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1. Introduction

Let U(Z[G]) denote the unit group of the integral group ring Z[G] of a finite group G. 
The center of U(Z[G]) is denoted by Z(U(Z[G])). It is well known that Z(U(Z[G])) =
±Z(G) × A, where A is a free abelian subgroup of Z(U(Z[G])) of finite rank. In order 
to study Z(U(Z[G])), a multiplicatively independent subset of such a subgroup A, i.e., 
a Z-basis for such a free Z-module A, is of importance, and is known only for a few groups 
([1,2,7,18], see also [20], Examples 8.3.11 and 8.3.12). However, other papers deal with 
determining a virtual basis of Z(U(Z[G])), i.e., a multiplicatively independent subset of 
Z(U(Z[G])) which generates a subgroup of finite index in Z(U(Z[G])) (see e.g. [6,9–17]).

Analogously to well known cyclotomic units in cyclotomic fields, Bass [4] constructed 
units, so called Bass cyclic units, which generate a subgroup of finite index in U(Z[G]), 
when G is cyclic. A virtual basis consisting of certain Bass cyclic units was also given by 
Bass. Generalizing the notion of Bass cyclic units, Jespers et al. [13] defined generalized 
Bass units and have shown that the group generated by these units contains a subgroup 
of finite index in Z(U(Z[G])) for an arbitrary strongly monomial group G. Recently, for 
a class of groups properly contained in finite strongly monomial groups, Jespers et al.
[15] provided a subset, denoted by B(G) (say), of the group generated by generalized 
Bass units, which forms a virtual basis of Z(U(Z[G])).

In this paper, we determine a bound on the index of the subgroup generated by B(G)
in Z(U(Z[G])) for the same class of groups as considered in [15] (Theorem 2). Our result 
is based on the ideas contained in [15] and Kummer’s work (see [23], Theorem 8.2) on 
the index of cyclotomic units. Further in [15], Jespers et al. have provided the rank of 
Z(U(Z[G])) in terms of strong Shoda pairs of G, when G is a strongly monomial group. 
In Section 4, we compute a complete and irredundant set of strong Shoda pairs of the 
non abelian groups of order pn, p prime, n ≤ 4, and provide, in terms of p, the rank of 
Z(U(Z[G])) of these p-groups along with the Wedderburn decomposition of their rational 
group algebras. We also illustrate Theorem 2 for the non abelian groups of order 16 and 
those of order p3, p ≤ 5. It may be mentioned that for a given group G, the calculation 
of the bound on the index given by Theorem 2 requires the values nH,K corresponding 
to the strong Shoda pairs (H, K) of G, the computation of which is not always obvious.

2. Notation and preliminaries

We begin by fixing some notation.

G a finite group
|g| the order of the element g in G

gt t−1gt, g, t ∈ G

〈X〉 the subgroup generated by the subset X of G
|X| the cardinality of the set X

K ≤ G K is a subgroup of G
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K � G K is a normal subgroup of G
[G : K] the index of the subgroup K in G

NG(K) the normalizer of K in G

core(K)
⋂

x∈G
xKx−1, the largest normal subgroup of G contained in K

K̂
1
|K|

∑
k∈K

k

M(G/K) the set of minimal normal subgroups of G containing K properly

ε(H,K)
{
Ĥ, if H = K;∏

M/K∈M(H/K)(K̂ − M̂), otherwise, where K � H ≤ G

e(G,H,K) the sum of all the distinct G-conjugates of ε(H,K)
ϕ Euler’s phi function
Z/nZ the ring of integers modulo n, n ≥ 1
ζn a primitive nth root of unity in the field of complex numbers
Gal(Q(ζn)/Q) the Galois group of the cyclotomic field Q(ζn) over Q

h+
n the class number of the maximal real subfield of Q(ζn)

l.c.m.(k, n) the least common multiple of the integers k and n

(k, n) the greatest common divisor of the integers k and n

on(k) the multiplicative order of k modulo n, where (k, n) = 1

ηk(ζn)
{

1, if n = 1;
1 + ζn + ζ2

n + . . . + ζk−1
n , if n > 1, where k ≥ 1

U(R) the unit group of the ring R

Mn(R) the ring of n× n matrices over the ring R, n ≥ 1
Mn(R)(s) Mn(R) ⊕Mn(R) ⊕ . . .⊕Mn(R), direct sum of s copies, s ≥ 1
In the n× n identity matrix

A strong Shoda pair ([19], Definition 3.1) of G is a pair (H, K) of subgroups of G with 
the properties that

(i) K � H � NG(K);
(ii) H/K is cyclic and a maximal abelian subgroup of NG(K)/K;
(iii) the distinct G-conjugates of ε(H, K) are mutually orthogonal.

Note that (G, G) is always a strong Shoda pair of G.
If (H, K) is a strong Shoda pair of G, then e(G, H, K) is a primitive central idempotent 

of the rational group algebra Q[G] ([19], Proposition 3.3). A group G is called strongly 
monomial if every primitive central idempotent of Q[G] is of the form e(G, H, K) for 
some strong Shoda pair (H, K) of G.

Two strong Shoda pairs (H1, K1) and (H2, K2) of G are said to be equivalent if 
e(G, H1, K1) = e(G, H2, K2). A complete set of representatives of distinct equivalence 
classes of strong Shoda pairs of G is called a complete irredundant set of strong Shoda 
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pairs of G. In case G is strongly monomial, one can calculate the primitive central 
idempotents of Q[G] from a complete irredundant set of strong Shoda pairs of G.

Recall that a group G is called normally monomial if every complex irreducible char-
acter of G is induced from a linear character of a normal subgroup of G. Theorem 1, as 
stated below, provides an algorithm to determine a complete irredundant set of strong 
Shoda pairs of a normally monomial group G and also, in particular, yields that a nor-
mally monomial group is strongly monomial.

Let N be the set of all the distinct normal subgroups of a finite group G. For N ∈ N , 
set

AN : a normal subgroup of G containing N such that AN/N is an abelian normal sub-
group of maximal order in G/N .

