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1. Introduction

Hilbert functions play an important role in commutative algebra and algebraic ge-
ometry for the reason that they capture many useful numerical invariants which reflect 
various algebraic and geometric properties of an ideal of a projective variety or a Noethe-
rian local ring. Besides the application in intersection theory and singularity theory, these 
invariants are also used in the study of the arithmetical properties, like the depth, of the 
blowup algebras such as the associated graded rings (see for instance, [27,25,21]).

The classical Hilbert functions are only defined for ideals that are primary to the 
maximal ideal. It is well-known that the Hilbert multiplicity (i.e., the normalized leading 
coefficient of the Hilbert polynomial obtained from the Hilbert function) is an impor-
tant invariant that is used to describe proper intersections and isolated singularities. In 
order to study improper intersections and non-isolated singularities, in 1993, R. Achilles 
and M. Manaresi introduced the concept of the j-multiplicity as a generalization of the 
Hilbert multiplicity [1] and, in 1997, they also defined a generalized (bivariate) Hilbert 
function using the bigraded ring of the associated graded ring with respect to the max-
imal ideal [2]. In 1999, H. Flenner, L. O’ Carroll and W. Vogel defined the generalized 
Hilbert function using the 0-th local cohomology functor [9, Definition 6.1.5]. Later in 
2003, C. Ciupercă [5] introduced the generalized (bivariate) Hilbert coefficients via the 
approach of R. Achilles and M. Manaresi in [2]. In 2012, C. Polini and Y. Xie defined 
the concepts of the generalized Hilbert polynomial and the generalized Hilbert coeffi-
cients following the approach of H. Flenner, L. O’ Carroll and W. Vogel in [9], and they 
proved that the generalized Hilbert coefficients as defined using the 0-th local cohomol-
ogy functor can also be obtained from the generalized (bivariate) Hilbert function of the 
bigraded ring of the associated graded ring with respect to a suitable ideal [26]. One of 
the fundamental properties proved by C. Polini and Y. Xie illustrates the behavior of the 
generalized Hilbert function under a hyperplane section [26]. Indeed, they proved that 
the first d − 1 generalized Hilbert coefficients j0(I), . . . , jd−2(I), where I is an ideal in 
a Noetherian local ring of dimension d, are preserved after modding a general element. 
This nice property allows us to study the generalized Hilbert coefficients by reduction 
to the lower dimensional case.

The generalized Hilbert coefficients are important invariants of an ideal I in a Noethe-
rian local ring (R, m). It is well-known that the normalized leading coefficient j0(I) (i.e., 
the j-multiplicity of I) was used to prove the refined Bezout’s theorem [9], to detect 
integral dependence of non-m-primary ideals (extension of the fundamental theorem of 
Rees) [8], and to study the depth of the associated graded rings of arbitrary ideals (see 
[25] and [21]). The next normalized coefficient j1(I) is called the generalized first Hilbert 
coefficient of I. If I is m-primary, j1(I) = e1(I) is called the first Hilbert coefficient. It 
is also called the Chern number by W. V. Vasconcelos for its tracking position in distin-
guishing Noetherian filtrations with the same Hilbert multiplicity [31]. The first Hilbert 
coefficient e1(Q), where Q is a parameter ideal, was used to characterize the Cohen–
Macaulay property for large classes of rings [10]. Moreover, G. Colomé-Nin, C. Polini, 
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B. Ulrich and Y. Xie used the generalized first Hilbert coefficient j1(I) to bound the 
number of steps in a process of normalization of ideals of maximal analytic spread [6]. 
Therefore it is very important to establish properties such as the positivity for the gen-
eralized Hilbert coefficients.

In the case of m-primary ideals, there are a number of formulas to compute the 
Hilbert coefficients (see for instance, [17] and [15]). In 1987, C. Huneke provided a formula 
relating the length λ(In+1/JIn) to the difference PI(n) −HI(n), where I is an m-primary 
ideal in a 2-dimensional Cohen–Macaulay local ring, J is a minimal reduction of I, 
PI(n) and HI(n) are respectively the usual Hilbert–Samuel polynomial and the usual 
Hilbert–Samuel function of I [17]. This formula was extended later by S. Huckaba to 
m-primary ideals in Cohen–Macaulay local rings of arbitrary dimension [15]. S. Huckaba 
also established some formulas to compute the Hilbert coefficients of m-primary ideals I, 
and provided conditions in terms of the first Hilbert coefficient e1(I) for the associated 
graded ring of I to be almost Cohen–Macaulay [15].

If I is an m-primary ideal in a Cohen–Macaulay local ring R, the positivity of e1(I)
can be observed from the well-known Northcott’s inequality

e1(I) ≥ e0(I) − λ(R/I) = λ(R/J) − λ(R/I) = λ(I/J),

where J is a minimal reduction of I. By this inequality, one has that e1(I) = 0 if and 
only if I is a complete intersection. Furthermore, when equality holds, the ideal I enjoys 
nice properties. Indeed, it was shown that e1(I) = λ(I/J) if and only if the reduction 
number of I is at most 1, and when this is the case, the associated graded ring of I is 
Cohen–Macaulay (see [17] and [24]).

