, for some o € X, and x®M;, = 0 otherwise.

Let Mod R be the category of L-graded R-modules and R-homomorphisms f: M — N
with f(M,) C N, for all a € L.

Clearly, Moda R and Mod j; R are full subcategories of Mod, R. Note that T, :=
{z% | a € M} C R is a multiplicatively closed subset. As shown in [13, Lemma 2.1], the
localization T, 'R is L-graded.

Well, set

i —1
Ch= P T,'R
oceX
dim o=1—1

and define 0 : CV'}% — Cv'gl by

d(z) = Z e(r,0)  tro(2)

T>0
dim 7=1

for x € To_lR C Cv'jé, where ¢ is an incidence function on X and ¢, is a natural map
T;'R — T 'R for ¢ < 7. Then (C$,d) forms a cochain complex in Mod, R:

0—C%—Ch— - —C% —0.

We set m := (2% | 0 # a € [M|). This is a maximal ideal of R. The following result has
been proved by Ichim and Rémer [9] in the case M comes from a fan in R?, and Okazaki
and the present author in the general case. (The proofs are essentially the same.)

Proposition 6.2. (See [9, Theorem J.2], [13, Proposition 3.2].) For any R-module M, we
have

for all i. In particular, H. (R) is L-graded.

Corollary 6.3. Let X be a CW complex supporting R = k|[M], and X the underlying
topological space of X. Then we have [HE (R)]o = H'"1(X;k), where 0 is the zero element
of L and H*=Y(X;k) is the ith reduced cohomology of X with the coefficients in k.

Proof. Since [T, 'Ry = k for all ¢ € X, the cochain complex [C'%]o of k-vector spaces
is isomorphic to the reduced cochain complex of X with the coefficients in k. Hence the
assertion follows from Proposition 6.2. 0O
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For M € Mod, R, set M—\/q\ = eaaelﬂl M_,. Since M—I/\Zl is not an R-module in
general, we just regard it as an L-graded k-vector space.

Lemma 6.4. If a toric face ring R = k[M] is seminormal, then we have

Han(R) = [H;(R)],|/\7|

for all i.

Proof. We use the same idea as the proof of Theorem 5.11. Let Sq R be the category of
squarefree R-modules. (See Definition 5.9.)

Let Vect k be the category of L-graded k-vector spaces, and (_)—\/\7” : Mod, R —
Vect, k the functor which sends M to M_‘ M We also have the forgetful functor
U : Mod, R — Vect, k.

Now, for each i € Z, we define the following two functors from D?(Sq R) to Vect k:

F,:UoH'(-®rCh) and Fi:[H'(-@rCh)]_ 5
Since V_| M| is a subspace of V€ Modgk, we have the natural transformation
¥, : F; — F;. Since R is seminormal, k[M,] is seminormal for all ¢ by Proposition 5.1.
Hence [Hy, (K[M,])]_ 5 = Hin(K[M,]), in fact, we have [H, (K[M,])]-c, = Hy, (k[M,])
by Theorem 2.1. It means that ¥;(k[M,]) is an isomorphism, and hence ¥; is a nat-
ural isomorphism by the same reason as in the proof of Theorem 5.11. In particu-
lar, ¥;(R) : F,(R) — F;(R) is an isomorphism. Hence F}(R) = [H,’;I(R)]_‘Ml and
F;(R) = H! (R) are isomorphic. O

Proposition 6.5. Let R = k[M)] be a toric face ring, and TR its seminormalization. Then
we have

H;(+R) = [H&(R)]_Vm

as L-graded k-vector spaces for all 1.
Proof. It is easy to see that

{ae|M||[T;'R]_, #0} =ZM,NC, = {a e |M|| [T} (TR)]_, #0}

for all ¢ € X. Hence we have (C%)_, = (C2R)—q for all a € |M|. Now the assertion
follows from the following computation;

[Ha(B)] gy = [H(CR)] i = [H(C2 )] = [Ha (PR = HL(PR).

Here the second “=2” follows from the fact stated above, and the last one is Lemma 6.4. O
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Remark 6.6. In some sense, Proposition 6.5 generalizes and refines the results and the
problem in Section 4 of Nguyen [12] (especially, [12, Theorem 4.3]). However, the toric
face rings in [12] are assumed to have nice multigradings, while the “£-grading” of our
k[M] is not the grading in the usual sense.

Corollary 6.7. Let R = k[M)] be a toric face ring, and TR its seminormalization. If R is
Cohen—-Macaulay, then so is TR.

Proof. We prove the contrapositive: if TR is not Cohen—Macaulay, then neither is R.
Assume that TR is not Cohen-Macaulay. Then there is some 0 < i < dim R with
H™(*I%y) #0.Fora € | M|, the cochain complex [TI? ]a of k-vector spaces is isomor-
phic to the k-dual of [C’;R]_a. Hence it follows that HE (TR) # 0. By Proposition 6.5,
we have H{ (R) # 0, and hence the localization Ry, is not Cohen-Macaulay. O

Proposition 6.8. For a monoidal complexr M = {M, },cx, set M = {L, N Cplocx as
before. Let R := k[M] and R := k[M] be their toric face rings. If R is Cohen—Macaulay,
then so is R. Moreover, H (R) # 0 implies H: (R) # 0.

Lemma 6.9. With the same mnotation as in Proposition 6.8, Hi(D;é) # 0 implies
Hi(*13) 0.

Proof. Recall that D% = I?. If Hi(Dé)(% H’(II%)) # 0, then there is a € |[M| with
[Hi(II%)]a # 0. Set o := supp(a) (i.e., a € M, N int(Cy)). Since Hi(Ié) is a squarefree
R-module, we have [Hi(Il‘-é)]a = [Hi(II‘-%)]b for all b € | M| with supp(b) = o.

For b € M, with supp(b) = o, we have b € M. for all 7 € X with 7 > o. In this
case, regarding b € |[M| C |Mv |, we have [*I}], = [1%]s as cochain complexes of k-vector
spaces, and hence [H'(*Ip)]y = [H'(I})]y # 0. O

The proof of Proposition 6.8. By Corollary 6.7, we may assume that R is seminormal.
Then 1§, = DY, by Theorem 5.2, and the assertion easily follows from Lemma 6.9. O

Let R = k[M] be a general toric face ring, "R = k[*.M] its seminormalization, and
R = k[M]. Proposition 6.8 and Corollary 6.7 state that

R is Cohen-Macaulay = "R is Cohen-Macaulay — R is Cohen—Macaulay.

By a result of Caijun [6] (see also [13]), the Cohen-Macaulay property of R is a topological
property of the underlying space X of X, while it may depend on char(k).
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