DN : the set of all subgroups D of AN containing N such that core(D) = N , AN/D is 
cyclic and is a maximal abelian subgroup of NG(D)/D.

TN : a set of representatives of DN under the equivalence relation defined by conjugacy 
of subgroups in G.

SN : {(AN , D) | D ∈ TN}.

Note that if N ∈ N is such that G/N is abelian, then, by ([3], Eq. (1)),

SN =
{ {(G,N)}, if G/N cyclic;
∅, otherwise.

(1)

Theorem 1. (See [3], Theorem 1, Corollaries 1 and 2.) The following statements are 
equivalent:

(i) G is normally monomial;
(ii) S(G) :=

⋃
N∈N SN is a complete irredundant set of strong Shoda pairs of G;

(iii) {e(G, AN , D) | (AN , D) ∈ SN , N ∈ N} is a complete set of primitive central idem-
potents of Q[G];

(iv) |G| =
∑

N∈N
∑

D∈DN
[G : AN ]ϕ([AN : D]).

Let n ≥ 1 and let k be an integer coprime to n. Then, ηk(ζn) is a unit of Z[ζn]. 
The units of the form ηk(ζjn) with integers j, k and n such that (k, n) = 1 are called 
cyclotomic units of Q(ζn).

Let g ∈ G and let k, m be positive integers such that km ≡ 1(mod n), where n = |g|. 
Then,

uk,m(g) = (1 + g + . . . + gk−1)m + 1 − km

n
(1 + g + . . . + gn−1)

is a unit in the integral group ring Z[G]. The units in Z[G] of this form are called Bass 
cyclic units (see [21], (10.3)).
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Next, we recall the definition of generalized Bass units of Z[G] introduced by Jespers 
et al. [13]. For M �G, g ∈ G, and positive integers k, m such that km ≡ 1(mod |g|), let

uk,m(1 − M̂ + gM̂) = 1 − M̂ + uk,m(g)M̂.

This element is a unit in Z[G](1 − M̂) + Z[G]M̂ . As both Z[G](1 − M̂) + Z[G]M̂ and 
Z[G] are orders in Q[G], there is a positive integer ng,M such that

(uk,m(1 − M̂ + gM̂))ng,M ∈ U(Z[G]). (2)

Suppose nG,M is the minimal positive integer satisfying Eq. (2) for all g ∈ G. Then, the 
element

(uk,m(1 − M̂ + gM̂))nG,M = 1 − M̂ + uk,mnG,M
(g)M̂

is called the generalized Bass unit of Z[G] based on g and M with parameters k and m. 
Observe that nG,M = 1, if M is trivial i.e., M = 〈1〉 or G.

Remark 1. For a non trivial normal subgroup M of G, using Lemma 3.1 of [8], it may be 
noted that nG,M = 1, if every g ∈ G \M is of order 2; otherwise, nG,M is the minimal 
positive integer satisfying Eq. (2) for all g ∈ G \M with |g| > 2 and integers k, m such 
that 1 < k < |g|, (k, |g|) = 1 and m = o|g|(k).

Let G be a strongly monomial group such that there is a complete irredundant set 
{(Hi, Ki) | 1 ≤ i ≤ m} of strong Shoda pairs of G with the property that each [Hi : Ki]
is a prime power, say pni

i . Assume that (H1, K1) = (G, G). For such a group G, we recall 
the virtual basis of Z(U(Z[G])) provided by Jespers et al. [15].

For 1 ≤ i ≤ m, we adopt the following notation:

εi := ε(Hi,Ki)
ei := e(G,Hi,Ki)
[Hi : Ki] := pni

i , pi prime, ni ≥ 0 (ni = 0 only if i = 1)
giKi := a generator of the cyclic group Hi/Ki

L
(i)
j := 〈gp

ni−j
i

i ,Ki〉, 0 ≤ j ≤ ni

Ni := NG(Ki)
mi := [G : Ni]
Ti := a right transversal of Ni in G.

For 2 ≤ i ≤ m, consider the action of Ni/Hi on Q(ζpni
i

) given by the map

Ni/Hi −→ Gal(Q(ζpni
i

)/Q)

niHi �−→ αniHi
, (3)

where αniHi
(ζpni

i
) = ζj

p
ni
i

, if n−1
i giniKi = gjiKi. As Hi/Ki is a maximal abelian subgroup 

of Ni/Ki, it turns out that the above action is faithful. Hence, Ni/Hi is isomorphic to 
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a subgroup of Gal(Q(ζpni
i

)/Q) ∼= U(Z/pni
i Z). For the convenience of notation, we regard 

Ni/Hi as a subgroup of Gal(Q(ζpni
i

)/Q) and that of U(Z/pni
i Z). (Notice that Ni/Hi can 

be regarded as a subgroup of U(Z/ [Hi : Ki]Z), even if [Hi : Ki] is not a prime power.) 
With this identification, Ni/Hi is equal to either 〈φri〉 or 〈φri〉 × 〈φ−1〉 (resp. 〈ri〉 or 
〈ri〉 × 〈−1〉) for some ri ∈ U(Z/pni

i Z), where φri denotes the automorphism of Q(ζpni
i

)
which maps ζpni

i
to ζri

p
ni
i

. The later case arises only if pi = 2 and ni ≥ 3. Set

di :=
{

1, if − 1 ∈ 〈ri〉;
2, otherwise,

(4)

and

oi :=

⎧⎪⎨
⎪⎩

4, if pi = 2, Ni/Hi = 〈ri〉, ri ≡ 1(mod 4), ni ≥ 2;
6, if pi = 3, Ni/Hi = 〈ri〉, ri ≡ 1(mod 3);
2, otherwise.

(5)

Further, choose a subset Ii of {k | 1 ≤ k ≤ pi
ni

2 , (k, pi) = 1} containing 1, which forms 
a set of representatives of U(Z/pni

i Z) modulo 〈Ni/Hi, −1〉. We extend the notation by 
setting I1 = {1}, in view of the trivial action of the identity group N1/H1 on Q(ζ1) = Q.