This paper generalizes the above classical results to ideals of maximal analytic spread. 
In Section 2, we fix the notation and recall some basic concepts and facts that will be 
used throughout the paper. For an ideal I in a d-dimensional Noetherian local ring 
that has maximal analytic spread �(I) = d and satisfies the Gd condition, we establish 
a formula to compute e1(I), where I is a 1-dimensional reduction of I (see Section 2
for the definition of I). We then give a condition in terms of e1(I) for the associated 
graded ring of I to be almost Cohen–Macaulay. This result generalizes [15, Theorem 3.1]. 
In Section 3, we provide a generalized version of [15, Theorem 2.4] relating the length 
λ(In+1/JIn) to the difference PI(n) − HI(n), where I is an ideal in a d-dimensional 
Cohen–Macaulay local ring that satisfies �(I) = d, the Gd condition and the AN−

d−2, 
J is a general minimal reduction of I, PI(n) and HI(n) are respectively the generalized 
Hilbert–Samuel polynomial and the generalized Hilbert–Samuel function of I. As an 
application, we establish some formulas to compute the generalized Hilbert coefficients. 
In the last section, we apply our formula to prove a generalized version of Northcott’s 
inequality, and recover the work of G. Colomé-Nin, C. Polini, B. Ulrich and Y. Xie on 
the positivity of the generalized first Hilbert coefficient j1(I). At the same time, we prove 
that, if equality holds in the generalized Northcott’s inequality, the reduction number 
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of I is at most one and the associated graded ring of I is Cohen–Macaulay. This result 
generalizes the classical results of [17] and [24].

2. Formula for e1(I)

In this paper, we always assume that (R, m, k) is a Noetherian local ring of dimension 
d with maximal ideal m and infinite residue field k (one can always enlarge the residue 
field to be infinite by replacing R by R(z) = R[z]mR[z], where z is a variable over R). 
Let I be an R-ideal. We recall the concept of the generalized Hilbert–Samuel function 
of I. Let G = grI(R) = ⊕∞

n=0I
n/In+1 be the associated graded ring of I. As the homo-

geneous components of G may not have finite length, one considers the G-submodule 
of elements supported on m: W = {ξ ∈ G | ∃ t > 0 such that ξ · mt = 0} = H0

m(G) =
⊕∞

n=0H
0
m (In/In+1). Since W is a finite graded module over grI(R) ⊗R R/mα for some 

α ≥ 0, its Hilbert–Samuel function HW (n) =
∑n

j=0 λ(H0
m (Ij/Ij+1)) is well defined. The 

generalized Hilbert–Samuel function of I is defined to be: HI(n) = HW (n) for every 
n ≥ 0.

The definition of generalized Hilbert–Samuel function was introduced by H. Flenner, 
L. O’ Carroll and W. Vogel in 1999 [9, Definition 6.1.5], and studied later by C. Polini 
and Y. Xie [26] as well as G. Colomé Nin, C. Polini, B. Ulrich and Y. Xie [6]. Since 
dimG W ≤ dimR = d, HI(n) is eventually a polynomial of degree at most d

PI(n) =
d∑

i=0
(−1)iji(I)

(
n + d− i

d− i

)
.

C. Polini and Y. Xie defined PI(n) to be the generalized Hilbert–Samuel polynomial of I
and ji(I), 0 ≤ i ≤ d, the generalized Hilbert coefficients of I [26]. The normalized leading 
coefficient j0(I) is called the j-multiplicity of I (see [1,22], or [26]). The next normalized 
coefficient j1(I) is called the generalized first Hilbert coefficient.

Recall the Krull dimension of the special fiber ring G/mG is called the analytic spread
of I and is denoted by �(I). In general, dimG W ≤ �(I) ≤ d and equalities hold if and 
only if �(I) = d. Therefore j0(I) �= 0 if and only if �(I) = d (see [2] or [22]).

If I is m-primary, each homogeneous component of G has finite length, thus W = G

and the generalized Hilbert–Samuel function coincides with the usual Hilbert–Samuel 
function; in particular, the generalized Hilbert coefficients ji(I), 0 ≤ i ≤ d, coincide with 
the usual Hilbert coefficients ei(I).

The definition of generalized Hilbert coefficients is different from the one given by 
C. Ciupercă [5] where he used the bigraded ring grm(G). Polini and Xie proved that 
the generalized Hilbert coefficients as defined above can also be obtained from the gen-
eralized (bivariate) Hilbert–Samuel function of the bigraded ring grq(G), where q is a 
suitable m-primary ideal, and that the generalized Hilbert coefficients j0(I), . . . , jd−2(I)
are preserved under a general hyperplane section [26].
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We are going to use the tool of general elements to study the generalized Hilbert–
Samuel function. Let I = (a1, . . . , at) and write xi =

∑t
j=1 λijaj for 1 ≤ i ≤ s and 

(λij) ∈ Rst. The elements x1, . . . , xs form a sequence of general elements in I (equiv-
alently x1, . . . , xs are general in I) if there exists a Zariski dense open subset U of kst

such that the image (λij) ∈ U . When s = 1, x = x1 is said to be general in I.
Recall an ideal J ⊆ I is called a reduction of I if JIr = Ir+1 for some non-

negative integer r. The least such r is denoted by rJ(I). A reduction is minimal if 
it is minimal with respect to inclusion. The reduction number r(I) of I is defined as 
min{rJ(I) | J is a minimal reduction of I}. Since R has infinite residue field, the min-
imal number of generators μ(J) of any minimal reduction J of I equals the analytic 

spread �(I). Furthermore, general �(I) elements in I form a minimal reduction J whose 

rJ(I) coincides with the reduction number r(I) (see [28, 2.2] or [18, 8.6.6]). One says 
that J is a general minimal reduction of I if it is generated by �(I) general elements in I.

