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1. Introduction

Let U(Z[G]) denote the unit group of the integral group ring Z[G| of a finite group G.
The center of U(Z[G]) is denoted by Z(U(Z[G])). It is well known that Z(U(Z[G])) =
+Z(G) x A, where A is a free abelian subgroup of Z(U(Z[G])) of finite rank. In order
to study Z(U(Z[G])), a multiplicatively independent subset of such a subgroup A, i.e.,
a Z-basis for such a free Z-module A, is of importance, and is known only for a few groups
([1,2,7,18], see also [20], Examples 8.3.11 and 8.3.12). However, other papers deal with
determining a virtual basis of Z(U(Z[G])), i.e., a multiplicatively independent subset of
Z(U(Z[G))) which generates a subgroup of finite index in Z(U(Z[G])) (see e.g. [6,9-17]).

Analogously to well known cyclotomic units in cyclotomic fields, Bass [4] constructed
units, so called Bass cyclic units, which generate a subgroup of finite index in U(Z[G)),
when G is cyclic. A virtual basis consisting of certain Bass cyclic units was also given by
Bass. Generalizing the notion of Bass cyclic units, Jespers et al. [13] defined generalized
Bass units and have shown that the group generated by these units contains a subgroup
of finite index in Z(U(Z[G])) for an arbitrary strongly monomial group G. Recently, for
a class of groups properly contained in finite strongly monomial groups, Jespers et al.
[15] provided a subset, denoted by B(G) (say), of the group generated by generalized
Bass units, which forms a virtual basis of Z(U(Z[G])).

In this paper, we determine a bound on the index of the subgroup generated by B(G)
in Z(U(Z[G])) for the same class of groups as considered in [15] (Theorem 2). Our result
is based on the ideas contained in [15] and Kummer’s work (see [23], Theorem 8.2) on
the index of cyclotomic units. Further in [15], Jespers et al. have provided the rank of
Z(U(Z]G))) in terms of strong Shoda pairs of G, when G is a strongly monomial group.
In Section 4, we compute a complete and irredundant set of strong Shoda pairs of the
non abelian groups of order p”, p prime, n < 4, and provide, in terms of p, the rank of
Z(U(Z]G))) of these p-groups along with the Wedderburn decomposition of their rational
group algebras. We also illustrate Theorem 2 for the non abelian groups of order 16 and
those of order p?, p < 5. It may be mentioned that for a given group G, the calculation
of the bound on the index given by Theorem 2 requires the values ny g corresponding
to the strong Shoda pairs (H, K) of GG, the computation of which is not always obvious.

2. Notation and preliminaries

We begin by fixing some notation.

G a finite group

lg] the order of the element ¢g in G

gt t~tgt, g,t €G

(X) the subgroup generated by the subset X of G
| X the cardinality of the set X

K<G K is a subgroup of G
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KJ4gG K is a normal subgroup of G
G : K] the index of the subgroup K in G
N¢(K) the normalizer of K in G
core(K) ﬂIGG xKz~ !, the largest normal subgroup of G contained in K
. 1
K Wzkeff F
M(G/K) the set of minimal normal subgroups of G' containing K properly
C(H.K) {H A=K
I kemqn iy (€ — M), otherwise, where K < H < G
e(G,H,K) the sum of all the distinct G-conjugates of e(H, K)
%) Euler’s phi function
Z/nZ the ring of integers modulo n, n > 1
Cn a primitive nth root of unity in the field of complex numbers
Gal(Q(¢,)/Q) the Galois group of the cyclotomic field Q(¢,) over Q
ht the class number of the maximal real subfield of Q(¢,)
l.e.m.(k,n) the least common multiple of the integers k and n
(k,n) the greatest common divisor of the integers k and n
on(k) the multiplicative order of k¥ modulo n, where (k,n) =1
1, if n=1,;
5 (Gn) {1+Cn+C,2L+...+C7’§_17 if n > 1, where k > 1

U(R) the unit group of the ring R

M, (R) the ring of n x n matrices over the ring R, n > 1

M, (R)® M,(R)® M,(R)®...®» M,(R), direct sum of s copies, s > 1
I, the n x n identity matrix

A strong Shoda pair ([19], Definition 3.1) of G is a pair (H, K) of subgroups of G with
the properties that

(i) K <H<JNg(K);
(ii) H/K is cyclic and a maximal abelian subgroup of Ng(K)/K;
(iii) the distinct G-conjugates of e(H, K) are mutually orthogonal.

Note that (G, G) is always a strong Shoda pair of G.

If (H, K) is a strong Shoda pair of G, then e(G, H, K) is a primitive central idempotent
of the rational group algebra Q[G] ([19], Proposition 3.3). A group G is called strongly
monomial if every primitive central idempotent of Q[G] is of the form e(G, H, K) for
some strong Shoda pair (H, K) of G.