Let k be a positive integer coprime to pi and let r be an arbitrary integer. For 0 ≤
j ≤ s ≤ ni, consider the following products of generalized Bass units of Z[Hi], defined 
recursively:

css(Hi,Ki, k, r) = 1

and, for 0 ≤ j ≤ s − 1,

csj(Hi,Ki, k, r) =
(∏

h∈L
(i)
j

uk,o
p
ni
i

(k)nHi,Ki
(grp

ni−s
i

i hK̂i + 1 − K̂i)
)ps−j−1

i ×

(∏s−1

l=j+1
csl (Hi,Ki, k, r)−1)(

∏j−1

l=0
cs+l−j
l (Hi,Ki, k, r)−1),

where the empty products equal 1.
Define

B(Hi,Ki) := {
∏

x∈Ni/Hi

cni
0 (Hi,Ki, k, x) | k ∈ Ii \ {1}},

B(Hi,Ki) := {
∏

t∈Ti

ut | u ∈ B(Hi,Ki)},

and

B(G) :=
m⋃
i=1

B(Hi,Ki). (6)

Jespers et al. ([15], Theorem 3.5) proved that B(G) is a virtual basis of Z(U(Z[G])).
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3. A bound on the index of 〈B(G)〉 in Z(U(ZZZ[G]))

In this section, we continue with the notation developed in Section 2.

Theorem 2. Let G be a strongly monomial group and let {(Hi, Ki) | 1 ≤ i ≤ m} be 
a complete irredundant set of strong Shoda pairs of G with (H1, K1) = (G, G). For 
2 ≤ i ≤ m, let Ii be a subset of {k | 1 ≤ k ≤ [Hi:Ki]

2 , (k, [Hi : Ki]) = 1} containing 1, 
which forms a set of representatives of U(Z/[Hi : Ki]Z) modulo 〈Ni/Hi, −1〉, where 
Ni = NG(Ki). Set I1 = {1}.

(i) The rank of Z(U(Z[G])) = 0 (equivalently, Z(U(Z[G])) is finite) if and only if 
|Ii| = 1 for all i, 1 ≤ i ≤ m, and in this case, Z(U(Z[G])) = ±Z(G).

(ii) In addition, if [Hi : Ki] is a prime power, say pni
i , for all i, 1 ≤ i ≤ m, and B(G)

is the virtual basis of Z(U(Z[G])) as defined in Eq. (6), then,

[Z(U(Z[G])) : 〈B(G)〉] ≤ 2
m∏
i=2

|Ii|=1

oi

m∏
i=2

|Ii|�=1

h+
p
ni
i

lip
ni−1
i oi(ldi−1

i [Ni : Hi])|Ii|−1,

where li = l.c.m.(2, pi); oi =
∏

1<k<
p
ni
i
2

(k,pi)=1

opni
i

(k)pni−1
i nHi,Ki

; di and oi are as defined in 

Eq. (4) and Eq. (5) respectively.

We first prove the following:

Lemma 1. Let G be as in Theorem 2. Let A(Hi, Ki) = Z(1 − ei + U(Z[G]ei)) and 
A(Hi, Ki) = Z(1 − εi + U(Z[Ni]εi)), where 1 ≤ i ≤ m. Then,

[A(Hi,Ki) : 〈B(Hi,Ki)〉] = [A(Hi,Ki) : 〈B(Hi,Ki)〉].

Proof. Let {tj | 1 ≤ j ≤ mi} be a right transversal of Ni in G with t1 = 1. For 
α ∈ Q[G]ei and integers r and s such that 1 ≤ r, s ≤ mi, let αrs = εitrαt

−1
s εi. We 

notice that αrs ∈ Q[Ni]εi. To see this, write α = (
∑

g∈G αgg)ei with αg ∈ Q. Then 
αrs =

∑
g∈G αgεitrgt

−1
s εi. By ([19], Proposition 3.3), the centralizer of εi in G equals Ni. 

Therefore, if trgt−1
s /∈ Ni, then εitrgt−1

s εi = trgt
−1
s ε

trgt
−1
s

i εi = 0. Also, if trgt−1
s ∈ Ni, 

then εitrgt−1
s εi = trgt

−1
s εi. Consequently, αrs =

∑
trgt

−1
s ∈Ni

αgtrgt
−1
s εi ∈ Q[Ni]εi.

Now consider the map

θi : Q[G]ei −→ Mmi
(Q[Ni]εi)

given by
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α
θi�−→ (αrs)mi×mi

.

As εti, t ∈ Ti, are mutually orthogonal idempotents and 
∑

t∈Ti
εti = ei, it can be checked 

that θi is an isomorphism of Q-algebras. This isomorphism in turn yields the group 
isomorphism

Z(U(Q[G]ei))
θi∼= Z(U(Mmi

(Q[Ni]εi)))

given by

α
θi�−→ εiαεiImi

.

Let ψi denote the canonical isomorphism from Z(U(Q[Ni]εi)) to Z(U(Mmi
(Q[Ni]εi)))

given by u 
ψi�→ uImi

. Denote by φi, the restriction of ψ−1
i o θi to Z(U(Z[G]ei)). We assert 

that φi is an isomorphism from Z(U(Z[G]ei)) to Z(U(Z[Ni]εi)). For this, we need to 
show that

φi(Z(U(Z[G]ei))) = Z(U(Z[Ni]εi)). (7)

Consider α = (
∑

g∈G αgg)ei ∈ Z(U(Z[G]ei)) with αg ∈ Z. We have εiαεi =∑
g∈Ni

αggεi ∈ Z[Ni]εi. Consequently, φi(α) = εiαεi ∈ Z(U(Z[Ni]εi)), as we already 
have φi(α) ∈ Z(U(Q[Ni]εi)). On the other hand, to see that Z(U(Z[Ni]εi)) is contained 
in φi(Z(U(Z[G]ei))), let u ∈ Z(U(Z[Ni]εi)). Following the argument as in the proof of 
Theorem 3.5 of [15], it can be seen that 