The ideal I is said to satisfy the Gs+1 condition if for every p ∈ V (I) with ht p = i ≤ s, 
the ideal Ip is generated by i elements, i.e., Ip = (x1, . . . , xi)p for some x1, . . . , xi in I.

From now on, we will assume I has �(I) = d and satisfies the Gd condition. Let 
J = (x1, . . . , xd), where x1, . . . , xd are general elements in I, i.e., J is a general minimal 
reduction of I. For i ≤ d −1, set Ji = (x1, . . . , xi) (with the convention Ji = (0) if i ≤ 0), 
R = R/Jd−1 : I∞, where Jd−1 : I∞ = {a ∈ R | ∃ t > 0 such that a ·It ⊆ Jd−1}, and use 

to denote images in the quotient ring R. Then R is a 1-dimensional Cohen–Macaulay local 
ring and I is m-primary. Hence the generalized Hilbert–Samuel function HI(n) and the 

generalized Hilbert–Samuel polynomial PI(n) are respectively the usual Hilbert–Samuel 
function and the usual Hilbert–Samuel polynomial of I. Note HR(I) and hence PI(n)
do not depend on choices of general elements x1, . . . , xd−1 in I, and PI(n) = e0(I)(n +
1) − e1(I), where e0(I) = λ(R/(xd)) = j0(I) (see [26]). If R is Cohen–Macaulay and I

is m-primary, then e1(I) = e1(I) (see for instance [27, Proposition 1.2]). But they are in 

general not the same.
We will show in Theorem 2.3 that e1(I) (like e1(I), see [15, Theorem 3.1]) character-

izes the depth of the associated graded ring G. For depth(G), we mean the depth of the 

local ring GM , where M = m/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . denotes the maximal homogeneous 
ideal of G. Since depth(G) ≤ dimG = dimR = d, G is said to be Cohen–Macaulay
if depth(G) = d and almost Cohen–Macaulay if depth(G) = d − 1. The condition 

depth(G) ≥ d − 1 is a useful one, especially when one considers questions about the 

behavior of In. It reduces greatly the computation of the generalized Hilbert coefficients 
(see Corollary 3.4 in Section 3).

Theorem 2.3 is achieved from a formula computing e1(I) (see Lemma 2.2 in the follow-
ing). Since we do not have the finite length on R/I, to compare the length λ(In+1/JIn)
(this length is finite by the Gd condition) with λ(In+1

/JI
n), where J is a general minimal 

reduction of I, we need the following lemma.
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Lemma 2.1. Let D ⊆ B ⊆ A and D ⊆ C ⊆ A be finite modules over R such that A/B and 
C/D have finite lengths (while the lengths of B/D and A/C are not necessarily finite). 
Then

λ(A/B) + λ(B ∩ C/D) = λ(C/D) + λ(A/(B + C)).

Proof. By the exact sequences

0→B ∩ C/D→B/D
π1→ (B + C)/C→0,

0→(B + C)/C i1→ A/C→A/(B + C)→0,

0→C/D→A/D
π2→ A/C→0,

0→B/D
i2→ A/D→A/B→0,

we have the following long exact sequences

0→B ∩ C/D→H0
m(B/D)→H0

m((B + C)/C)→0→H1
m(B/D) π̃1→ H1

m((B + C)/C)→0,

0→H0
m((B + C)/C)→H0

m(A/C)→A/(B + C) Δ1→ H1
m((B + C)/C) ĩ1→ H1

m(A/C)→0,

0→C/D→H0
m(A/D)→H0

m(A/C)→0→H1
m(A/D) π̃2→ H1

m(A/C)→0,

0→H0
m(B/D)→H0

m(A/D)→A/B
Δ2→ H1

m(B/D) ĩ2→ H1
m(A/D)→0,

and the commutative diagram

0 → Im(Δ2) → H1
m(B/D) ĩ2→ H1

m(A/D) → 0
↓id ↓π̃2

0 → Ker(ĩ1 ◦ π̃1) → H1
m(B/D) ĩ1◦π̃1→ H1

m(A/C) → 0

with exact rows and isomorphic vertical maps id and π̃2, hence Im(Δ2) ∼= Ker(ĩ1 ◦ π̃1). 
Since Ker(ĩ1 ◦ π̃1) ∼= Ker(ĩ1) = Im(Δ1), we have Im(Δ2) ∼= Im(Δ1). Now by the above 
exact sequences

λ(A/B) + λ(B ∩ C/D) = λ(Im(Δ2)) + λ(H0
m(A/D)) − λ(H0

m(B/D)) + λ(B ∩ C/D)

= λ(Im(Δ1)) + λ(H0
m(A/D)) − λ(H0

m(B/D)) + λ(B ∩ C/D)

= λ(A/(B + C)) + λ(H0
m((B + C)/C)) − λ(H0

m(A/C))

+ λ(H0
m(A/D)) − λ(H0

m(B/D)) + λ(B ∩ C/D)

= λ(A/(B + C)) + λ(H0
m(B/D)) − λ(B ∩ C/D) + λ(C/D)

− λ(H0
m(B/D)) + λ(B ∩ C/D)

= λ(C/D) + λ(A/(B + C)). �
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Applying Lemma 2.1, we obtain the following proposition. Recall if f : Z → Z is a 
function then Δ is the first difference function defined by Δ[f(n)] = f(n) − f(n − 1), 
and Δi is defined as Δi[f(n)] = Δi−1[Δf(n)]. By convention, Δ0[f(n)] = f(n).

