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1. Introduction

Let M be a finitely generated additive submonoid of Zd (i.e., M is an affine semigroup) 
with ZM ∼= Zd, and C(M) := R≥0M ⊂ Zd⊗ZR ∼= Rd the polyhedral cone spanned by M. 
Set M := ZM ∩ C(M). Throughout the paper, we assume that M is positive, that is, 
M has no invertible element except 0.

In the former half of the present paper, we study the affine semigroup ring k[M] =⊕
a∈M kxa of M over a field k. Now we have dim k[M] = d. It is a classical result by 

Hochster, Stanley and Danilov that if R = k[M] is normal (equivalently, M = M), 
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then R is Cohen–Macaulay and the canonical module ωR has an easy description 
(cf. [3, Theorem 6.3.5]). On the other hand, the behavior of non-normal affine semigroup 
rings is delicate and complicated, and many works have been done on this subject.

Definition 1.1. Let A be a reduced noetherian commutative ring, and Q(A) its total 
quotient ring. We say A is seminormal, if a ∈ Q(A) and a2, a3 ∈ A imply a ∈ A.

This notion is much more natural than it seems. In fact, it is known that R is semi-
normal if and only if PicR ∼= Pic(R[x]). See [17] and the references cited therein.

The seminormality of an affine semigroup ring R = k[M] is characterized in a combina-
torial (resp. homological) way by Reid and Roberts [14] (resp. Bruns, Li and Römer [5]). 
In the present paper, we will give a new characterization using the dualizing complex. 
Our characterization is relatively closer to that in [5]. However, contrary to their result, 
ours does not use the Zd-grading of the local cohomology modules (or the dualizing 
complex). To introduce our result, we need some preparation.

For a face F of the cone C(M), MF := M ∩ F is a submonoid of M. The semigroup 
ring k[MF ] can be seen as a quotient ring of R, and its normalization k[MF ] has the 
natural R-module structure. Then we have the following complex.

+I•R : 0 −→ +I−d
R −→ +I−d+1

R −→ · · · −→ +I0
R −→ 0,

+I−i
R =

⊕
F : a face of C(M)

dim F=i

k[MF ].

The differential map ∂ : +I−i
R → +I−i+1

R is the combination of the natural surjections 
k[MF ] � k[MG] for faces F , G with F ⊃ G and dimF = dimG + 1.

Proposition 2.3. For a semigroup ring R = k[M], it is seminormal if and only if +I•R is 
quasi-isomorphic to the dualizing complex D•

R.

We can characterize the normality of k[M] using the dualizing complex in a similar 
way. As a byproduct of this observation, we have the following (unexpected) result.

Theorem 3.1. For R = k[M], the following are equivalent.

(a) R is normal.
(b) R is Cohen–Macaulay and the canonical module ωR is isomorphic to the ideal 

(xa | a ∈ M ∩ int(C(M))) of R as (graded or nongraded) R-modules.

The implication (a) ⇒ (b) is a classical result (see above).
Stanley–Reisner rings and affine semigroup rings are important subjects of combina-

torial commutative algebra. The notion of toric face rings, which originated in an earlier 
work of Stanley [16], generalizes both of them, and has been studied by Bruns, Römer, 
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and their coauthors (e.g. [2,4,9]). Roughly speaking, to make a toric face ring k[M] from 
a (locally) polyhedral CW complex X , we assign each cell σ ∈ X an affine semigroup 
Mσ ⊂ Zdim σ+1, and “glue” their semigroup rings k[Mσ] along with X .

Recently, Nguyen [12] studied seminormal toric face rings mainly focusing on the local 
cohomology modules, but he also remarked that k[M] is seminormal if and only if k[Mσ]
is seminormal for all σ. In this sense, the seminormality is a natural condition for toric 
face rings.

Generalizing the construction for affine semigroup rings, a toric face ring k[M] of 
dimension d admits the cochain complex +I•R of the form

0 −→ +I−d
R −→ +I−d+1

R −→ · · · −→ +I0
R −→ 0

with

+I−i
R :=

⊕
σ∈X

dim σ=i−1

k[Mσ],

where k[Mσ] is the normalization of k[Mσ].

Theorem 5.2. If a toric face ring R = k[M] is seminormal, then +I•R is quasi-isomorphic 
to a dualizing complex D•

R. (The converse is also true. See Proposition 5.12.)

Under the assumption that each k[Mσ] is normal (of course, +I−i
R =

⊕
dim σ=i−1 k[Mσ], 

in this case), the above theorem was proved by the present author and Okazaki 
[13, Theorem 5.2]. Even in this case, the proof requires quite technical argument, since 
R is not a graded ring in the usual sense. The proof of Theorem 5.2 heavily depends on 
[13, Theorem 5.2], but we have to make more effort.

Finally, for an arbitrary toric face ring R = k[M], we study the local cohomology 
modules Hi

m(R) at the “graded” maximal ideal m. Let +R (resp. R̃) be the seminormal-
ization (resp. cone-wise normalization) of R. Both of them are toric face rings supported 
by the same CW complex X as R, but the construction of the latter is not straightfor-
ward (see Example 5.3). In Section 6, we show that Hi

m(+R) ⊂ Hi
m(R), and Hi

m(R̃) 
= 0
implies Hi

m(R) 
= 0. Hence we have;

R is Cohen–Macaulay =⇒ +R is Cohen–Macaulay =⇒ R̃ is Cohen–Macaulay.

We remark that the Cohen–Macaulay property of R̃ only depends on the topology of the 
underlying space of X (and char(k)).

Convention. In this paper, we use the following notation: For a commutative ring A, 
ModA denotes the category of A-modules.

For cochain complexes M• and N•, M• ∼= N• means that two complexes are isomor-
phic in the derived category, and M• = N• means that these are isomorphic as (explicit) 
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complexes. If M• ∼= N•, we say these two complexes are quasi-isomorphic (especially 
when a direct quasi-isomorphism M• → N• or N• → M• exists).

While the word “dualizing complex” sometimes means its isomorphism class in the 
derived category, we use the convention that a dualizing complex D•

A of a noetherian 
ring A is the one of the form

0 −→ D− dim A
A −→ · · · −→ D−1

A −→ D0
A −→ 0

with

D−i
A =

⊕
p∈Spec A
dim A/p=i

E(A/p), (1.1)

where E(A/p) is the injective envelope of A/p.
In this paper, we freely use the Zd-graded versions of Matlis duality and local duality. 

These are implicit in Chapters 5 and 6 of [3], but the detailed argument is found in [7].

2. Dualizing complexes of seminormal affine semigroup rings

For the convention and notation about an affine semigroup M ⊂ Zd and the cone 
C(M) ⊂ Rd spanned by M, see the end of the previous section.

Let

k[M] :=
⊕
a∈M

kxa ⊂ k
[
x±1

1 , . . . , x±1
d

]

be the semigroup ring of M over a field k. Here, for a = (a1, . . . , ad) ∈ Zd, xa denotes 
the monomial 

∏d
i=1 x

ai
i . Clearly, R := k[M] is a Zd-graded ring, and ∗ModR denotes the 

category of Zd-graded R-modules.
For M =

⊕
a∈Zd Ma ∈ ∗ModR, set

MC(M) :=
⊕

a∈Zd∩C(M)

Ma.

It is clear that MC(M) is a Zd-graded R-submodule of M , and we call it the C(M)-graded 
part of M . Similarly, for a cochain complex M• in ∗ModR, we can define a subcomplex 
(M•)C(M).