∑
t∈Ti

ut belongs to Z(U(Z[G]ei)), as εt, t ∈ Ti, 
are mutually orthogonal idempotents. One checks that 

∑
t∈Ti

ut maps to u under φi and 
hence Eq. (7) follows. The isomorphism φi now provides the group isomorphism

Θi : A(Hi,Ki) −→ A(Hi,Ki)

by setting

1 − ei + α
Θi�→ 1 − εi + εiαεi,

where α ∈ Z(U(Z[G]ei)). We further see that if u = 1 − εi + γ ∈ B(Hi, Ki), with 
γ ∈ Z(U(Z[Ni]εi)), then Θi(

∏
t∈Ti

ut) = Θi(1 −ei+
∑

t∈Ti
γt) = 1 −εi+εi(

∑
t∈Ti

γt)εi =
1 − εi + γ = u. This yields Θi(B(Hi, Ki)) = B(Hi, Ki) and consequently, Lemma 1
follows. �
Lemma 2. Let p be a prime and let n ≥ 1 be an integer. For a subgroup A of U(Z/pnZ)(∼=
Aut(〈ζpn〉)), let U(Z[ζpn ]A) denote the unit group of the fixed ring Z[ζpn ]A. If 〈A, −1〉 =
U(Z/pnZ), then

U(Z[ζpn ]A) =

⎧⎪⎨
⎪⎩

〈ζ4〉, if p = 2, A = 〈r〉, r ≡ 1(mod 4), n ≥ 2;
〈ζ6〉, if p = 3, A = 〈r〉, r ≡ 1(mod 3);
〈ζ 〉, otherwise.
2
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Proof. Let F = Q(ζpn)A, the subfield of Q(ζpn) fixed by A and let R = Z[ζpn ]A. The 
assumption 〈A, −1〉 = U(Z/pnZ) implies that F is either Q or an imaginary quadratic 
extension of Q. Thus the group of units of R is finite and hence it is formed by roots 
of unity of order dividing 4 or 6. If ζ4 ∈ F , then F = Q(ζ4) and hence U(R) = 〈ζ4〉. 
If ζ3 ∈ F , then F = Q(ζ6) and hence U(R) = 〈ζ6〉. Otherwise, U(R) = {1, −1} = 〈ζ2〉. 
Furthermore, we see that ζ4 ∈ F if and only if p = 2, A = 〈r〉 with r ≡ 1(mod 4) and 
n ≥ 2. Also, ζ3 ∈ F if and only if p = 3, A = 〈r〉 with r ≡ 1(mod 3). This yields the 
desired result. �
Proof of Theorem 2. (i) From ([15], Theorem 3.1), it follows immediately that the rank 
of Z(U(Z[G])) = 0 if and only if |Ii| = 1, ∀i, 1 ≤ i ≤ m. Further, ([22], Corollary 7.3.3) 
implies that Z(U(Z[G])) = ±Z(G) in this case.

(ii) Since Z(U(Z[G])) is a subgroup of 
∏m

i=1 A(Hi, Ki), we have

[Z(U(Z[G])) : 〈B(G)〉] ≤ [
m∏
i=1

A(Hi,Ki) : 〈B(G)〉]

= [
m∏
i=1

A(Hi,Ki) : 〈∪m
i=1B(Hi,Ki)〉]

=
m∏
i=1

[A(Hi,Ki) : 〈B(Hi,Ki)〉]

=
m∏
i=1

[A(Hi,Ki) : 〈B(Hi,Ki)〉]. (8)

The last equality follows from Lemma 1. We now show that

[A(H1,K1) : 〈B(H1,K1)〉] ≤ 2 (9)

and for 2 ≤ i ≤ m,

[A(Hi,Ki) : 〈B(Hi,Ki)〉] ≤
{

oi, if |Ii| = 1;
2h+

p
ni
i

lip
ni−1
i oi(ldi−1

i [Ni : Hi])|Ii|−1, if |Ii| �= 1. (10)

Let 1 ≤ i ≤ m. We have that the center of Q[Ni]εi is equal to (Q[Hi]εi)Ni/Hi , 
where (Q[Hi]εi)Ni/Hi denotes the fixed field under the action of Ni/Hi on Q(ζpni

i
) ∼=

Q[Hi]εi. Now, the center of Q(1 − εi) + Q[Ni]εi, which is equal to Q(1 − εi) +
(Q[Hi]εi)Ni/Hi , is embedded inside the algebra Q[Hi]K̂i ⊕ Q(1 − K̂i), via the embed-
ding

r(1 − εi) + u
ι�→ (r(1 − εi) + u)K̂i + r(1 − K̂i), (11)

where r ∈ Q and u ∈ (Q[Hi]εi)Ni/Hi .
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As Hi/Ki = 〈giKi〉, any element xK̂i ∈ Q[Hi]K̂i can be expressed as xK̂i =∑p
ni
i −1

j=0 xjg
j
i K̂i with xj ∈ Q. Let π denote the projection of Q[Hi]K̂i ⊕ Q(1 − K̂i) onto 

Q(ζpni
i

) under the isomorphism Q[Hi]K̂i⊕Q(1 −K̂i) 
τ∼= ⊕ni

k=0Q(ζpk
i
) ⊕Q(1 −K̂i) given by

xK̂i + a(1 − K̂i)
τ�→ (

p
ni
i −1∑
j=0

xj ,

p
ni
i −1∑
j=0

xjζ
j
pi
, . . . ,

p
ni
i −1∑
j=0

xjζ
j

p
ni
i

, a(1 − K̂i)), (12)

where xK̂i =
∑p

ni
i −1

j=0 xjg
j
i K̂i ∈ Q[Hi]K̂i and a ∈ Q.