Two strong Shoda pairs (Hq, K1) and (Hs, Ks) of G are said to be equivalent if
e(G,H1,K1) = e(G, Hy, K3). A complete set of representatives of distinct equivalence
classes of strong Shoda pairs of G is called a complete irredundant set of strong Shoda
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pairs of G. In case G is strongly monomial, one can calculate the primitive central
idempotents of Q[G] from a complete irredundant set of strong Shoda pairs of G.

Recall that a group G is called normally monomial if every complex irreducible char-
acter of GG is induced from a linear character of a normal subgroup of G. Theorem 1, as
stated below, provides an algorithm to determine a complete irredundant set of strong
Shoda pairs of a normally monomial group G and also, in particular, yields that a nor-
mally monomial group is strongly monomial.

Let A be the set of all the distinct normal subgroups of a finite group G. For N € N,
set

Ap: a normal subgroup of G containing N such that Ay /N is an abelian normal sub-
group of maximal order in G/N.

Dn: the set of all subgroups D of Ay containing N such that core(D) = N, Ay/D is
cyclic and is a maximal abelian subgroup of Ng(D)/D.

Tn: a set of representatives of Dy under the equivalence relation defined by conjugacy
of subgroups in G.

Sn: {(An,D) | D € Tn}.

Note that if N € A is such that G/N is abelian, then, by ([3], Eq. (1)),

Sy =

{{(G,N)}, if G/N cyclic; )

0, otherwise.

Theorem 1. (See [3], Theorem 1, Corollaries 1 and 2.) The following statements are
equivalent:

(i) G is normally monomial;
(ii) S(G) :=Upnen SN is a complete irredundant set of strong Shoda pairs of G;
(iii) {e(G,An,D)|(An,D) € Sy, N € N'} is a complete set of primitive central idem-
potents of Q|G];
(iv) 1G] = Cwen Seny G Axlo((An : D).

Let n > 1 and let k be an integer coprime to n. Then, n(¢,) is a unit of Z[(,].
The units of the form 7, (¢J) with integers j, k and n such that (k,n) = 1 are called
cyclotomic units of Q(¢,).

Let g € G and let k, m be positive integers such that £ = 1(mod n), where n = |g|.
Then,

m

Ukm(9) = (1+g+...+¢5H™+ (I+g+...49"h

is a unit in the integral group ring Z[G]. The units in Z[G] of this form are called Bass
cyclic units (see [21], (10.3)).
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Next, we recall the definition of generalized Bass units of Z[G] introduced by Jespers
et al. [13]. For M <G, g € G, and positive integers k, m such that £™ = 1(mod |g|), let

Uk,m(l - M +9M) =1- M + uk,m(g)M'

This element is a unit in Z[G](1 — M) + Z[G]M. As both Z[G](1 — M) + Z|G]M and
Z|G] are orders in Q[G], there is a positive integer ngy ps such that

(whym (1 — M + gM))" € U(Z[G)). (2)

Suppose ng, v is the minimal positive integer satisfying Eq. (2) for all g € G. Then, the
element

~

(uk,m(l - M + gM))nG’M =1- M + Uk, mng,m (g)M

is called the generalized Bass unit of Z|G] based on g and M with parameters k and m.
Observe that ng p = 1, if M is trivial i.e., M = (1) or G.

Remark 1. For a non trivial normal subgroup M of G, using Lemma 3.1 of [8], it may be
noted that ng a = 1, if every g € G\ M is of order 2; otherwise, ng a is the minimal
positive integer satisfying Eq. (2) for all g € G\ M with |g| > 2 and integers k, m such
that 1 < k < g, (k,[g|) = 1 and m = o4(k).

Let G be a strongly monomial group such that there is a complete irredundant set
{(H;, K;) | 1 <1i<m} of strong Shoda pairs of G with the property that each [H; : K;]
is a prime power, say p;*. Assume that (Hy, K1) = (G, G). For such a group G, we recall
the virtual basis of Z(U(Z[G])) provided by Jespers et al. [15].

For 1 <14 < m, we adopt the following notation:

& =¢e(H;, K;)

e; =e(G,H;, K;)

[H; : K;] :=p}", p; prime, n; >0 (n; =0 only if i = 1)
g: K; := a generator of the cyclic group H;/K;

D = K, 0< <y

N; := Ng(K;)

m; =[G : Ny

T; := a right transversal of N; in G.