Proposition 2.2. Let I be an R-ideal with �(I) = d and that satisfies the Gd condition. 
For general elements x1, . . . , xd in I, set J = (x1, . . . xd), Jd−1 = (x1, . . . , xd−1), and 
R = R/Jd−1 : I∞ as above. Then for every n ≥ 0, one has

(a) λ(In+1/JIn) − λ
[
(Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn

]
= Δ[PI(n) −HI(n)].

(b)
∑∞

n=0
[
λ(In+1/JIn) − λ[(Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn]

]
= e1(I).

Proof. (a) For every n ≥ 0, we have

In+1 + Jd−1 : I∞ → In+1

↓ ↓
JIn + Jd−1 : I∞ → JIn

with 
(
In+1 + Jd−1 : I∞

)
/ (JIn + Jd−1 : I∞) and In+1/JIn all having finite lengths by 

the Gd condition. By Lemma 2.1,

λ(In+1/JIn) = λ
((
In+1 + Jd−1 : I∞

)
/ (JIn + Jd−1 : I∞)

)
+ λ

[
(JIn + Jd−1 : I∞) ∩ In+1/JIn

]
.

Since (JIn + Jd−1 : I∞) ∩ In+1/JIn ∼= (Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn, we have

λ(In+1/JIn) − λ
[
(Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn

]
= λ(In+1

/JI
n)

= (Δ(PI −HI)) (n),

where the latter equality follows from [15, Theorem 2.4]. Now (b) follows by (a) and 
[15, Corollary 2.10]. �

We recall some residual intersection properties. Let Ji = (x1, . . . , xi) (by convention, 
Ji = (0) if i ≤ 0), where x1, . . . , xi are elements in I. Define Ji : I = {a ∈ R | a · I ⊆ Ji}. 
One says that Ji : I is an i-residual intersection of I if Ip = (x1, . . . , xi)p for every 
p ∈ Spec(R) with dimRp ≤ i − 1. An i-residual intersection Ji : I is called a geometric 
i-residual intersection of I if, in addition, Ip = (x1, . . . , xi)p for every p ∈ V (I) with 
dimRp ≤ i. It was shown that if I satisfies the Gs+1 condition, then for general elements 
x1, . . . , xs+1 in I and each 0 ≤ i ≤ s, the ideal Ji : I is a geometric i-residual intersection 
of I, and Js+1 : I is an (s + 1)-residual intersection of I (see [29] or [25, Lemma 3.1]).

Assume R is Cohen–Macaulay. The ideal I is s-weakly residually (S2) (respectively, 
has the weak Artin–Nagata property AN−

s ) if for every geometric i-residual intersection 
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Ji : I, 0 ≤ i ≤ s, the quotient ring R/Ji : I satisfies Serre’s condition (S2) (respectively, 
is Cohen–Macaulay).

The notion of residual intersections was introduced by Artin and Nagata as a gen-
eralization of the concept of linkage to the case where the two “linked” ideals do not 
necessarily have the same height [3]. The issue on the Cohen–Macaulayness of residual 
intersections has been addressed in a series of results (for instance, [16,14,19,29]), which 
require either depth conditions on all of the Koszul homology modules of I such as the 
“strong Cohen–Macaulayness”, or weaker “sliding depth condition”, or depth conditions 
on sufficiently many powers of I.

The following theorem generalizes [15, Theorem 3.1] to ideals that are not necessarily 
m-primary. Notice if R is Cohen–Macaulay and I is m-primary, then e1(I) = e1(I)
[27, Proposition 1.2], and I automatically satisfies �(I) = d, the Gd condition, the 
(d− 2)-weakly residually (S2) as well as the weak Artin–Nagata property AN−

d−2.

Theorem 2.3. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies �(I) = d, 
the Gd condition and the AN−

d−2. Then for a general minimal reduction J = (x1, . . . , xd)
of I, the following statements are equivalent:

(a)
∑∞

n=0 λ(In+1/JIn) = e1(I).
(b) For every n ≥ 0, Jd−1 ∩ In+1 = Jd−1I

n, where Jd−1 = (x1, . . . , xd−1) is defined as 
before.

(c) depth(G) ≥ d − 1.

Proof. Since I satisfies �(I) = d and the Gd condition, one has that Ji : I is a geometric 
i-residual intersection of I, where Ji = (x1, . . . , xi), 0 ≤ i ≤ d − 1 [25]. By the weak 
Artin–Nagata property AN−

d−2, one has that Ji : I∞ = Ji : I = Ji : xi+1 and (Ji :
I∞) ∩ I = (Ji : I) ∩ I = Ji for 0 ≤ i ≤ d − 1 [29]. In particular, (Jd−1 : I∞) ∩ I =
(Jd−1 : I) ∩ I = Jd−1. Therefore for n ≥ 0, (Jd−1 : I∞) ∩ In+1 = Jd−1 ∩ In+1 and 
(Jd−1 : I∞) ∩ JIn = Jd−1 ∩ JIn.