For a face F of C(M),

MF := M ∩ F

is a submonoid of M. Consider the monomial ideal (i.e., Zd-graded ideal)
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pF :=
(
xa | a ∈ M \ MF

)
of R. Since R/pF is isomorphic to the affine semigroup ring k[MF ] of MF , pF is a prime 
ideal. Conversely, any monomial prime ideal coincide with pF for some F . We regard 
k[MF ] as an R-module through R/pF ∼= k[MF ].

For a face F of C(M), TF := {xa | a ∈ MF } ⊂ R is a multiplicatively closed subset. So 
we have the localization T−1

F R of R by TF . The Cěch complex Č•
R is defined as follows:

Č•
R : 0 −→ Č0

R
∂−→ Č1

R
∂−→ · · · ∂−→ Čd

R −→ 0,

where

Či
R :=

⊕
F : a face of C(M)

dim F=i

T−1
F R.

The differential map ∂ : Či
R → Či+1

R is given by

∂(x) =
∑
G⊃F

dim G=i+1

ε(G,F ) · ιG,F (x),

where ιG,F is the natural injection T−1
F R −→ T−1

G R for G ⊃ F , and ε(G, F ) is 
the incidence function of the regular CW complex given by a cross section of C(M). 
The precise information on ε(G, F ) is found in [3, §6.2], and we will use this func-
tion later in a more general situation. Here we just remark that ε(G, F ) = ±1 for all 
F , G with G ⊃ F and dimG = dimF + 1, and this sign makes Č•

R a cochain com-
plex.

As shown in [3, Theorem 6.2.5], the local cohomology module Hi
m(R) at the graded 

maximal ideal m := (xa | 0 
= a ∈ M) is isomorphic to Hi(Č•
R) in ∗ModR. Moreover, 

Č•
R is a (Zd-graded) flat resolution of RΓmR.
The Zd-graded Matlis dual (T−1

F R)∨ of T−1
F R is of the form

(
T−1
F R

)∨ =
⊕

a∈MF−M
kea,

where ea is a basis element with the degree a, and

MF − M = {b− c | b ∈ MF and c ∈ M}.

The multiplication map xa × (−) : [(T−1
F R)∨]b −→ [(T−1

F R)∨]a+b is surjective for all 
a ∈ M and b ∈ Zd. By the flatness of T−1

F R and [11, Lemma 11.16], (T−1
F R)∨ is an 

injective object in ∗ModR, moreover, it is the injective envelope ∗E(k[MF ]) of k[MF ] =
R/pF in ∗ModR.
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The Zd-graded Matlis dual J•
R := (Č•

R)∨ of Č•
R is of the form

J•
R : 0 −→ J−d

R −→ J−d+1
R −→ · · · −→ J0

R −→ 0,

J−i
R =

⊕
F : a face of C(M)

dim F=i

∗E
(
k[MF ]

)
.

The differential map ∂ : J−i
R → J−i+1

R is given by

∂(x) =
∑
G⊂F

dim G=i−1

ε(F,G) · pG,F (x)

for x ∈ ∗E[MF ] ⊂ J−i
R . Here pG,F : ∗E(k[MF ]) → ∗E(k[MG]) is the Matlis dual of ιF,G, 

and also induced by the map k[MF ] → ∗E(k[MG]) which is the composition of the 
natural surjection k[MF ] � k[MG] and the inclusion k[MG] ↪→ ∗E(k[MG]).

As is well-known, J•
R is quasi-isomorphic to the dualizing complex D•

R of R, moreover, 
it is nothing other than the dualizing complex of R in the Zd-graded context (see [15, 
Proposition 4.4], also [10]).

For a face F of the polyhedral cone C(M), we regard

k[ZMF ∩ F ] :=
⊕

b∈ZMF∩F

kxb

as a Zd-graded R-module by

xaxb =
{
xa+b if a ∈ MF ,

0 otherwise,

for xa ∈ R = k[M] and xb ∈ k[ZMF ∩ F ]. Note that k[ZMF ∩ F ] is the normalization 
of k[MF ], and

∗E
(
k[MF ]

)
C(M)

∼= k[ZMF ∩ F ]

as R-modules. Let F, G be faces of C(M) with F ⊃ G. As R-modules, k[ZMG ∩G] is a 
quotient module of k[ZMF ∩ F ] (note that ZMG is a sublattice of ZMF ∩ G). Hence 
there is the Zd-graded surjection πG,F : k[ZMF ∩ F ] −→ k[ZMG ∩ G], which is the 
C(M)-graded part of pG,F (if dimG = dimF − 1).

Hence the C(M)-graded part

+I•R :=
(
J•
R

)
C(M)

of the complex J•
R is of the form
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+I•R : 0 −→ +I−d
R −→ +I−d+1

R −→ · · · −→ +I0
R −→ 0,

+I−i
R =

⊕
F : a face of C(M)

dim F=i

k[ZMF ∩ F ].

The differential map ∂ : +I−i
R → +I−i+1

R is given by

∂(x) =
∑
G⊂F

dim G=i−1

ε(F,G) · πG,F (x),

for x ∈ k[ZMF ∩ F ] ⊂ +I−i
R .

As is well-known, R = k[M] is normal if and only if M = M := ZM ∩ C(M). We 
can characterize the seminormality of R in a similar way. For a face F of C(M), int(F )
denotes its relative interior. Clearly,

C(M) = �
F : a face of C(M)

int(F ).

Set

+M := �
F : a face of C(M)

ZMF ∩ int(F ). (2.1)

Then +M is an affine semigroup with M ⊆ +M ⊆ M and +(+M) = +M.

Theorem 2.1. (See L. Reid and L.G. Roberts [14], Bruns, Li and Römer [5].) For an 
affine semigroup ring R = k[M], the following are equivalent.

(i) R is seminormal.
(ii) M = +M.
(iii) Hi

m(R)a 
= 0 for a ∈ Zd implies −a ∈ C(M).

Hence +R := k[+M] is the seminormalization of R = k[M].

In the above theorem, the equivalence between (i) and (ii) (resp. (i) and (iii)) is [14, 
Theorem 4.3] (resp. [5, Theorem 4.7]).

Example 2.2. For the additive submonoid

M =
{
(m,n) | m ≥ 0, n ≥ 1

}
∪
{
(2m, 0) | m ≥ 0

}
of N2, k[M] is seminormal, but not normal.
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Proposition 2.3. If R = k[M] is seminormal, then +I•R is isomorphic to the Zd-graded du-
alizing complex J•

R in the derived category Db(∗ModR), hence +I•R ∼= D•
R in Db(ModR). 

Conversely, if +I•R ∼= D•
R in Db(ModR) then R is seminormal.

Proof. We start from the proof of the first assertion. Since Hi
m(R)∨ ∼= H−i(J•

R) by 
the local duality theorem, Hi(J•

R)a 
= 0 implies a ∈ C(M) by Theorem 2.1. Hence the 
C(M)-graded part +I•R of J•

R is quasi-isomorphic to J•
R itself.