For 2 <4 <'m, consider the action of N;/H; on Q((,n:) given by the map
Ni/H; — Gal(Q(C,r:)/Q)
niHi = Qn,H,, (3)
where a, i, ((,ni ) = (;@,i, if ni_lgmiKi = ggKi. As H;/K; is a maximal abelian subgroup
of N;/K;, it turns out that the above action is faithful. Hence, N;/H; is isomorphic to
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a subgroup of Gal(Q((,»:)/Q) = U(Z/p;"Z). For the convenience of notation, we regard
N;/H; as a subgroup of Gal(Q(¢,)/Q) and that of U(Z/p}*Z). (Notice that N;/H; can
be regarded as a subgroup of U(Z/ [H; : K;]Z), even if [H; : K;] is not a prime power.)
With this identification, N;/H; is equal to either (¢,,) or (¢,,) x (¢_1) (resp. (r;) or
(ri) x (—1)) for some r; € U(Z/p;"Z), where ¢,, denotes the automorphism of Q(¢ri)
which maps CPZ” to C;Q The later case arises only if p; = 2 and n; > 3. Set

1, if —1€ (r);

di = 4
{2, otherwise, 4)

and
4, lfpz = 2, Nl/Hz = <’I‘¢>, r, = 1(m0d 4)7 n; > 2,
0, =14 6, ifp,=3, N;/H; = (r;), r; = 1(mod 3); (5)
2, otherwise.

Further, choose a subset I; of {k | 1 < k < p"';i , (k,p;) = 1} containing 1, which forms
a set of representatives of U(Z/p;*Z) modulo (N;/H;,—1). We extend the notation by
setting I; = {1}, in view of the trivial action of the identity group Ny/H; on Q({1) = Q.

Let k be a positive integer coprime to p; and let r be an arbitrary integer. For 0 <

j < s < n,;, consider the following products of generalized Bass units of Z[H;], defined
recursively:

Ci(Hh K’iv ku T) =1

and, for 0 < j <s—1,

s—j—1

Cj(Hi’ K, k, T) = (H ukxop@i(k)nHi,Ki (g:pi ' hki +1- Kl)) ' x

(4)
heL;
s—1

j—1 .
(Hl:j+1 ci (Hi, K, k,r)_l)(szo T (Hy, Ky k)Y,

where the empty products equal 1.
Define

B(H;, K;) = {]]

B(H;, K;) = {Hten ut | uwe B(H;, K;)},

venyym @ (Hi Kisk2) | k€ I\ {1}},

and

B(G) := | | B(H;, K)). (6)

i=1

Jespers et al. ([15], Theorem 3.5) proved that B(G) is a virtual basis of Z(U(Z]G))).
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3. A bound on the index of (B(G)) in Z(U(Z[G]))

In this section, we continue with the notation developed in Section 2.

Theorem 2. Let G be a strongly monomial group and let {(H;, K;) | 1 < i < m} be
a complete irredundant set of strong Shoda pairs of G with (Hy,K,) = (G,G). For
2<i<m,letI; be asubset of {k|1<k< %,(k, [H; : K;]) = 1} containing 1,
which forms a set of representatives of U(Z/[H; : K;]Z) modulo (N;/H;,—1), where
N; = Ng(K;). Set I = {1}.

(i) The rank of Z(U(Z[G])) = 0 (equivalently, Z(U(Z|G))) is finite) if and only if
|I;| =1 for alli, 1 <i <m, and in this case, Z(U(Z]|G])) = £Z(G).

(ii) In addition, if [H; : K;] is a prime power, say p;*, for all i, 1 <i < m, and B(G)
is the virtual basis of Z(U(Z[G))) as defined in Eq. (6), then,

M)

[ZU(ZIG)) : (B(G))] < 2 H [T nctipfetoutle = (s = HI,
| 141

~

1

i

where l; = l.c.m.(2,p;); 0; = H 0, (k)p?”’flnHi’Ki ; d; and o; are as defined in
1<k<pg
(k,pi)=1

Eq. (4) and Eq. (5) respectively.

i

We first prove the following:

Lemma 1. Let G be as in Theorem 2. Let A(H;,K;) = Z(1 — e; + U(Z[Gle;)) and
A(H;, K;) = Z(1 —e; + U(Z[N;]ei)), where 1 < i < m. Then,

[A(H;, K;) : (B(Hi, K3))] = [A(Hi, K;) : (B(Hi, K3))).

Proof. Let {t; | 1 < j < m;} be a right transversal of N; in G with ¢; = 1. For
a € Q[Gle; and integers r and s such that 1 < ;s < m;, let a,s = Eitrats_lsi. We
notice that a,s € Q[N;]e;. To see this, write o = (3° .5 agg)e; with oy € Q. Then
Qg = dea ageitrgts tei. By ([19], Proposition 3.3), the centralizer of ¢; in G equals N;.
Therefore, if t,.gt;* ¢ N;, then gt gt;le; = trgt_1 trgts 5 = 0. Also, if t,gt;* € N;,
then et gt 'e; = t gt 'e;. Consequently, o, = Ztrgts—leNi agtrgtste; € Q[N;le;

Now consider the map

0; : Q[Gle; — My, (Q[N;]e:)

given by
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0.
« '_1> (ars)mi Xmy;

As gl t € T;, are mutually orthogonal idempotents and ZteT,_- el = ¢;, it can be checked
that 6; is an isomorphism of Q-algebras. This isomorphism in turn yields the group
isomorphism

R

ZU(QIGei)) = Z(U(Myp, (Q[Ni]ei)))

given by
0;
o — giagily,.