Assume (b) is true. Then for n ≥ 0,

λ
[
(Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn

]
= λ

[
Jd−1 ∩ In+1/Jd−1 ∩ JIn

]
= λ [Jd−1I

n/Jd−1 ∩ JIn] = 0.

And (a) follows by Proposition 2.2 (b).
Now assume (a). By Proposition 2.2 (b), one has that for every n ≥ 0,

λ
[
(Jd−1 : I∞) ∩ In+1/(Jd−1 : I∞) ∩ JIn

]
= 0.

Hence

Jd−1 ∩ In+1 = (Jd−1 : I∞) ∩ In+1 = (Jd−1 : I∞) ∩ JIn = Jd−1 ∩ JIn.
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We use induction on n to prove that for every n ≥ 0, Jd−1∩In+1 = Jd−1I
n. This is clear 

if n = 0. Assume n ≥ 1 and Jd−1 ∩ In = Jd−1I
n−1. Then (b) follows by the following 

equalities:

Jd−1 ∩ In+1 = Jd−1 ∩ JIn

= Jd−1 ∩ (Jd−1I
n + xdI

n)

= Jd−1I
n + Jd−1 ∩ xdI

n

= Jd−1I
n + xd[(Jd−1 : xd) ∩ In]

= Jd−1I
n + xd[Jd−1 ∩ In]

= Jd−1I
n + xdJd−1I

n−1

= Jd−1I
n.

Finally we show (b) is equivalent to (c). Set δ(I) = d − g, where height I = g. We 
use the induction on δ. If δ = 0, the assertion follows because (b) is equivalent to that 
x∗

1, . . . , x
∗
d−1 form a regular sequence on G (see [30, Proposition 2.6]), and the latter is 

equivalent to that depth(G) ≥ d −1. Thus we may assume δ(I) ≥ 1 and the theorem holds 
for smaller values of δ(I). In particular, d ≥ g+1. Since x∗

1, . . . , x
∗
g form a regular sequence 

on G, we may factor out x1, . . . , xg to assume g = 0. Now d = δ(I) ≥ 1. Set S = R/0 : I. 
Then S is Cohen–Macaulay since I satisfies the AN−

d−2. Note dimS = dimR = d, 
grade (IS) ≥ 1, IS still satisfies �(IS) = �(I) = d, the Gd condition and the AN−

d−2 (see 
for instance [29]). We claim that (b) is equivalent to Jd−1S∩In+1S = Jd−1I

nS for every 
n ≥ 0. Indeed, if (b) holds, then clearly Jd−1S ∩ In+1S = Jd−1I

nS for every n ≥ 0. On 
the other hand, if Jd−1S ∩ In+1S = Jd−1I

nS for every n ≥ 0, then

Jd−1 ∩ In+1 ⊆ Jd−1I
n + (0 : I) ∩ In+1 = Jd−1I

n,

by the fact that (0 : I) ∩ I = 0 (see [29]).
By the exact sequence 0 → 0 : I → R → R/0 : I → 0, one has that depth(0 : I) ≥ d. 

Since (0 : I) ∩ I = 0, there is a graded exact sequence

0 → 0 : I → G → grIS(S) → 0.

Hence one has that depth(G) ≥ d − 1 ⇔ depth(grIS(S)) ≥ d − 1. We are done by 
induction hypothesis since δ(IS) = d − grade (IS) < d = δ(I). �
3. Formulas for ji(I), 1 ≤ i ≤ d

In this section we will provide a formula relating the length λ(In+1/JIn) to the 
difference PI(n) −HI(n), where I is an ideal with �(I) = d, and satisfies the Gd condition 
and the AN−

d−2, J is a general minimal reduction of I, PI(n) and HI(n) are respectively 
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the generalized Hilbert–Samuel polynomial and the generalized Hilbert–Samuel function 
of I (see Theorem 3.2). This formula generalizes [15, Theorem 2.4]. Before we state this 
result, we first prove the following lemma. Recall that for any two integers n and t, t ≥ 1, 
the binomial coefficients are defined by 

(
n
t

)
= n·(n−1)···(n−t+1)

t! , and 
(
n
0
)

= 1.

Lemma 3.1. Let H : Z → Z be a polynomial function with H(n) = 0 for all n < 0. Let 
P (n) =

∑d
i=0(−1)iei

(
n+d−i
d−i

)
be the polynomial of H. Then e0 = Δd[P (n)] and

ei =
∞∑

n=i−1

(
n

i− 1

)
Δd[P (n) −H(n)] for 1 ≤ i ≤ d.

Proof. Let h(t) =
∑∞

n=0 H(n)tn be the generating function of H. Then h(t) = Q(t)
(1−t)d+1 , 

where Q(t) = a0 + a1t + . . . + aN tN ∈ Z[t], Q(1) �= 0. By [4, Proposition 4.1.9], one has

ei = Q(i)(1)
i! =

N∑
m=i

(
m

i

)
am for 0 ≤ i ≤ d.

Set am = 0 if m < 0 or m > N . By computation, for n ∈ Z,

Δd[P (n)] = e0 =
∞∑

m=0
am and Δd[H(n)] =

n∑
m=0

am.