Next, we show the last assertion. For the seminormalization +R of R, the explicit com-
putation gives the isomorphism +I•R = +I•+R as cochain complexes of R-modules. We just 
shown that +I•+R

∼= D•
+R in Db(Mod +R). Hence +I•+R

∼= D•
+R also in Db(ModR). Since 

+R is a finitely generated R-module, Hom•
R(+I•+R, D

•
R) ∼= +R in Db(ModR). Clearly, we 

also have Hom•
R(+I•R, D•

R) ∼= R. So taking the functor Hom•
R(−, D•

R) to +I•R = +I•+R, 
we have R ∼= +R as R-modules. It means that R = +R, and hence R is seminormal. �
3. The normality and the canonical module of an affine semigroup ring

Consider the following subcomplex of +I•R:

I•R : 0 −→ I−d
R −→ I−d+1

R −→ · · · −→ I0
R −→ 0,

I−i
R =

⊕
F : a face of C(M)

dim F=i

k[MF ].

If R is normal, then k[MF ] is normal for all F and I•R = +I•R. Hence, in this case, I•R is 
quasi-isomorphic to the dualizing complex D•

R. This is a well-known result essentially 
appears in [3, §6.3]. The next result states that the converse also holds.

Theorem 3.1. For an affine semigroup ring R = k[M], the following are equivalent.

(i) R is normal.
(ii) The complex I•R is quasi-isomorphic to the dualizing complex D•

R.
(iii) R is Cohen–Macaulay and the canonical module ωR is isomorphic to the ideal WR :=

(xa | a ∈ M ∩ int(C(M))) of R in ModR.
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The implication (i) ⇒ (iii) is a classical result due to Hochster, Stanley and Danilov. 
Note that if R is normal then ωR

∼= WR even in ∗ModR.

Proof. (i) ⇒ (ii): We have mentioned above.
(ii) ⇒ (iii): The assertion follows form direct computation similar to the proof of 

[3, Theorem 6.3.4] (but we have to take the Zd-graded Matlis dual).
(iii) ⇒ (i): Since WR and ωR are Zd-graded modules, HomR(WR, ωR) has the 

natural Zd-grading. On the other hand, since WR
∼= ωR in ModR now, we have 

HomR(WR, ωR) ∼= R in ModR. Since the unit group of R is k \{0}, the way to equip the 
(ungraded) module R with a Zd-grading is unique up to a shift. Hence there is a ∈ Zd

such that HomR(WR, ωR) ∼= R(−a) in ∗ModR. We use a in this meaning throughout 
this proof.

By [3, Proposition 3.3.18], R/WR is a Gorenstein ring of dimension d − 1 and 
Ext1R(R/WR, ωR) ∼= R/WR in ModR. By an argument similar to the above, these are iso-
morphic even in ∗ModR up to a degree shift. Since HomR(WR, ωR) ∼= R(−a) in ∗ModR, 
the short exact sequence 0 −→ WR −→ R −→ R/WR −→ 0 yields

Ext1R(R/WR, ωR) ∼= (R/WR)(−a). (3.1)

Note that J•
R/WR

:= Hom•
R(R/WR, J•

R) is the Zd-graded dualizing complex of R/WR, 
and

H−d+1(J•
R/WR

) ∼= Ext1R(R/WR, ωR) (3.2)

in ∗ModR. Since

HomR

(
R/WR,

∗E
(
k[MF ]

))
=

{
0 if F = C(M),
∗E(k[MF ]) if F is a proper face of C(M),

J•
R/WR

coincides with the brutal truncation J>−d
R of J•

R (for this assertion, we do not 
use any assumption on R = k[M]).

Let +R = k[+M] be the seminormalization of R. Since

(
J i
R/WR

)
C(M) =

(
J i
R

)
C(M) = +Ii+R

for all i > −d, we have

(
J•

+R/W+R

)
C(M) = +I>−d

+R =
(
J•
R/WR

)
C(M),

where J•
+R/W+R

is the Zd-graded dualizing complex of +R/W+R. Hence we have

[
H−d+1(J•

R/WR

)]
C(M)

∼=
[
H−d+1(J•

+R/W+R

)]
C(M)

∼=
[
Ext1R(+R/W+R, ωR)

]
C(M).
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If +R is normal, then W+R is its canonical module, and

[
H−d+1(J•

R/WR

)]
C(M)

∼= Ext1R(+R/W+R, ωR) ∼= +R/W+R.

In general, there might be gap between [H−d+1(J•
R/WR

)]C(M) and +R/W+R, but an easy 

computation shows that H−d+1(J•
R/WR

) still contains a submodule which is isomorphic 

to +R/W+R in ∗ModR. (Note that [H−d+1(J•
R/WR

)]C(M) is isomorphic to the kernel of 
∂ : +I−d+1

+R → +I−d+2
+R .) Combining this fact with (3.1) and (3.2), we have a Zd-graded 

injection

+R/W+R ↪→ (R/WR)(−a).

This implies that a = 0, and hence WR
∼= ωR in ∗ModR. Since Hd

m(R)b(= (ωR)−b =
(WR)−b) 
= 0 implies b ∈ −C(M), R is seminormal by Theorem 2.1.

Since R is seminormal, we have

M ∩ int
(
C(M)

)
= ZM ∩ int

(
C(M)

)
= M ∩ int

(
C(M)

)
,

and WR coincides with the canonical module ωR (= WR) of R, where R = k[M] with 
M = ZM ∩ C(M) is the normalization of R. Hence we have

R ∼= HomR(ωR, ωR) = HomR(WR, ωR) ∼= HomR(ωR, ωR) ∼= R

in ModR. Hence R ∼= R and R is normal. �
Remark 3.2. Let R = k[M] be the normalization of R = k[M]. For a face F of C(M), 
ZMF is a sublattice of ZMF , and hence k[ZMF ∩ F ] is a direct summand of k[MF ] as 
an R-module. So +IiR is a submodule (actually, a direct summand) of Ii

R
for each i, but 

it does not mean +I•R is a subcomplex of I•
R
.

For example, consider the seminormal semigroup M given in Example 2.2. Then R
is of the form k[x2, y, xy]. In this case, +I−2

R = k[x, y], +I−1
R = k[x2] ⊕ k[y], and the 

degree (1, 0) component of ∂ : +I−2
R → +I−1

R is the zero map. On the other hand, the 
normalization R of R is k[x, y]. Hence +I−2

R
= k[x, y], +I−1

R
= k[x] ⊕k[y], and the degree 

(1, 0) component of ∂ : +I−2
R

→ +I−1
R

is non-zero.
Anyway, this phenomena makes the proof of Theorem 5.2 below complicated.

4. Preliminaries on toric face rings

Let X be a finite regular CW complex with the intersection property, and X
its underlying topological space. More precisely, the following conditions are satis-
fied.
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(1) ∅ ∈ X (for the convenience, we set dim ∅ = −1), X =
⋃

σ∈X σ, and the cells σ ∈ X
are pairwise disjoint;

(2) If ∅ 
= σ ∈ X , then, for some i ∈ N, there exists a homeomorphism from the 
i-dimensional ball {x ∈ Ri | ‖x‖ ≤ 1} to the closure σ of σ which maps {x ∈ Ri |
‖x‖ < 1} onto σ;

(3) For σ ∈ X , the closure σ is the union of some cells in X ;
(4) For σ, τ ∈ X , there is a cell υ ∈ X such that υ = σ ∩ τ (here υ can be ∅).

We regard X as a partially ordered set (poset for short) by σ ≥ τ
def⇐⇒ σ ⊃ τ .

The following definitions of conical complexes and monoidal complexes are taken 
from [13], and equivalent to the original ones in Bruns, Koch and Römer [4] under the 
assumption that the cones Cσ contain no line (equivalently, the semigroups Mσ are all 
positive). However, the notation has been changed a little from that of [13] for the usages 
in the present paper.