Now observe that π◦τ ◦ι is injective on Z(Q(1 −εi) +Q[Ni]εi) and π◦τ ◦ι(A(Hi, Ki))
is contained in U(Z[ζpni

i
]Ni/Hi). Hence,

[A(Hi,Ki) : 〈B(Hi,Ki)〉] = [π ◦ τ ◦ ι(A(Hi,Ki)) : π ◦ τ ◦ ι(〈B(Hi,Ki)〉)]

≤ [U(Z[ζpni
i

]Ni/Hi) : π ◦ τ ◦ ι(〈B(Hi,Ki)〉)]. (13)

If i = 1, i.e., (Hi, Ki) = (G, G), then [A(Hi, Ki) : 〈B(Hi, Ki)〉] ≤ |U(Z)| = 2. Thus 
Eq. (9) holds.

If 2 ≤ i ≤ m is such that |Ii| = 1, then B(Hi, Ki) is an empty set and therefore, 
[U(Z[ζpni

i
]Ni/Hi) : π ◦ τ ◦ ι(〈B(Hi, Ki)〉)] = |U(Z[ζpni

i
]Ni/Hi)|. We have using Lemma 2,

[A(Hi,Ki) : 〈B(Hi,Ki)〉] ≤ oi, (14)

as 〈Ni/Hi, −1〉 = U(Z/pni
i Z) in this case.

We next assume that |Ii| �= 1.
Set

N(Hi,Ki) = 〈πNi/Hi
(ηk(ζpni

i
)opni

i
(k)pni−1

i nHi,Ki ) | k ∈ Ii \ {1}〉,

F(Hi,Ki) = 〈ηk(ζpni
i

)opni
i

(k)pni−1
i nHi,Ki | 1 < k <

pni
i

2 , (k, pi) = 1〉,

O(Hi,Ki) = F(Hi,Ki) × 〈ζp
ni−1
i

p
ni
i

,−1〉,

P(Hi,Ki) = 〈ηk(ζpni
i

) | k ∈ U(Z/pni
i Z)〉

= 〈ηk(ζpni
i

) | 1 < k <
pni
i

2 , (k, pi) = 1〉 × 〈ζpni
i
,−1〉,

Q(Hi,Ki) = U(Z[ζpni
i

]Ni/Hi) ∩O(Hi,Ki),

where πNi/Hi
(u) =

∏
σ∈Ni/Hi

σ(u), for u ∈ Q(ζpi
ni ).

By ([15], Proposition 3.4),

π ◦ τ ◦ ι(〈B(Hi,Ki)〉) = N(Hi,Ki). (15)
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Therefore,

[U(Z[ζpni
i

]Ni/Hi) : π ◦ τ ◦ ι(〈B(Hi,Ki)〉)]

= [U(Z[ζpni
i

]Ni/Hi) : N(Hi,Ki)]

= [U(Z[ζpni
i

]Ni/Hi) : Q(Hi,Ki)][Q(Hi,Ki) : N(Hi,Ki)]

≤ [U(Z[ζpni
i

]) : O(Hi,Ki)][Q(Hi,Ki) : N(Hi,Ki)]. (16)

Further,

[U(Z[ζpni
i

]) : O(Hi,Ki)] = [U(Z[ζpni
i

]) : P(Hi,Ki)][P(Hi,Ki) : O(Hi,Ki)]. (17)

Clearly,

[P(Hi,Ki) : O(Hi,Ki)] = pni−1
i

∏
1<k<

p
ni
i
2

(k,pi)=1

opni
i

(k)pni−1
i nHi,Ki

= pni−1
i oi. (18)

Also, by ([23], Theorem 8.2),

[U(Z[ζpni
i

]) : P(Hi,Ki)] = h+
p
ni
i

. (19)

Next, observe that Q(Hi,Ki) ∩F(Hi,Ki) is a free abelian group, and by ([15], Lemma 3.2), 
it has rank at most |Ii| − 1. Furthermore, any element of Q(Hi,Ki) ∩ F(Hi,Ki) is of order 
at most ldi−1

i |Ni/Hi| modulo N(Hi,Ki) ∩F(Hi,Ki). To see this, let u ∈ Q(Hi,Ki) ∩F(Hi,Ki)

and write u =
∏

1<k<
p
ni
i
2

(k,pi)=1

(ηk(ζpni
i

)opni
i

(k)pni−1
i nHi,Ki )αk , αk ≥ 0. Since πNi/Hi

(ηrti (ζ
j

p
ni
i

)) = 1

and πNi/Hi
(η−j(ζpni

i
)) = πNi/Hi

(−ζ−j

p
ni
i

)πNi/Hi
(ηj(ζpni

i
)), for i, j ≥ 0, it turns out that 

u|Ni/Hi|ldi−1
i = (πNi/Hi

(u))l
di−1
i ∈ N(Hi,Ki) ∩ F(Hi,Ki).

Consequently,

[Q(Hi,Ki) ∩ F(Hi,Ki) : N(Hi,Ki) ∩ F(Hi,Ki)] ≤ (ldi−1
i |Ni/Hi|)|Ii|−1 (20)

and therefore,

[Q(Hi,Ki) : N(Hi,Ki)]

≤ [Q(Hi,Ki) : N(Hi,Ki) ∩ F(Hi,Ki)]

= [Q(Hi,Ki) : Q(Hi,Ki) ∩ F(Hi,Ki)][Q(Hi,Ki) ∩ F(Hi,Ki) : N(Hi,Ki) ∩ F(Hi,Ki)]

≤ li(ldi−1
i |Ni/Hi|)|Ii|−1. (21)
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Finally, Eqs. (13)–(21) yield Eq. (10), which in view of Eq. (8) and Eq. (9) complete the 
proof. �

It is known that if G is an abelian group, then U(Z[G]) = ±G if and only if G is of 
exponent 1, 2, 3, 4 or 6 (see [21], Theorem 2.7). We have the following:

Corollary 1. Let G be a strongly monomial group with a complete irredundant set 
{(Hi, Ki) | 1 ≤ i ≤ m} of strong Shoda pairs such that [Hi : Ki] = 1, 2, 3, 4 or 6 for 
all i, 1 ≤ i ≤ m. Then, Z(U(Z[G])) = ±Z(G).