Hence

Δd[P (n) −H(n)] =
∞∑

m=n+1
am

and

∞∑
n=i−1

(
n

i− 1

)
Δd[P (n) −H(n)] =

∞∑
n=i−1

(
n

i− 1

) ∞∑
m=n+1

am

=
∞∑

m=i

m−1∑
s=i−1

(
s

i− 1

)
am =

∞∑
m=i

(
m

i

)
am = ei for 1 ≤ i ≤ d. �

Theorem 3.2. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies �(I) = d, 
the Gd condition and the AN−

d−2. Then for a general minimal reduction J = (x1, . . . , xd)
of I, one has that for all n ≥ 0,

λ(In+1/JIn) + ωn(J, I) = Δd[PI(n) −HI(n)],

where ω0(J, I) = λ (R/(Jd−1 : I + I)) − λ[H0
m(R/I)], and for n ≥ 1,
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ωn(J, I) =
d−2∑
i=0

Δd−1−i[λ(K̃i
n−1)] +

d−2∑
i=0

Δd−2−i
[
λ(L̃i

n) − λ(Li
n) + λ(N i

n)
]

−
d−1∑
i=1

λ
[
Ji ∩ In+1/(Ji ∩ JIn + Ji−1 ∩ In+1)

]
− (−1)n

(
d− 1
n

)
β,

and for 0 ≤ i ≤ d − 2 and any integer n (here by convention In = R if n ≤ 0),

K̃i
n−1 = In+1 : xi+1/

(
(In+1 ∩ Ji) : I + In

)
,

L̃i
n = Ji+1 ∩ In/[Ji ∩ In + Ji+1 ∩ In+1 + xi+1I

n−1],

Li
n = ((Ji : I) ∩ In + In+1) :(Ji+1:I)∩In m∞/

[
(Ji : I) ∩ In

+ (Ji+1 : I) ∩ In+1 + xi+1[((Ji : I) ∩ In−1 + In) :In−1 m∞]
]
,

N i
n = ((Ji+1 : I) ∩ In + In+1) :In m∞/

[
(Ji+1 : I) ∩ In + ((Ji : I) ∩ In + In+1) :In m∞]

,

β = λ[H0
m(R/I)] − λ

[
H0

m (R/(0 : I + I))
]
.

Proof. Recall for each 0 ≤ i ≤ d − 1, Ji : I is a geometric i-residual intersection of I, 
where Ji = (x1, . . . , xi) (by convention, Ji = (0) if i ≤ 0). Moreover, for 0 ≤ i ≤ d − 1, 
Ji : I∞ = Ji : I = Ji : xi+1 and (Ji : I∞) ∩ I = (Ji : I) ∩ I = Ji (see [29]). 
Set Ri = R/Ji : I and Gi = grIRi(Ri). Then one has [G0]0 = R/(0 : I + I) and 
[G0]n = [G]n = In/In+1 for every n ≥ 1. (Here [G]i denotes the i-th homogeneous 
component of the graded ring G.) Hence

Δ[HI(0)] = λ[H0
m(R/I)]

= λ
[
H0

m (R/(0 : I + I))
]
+

[
λ[H0

m(R/I)] − λ
[
H0

m (R/(0 : I + I))
]]

= Δ[HIR0(0)] + β,

with β defined above, and Δ[HI(n)] = Δ[HIR0(n)] = λ[H0
m(In/In+1)] for n ≥ 1. There-

fore we have that for n ≥ 0,

Δd[HI(n)] = Δd[HIR0(n)] + (−1)n
(
d− 1
n

)
β, (1)

with the binomial coefficient 
(
d−1
n

)
= 0 if n ≥ d.

We use induction on d to prove the theorem. First assume d = 1. If n = 0, one has

λ(I/J) + ω0(J, I)

= λ(IR0/JR0) + λ (R/(0 : I + I)) − λ[H0
m(R/I)]

= Δ[PIR0(0) −HIR0(0)] + λ (R/(0 : I + I)) − λ[H0
m(R/I)]

= Δ[PIR0(0)] − λ (R/(0 : I + I)) + λ (R/(0 : I + I)) − λ[H0
m(R/I)]

= Δ[PI(0)] − λ[H0
m(R/I)] = Δ[PI(0) −HI(0)],
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where the second equality follows from [15, Theorem 2.4] since R0 is a 1-dimensional 
Cohen–Macaulay local ring and IR0 is mR0-primary, and the fourth equality follows by 
Δ[PIR0(0)] = Δ[PI(0)] = j0(I) by Lemma 3.1. If n ≥ 1, then ωn(J, I) = 0, and one has

λ(In+1/JIn) + ωn(J, I) = λ(In+1R0/JInR0)

= Δ[PIR0(n) −HIR0(n)] = Δ[PI(n) −HI(n)],

where the second equality again follows from [15, Theorem 2.4] and the third equality 
follows by Lemma 3.1 and the fact that Δ[HIR0(n)] = Δ[HI(n)] for n ≥ 1.