Definition 4.1. A conical complex (Σ, X , {ισ,τ}) on X consists of the following data.

(0) To each σ ∈ X , we assign an Euclidean space Eσ = Rdim σ+1.
(1) Σ = {Cσ | σ ∈ X}, where Cσ ⊂ Eσ = Rdim σ+1 is a polyhedral cone with dimCσ =

dim σ + 1. Here each cone Cσ contains no line.
(2) The injection ισ,τ : Cτ → Cσ for σ, τ ∈ X with σ ≥ τ satisfying the following.

(a) ισ,τ can be lifted to a linear map ι̃σ,τ : Eτ → Eσ.
(b) The image ισ,τ (Cτ ) is a face of Cσ. Conversely, for a face C ′ of Cσ, there is a 

sole cell τ with τ ≤ σ such that ισ,τ (Cτ ) = C ′.
(c) ισ,σ = IdCσ

and ισ,τ ◦ ιτ,υ = ισ,υ for σ, τ, υ ∈ X with σ ≥ τ ≥ υ.

A polyhedral fan Σ in Rn gives a conical complex. In this case, as an underlying CW 
complex, we can take {int(C ∩Sn−1) | C ∈ Σ}, where Sn−1 is the unit sphere in Rn, and 
the injections ισ,τ are inclusion maps.

Example 4.2. Consider the following cell decomposition of a Möbius strip. Regarding 
each rectangles as the cross-sections of 3-dimensional cones, we have a conical complex 
that is not a fan (see [2, Example 1.36]).
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Let Lσ be the set of lattice points Zdim σ+1 of Eσ = Rdim σ+1. Assume that ι̃σ,τ (Lτ ) =
ι̃σ,τ (Eτ ) ∩ Lσ for all σ, τ ∈ X with σ ≥ τ .

Definition 4.3. A monoidal complex supported by a conical complex (Σ, X , {ισ,τ}) is a 
set of monoids M = {Mσ}σ∈X with the following conditions:

(1) Mσ ⊂ Lσ = Zdim σ+1 for each σ ∈ X , and it is a finitely generated additive sub-
monoid (so Mσ is an affine semigroup);

(2) Mσ ⊂ Cσ and R≥0Mσ = Cσ for each σ ∈ X ;
(3) for σ, τ ∈ X with σ ≥ τ , the map ισ,τ : Cτ → Cσ induces an isomorphism Mτ

∼=
Mσ ∩ ισ,τ (Cτ ) of monoids.

If Σ is a rational fan in Rn, then {C ∩ Zn | C ∈ Σ} gives a monoidal complex. More 
generally, taking submonoids of C ∩ Zn carefully, we can get a “non-normal” monoidal 
complex.

For a monoidal complex M = {Mσ}σ∈X , set

|M| := lim−−→
σ∈X

Mσ,

where the direct limit is taken with respect to ισ,τ : Mτ → Mσ for σ, τ ∈ X with σ ≥ τ . 
Note that |M| is just a set and no longer a monoid in general. Since all ισ,τ are injective, 
we can regard Mσ as a subset of |M|. For example, if {Mσ}σ∈X comes from a fan in Rn, 
then |M| =

⋃
σ∈X Mσ ⊂ Zn.

Let a, b ∈ |M|. If there is some σ ∈ X with a, b ∈ Cσ, there is a unique minimal cell 
among these σ’s. (In fact, if Cσ1 , Cσ2 ∈ X contain both a and b, there is a cell τ ∈ X
with τ = σ1 ∩ σ2 by our assumption on X , and Cτ contains both a and b.) If σ is the 
minimal one with this property, we have a, b ∈ Mσ and we can define a +b ∈ Mσ ⊂ |M|. 
If there is no σ ∈ X with a, b ∈ Cσ, then a + b does not exist.

Definition 4.4. (See [4].) Let {Mσ}σ∈X be a monoidal complex with |M| := lim−−→Mσ, and 
k a field. Then the k-vector space

k[M] :=
⊕

a∈|M|
kxa,

where x is a variable, equipped with the following multiplication

xa · xb =
{
xa+b if a + b exists,
0 otherwise,

has a k-algebra structure. We call k[M] the toric face ring of M over k.
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Clearly, dim k[M] = dimX + 1. In the rest of this paper, we set d := dim k[M]. 
Stanley–Reisner rings and affine semigroup rings (of positive semigroups) can be estab-
lished as toric face rings. If M comes from a fan in Rn, then k[M] admits a Zn-grading 
with dimk k[M]a ≤ 1 for all a ∈ Zn. But this is not true in general.

Example 4.5. (See [4, Example 4.6].) Consider the conical complex in Example 4.2. 
Assigning normal semigroup rings of the form k[a, b, c, d]/(ac − bd) to each rectangles, 
we have a toric face ring of the form

k[x, y, z, u, v, w]/(xv − uy, vz − yw, xz − uw, uvw, uvz),

which does not admit a nice multi-grading. We can also get a similar example whose 
k[Mσ] are not normal.

We say a toric face ring R = k[M] is cone-wise normal, if k[Mσ] is normal for all 
σ ∈ X . The notion of cone-wise normal toric face rings coincides with that of the ring 
k[WF ] associated with a weak fan WF introduced by Bruns and Gubeladze [1]. They 
gave an example of a cone-wise normal toric face ring which does not admit a Z-grading 
with R0 = k [1, Example 2.7].

For σ ∈ X , a monomial ideal pσ := (xa | a ∈ |M| \ Mσ) of R is prime. In fact, the 
quotient ring R/pσ is isomorphic to the affine semigroup ring k[Mσ]. We regard k[Mσ]
as an R-module, through R/pσ ∼= k[Mσ].

Set

I−i
R :=

⊕
σ∈X

dim σ=i−1

k[Mσ]

for i = 0, . . . , d, and define ∂ : I−i
R → I−i+1

R by

∂(y) =
∑

dim τ=i−2
τ≤σ

ε(σ, τ) · πτ,σ(y)

for y ∈ k[Mσ] ⊂ I−i
R , where πτ,σ is the natural surjection k[Mσ] → k[Mτ ] (note that if 

τ ≤ σ then pσ ⊂ pτ ) and ε is an incidence function of X . Then

I•R : 0 −→ I−d
R −→ I−d+1

R −→ · · · −→ I0
R −→ 0

is a cochain complex of finitely generated R-modules. The following is the main result 
of [13].

Theorem 4.6. (See [13, Theorem 5.2].) If R is cone-wise normal, then I•R is quasi-
isomorphic to a dualizing complex D•

R of R.
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The proof of the main result in the next section largely depends on (the proof of) 
Theorem 4.6, but the proof in [13] is long and technical. So we summarize it here for the 
reader’s convenience. See [13] for details.

An outline of the proof of Theorem 4.6. To prove the theorem, we realize I•R as a 
subcomplex of D•

R. Set c(σ) := dim σ + 1 = dim k[Mσ] for a cell σ. The proof is divided 
into three steps.

Step 1. We have a canonical injection iσ : k[Mσ] ↪→ D
−c(σ)
R .

We fix a cell σ, and set c := c(σ). Since k[Mσ] is normal, it is Cohen–Macaulay and 
admits the canonical module simply denoted by ωσ. Note that

H−c
(
HomR

(
ωσ, D

•
R

))
= Ext−c

R

(
ωσ, D

•
R

) ∼= k[Mσ].