Let 9; denote the canonical isomorphism from Z(U(Q[N;le;)) to Z(U(M,,,(Q[N;e;)))
given by u R ul,,,. Denote by ¢;, the restriction of 1; o 0; to Z(U(Z[G]e;)). We assert
that ¢; is an isomorphism from Z(U(Z[Gle;)) to Z(U(Z[N;]e;)). For this, we need to
show that

¢i(ZU(Z[Ge))) = ZU(Z[Nilei))- (7)

Consider a = (3 ,cqag9)ei € ZU(Z[Gle;)) with oy € Z. We have gae; =
>_gen; Qg9€i € Z[Nj]e;. Consequently, ¢;(a) = eiag; € Z(U(Z[Ny]e;i)), as we already
have ¢;(«) € Z(U(Q[N;]e;)). On the other hand, to see that Z(U(Z[N;]e;)) is contained
in ¢;(Z(U(Z[G]es))), let uw € Z(U(Z[N;]e;)). Following the argument as in the proof of
Theorem 3.5 of [15], it can be seen that Y7, ;. u’ belongs to Z(U(Z[Gle;)), as €', t € T,
are mutually orthogonal idempotents. One checks that ZteTi u® maps to u under ¢; and
hence Eq. (7) follows. The isomorphism ¢; now provides the group isomorphism

®i : A(Hl,KZ) — A(HZ,KZ)
by setting
@,.
l—e+a=1—¢ +¢cae;,

where a € Z(U(Z[Ge;)). We further see that if u = 1 —¢; + v € B(H;, K;), with
v e Z(U(Z[Nl]&?l)), then @i(HtETi ut) = @i(]‘iei+zteTi ’yt) = 1*Ei+€i(zteTi ’yt)gi =
1 —¢; +~ = u. This yields ©;(B(H;, K;)) = B(H;, K;) and consequently, Lemma 1
follows. O

Lemma 2. Let p be a prime and let n > 1 be an integer. For a subgroup A of U(Z/p"7)(=
Aut((Cpn))), let U(Z[Cpn]A) denote the unit group of the fized ring Z[(pn]?. If (A, —1) =
U(Z/p"Z), then

<C4>7 Z'fPZQ, A:<T>a rzl(mod 4)7 TLZQ;
UZIGn)Y) = (G)y ifp=3, A= (r), r = 1(mod 3);
((2), otherwise.
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Proof. Let F' = Q({yn)", the subfield of Q((pn) fixed by A and let R = Z[(pn]*. The
assumption (A, —1) = U(Z/p"Z) implies that F is either Q or an imaginary quadratic
extension of Q. Thus the group of units of R is finite and hence it is formed by roots
of unity of order dividing 4 or 6. If {4 € F, then F' = Q(¢4) and hence U(R) = (C4).
If (3 € F, then F = Q({s) and hence U(R) = ((g). Otherwise, U(R) = {1,—1} = ({2).
Furthermore, we see that 4 € F if and only if p = 2, A = (r) with » = 1(mod 4) and
n > 2. Also, {3 € F if and only if p = 3, A = (r) with » = 1(mod 3). This yields the
desired result. O

Proof of Theorem 2. (i) From ([15], Theorem 3.1), it follows immediately that the rank
of Z(U(Z|G])) =0 if and only if |I;] = 1, Vi, 1 < i < m. Further, ([22], Corollary 7.3.3)
implies that Z(U(Z[G])) = £Z(G) in this case.

(ii) Since Z(U(Z[G])) is a subgroup of [[;~, A(H;, K;), we have

N
=
N
Q
=
2
In
—s

A(H;, K;) - (B(G))]

ﬁ
Il
—

A(H;, Ki) - (UL B(H;, K;)))

Il
&ES

N
Il
—

[A(H;, K3) : (B(H;, K;))]

L

@
Il
_

=T

[A(H;, K;) : (B(H;, K;))]. (8)

.
Il
_

The last equality follows from Lemma 1. We now show that
[A(Hy, K1) 2 (B(Hy, Ky))] <2 (9)
and for 2 < i < m,

LK) LK) < 1
[A(HzaKz) <B(HzaKz)>] = {Qh;@ilip?iloi(lfil[Ni : ]{i])ui\—l7 if ‘Iz| 7& 1. ( O)
Let 1 < i < m. We have that the center of Q[Nj]e; is equal to (Q[Hle;)Ni/:
where (Q[H,]e;)™i/"+ denotes the fixed field under the action of N;/H; on Q((,n)
Q[H;]e;. Now, the center of Q(1 — ¢;) + Q[N;]e;, which is equal to Q(1 — ¢;) +
(Q[H;]e;)Ni/H: | is embedded inside the algebra Q[H;|K; ® Q(1 — K;), via the embed-
ding

.