In particular, if G is a strongly monomial (e.g. abelian by supersolvable) group of expo-
nent 1, 2, 3, 4 or 6, then Z(U(Z[G])) = ±Z(G). However, the converse need not be true.

Proof. Here, |Ii| = 1 for all i, 1 ≤ i ≤ m. Therefore, Theorem 2(i) is applicable. The 
group G1 defined in Section 4.1 for p = 3 is an example of a strongly monomial group of 
exponent 9 satisfying Z(U(Z[G])) = ±Z(G). �

For abelian p-groups, Theorem 2 gives the following:

Corollary 2. Let G be an abelian p-group, p prime, and let Ki, 1 ≤ i ≤ m, be all the 
subgroups of G with cyclic quotient groups. Suppose [G : Ki] = pni , for 1 ≤ i ≤ m. Then, 
the rank of U(Z[G]) is non zero if and only if pni ≥ 5 for some i. In this case, the index 
of 〈B(G)〉 in U(Z[G]) is at most

2
m∏
i=1

2nih+
2ni

( ∏
1<k<2ni−1

(k,2)=1

2nio2ni (k)nG,Ki

)
, if p = 2.

and
m∏
i=1

2pnih+
pni

( ∏
1<k< pni

2
(k,p)=1

2pniopni (k)nG,Ki

)
, if p �= 2;

where an empty product equals 1.

4. Non Abelian groups of order pn, n ≤ 4

Let G be a non abelian group of order pn, n ≤ 4. Observe that any such group, being 
metabelian, is normally monomial.

4.1. Non Abelian groups of order p3

If p = 2, then G is either isomorphic to D4, the dihedral group of order 8 or 
is isomorphic to Q8, the group of quaternions. Both groups satisfy the hypothesis of 
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Fig. 1. Strong Shoda pairs of G1. Fig. 2. Strong Shoda pairs of G2.

([21], Theorem 6.1). Therefore, we already know that the group of central units in the 
integral group ring of these groups consists of only the trivial units.

If p is an odd prime, then G is isomorphic to one of the following groups:

• G1 = 〈a, b | ap2 = bp = 1, ab = bap+1〉;
• G2 = 〈a, b, c | ap = bp = cp = 1, ab = bac, ac = ca, bc = cb〉.

In ([3], Theorems 3 and 4), a complete and irredundant set of strong Shoda pairs of these 
groups has been found. Applying Theorem 3.1 of [15], we obtain that

Rank of Z(U(Z[Gi])) = (p− 3)(p + 2)
2 , i = 1, 2.

We now illustrate Theorem 2 in the particular cases, when p = 3 or 5.

p = 3: In this case, the rank of Z(U(Z[Gi])) = 0 and therefore, by Theorem 2(i), 
Z(U(Z[Gi])) = ±Z(Gi), i = 1, 2.

p = 5: In this case, the rank of Z(U(Z[Gi])) = 7, i = 1, 2. Using Remark 1, we have 
computed the value of nH,K corresponding to each strong Shoda pair (H, K) of the 
groups G1 and G2, which are tabulated in Figs. 1 and 2.

Theorem 2 and ([23], §11.5) yield that [Z(U(Z[Gi])) : 〈B(Gi)〉] ≤ 229527, i = 1, 2.

4.2. Non Abelian groups of order p4

We first take the case, when p = 2. Up to isomorphism, there are 9 non isomorphic 
groups of order 24 as listed in ([5], §118). Except the following two groups:

• H1 = 〈a, b : a8 = b2 = 1, ba = a7b〉;
• H2 = 〈a, b : a8 = b4 = 1, ba = a7b, a4 = b2〉,
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the other non abelian groups of order 24 again satisfy the hypothesis of ([21], Theo-
rem 6.1). Hence, if G is a non abelian group of order 24 other than the dihedral group 
H1 and the quaternion group H2, then Z(U(Z[G])) = ±Z(G).

For the groups H1 and H2, we obtain using Theorem 1, that {(〈a〉, 〈1〉), (〈a〉, 〈a4〉),
(H1, 〈a〉), (H1, 〈a2, b〉), (H1, 〈a2, ab〉), (H1, H1)} and {(〈a〉, 〈1〉), (〈a〉, 〈a4〉), (H2, 〈a〉), (H2,

〈a2, b〉), (H2, 〈a2, ab〉), (H2, H2)} are complete irredundant sets of strong Shoda pairs of 
H1 and H2 respectively. Theorem 3.1 of [15] now yields that

Rank of Z(U(Z[Hi])) = 1, i = 1, 2.

Also, by Theorem 2 and ([23], §11.5), it follows that

[Z(U(Z[Hi])) : 〈B(Hi)〉] ≤ 212, i = 1, 2.

We next assume that p is an odd prime.
Up to isomorphism, the following are all the non abelian groups of order p4 (see [5], 

§117):

1. G1 = 〈a, b : ap3 = bp = 1, ba = a1+p2
b〉;

2. G2 = 〈a, b, c : ap2 = bp = cp = 1, cb = apbc, ab = ba, ac = ca〉;
3. G3 = 〈a, b : ap2 = bp

2 = 1, ba = a1+pb〉;
4. G4 = 〈a, b, c : ap2 = bp = cp = 1, ca = a1+pc, ba = ab, cb = bc〉;
5. G5 = 〈a, b, c : ap2 = bp = cp = 1, ca = abc, ab = ba, bc = cb〉;
6. G6 = 〈a, b, c : ap2 = bp = cp = 1, ba = a1+pb, ca = abc, cb = bc〉;

7. G7 =
{
〈a, b, c : ap2 = bp = 1, cp = ap, ab = ba1+p, ac = cab−1, cb = bc〉, if p = 3,
〈a, b, c : ap2 = bp = cp = 1, ba = a1+pb, ca = a1+pbc, cb = apbc〉, if p > 3;

8. G8 =
{
〈a, b, c : ap2 = bp = 1, cp = a−p, ab = ba1+p, ac = cab−1, cb = bc〉, if p = 3,
〈a, b, c : ap2 = bp = cp = 1, ba = a1+pb, ca = a1+dpbc, cb = adpbc〉, if p > 3

d �≡ 0, 1(mod p);
9. G9 = 〈a, b, c, d : ap = bp = cp = dp = 1, dc = acd, bd = db, ad = da, bc = cb, ac =

ca, ab = ba〉;

10. G10 =

⎧⎨
⎩

〈a, b, c : ap2 = bp = cp = 1, ab = ba, ac = cab, bc = ca−pb〉, if p = 3,
〈a, b, c, d : ap = bp = cp = dp = 1, dc = bcd, db = abd, ad = da,

bc = cb, ac = ca, ab = ba〉, if p > 3.