Since HomR(ωσ, D
−c−1
R ) = 0, the cohomology H−c(HomR(ωσ, D•

R)) is the kernel of the 
map

HomR(ωσ, ∂D•
R
) : HomR

(
ωσ, D

−c
R

)
−→ HomR

(
ωσ, D

−c+1
R

)
. (4.1)

Through the identification,

HomR

(
ωσ, D

−c
R

)
= HomR

(
k[Mσ], D−c

R

) ∼= {
y ∈ D−c

R | pσy = 0
}
,

the kernel of the map (4.1) is

iσ
(
k[Mσ]

)
:=

{
y ∈ D−c

R | pσy = 0 and ∂D•
R
(qσy) = 0

}
,

where qσ is the set {xa ∈ R | a ∈ (Mσ ∩ int(Cσ))}. (Note that ωσ is the ideal of k[Mσ]
generated by qσ.) Clearly, iσ(k[Mσ]) ∼= k[Mσ].

Of course, we just chose the subset iσ(k[Mσ]) of D−c
R , not an injection iσ : k[Mσ] ↪→

D−c
R . However, the R-module k[Mσ] is generated by a single element, and the choice of 

a generator (i.e., the choice of iσ) is unique up to constant multiplication. This small 
ambiguity does not affect the argument below.

Step 2.
⊕

σ∈X iσ(k[Mσ]) is a subcomplex of D•
R.

The dualizing complex D•
σ := D•

k[Mσ] of k[Mσ] coincides with HomR(k[Mσ], D•
R), 

which can be seen as a subcomplex of D•
R. Since k[Mσ] is Zc(σ)-graded, we have the 

Zc(σ)-graded dualizing complex J•
σ := J•

k[Mσ], and a quasi-isomorphism J•
σ → D•

σ. Com-
posing this morphism with D•

σ → D•
R, we get a chain map hσ : J•

σ → D•
R which 

induces

Hi
(
HomR

(
ωσ, J

•
σ

)) ∼= Hi
(
HomR

(
ωσ, D

•
R

))
. (4.2)
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Applying the same argument as Step 1, we have an injection ∗iσ,τ : k[Mτ ] ↪→ J
−c(τ)
σ

for a cell τ with τ ≤ σ. By (4.2), it is easy to see that

iτ
(
k[Mτ ]

)
= hσ ◦ ∗iσ,τ

(
k[Mτ ]

)
.

On the other hand, we have that

(
J•
σ

)
Cσ

=
⊕
τ≤σ

∗iσ,τ
(
k[Mτ ]

)
, (4.3)

where Cσ is the polyhedral cone spanned by Mσ. Since J•
σ is a Zc(σ)-graded complex, 

the right side of (4.3) is a subcomplex of J•
σ . Since hσ is a chain map, 

⊕
τ≤σ iσ(k[Mτ ])

forms a subcomplex of D•
R. It implies that 

⊕
σ∈X iσ(k[Mσ]) is also a subcomplex of D•

R.
Since 

⊕
σ∈X iσ(k[Mσ]) is isomorphic to I•R, it suffices to show the following.

Step 3. D•
R is quasi-isomorphic to its subcomplex 

⊕
σ∈X iσ(k[Mσ]).

The argument for this step will be used around the proof of Theorem 5.11 after a 
slight generalization. There, we explain this idea in detail, so we do not give a summary 
here. �
5. Dualizing complexes of seminormal toric face rings

We start from the following fact pointed out by Nguyen [12].

Proposition 5.1. (See [12, Proposition 3.5].) For a toric face ring k[M], the following 
are equivalent.

(i) k[M] is seminormal.
(ii) k[Mσ] is seminormal for all σ ∈ X .

Recall the precise definition of a monoidal complex M given in the previous section. 
For each σ ∈ X , let +Mσ ⊂ Lσ be the monoid constructed from Mσ by the operation 
in (2.1), that is, k[+Mσ] is the seminormalization of k[Mσ]. Then +M := {+Mσ}σ∈X
forms a monoidal complex, and +R := k[+M] is the seminormalization of R := k[M]. 
In particular, R is seminormal if and only if M = +M.

On the other hand, k[ZMσ∩Cσ] is the normalization of k[Mσ] (since we do not assume 
that ZMσ = Lσ, we have ZMσ ∩ Cσ 
= Lσ ∩ Cσ in general), but {ZMσ ∩ Cσ}σ∈X does 
not form a monoidal complex. The monoidal complex M of Example 5.3 below gives a 
counter example. In fact, the condition (3) of Definition 4.3 is violated.

We consider the following cochain complex

+I•R : 0 −→ +I−d
R −→ +I−d+1

R −→ · · · −→ +I0
R −→ 0
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with

+I−i
R :=

⊕
σ∈X

dim σ=i−1

k[ZMσ ∩ Cσ].

The differential map ∂ is given by

∂(y) =
∑

dim τ=i−2
τ≤σ

ε(σ, τ) · πτ,σ(y)

for y ∈ k[ZMσ ∩ Cσ] ⊂ I−i
R , where πτ,σ is the natural surjection k[ZMσ ∩ Cσ] →

k[ZMτ ∩ Cτ ]. Clearly, +I•R is a cochain complex of finitely generated R-modules.

Theorem 5.2. If a toric face ring R = k[M] is seminormal, then +I•R is quasi-isomorphic 
to a dualizing complex D•

R.

To prove the theorem, we need some preparation. For each σ ∈ X , set M̃σ := Lσ ∩ Cσ. 
Then {M̃σ}σ∈X is a monoidal complex again. We can regard that |M̃| := lim−−→ M̃σ con-
tains |M| as a subset.

Example 5.3. While k[M̃σ] is always a normal semigroup ring, it is not the normalization 
of k[Mσ]. For example, consider the monoidal complex M illustrated below. Let Mσ be 
the monoid corresponding to the first quadrant, then k[Mσ] = k[x2, y] is normal, but we 
have k[M̃σ] = k[x, y] � k[Mσ].

Set R̃ := k[M̃]. The next result holds, even if k[M] is not seminormal.

Lemma 5.4. For any M, R̃ = k[M̃] is a finitely generated module over R = k[M].
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Proof. It suffices to show that k[M̃σ] is finitely generated as a k[Mσ]-module for each 
σ ∈ X . This must be a well-known result, but we give a proof here for the reader’s 
convenience. If dimσ = 0, then the assertion is clear (in fact, k[M̃σ] is a polynomial 
ring with one variable in this case). If dim k[Mσ] > 1, set A := k[Mσ], and let A′ be 
the A-subalgebra of k[M̃σ] generated by {xa | a ∈ M̃τ , τ < σ, dim τ = 0}. By the above 
remark, A′ is a finitely generated A-module. Since k[M̃σ] is the normalization of A′, it 
is a finitely generated as an A′-module, hence also as an A-module. �

We regard k[M̃σ] as an R-module by the compositions of the ring homomorphisms 
R � R/pσ(∼= k[Mσ]) ↪→ k[M̃σ], which is the same thing as R ↪→ R̃ � k[M̃σ].

As in the previous section, we set c(σ) := dim σ + 1 = dim k[Mσ]. For the simplicity, 
the dualizing complexes D•

k[Mσ] (resp. D•
k[M̃σ]

) of k[Mσ] (resp. k[M̃σ]) is denoted by D•
σ

(resp. D•
σ̃). Since both k[Mσ] and k[M̃σ] are Zc(σ)-graded, they admit the Zc(σ)-graded 

dualizing complexes J•
σ := J•

k[Mσ] and J•
σ̃ := J•

k[M̃σ]
respectively. Similarly, we also set 

+I•σ := +I•
k[Mσ] and I•σ̃ := I•

k[M̃σ]
(= +I•

k[M̃σ]
) for the simplicity.