Now assume d ≥ 2 and the assertion holds for d − 1. Notice Δ[PIRd−1(n)] =
Δd[PI(n)] = j0(I) by Lemma 3.1. Furthermore, by Proposition 2.2 (a) and (Jd−1 :
I∞) ∩ I = Jd−1, one has

λ(In+1/JIn) − λ[Jd−1 ∩ In+1/Jd−1 ∩ JIn]

= Δ[PIRd−1(n) −HIRd−1(n)] = Δd[PI(n)] − Δ[HIRd−1(n)]. (2)

If n = 0, one has

λ[Jd−1 ∩ I/Jd−1 ∩ J ] = λ(Jd−1/Jd−1) = 0,

and therefore by equation (2),

λ(I/J) + ω0(J, I)

= Δd[PI(0)] − Δ[HIRd−1(0)] + λ (R/(Jd−1 : I + I)) − λ[H0
m(R/I)]

= Δd[PI(0)] − λ (R/(Jd−1 : I + I)) + λ (R/(Jd−1 : I + I)) − λ[H0
m(R/I)]

= Δd[PI(0)] − λ[H0
m(R/I)]

= Δd[PI(0) −HI(0)].

Assume n ≥ 1. Then we have the following exact sequences for any integer n

0 → K0
n−1 → H0

m([G0]n−1)
x∗
1→ H0

m([G0]n) → H0
m([G0]n)/x∗

1H
0
m([G0]n−1) → 0,

0 → L0
n → H0

m([G0]n)/x∗
1H

0
m([G0]n−1) → H0

m([G1]n) → N0
n → 0,

where

K0
n−1 =

[
((0 : I) ∩ In + In+1) :In−1 x1

]
∩
[
((0 : I) ∩ In−1 + In) :In−1 m∞]

/((0 : I) ∩ In−1 + In),

L0
n = ((0 : I) ∩ In + In+1) :(J1:I)∩In m∞/

[
(0 : I) ∩ In + (J1 : I) ∩ In+1

+ x1[((0 : I) ∩ In−1 + In) :In−1 m∞]
]
,

N0
n = ((J1 : I) ∩ In + In+1) :In m∞/

[
(J1 : I) ∩ In + ((0 : I) ∩ In + In+1) :In m∞]

.
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Note ((0 : I) ∩ In + In+1) :In−1 x1/((0 : I) ∩ In−1 + In) has finite length because G is 
Cohen–Macaulay on the punctured spectrum by [20, Theorem 3.1]. Hence

K0
n−1 = ((0 : I) ∩ In + In+1) :In−1 x1/((0 : I) ∩ In−1 + In).

Therefore

Δd[HIR0(n)] = Δd−2[λ[H0
m([G0]n)] − λ[H0

m([G0]n−1)]
]

= Δd−2[λ[H0
m([G0]n)/x∗

1H
0
m([G0]n−1)] − λ(K0

n−1)
]

= Δd−2[λ[H0
m([G1]n)]

]
+ Δd−2[λ(L0

n)] − Δd−2[λ(N0
n)] − Δd−2[λ(K0

n−1)]

= Δd−1[HIR1(n)] + Δd−2[λ(L0
n) − λ(N0

n) − λ(K0
n−1)]. (3)

Observe for every n ≥ 0, one has the following diagram

In+1 + J1 : I∞ → In+1

↓ ↓
JIn + J1 : I∞ → JIn.

By Lemma 2.1, the induction hypothesis, and equation (3), one has

λ(In+1/JIn)

= λ(In+1R1/JInR1) + λ[J1 ∩ In+1/J1 ∩ JIn]

= Δd−1[PIR1(n) −HIR1(n)] − ωn(JR1, IR1) + λ[J1 ∩ In+1/J1 ∩ JIn]

= Δd[PIR0(n)] − Δd[HIR0(n)] + Δd−2[λ(L0
n) − λ(N0

n) − λ(K0
n−1)]

− ωn(JR1, IR1) + λ[J1 ∩ In+1/J1 ∩ JIn]

= Δd[PIR0(n) −HIR0(n)]

−
[
ωn(JR1, IR1) + Δd−2[λ(K0

n−1)] + Δd−2[−λ(L0
n) + λ(N0

n)]

− λ[J1 ∩ In+1/J1 ∩ JIn]
]
. (4)

Again by (0 : I) ∩ In = 0 for n ≥ 1, one has

λ(K0
n−1) = λ

[
((0 : I) ∩ In + In+1) :In−1 x1/

(
(0 : I) ∩ In−1 + In

) ]
= λ

[ (
((0 : I) ∩ In + In+1) :In−1 x1 + 0 : I

)
/(In + 0 : I)

]
= λ

[
((0 : I) ∩ In + In+1) : x1/(In + 0 : I)

]
− λ

[
((0 : I) ∩ In + In+1) : x1/

(
((0 : I) ∩ In + In+1) :In−1 x1 + 0 : I

) ]
= λ

[
In+1 : x1/(In + 0 : I)

]
− λ

[
In+1 : x1/

(
In+1 :In−1 x1 + 0 : I

) ]
= Δ[λ(K̃0

n−1)] + λ
[
In : x1/(In−1 + 0 : I)] − λ[(In+1 : x1 + In−1)/(0 : I + In−1)

]
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= Δ[λ(K̃0
n−1)] + λ

[
In : x1/(In+1 : x1 + In−1)

]
= Δ[λ(K̃0

n−1)] + λ
[
(x1) ∩ In/(x1) ∩ In+1 + x1I

n−1]
= Δ[λ(K̃0

n−1)] + λ(L̃0
n).