r(l—e)+urs (r(l—g) +u)K; +r(1 - K;), (11)

where 7 € Q and u € (Q[H;]e;)Ni/H:.
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As Hi/K; = (g;K;), any element tK; € Q[H;)K; can be expressed as :UK =

f’ 0 - z;g] K; with z; € Q. Let 7 denote the prOJeCthH of Q[H;|K; & Q(1 — K;) onto

Q((: +) under the isomorphism Q[H;|K; ®Q(1 — K) ®ri, (Cpf)@Q(l_Ki) given by

”7, _1 pni—l
zK; +a(l—K;) % ( Z zj, Z IJsz Z l’jC;maa(l—Kz‘)), (12)
j=0

where 2K; = ?;0_ z;g] K; € QH;]K; and a € Q.
Now observe that moT o is injective on Z(Q(1—¢;)+Q[N;]e;) and moTou(A(H;, K;))
N/ He)

is contained in U(Z[C,n . Hence,

[A(Hl,Kl) N <B(HZ,K,L)>} = [’/TO’T o L(A(HZ,Kl)) .mTOTO L(<B(HZ,KZ)>)]
< U(@IG )N im0t 0 o((B(H, K. (13)

Ifi = 1 ie (HZ,Kl) = (G, G), then [A(HZ,Kl> : <B(HZ,Kl)>} S ‘U(Z)‘ = 2. Thus
Eq. (9 )holds

If 2 < i < m is such that |I;| = 1, then B(H;, K;) is an empty set and therefore,
UZICps ]V He) s o 0 u((B(Hy, Ka)))] = [U(ZIC,p: ]V H9)].

[A(H;, K;) : (B(H;, K3))] < o, (14)

as (N;/H;,—1) =U(Z/p;"Z) in this case.
We next assume that |I;] # 1.
Set

o,ni (k) ;yi_ln i K
Nia sy = (o ya, (i (Gra) 70700 05 1k e I\ {1)),

Py
2

o "t(k) ?iiln i Ky
F, i) = (mi(Gyri) 7 P MR e < T (Ryp) = 1),
n;—1
O(Hsz‘,) = F(HhKi) X <C§f% 7_1>7

Pl iy = (me(Gpri) | k € UZ/pi L))

= (G >|1<k<pz (i) = 1) x (G, 1),

Qua, k) = U(Z[Cp;’i]Ni/Hi) N O, k1)

where 7, /i, (4) = [Iyen, /i, o(u), for u € Q((p,n:).
By ([15], Proposition 3.4),

mo71ou((B(Hi, Ki))) = N, k.)- (15)
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Therefore,
U(Z[G,: )N H) s 7o 7 0 u((B(H;, K)))]
= U(Z[C,m NP - New, i)
= [U(Z[ijl}Nl/}L) : Q(H“Kl)][Q(HHKz) :N(Hi,Ki)]
< U(Z[G,r]) = Oca, k) Qr, i) + N, xi))- (16)
Further,
Clearly,
[P(HnKi) : O(HivKi)] = p?i_l H Op:’i (k)p?i_lnHi,Ki = p?i_loi‘ (18)
1<k<p7zi
(k,pi)=1
Also, by ([23], Theorem 8.2),
[U(Z[Cp?’]) : P(Hi,Ki)] = h:,_:lz (19)

Next, observe that Qx, x,) N F(#, k,) is a free abelian group, and by ([15], Lemma 3.2),
it has rank at most |[;| — 1. Furthermore, any element of Q g, x,) N F(m, ) is of order
at most lfi_l\Ni/Hﬂ modulo Ny, k,) N F(m, i, To see this, let u € Qu, k,) N Fiu, k)
) o n; (K)py i ', ki g ) ;
andwiitew =[] (lGr) 75 "5y, > 0. Since my, i, g () = 1

"

1<k<gif
(k,pi)=1 )
and Ty, /H, (n_j(Cp;Li)) = ﬁNi/Hi(—C;LJ,; )TN, /H, (T]j(cp;w)), for 4,7 > 0, it turns out that
d;—1 d;—1
Consequently,
Qi) N Fla, iy Neaiey) 0 Fa, i) < (NG H ) (20)

and therefore,

Qi)+ New k)]
< [Qa.k;) : New, i) O Fl, k)
= Qe k) Qi) VE (k) Qi iy NV E iy = Noare) N F i)
< LN H | (21)
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Finally, Egs. (13)—(21) yield Eq. (10), which in view of Eq. (8) and Eq. (9) complete the
proof. O

It is known that if G is an abelian group, then U(Z[G]) = £G if and only if G is of
exponent 1, 2, 3, 4 or 6 (see [21], Theorem 2.7). We have the following:

Corollary 1. Let G be a strongly monomial group with a complete irredundant set
{(Hi, K;) | 1 < i < m} of strong Shoda pairs such that [H; : K;] = 1,2,3,4 or 6 for
alli, 1 <i<m. Then, ZU(Z|G])) = £Z2(G).

In particular, if G is a strongly monomial (e.g. abelian by supersolvable) group of expo-
nent 1, 2, 3, 4 or 6, then Z(U(Z|G))) = £Z(G). However, the converse need not be true.