Since R̃ is cone-wise normal, I•
R̃

is quasi-isomorphic to D•
R̃

by Theorem 4.6. Moreover, 
we have the following.

Lemma 5.5. There is a quasi-isomorphism ψ : I•
R̃

→ D•
R̃

such that the induced map 

ψσ := Hom•
R̃
(k[M̃σ], ψ) : I•σ̃ → D•

σ̃ is a quasi-isomorphism for all σ ∈ X .

Proof. This fact has been shown in the proof of [13, Theorem 5.2] (Theorem 4.6 of the 
present paper). Recall the outline of the proof introduced in the previous section. �

Since R̃ is finitely generated as an R-module by Lemma 5.4, we have D•
R̃

=
Hom•

R(R̃, D•
R). Via the canonical injection R ↪→ R̃, we have a chain map

λ : D•
R̃

= Hom•
R

(
R̃,D•

R

)
−→ Hom•

R

(
R,D•

R

)
= D•

R.

Similarly, for each σ, the injection k[Mσ] ↪→ k[M̃σ] induces a chain map λσ : D•
σ̃ → D•

σ. 
Since k[M̃σ] is a finitely generated Zc(σ)-graded module over k[Mσ] and J•

σ is the du-
alizing complex in the Zc(σ)-graded context, we have Hom•

k[Mσ](k[M̃σ], J•
σ) = J•

σ̃ . The 

injection k[Mσ] ↪→ k[M̃σ] induces the Zc(σ)-graded chain map μ′
σ : J•

σ̃ −→ J•
σ .

Note that Mσ and M̃σ span the same polyhedral cone Cσ. Since k[Mσ] is seminormal 
and k[M̃σ] is normal, we have J•

σ
∼= (J•

σ)Cσ
= +I•σ and J•

σ̃
∼= (J•

σ̃)Cσ
= +I•σ̃ = I•σ̃ as 

shown in the proof of Proposition 2.3. Taking the Cσ-graded part of μ′
σ, we have the 

chain map

μσ : I•σ̃ −→ +I•σ.

Lemma 5.6. For the quasi-isomorphism ψσ : I•σ̃ → D•
σ̃ of Lemma 5.5, we have a quasi-

isomorphism φσ : +I•σ → D•
σ which makes the following diagram commutative.
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I•σ̃
ψσ

μσ

D•
σ̃

λσ

+I•σ
φσ

D•
σ

Proof. It is easy to see that there exists a quasi-isomorphism ψ′
σ : J•

σ̃ → D•
σ̃ which is an 

extension of ψσ : I•σ̃ → D•
σ̃. Since μσ : I•σ̃ −→ +I•σ is the restriction of μ′

σ : J•
σ̃ −→ J•

σ , it 
suffices to construct a quasi-isomorphism φ′

σ : J•
σ → D•

σ with

J•
σ̃

ψ′
σ

μ′
σ

D•
σ̃

λσ

J•
σ

φ′
σ

D•
σ.

In fact, the restriction of φ′
σ to +I•σ gives φσ satisfying the expected condition.

Since J•
σ
∼= D•

σ in Db(Mod k[Mσ]), we have a quasi-isomorphism ξ : J•
σ → D•

σ. Taking 
Homk[Mσ](k[M̃σ], −), we get a chain map

ξ∗ : J•
σ̃ = Homk[Mσ]

(
k[M̃σ], J•

σ

)
−→ Homk[Mσ]

(
k[M̃σ], D•

σ

)
= D•

σ̃.

Note that J•
σ is a cochain complex of injective objects in the category ∗Mod(k[Mσ])

of Zc(σ)-graded k[Mσ] modules, and k[M̃σ] ∈ ∗Mod(k[Mσ]). Hence ξ∗ is a quasi-
isomorphism.

Clearly, ξ∗ is k[M̃σ]-linear, and can be extended to a k[M̃σ]-linear automorphism ξ∗
of D•

σ̃ uniquely (of course, the same is true for ψ′
σ). Since

HomDb(Mod k[M̃σ])
(
D•

σ̃, D
•
σ̃

)
= k[M̃σ]

and D•
σ̃ is a cochain complex of injective modules, the automorphism ξ∗ is homotopic to 

the multiplication by c for some 0 
= c ∈ k. Moreover, since D•
σ̃ is of the form (1.1), ξ∗

is equal to the multiplication by c. Since the same is true for ψ′
σ, we have ψ′

σ = c′ξ∗ for 
some 0 
= c′ ∈ k. Hence φ′

σ := c′ξ satisfies the desired condition. �
For each i ∈ Z, +IiR is an R-submodule of Ii

R̃
. However +I•R is not a subcomplex of I•

R̃
. 

This problem occurs even in the semigroup ring case. See Remark 3.2.
Let κ : +I•R ��� I•

R̃
be the collection of the natural injections +IiR ↪→ Ii

R̃
(since 

this is not a chain map, we use the symbol “���”). The similar map κσ : +I•σ ��� I•σ̃
is not a chain map in general again. For each i, +Iiσ is a direct summand of Iiσ̃ as a 
k[Mσ]-module, the i-th component μi

σ : Iiσ̃ −→ +Iiσ of the chain map μσ : I•σ̃ −→ +I•σ

satisfies μi
σ ◦ κi

σ = Id.
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Lemma 5.7. The composition +I•R
κ��� I•

R̃

ψ−→ D•
R̃

λ−→ D•
R is a chain map.

Proof. It suffice to check that

∂i+1
D•

R
◦
(
λi ◦ ψi ◦ κi

)
(y) =

(
λi+1 ◦ ψi+1 ◦ κi+1) ◦ ∂i

+I•
R
(y)

for all “homogeneous” element y (i.e., y ∈ (+IiR)a for some a ∈ |M|), since any element 
of +IiR is a sum of these elements. Then we can regard y ∈ +Iiσ for some σ ∈ X . We 
have the following commutative diagram.

+Iiσ
κi
σ

Iiσ̃
ψi

σ

Di
σ̃

λi
σ

Di
σ

+IiR
κi

Ii
R̃ ψi

Di
R̃ λi

Di
R

The commutativity of the left square is clear, that of the middle one is Lemma 5.5, 
and that of the right one follows from the fact that the composition R ↪→ R̃ � k[M̃σ]
coincides with the composition R � k[Mσ] ↪→ k[M̃σ].

By Lemma 5.6, we have λi
σ ◦ ψi

σ ◦ κi
σ = φi

σ ◦ μi
σ ◦ κi

σ = φi
σ. Since φσ is a chain map, 

we are done. �
Let φ denote the chain map J•

R → D•
R constructed in Lemma 5.7. To prove Theo-

rem 5.2, we will show that φ is a quasi-isomorphism by a slightly indirect way.

Definition 5.8. Let R = k[M] be a toric face ring. We say an R-module M is |M̃|-graded
if the following are satisfied;

(i) M =
⊕

a∈|M̃| Ma as k-vector spaces;
(ii) Let a ∈ |M| and b ∈ |M̃|. If a + b exists (equivalently, a, b ∈ M̃σ for some σ ∈ X ), 

then xaMb ⊂ Ma+b. Otherwise, xaMb = 0.