Theorem 3. For 1 ≤ i ≤ 10, the set S(Gi), given below, is a complete irredundant set of 
strong Shoda pairs of Gi:

(i) S(G1) = {(〈a〉, 〈1〉), (G1, 〈a〉), (G1, G1)} ∪
{(G1, 〈ap2

, apib〉), (G1, 〈ap, aib〉) | 0 ≤ i ≤ p− 1};
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(ii) S(G2) = {(〈a, b〉, 〈b〉), (G2, 〈a, b〉), (G2, G2)} ∪
{(G2, 〈a, bic〉), (G2, 〈aib, ajc〉) | 0 ≤ i, j ≤ p− 1};

(iii) S(G3) = {(G3, 〈a, bp〉), (G3, 〈a〉), (G3, G3)} ∪
{(〈a, bp〉, 〈apibp〉), (G3, 〈ap, aib〉) | 0 ≤ i ≤ p− 1} ∪
{(G3, 〈ap, akbp〉) | 1 ≤ k ≤ p− 1};

(iv) S(G4) = {(G4, 〈a, b〉), (G4, G4)} ∪
{(〈a, b〉, 〈apib〉), (G4, 〈a, bic〉), (G4, 〈ap, aib, ajc〉) | 0 ≤ i, j ≤ p− 1};

(v) S(G5) = {(〈a, b〉, 〈a〉), (G5, 〈ap, b, c〉), (G5, 〈a, b〉), (G5, G5)} ∪
{(G5, 〈b, apic〉) | 0 ≤ i ≤ p− 1} ∪
{(〈a, b〉, 〈apbk〉), (G5, 〈b, akc〉) | 1 ≤ k ≤ p− 1};

(vi) S(G6) = {(〈ap, b, c〉, 〈ap, c〉), (G6, 〈a, b〉), (G6, 〈ap, b, c〉, ), (G6, G6)} ∪
{(〈ap, b, c〉, 〈b, apic〉) | 0 ≤ i ≤ p− 1} ∪
{(G6, 〈b, akc〉) | 1 ≤ k ≤ p− 1};

(vii) S(G7) = {(〈b, c〉, 〈b〉), (〈b, c〉, 〈c〉), (G7, 〈a, b〉), (G7, G7)} ∪
(p = 3) {(G7, 〈b, aic〉) | 0 ≤ i ≤ p− 1};

(viii) S(G7) = {(〈b, ac〉, 〈b〉), (〈b, ac〉, 〈ac〉), (G7, 〈a, b〉), (G7, G7)} ∪
(p > 3) {(G7, 〈b, aic〉) | 0 ≤ i ≤ p− 1};

(ix) S(G8) = {(〈b, c〉, 〈b〉), (〈b, c〉, 〈c〉), (G8, 〈a, b〉), (G8, G8)} ∪
(p = 3) {(G8, 〈b, aic〉) | 0 ≤ i ≤ p− 1};

(x) S(G8) = {(〈b, adc〉, 〈b〉), (〈b, adc〉, 〈adc〉), (G8, 〈a, b〉), (G8, G8)} ∪
(p > 3) {(G8, 〈b, aic〉) | 0 ≤ i ≤ p− 1};

(xi) S(G9) = {(G9, 〈a, b, d〉), (G9, G9)} ∪
{(〈a, b, d〉, 〈d, aib〉), (G9, 〈a, b, cdi〉),

(G9, 〈a, bic, bjd〉) | 0 ≤ i, j ≤ p− 1};

(xii) S(G10) = {(〈a, b〉, 〈a〉), (〈a, b〉, 〈b〉), (G10, 〈a, b〉), (G10, G10)} ∪
(p = 3) {(G10, 〈b, aic〉) | 0 ≤ i ≤ p− 1};

(xiii) S(G10) = {(〈a, b, c〉, 〈a, c〉), (G10, 〈a, b, d〉)} ∪
(p > 3) {(〈a, b, c〉, 〈aic, b〉), (G10, 〈a, b, cdi〉), (G10, G10) | 0 ≤ i ≤ p− 1}.



G.K. Bakshi, S. Maheshwary / Journal of Algebra 434 (2015) 72–89 87
Proof. (i) Define N0 := 〈1〉, N1 := 〈ap2〉, N2 := 〈ap〉, N3 := 〈a〉, Hi := 〈ap2
, apib〉, 

Kj := 〈ap, ajb〉 where 0 ≤ i, j ≤ p − 1. Observe that these subgroups are normal in G1. 
Using Eq. (1), we have SN1 = SN2 = φ, SN3 = {(G1, N3)}, SHi

= {(G1, Hi)}, SKj
=

{(G1, Kj)}, 0 ≤ i, j ≤ p − 1. In order to find SN0 , we see that 〈a〉 is a maximal abelian 
subgroup of G1. Further, the only subgroup D of 〈a〉 satisfying core(D) = 〈1〉 is D = 〈1〉. 
This gives SN0 = {(〈a〉, 〈1〉)}. Define

N1 = {〈1〉, 〈ap2〉, 〈ap〉, 〈a〉, 〈a, b〉} ∪ {〈ap2
, apib〉, 〈ap, ajb〉 | 0 ≤ i, j ≤ p− 1}.