Proof. Here, |I;| = 1 for all 4, 1 < i < m. Therefore, Theorem 2(i) is applicable. The
group G; defined in Section 4.1 for p = 3 is an example of a strongly monomial group of
exponent 9 satisfying Z(U(Z[G])) = £Z2(G). O

For abelian p-groups, Theorem 2 gives the following:

Corollary 2. Let G be an abelian p-group, p prime, and let K;, 1 < i < m, be all the
subgroups of G with cyclic quotient groups. Suppose |G : K;] = p™i, for 1 < i < m. Then,
the rank of U(Z[G)) is non zero if and only if p™ > 5 for some i. In this case, the index
of (B(G)) in U(Z|G]) is at most

2[J2nd ( JI  2%or(B)nax.), fp=2.
i=1 1<k<2mi™!
k,2)=1
and
H 2l (T ™o (Bnak,), i p# 2
I<k< Pt

(k,p)=1

where an empty product equals 1.
4. Non Abelian groups of order p™, n < 4

Let G be a non abelian group of order p”, n < 4. Observe that any such group, being
metabelian, is normally monomial.

4.1. Non Abelian groups of order p>

If p = 2, then G is either isomorphic to D4, the dihedral group of order 8 or
is isomorphic to @g, the group of quaternions. Both groups satisfy the hypothesis of
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(H,K) nHK (H,K) nHK
(G1,G1) 1 (G2,G2) 1

((a®b),(0)) 5 ((a, ), (a)) 5

(G, (a)) 5 (G2, (b,c)) 52
(G1,(a®,b)) 52 (G2, (a,c)) 52
(G1, (ab)) 52 (G, (ab, c)) 52
(G1, (a®)) 5% (G2, (a®b,c)) 5
(G1, (a’D)) 5? (G2, (a’b,c)) 5
(G1, (a*b)) 52 (Ga, {a*b, c)) 52

Fig. 1. Strong Shoda pairs of G;. Fig. 2. Strong Shoda pairs of G,.

([21], Theorem 6.1). Therefore, we already know that the group of central units in the
integral group ring of these groups consists of only the trivial units.
If p is an odd prime, then G is isomorphic to one of the following groups:

e Gy =(a,b|la?” =bP =1, ab=baP*!);
e Go={a,b,c|a? = b =P =1,ab = bac,ac = ca,bc = cb).

In ([3], Theorems 3 and 4), a complete and irredundant set of strong Shoda pairs of these
groups has been found. Applying Theorem 3.1 of [15], we obtain that

Rank of ZU(Z(G,])) = W’ i—1,2.

We now illustrate Theorem 2 in the particular cases, when p = 3 or 5.

p = 3: In this case, the rank of Z(U(Z[G;])) = 0 and therefore, by Theorem 2(i),

ZUZIG:))) = £2(G:), i =1,2.

p = 5: In this case, the rank of Z(U(Z[G;])) = 7, i = 1,2. Using Remark 1, we have
computed the value of ng i corresponding to each strong Shoda pair (H, K) of the

groups G; and Gy, which are tabulated in Figs. 1 and 2.
Theorem 2 and ([23], §11.5) yield that [Z(U(Z[G:])) : (B(G:))] < 229527, i = 1,2.

4.2. Non Abelian groups of order p*

We first take the case, when p = 2. Up to isomorphism, there are 9 non isomorphic
groups of order 24 as listed in ([5], §118). Except the following two groups:

o Hy = <a>b:a8:b2:17ba:a7b>;
o Ho={a,b:a®=b*=1,ba=a"ba*="b%,
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the other non abelian groups of order 2% again satisfy the hypothesis of (|21], Theo-
rem 6.1). Hence, if G is a non abelian group of order 2* other than the dihedral group
‘H1 and the quaternion group Hs, then Z(U(Z[G))) = £Z(G).

For the groups H; and Hsa, we obtain using Theorem 1, that {({a), (1)), ({a), (a?)),

(Hl’ <a>)7 (Hla <a27 b))’ (Hh <a27ab>)) (Hlv%l)} and {(<a>7 <1>)7 (<a>’ <a4>)7 (H27 <a>)a (HQ’
(a?,b)), (Ha, (a®, ab)), (Ha, Ha)} are complete irredundant sets of strong Shoda pairs of
H; and Hs respectively. Theorem 3.1 of [15] now yields that

Rank of Z(U(Z[H,])) =1, i=1,2.
Also, by Theorem 2 and ([23], §11.5), it follows that
[ZU(Z[H)) = (B(H:))] <22, i=1,2.