Let ModM̃ R denote the subcategory of ModR whose objects are |M̃|-graded and ho-
momorphisms are f : M → N with f(Ma) ⊂ Na for all a ∈ |M̃|.

We say M ∈ ModM̃ R is |M|-graded, if M =
⊕

a∈|M| Ma. Let ModM R denote the 
subcategory of ModM̃ R consisting of |M|-graded modules.

Clearly, ModM̃ R and ModM R are abelian categories. It is easy to see that R ∈
ModM R and R̃ ∈ ModM̃ R. Moreover, I•R (resp. +I•R) is a cochain complex in ModM R

(resp. Mod ˜ R).
M
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Definition 5.9. For each a ∈ |M̃|, there is a unique cell σ ∈ X with a ∈ int(Cσ) (equiva-
lently, a ∈ M̃σ and σ is the minimal one with this property). This cell σ is denoted by 
supp(a).

An R-module M ∈ ModR is said to be squarefree if it is |M|-graded (not |M̃|-graded), 
finitely generated, and the multiplication map Ma � y �−→ xby ∈ Ma+b is bijective for 
all a, b ∈ |M| with supp(a) ⊃ supp(b).

For example, k[Mσ] and R itself are squarefree R-modules. In [13], squarefree modules 
over a cone-wise normal toric face ring play a key role. Many properties are lost in the 
non-normal case. For example, +I•R is no longer a complex of squarefree modules. In fact, 
+IiR is |M̃|-graded, not |M|-graded. However, the next result still holds.

Lemma 5.10. (Cf. [13, Lemma 4.2].) Let SqR be the full subcategory of ModM R con-
sisting of squarefree modules. Then SqR is an abelian category with enough injectives, 
and indecomposable injectives are objects isomorphic to k[Mσ] for some σ ∈ X . The 
injective dimension of any object is at most d.

The proof is similar to the cone-wise normal case [13], and we omit it here. We just 
remark that SqR is equivalent to the category of finitely generated left Λ-modules, where 
Λ is the incidence algebra of X (as a poset) over k.

Let Inj-Sq be the full subcategory of SqR consisting of all injective objects, that is, 
finite direct sums of copies of k[Mσ] for various σ ∈ X . Then the bounded homotopy 
category Kb(Inj-Sq) is equivalent to Db(SqR). We have an exact functor

Hom•
R

(
−,+I•R

)
: Kb(Inj-Sq) → Db(ModR)op.

Similarly, we have an exact functor

Hom•
R

(
−, D•

R

)
: Kb(Inj-Sq) → Db(ModR)op.

The chain map φ : +I•R → D•
R gives a natural transformation

Φ : Hom•
R

(
−,+I•R

)
→ Hom•

R

(
−, D•

R

)
.

Theorem 5.11. If R is seminormal, Φ is a natural isomorphism.

Proof. By virtue of [8, Proposition 7.1], it suffices to show that

Φ
(
k[Mσ]

)
: +I•σ = Hom•

R

(
k[Mσ],+I•R

)
→ Hom•

R

(
k[Mσ], D•

R

)
= D•

σ

is a quasi-isomorphism for all σ ∈ X . Since Φ(k[Mσ]) = Hom•
R(k[Mσ], φ), it is factored 

as +I•σ
κσ��� I•σ̃

ψσ−→ D•
σ̃

λσ−→ D•
σ. As shown in the proof of Lemma 5.7, this coincides with 

the quasi-isomorphism φσ of Lemma 5.6. �
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The proof of Theorem 5.2. The assertion follows from Theorem 5.11. In fact, since R ∈
SqR, we have an isomorphism Φ(R) : Hom•

R(E•, +I•R) → Hom•
R(E•, D•

R), where E• is an 
injective resolution of R in SqR. It is clear that Hom•

R(E•, D•
R) ∼= Hom•

R(R, D•
R) ∼= D•

R, 
but we can also show that Hom•

R(E•, +I•R) ∼= +I•R by the usual double complex argument. 
The key fact is that Hom•

R(E•, +IiR) is an acyclic complex whose 0th cohomology is +IiR
for each i. To see this, note that an indecomposable components of E• and +IiR are 
k[Mσ] and k[ZMτ ∩ Cτ ] respectively for some σ, τ ∈ X , moreover

HomR

(
k[Mσ], k[ZMτ ∩ Cτ ]

) ∼= {
k[ZMτ ∩ Cτ ] if σ ≥ τ,

0 otherwise.

Take a ∈ |M| with supp(a) = τ . Then, σ ≥ τ if and only if k[Mσ]a 
= 0. Hence we have 
Hom•

R(E•, k[ZMτ ∩ Cτ ]) ∼= Hom•
k
([E•]a, k) ⊗k k[ZMτ ∩ Cτ ]. Since [E•]a is an acyclic 

complex whose 0th cohomology is k, Hom•
R(E•, k[ZMτ ∩ Cτ ]) is an acyclic complex 

whose 0th cohomology is k[ZMτ ∩ Cτ ].
Anyway, we have +I•R ∼= Hom•

R(E•, +I•R) ∼= Hom•
R(E•, D•

R) ∼= D•
R, where the middle 

isomorphism is given by Φ(R). �
The converse of Theorem 5.2 also holds.

Proposition 5.12. Let R = k[M] be a toric face ring. If +I•R is quasi-isomorphic to the 
dualizing complex D•

R, then R is seminormal.

Proof. Recall that +M := {+Mσ}σ∈X forms a monoidal complex, and the toric face 
ring +R = k[+M] is the seminormalization of R. Since +I•+R = +I•R, the proof of the 
latter half of Theorem 5.2 also works here. �
6. Local cohomologies

Recall that a monoidal complex M = {Mσ}σ∈X is a collection of additive submonoids 
Mσ of lattices Lσ

∼= Zdim σ+1 for each σ ∈ X , and we have an injective homomorphisms 
ι̃σ,τ : Lτ → Lσ for all σ, τ ∈ X with σ ≥ τ . Set

L := lim−−→
σ∈X

Lσ.

Note that L is no longer a group in general. Since all ι̃σ,τ is injective, we can regard Lσ as 
a subset of L. Let a, b ∈ L. If there is some σ ∈ X with a, b ∈ Lσ, we have a +b ∈ Lσ ⊂ L. 
If there is no σ ∈ X with a, b ∈ Lσ, then a + b does not exist. However, any a ∈ L has 
−a ∈ L. We can regard that |M̃| ⊂ L, and the structure of L defined above and that of 
|M̃| are compatible with this injection.

Definition 6.1. Let R := k[M] be a toric face ring. Then M ∈ ModR is said to be 
L-graded if the following conditions are satisfied;



388 K. Yanagawa / Journal of Algebra 425 (2015) 367–391
(i) M =
⊕

a∈L Ma as k-vector spaces;
(ii) xaMb ⊂ Ma+b if a ∈ Mσ and b ∈ Lσ for some σ ∈ X , and xaMb = 0 otherwise.

Let ModL R be the category of L-graded R-modules and R-homomorphisms f : M → N

with f(Ma) ⊂ Na for all a ∈ L.

Clearly, ModM R and ModM̃ R are full subcategories of ModL R. Note that Tσ :=
{xa | a ∈ Mσ} ⊂ R is a multiplicatively closed subset. As shown in [13, Lemma 2.1], the 
localization T−1

σ R is L-graded.
Well, set

Či
R :=

⊕
σ∈X

dim σ=i−1

T−1
σ R

and define ∂ : Či
R → Či+1

R by

∂(x) =
∑
τ≥σ

dim τ=i

ε(τ, σ) · ιτ,σ(x)

for x ∈ T−1
σ R ⊂ Či

R, where ε is an incidence function on X and ιτ,σ is a natural map 
T−1
σ R → T−1

τ R for σ ≤ τ . Then (Č•
R, ∂) forms a cochain complex in ModL R:

0 −→ Č0
R −→ Č1

R −→ · · · −→ Čd
R −→ 0.