Observe that 
∑

N∈N1

∑
D∈DN

[G : AN ]ϕ([AN : D]) = p4. Now, if N is the set of all normal 

subgroups of G1, then

p4 = |G1| =
∑
N∈N

∑
D∈DN

[G : AN ]ϕ([AN : D]) (by Theorem 1)

≥
∑

N∈N1

∑
D∈DN

[G : AN ]ϕ([AN : D]) (as N1 ⊆ N )

= p4.

This yields SN = φ, if N /∈ N1 and consequently, by Theorem 1, 
⋃

N∈N1
SN is a complete 

irredundant set of strong Shoda pairs of G1.
(ii)–(xiii) For 2 ≤ i ≤ 10, consider the following set Ni of normal subgroups of Gi:

N2 = {〈1〉, 〈ap〉, 〈ap, b〉, 〈a, b〉, 〈a, b, c〉} ∪
{〈ap, bic〉, 〈a, bic〉, 〈abicj〉, 〈aib, ajc〉 | 0 ≤ i, j ≤ p− 1};

N3 = {〈1〉, 〈ap〉, 〈a〉, 〈a, bp〉, 〈ap, bp〉, 〈a, b〉} ∪
{ 〈apibp〉, 〈ap, aib〉 | 0 ≤ i ≤ p− 1〉} ∪ { 〈ap, akbp〉 | 1 ≤ k ≤ p− 1};

N4 = {〈1〉, 〈ap〉, 〈ap, b〉, 〈a, b〉, 〈a, b, c〉} ∪
{〈apib〉, 〈ap, bic〉, 〈a, bic〉, 〈abicj〉, 〈ap, aib, ajc〉 | 0 ≤ i, j ≤ p− 1〉};

N5 = {〈1〉, 〈b〉, 〈ap, b〉, 〈ap〉, 〈ap, b, c〉, 〈a, b〉, 〈a, b, c〉} ∪
{ 〈b, apic〉 | 0 ≤ i ≤ p− 1〉} ∪ { 〈apbk〉, 〈b, akc〉 | 1 ≤ k ≤ p− 1};

N6 = {〈1〉, 〈ap〉, 〈ap, b〉, 〈a, b〉, 〈ap, b, c〉, 〈a, b, c〉} ∪ {〈b, akc〉 | 1 ≤ k ≤ p− 1};

N7 = {〈1〉, 〈ap〉, 〈ap, b〉, 〈a, b〉, 〈a, b, c〉} ∪ {〈b, aic〉, | 0 ≤ i ≤ p− 1};

N8 = {〈1〉, 〈ap〉, 〈ap, b〉, 〈a, b〉, 〈a, b, c〉} ∪ {〈b, aic〉, | 0 ≤ i ≤ p− 1};

N9 = {〈1〉, 〈a〉, 〈a, d〉, 〈a, b, d〉, 〈a, b, c, d〉} ∪
{〈aib〉, 〈a, bcidj〉, 〈a, cdi〉, 〈a, b, cdi〉 〈a, bic, bjd〉 | 0 ≤ i, j ≤ p− 1〉};
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N10 =
{
{〈1〉, 〈a3〉, 〈a3, b〉, 〈b, c〉, 〈b, ac〉, 〈b, a2c〉, 〈a, b〉, 〈a, b, c〉}, if p = 3;
{〈1〉, 〈a〉, 〈a, b〉, 〈a, b, d〉, 〈a, b, c, d〉} ∪ {〈a, b, cdi〉 | 0 ≤ i ≤ p− 1}, if p > 3.

Now proceeding as in (i), we get the required complete and irredundant set of strong 
Shoda pairs of Gi, 2 ≤ i ≤ 10. �

For a particular odd prime p, the computation of nH,K corresponding to a strong 
Shoda pair (H, K) ∈ S(Gi), 1 ≤ i ≤ 10, may be done using Remark 1. An explicit 
bound on the index of 〈B(Gi)〉 in Z(U(Z[Gi])), 1 ≤ i ≤ 10, may thus be computed using 
Theorems 2 and 3.

Remark 2. It would be of interest to compute the integer nH,K corresponding to each 
strong Shoda pairs (H, K) of the groups discussed in this section, explicitly in terms of p.

Finally, Theorem 3 along with ([19], Proposition 3.4) and ([15], Theorem 3.1) also 
yield the following:

Corollary 3. The Wedderburn decomposition of Q[Gi] and the rank of Z(U(Z[Gi])), 
1 ≤ i ≤ 10, are as follows:

G Q[G] Rank of Z(U(Z[G]))

G1 Q⊕Q(ζp)(1+p) ⊕Q(ζp2)(p) ⊕Mp(Q(ζp2)) (p+1)(p2−5)
2

G2 Q⊕Q(ζp)(1+p+p2) ⊕Mp(Q(ζp2)) p3−p2−3p−5
2

G3 Q⊕Q(ζp)(1+p) ⊕Q(ζp2)(p) ⊕Mp(Q(ζp))(p) p3+p2−7p−3
2

G4 Q⊕Q(ζp)(1+p+p2) ⊕Mp(Q(ζp))(p) (p−3)(p+1)2
2

G5 Q⊕Q(ζp)(1+p) ⊕Q(ζp2)(p) ⊕Mp(Q(ζp))(p) p3+p2−7p−3
2

G6 Q⊕Q(ζp)(1+p) ⊕Mp(Q(ζp))(1+p) (p− 3)(p + 1)

G7 Q⊕Q(ζp)(1+p) ⊕Mp(Q(ζp)) ⊕Mp(Q(ζp2)) p2 − p− 4

G8 Q⊕Q(ζp)(1+p) ⊕Mp(Q(ζp)) ⊕Mp(Q(ζp2)) p2 − p− 4

G9 Q⊕Q(ζp)(1+p+p2) ⊕Mp(Q(ζp))(p) (p−3)(p+1)2
2

G10
(p = 3) Q⊕Q(ζ3)(4) ⊕M3(Q(ζ3)) ⊕M3(Q(ζ9)) 2

G10
(p > 3) Q⊕Q(ζp)(1+p) ⊕Mp(Q(ζp))(1+p) (p− 3)(p + 1)
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