We next assume that p is an odd prime.
Up to isomorphism, the following are all the non abelian groups of order p* (see [5],
§117):

Gy = (a,b:a” =b° = 1,ba = a'+P"b);

G2 = (a,b,c: aP’ =P =P = 1, ¢b = aPbe, ab = ba, ac = ca);

Gz = {a,b: a?’ = = 1,ba = a*Pb);

G4 = {(a,b,c: aP’ =P =P = 1,ca = a'*Pe, ba = ab, cb = be);

Gs = {(a,b,c: aP’ =P =P = 1, ca = abe, ab = ba, bc = cb);

Gs = (a,b,c: a?’ =W =P =1,ba = a'*Pb, ca = abe, cb = be);

T G — (a,b,c: a?’ =P = 1,cP = aP,ab = ba'*? ac = cab™!,cb = bc), if p = 3,

C T {a,b,c: a?’ =W =P = 1,ba = a'*Pb, ca = a**Pbc, ch = aPbe), if p > 3;
{a,b,c:aP” =b" =1,cP =a~P,ab=ba**P ac = cabt,cb = be), if p =3,
{a,b,c: a?’ =W =P = 1,ba = a'*™Pb, ca = a}+Pbc, cb = a®bc), if p >3

4% 0,1(mod p);
9. Gy = (a,b,c,d : a? = b = P = dP = 1,dc = acd,bd = db,ad = da,bc = cb,ac =
ca,ab = ba);
(a,b,c: P’ =P =P = 1,ab = ba, ac = cab,bc = ca™Pb), if p = 3,
10. Gio = {a,b,c,d:aP = b = c? = dP = 1,dc = bed, db = abd, ad = da,
bc = ¢b, ac = ca,ab = ba), if p > 3.

A A

8. Gg

Theorem 3. For 1 <1i < 10, the set S(G;), given below, is a complete irredundant set of
strong Shoda pairs of G;:

(i) S(G1) = {({a), (1)), (G1, (@), (G1,G1)} U
{(G1, {(a¥",a¥'b)), (Gi, {(aP,a'b)) |0 <i<p—1};
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(i) S(G2) = {({a,b), (b)), (G2, (a,b)), (G2, G2)} U
{(Ga, (a,b'c)), (Ga, (a'b,a’c)) |0<i,j<p—1};

(ii7) S(Gs) = {(Gs, (a,b7)), (Gs, (a), (Gs, G3)} U
{((a,4"), (b)), (Gs, (aP,a'b)) |0<i<p—1} U
{(Gs, (a",a"0)) [1 <k <p—1}

(v) S(Ga) ={(G4, (a,b)), (Gs, G4)} U
{(<a’b>7 <a'pib>)7 (G47 <a" bic>)7 (G47 <ap’aib’ ajc>) | 0< 1,5 <p— 1};

(’U) S(G5):{(<a’7b>7 <a>)7 <G57 <ap>bvc>)7 (G57 <a7b>)= (G57 G5)} u
{(G5, (b, apic)) |0<i<p—1} U
{({a,b), (a"b")), (Gs,(b,a"c)) [ 1<k <p—1};

(Ui) S(Gﬁ) = {(<ap’bvc>a <apac>)a (Gﬁa <(l,b>)7 (G67 <ap,b,C>7)7 (G67 G6)} U
{(<ap’b7 C>> <b’ apic>) | 0<¢<p-— 1} U
{(Ge, (b,a"c)) |1 <k<p-1}

(vii) S(G7) = {((b,0), (1), ((b;¢), (), (G7, (a;b)), (G7, Gr)} U
(p=3) {(Gr, (ba'q)) |0<i<p-—1}

(UZZZ) S(G7) = {(<b7ac>v <b>)v (<b7ac>7 <ac>)7 (G77 <avb>)v (G7v G7)} U
(p>3) {(Gr, (ba'e)) |0<i<p—1};

(iz) S(Gg) = {({b;c), (b)), ((b;¢c); (c)); (Gs, (a,b)), (Gs, Gg)} U
(p=3) {(Gs, (ba'c)) |0<i<p—1}

(‘T) S(G8):{(<bvadc>v <b>)7 (<b’adc>7 <(de>), (GSa <a7b>)7 (G87 GS)} U
(p>3) {(Gs, (ha'c) | 0<i<p—1}

(zi) S(Go) = {(Gy, (a,b,d)), (Go, Gg)} U
{({a,b,d), (d,a’b)), (G, {(a,b,cd")),
(Gy, {a,blc,b/d)) | 0<i,j<p—1};

(IZ’L) S(Glo) = {(<a’b>7 <a‘>)7 (<a7b>’ <b>)7 (G107 <a’b>)’ (G107 Glo)} U
(p=3) {(Gu, (ba'c)) [0<i<p-—1}

(:m“) S(Glo) = {(<a7 b, C>7 <a7 C>), (GIO, <(l, b, d>)} U
(p > 3) {(<aa b’ C>a <aica b>), (GlOa <a7 ba Cdi>)7 (Gw, GlO) ‘ 0 < { < p— 1}
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Proof. (i) Define Ny := (1), Ny := (a?’), Ny = (a?), N3 = (a), H; := (a?",aP'b),
K; = (a?, a’b) where 0 < i,j < p — 1. Observe that these subgroups are normal in Gj.
Using Eq. (1), we have Sy, = Sn, = ¢, Sy, = {(G1,N3)}, Su, = {(G1, Hy)}, Sk, =
{(G1,Kj)},0<1,j <p—1. In order to find Sy,, we see that (a) is a maximal abelian
subgroup of G. Further, the only subgroup D of (a) satisfying core(D) = (1) is D = (1).
This gives Sy, = {({a), (1))}. Define

Ni={(1), (@), (@), (@), (a,B)} U {{@,a"'b), (a",a?b) |0 <i,j <p—1}.