We set m := (xa | 0 
= a ∈ |M|). This is a maximal ideal of R. The following result has 
been proved by Ichim and Römer [9] in the case M comes from a fan in Rd, and Okazaki 
and the present author in the general case. (The proofs are essentially the same.)

Proposition 6.2. (See [9, Theorem 4.2], [13, Proposition 3.2].) For any R-module M , we 
have

Hi
m(M) ∼= Hi

(
Č•

R ⊗R M
)
,

for all i. In particular, Hi
m(R) is L-graded.

Corollary 6.3. Let X be a CW complex supporting R = k[M], and X the underlying 
topological space of X . Then we have [Hi

m(R)]0 ∼= H̃i−1(X; k), where 0 is the zero element 
of L and H̃i−1(X; k) is the ith reduced cohomology of X with the coefficients in k.

Proof. Since [T−1
σ R]0 = k for all σ ∈ X , the cochain complex [Č•

R]0 of k-vector spaces 
is isomorphic to the reduced cochain complex of X with the coefficients in k. Hence the 
assertion follows from Proposition 6.2. �
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For M ∈ ModL R, set M−|M̃| :=
⊕

a∈|M̃| M−a. Since M−|M̃| is not an R-module in 
general, we just regard it as an L-graded k-vector space.

Lemma 6.4. If a toric face ring R = k[M] is seminormal, then we have

Hi
m(R) =

[
Hi

m(R)
]
−|M̃|

for all i.

Proof. We use the same idea as the proof of Theorem 5.11. Let SqR be the category of 
squarefree R-modules. (See Definition 5.9.)

Let VectL k be the category of L-graded k-vector spaces, and (−)−|M̃| : ModL R →
VectL k the functor which sends M to M−|M̃|. We also have the forgetful functor 
U : ModL R → VectL k.

Now, for each i ∈ Z, we define the following two functors from Db(SqR) to VectL k:

Fi : U ◦Hi
(
−⊗R Č•

R

)
and F′

i :
[
Hi

(
−⊗R Č•

R

)]
−|M̃|.

Since V−|M̃| is a subspace of V ∈ ModL k, we have the natural transformation 
Ψi : F′

i → Fi. Since R is seminormal, k[Mσ] is seminormal for all σ by Proposition 5.1. 
Hence [Hi

m(k[Mσ])]−|M̃| = Hi
m(k[Mσ]), in fact, we have [Hi

m(k[Mσ])]−Cσ
= Hi

m(k[Mσ])
by Theorem 2.1. It means that Ψi(k[Mσ]) is an isomorphism, and hence Ψi is a nat-
ural isomorphism by the same reason as in the proof of Theorem 5.11. In particu-
lar, Ψi(R) : F′

i(R) → Fi(R) is an isomorphism. Hence F′
i(R) = [Hi

m(R)]−|M̃| and 

Fi(R) = Hi
m(R) are isomorphic. �

Proposition 6.5. Let R = k[M] be a toric face ring, and +R its seminormalization. Then 
we have

Hi
m(+R) ∼=

[
Hi

m(R)
]
−|M̃|

as L-graded k-vector spaces for all i.

Proof. It is easy to see that

{
a ∈ |M̃| |

[
T−1
σ R

]
−a


= 0
}

= ZMσ ∩ Cσ =
{
a ∈ |M̃| |

[
T−1
σ (+R)

]
−a


= 0
}

for all σ ∈ X . Hence we have (Č•
R)−a = (Č•

+R)−a for all a ∈ |M̃|. Now the assertion 
follows from the following computation;

[
Hi

m(R)
]
−|M̃|

∼=
[
Hi

(
Č•

R

)]
−|M̃|

∼=
[
Hi

(
Č•

+R

)]
−|M̃|

∼=
[
Hi

m(+R)
]
−|M̃|

∼= Hi
m(+R).

Here the second “∼=” follows from the fact stated above, and the last one is Lemma 6.4. �
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Remark 6.6. In some sense, Proposition 6.5 generalizes and refines the results and the 
problem in Section 4 of Nguyen [12] (especially, [12, Theorem 4.3]). However, the toric 
face rings in [12] are assumed to have nice multigradings, while the “L-grading” of our 
k[M] is not the grading in the usual sense.

Corollary 6.7. Let R = k[M] be a toric face ring, and +R its seminormalization. If R is 
Cohen–Macaulay, then so is +R.

Proof. We prove the contrapositive: if +R is not Cohen–Macaulay, then neither is R. 
Assume that +R is not Cohen–Macaulay. Then there is some 0 ≤ i < dimR with 
H−i(+I•+R) 
= 0. For a ∈ |M̃|, the cochain complex [+I•+R]a of k-vector spaces is isomor-
phic to the k-dual of [Č•

+R]−a. Hence it follows that Hi
m(+R) 
= 0. By Proposition 6.5, 

we have Hi
m(R) 
= 0, and hence the localization Rm is not Cohen–Macaulay. �

Proposition 6.8. For a monoidal complex M = {Mσ}σ∈X , set M̃ := {Lσ ∩ Cσ}σ∈X as 
before. Let R := k[M] and R̃ := k[M̃] be their toric face rings. If R is Cohen–Macaulay, 
then so is R̃. Moreover, Hi

m(R̃) 
= 0 implies Hi
m(R) 
= 0.

Lemma 6.9. With the same notation as in Proposition 6.8, Hi(D•
R̃
) 
= 0 implies 

Hi(+I•R) 
= 0.

Proof. Recall that D•
R̃

∼= I•
R̃
. If Hi(D•

R̃
)(∼= Hi(I•

R̃
)) 
= 0, then there is a ∈ |M̃| with 

[Hi(I•
R̃
)]a 
= 0. Set σ := supp(a) (i.e., a ∈ M̃σ ∩ int(Cσ)). Since Hi(I•

R̃
) is a squarefree 

R̃-module, we have [Hi(I•
R̃
)]a ∼= [Hi(I•

R̃
)]b for all b ∈ |M̃| with supp(b) = σ.

For b ∈ Mσ with supp(b) = σ, we have b ∈ Mτ for all τ ∈ X with τ ≥ σ. In this 
case, regarding b ∈ |M| ⊂ |M̃|, we have [+I•R]b = [I•

R̃
]b as cochain complexes of k-vector 

spaces, and hence [Hi(+I•R)]b ∼= [Hi(I•
R̃
)]b 
= 0. �

The proof of Proposition 6.8. By Corollary 6.7, we may assume that R is seminormal. 
Then +I•R ∼= D•

R by Theorem 5.2, and the assertion easily follows from Lemma 6.9. �
Let R = k[M] be a general toric face ring, +R = k[+M] its seminormalization, and 

R̃ = k[M̃]. Proposition 6.8 and Corollary 6.7 state that

R is Cohen–Macaulay =⇒ +R is Cohen–Macaulay =⇒ R̃ is Cohen–Macaulay.

By a result of Caijun [6] (see also [13]), the Cohen–Macaulay property of R̃ is a topological 
property of the underlying space X of X , while it may depend on char(k).
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