Observe that Z Z (G : Ax]p([An : D]) = p*. Now, if N is the set of all normal

NeN: DeDN
subgroups of G, then

pt =G| = Z Z [G: AN]p([AN : D]) (by Theorem 1)

NeN DeDy

> > ) [G:ANJe([Ay : D)) (as Ny CN)
NeN, DeDy

:p4.

This yields Sy = ¢, if N ¢ N and consequently, by Theorem 1, |y A, S is a complete
irredundant set of strong Shoda pairs of Gj.
(ii)—(xiii) For 2 < ¢ < 10, consider the following set A; of normal subgroups of G;:

2 ={(1), ("), (a",0), (a,b), (a,b,c)} U
{{aP,b'c), (a,b'c), (ab'c?), (a'b,a’c) |0 <i,j<p—1}

NS :{<]—>7 <ap>’ <a>7 <a’bp>7 <ap,bp>’ <a7b>} U
{ (a”0), (a?,a’b) | 0<i<p—1)} U { (a%,a"W?) |1 <k<p—1}

N4 :{<1>a <ap>’ <ap7b>7 <aab>7 <a7bac>} U
{(apib>, <ap,bic>, (a,bic), (abicj>, (a”,aib, ajc> |0<d,j<p—-1)}

NE’) :{<1>a <b>7 <a’p?b>a <ap>, <apab7c>a <aab>7 <aabvc>} U
{ (b,aP’c) | 0<i<p—1)} U { (ab"), (ba"c) |1 <k <p—1};

Ne ={(1), (a"), (a”,b), (a,b), (a”,b,¢), (a,b,c)} U {(ba"c) |1 <k<p—1};
Nr = {(1), (a"), (aP,b), (a,b), (a,b,c)} U {(b,a’c), | 0<i<p—1};
Nz = {{1), (aP), (aP,b), {(a,b), {a,b,c)} U {{ba’c), |0<i<p—1};

No ={(1), {(a), {a,d), {(a,b,d), {a,b,c,d)} U
{{a'b), (a,bc'd?), {(a,cd"), {(a,b,cd’) (a,b'c,b/d) | 0<i,j<p—1)};
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Nio = {{<1>7 <a3>> <a37b>’ (b ), (b, ac), <b7a2c>7 (a,b), <a7bac>}7 ifp=3;
{<1>7 <a>7 <a7b>7 <a7b7d>7 (a,b,c,d)} U {<aab70dl> ‘ OSiSP—l}» if p> 3.

Now proceeding as in (i), we get the required complete and irredundant set of strong
Shoda pairs of G;, 2 <i<10. O

For a particular odd prime p, the computation of ny ik corresponding to a strong
Shoda pair (H,K) € S(G;), 1 < i < 10, may be done using Remark 1. An explicit
bound on the index of (B(G;)) in Z(U(Z][G;])), 1 < ¢ < 10, may thus be computed using
Theorems 2 and 3.

Remark 2. It would be of interest to compute the integer ng i corresponding to each
strong Shoda pairs (H, K') of the groups discussed in this section, explicitly in terms of p.

Finally, Theorem 3 along with ([19], Proposition 3.4) and ([15], Theorem 3.1) also
yield the following:

Corollary 3. The Wedderburn decomposition of Q[G;] and the rank of Z(U(Z|G))),
1 <i <10, are as follows:

G Q[G] Rank of Z(U(Z|G]))

G QB QG) P ® Q)P @ My(Q(Ge)) D)

Gy Q ® Q)47 @ M, (Q(Gp2)) S s B

Gs Q@ Q&) P © Q((2)® @ My(Q((,)w) i Te=3

Ga Q& Q(G) 7+ @ M, (Q((,))® (e=3)(p+1)?

Gs Q@ Q) ) B Q(Ge)® ® My(Q(Gp)) P B3

G Q& Q)P @& My (Q(C,)) (P-3)(p+1)

G+ Q® Q(G) P @ Mpy(Q(¢p) & Mp(Q(Gp2)) P2 —p—4

Gs Q@Q(Cp)(l+p) @M ( (Cp)) (Q(Cﬁ)) p2 —p—4

G Q@ Q)7 © My(Q(G) ™ (=l

G

pg QOO0 OM(QG) M) 2

G

g QOQG) O MQG) (p=3)p+1)
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