Now by the definition of ωn,

ωn(JR1, IR1) + Δd−2[λ(K0
n−1)] + Δd−2[−λ(L0

n) + λ(N0
n)] − λ[J1 ∩ In+1/J1 ∩ JIn]

= ωn(JR1, IR1) + Δd−1[λ(K̃0
n−1)] + Δd−2[λ(L̃0

n) − λ(L0
n) + λ(N0

n)]

− λ[J1 ∩ In+1/J1 ∩ JIn]

= ωn(JR0, IR0). (5)

Therefore by equations (4), (5) and (1), we have for n ≥ 1,

λ(In+1/JIn) = Δd[PIR0(n) −HIR0(n)] − ωn(JR0, IR0)

= Δd[PI(n) −HI(n)] −
[
ωn(JR0, IR0) − (−1)n

(
d− 1
n

)
β
]

= Δd[PI(n) −HI(n)] − ωn(J, I). �
By Theorem 3.2 and Lemma 3.1, we obtain formulas to compute the generalized 

Hilbert coefficients.

Corollary 3.3. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies �(I) = d, 
the Gd condition and the AN−

d−2. Then for a general minimal reduction J = (x1, . . . , xd)
of I, one has

∞∑
n=i−1

(
n

i− 1

)[
λ(In+1/JIn) + ωn(J, I)

]
= ji(I) for 1 ≤ i ≤ d,

where ωn(J, I) is defined as in Theorem 3.2. In particular, if d = 1,

j1(I) =
∞∑

n=0
λ(In+1/JIn) + λ (R/(0 : I + I)) − λ[H0

m(R/I)],

and if d ≥ 2,

j1(I) =
∞∑

n=0
λ(In+1/JIn) + λ (R/(Jd−1 : I + I)) − λ[H0

m (R/(0 : I + I))]

+
d−3∑[

λ(Li
0) − λ(N i

0)
]

i=0
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+
∞∑

n=1

[
λ(L̃d−2

n ) − λ(Ld−2
n ) + λ(Nd−2

n )
]

−
∞∑

n=1

d−1∑
i=1

λ
[
Ji ∩ In+1/

(
Ji ∩ JIn + Ji−1 ∩ In+1)] .

Proof. If d = 1, by Theorem 3.2, one has ω0(J, I) = λ (R/(0 : I + I))− λ[H0
m(R/I)] and 

ωn(J, I) = 0 for n ≥ 1. Hence

j1(I) =
∞∑

n=0

[
λ(In+1/JIn) + ωn(J, I)

]
=

∞∑
n=0

λ(In+1/JIn) + λ (R/(0 : I + I)) − λ[H0
m(R/I)].

Assume d ≥ 2. Observe for 0 ≤ i ≤ d − 2, since K̃i
−1 = 0 and L̃i

0 = 0, one has ∑∞
n=1 Δj [λ(K̃i

n−1)] = 0 and 
∑∞

n=1 Δj [λ(L̃i
n)] = 0 for j ≥ 1. Since for 0 ≤ i ≤ d − 3, 

Li
−1 = 0 and N i

−1 = 0, one has 
∑∞

n=1 Δj [λ(Li
n)] = −Li

0 and 
∑∞

n=1 Δj [λ(N i
n)] = −N i

0
for j ≥ 1. Hence by Theorem 3.2,

j1(I) =
∞∑

n=0

[
λ(In+1/JIn) + ωn(J, I)

]
=

∞∑
n=0

λ(In+1/JIn) + λ (R/(Jd−1 : I + I)) − λ[H0
m(R/I)]

+
d−3∑
i=0

[
λ(Li

0) − λ(N i
0)
]

+
∞∑

n=1

[
λ(L̃d−2

n ) − λ(Ld−2
n ) + λ(Nd−2

n )
]

−
∞∑

n=1

d−1∑
i=1

λ
[
Ji ∩ In+1/Ji ∩ JIn + Ji−1 ∩ In+1]

− β

[
d−1∑
n=0

(−1)n
(
d− 1
n

)]
+ β,

which is equal to the desired result since 
∑d−1

n=0(−1)n
(
d−1
n

)
= 0 and

β = λ
[
H0

m(R/I)
]
− λ

[
H0

m (R/(0 : I + I))
]
. �

With some depth conditions, we can greatly reduce the computation of the generalized 
Hilbert coefficients.
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Corollary 3.4. Assume R is Cohen–Macaulay of dimension d ≥ 2. Let I be an R-ideal 
which satisfies �(I) = d, the Gd condition and the AN−

d−2. If depth(G) ≥ d − 1 and 
depth (R/I) ≥ min{dimR/I, 1}, then for a general minimal reduction J = (x1, . . . , xd)
of I, one has

j1(I) =
∞∑

n=0
λ(In+1/JIn) + λ (R/(Jd−1 : I + I)) − λ

[
H0

m (R/(0 : I + I))
]

+
∞∑

n=1
λ
[
In/

(
Jd−1I

n−1 + (Jd−2I
n−1 + In+1) :In m∞)]

.

Proof. First notice if I is m-primary, then j1(I) = e1(I) =
∑∞

n=0 λ(In+1/JIn) by 
[15, Theorem 3.1]. Since grade I = d and λ(In/In+1) < ∞ for every n ≥ 0,

λ (R/(Jd−1 : I + I)) − λ
[
H0

m (R/(0 : I + I))
]

+
∞∑

n=1
λ
[
In/

(
Jd−1I

n−1 + (Jd−2I
n−1 + In+1) :In m∞)]

= λ(R/I) − λ(R/I) +
∞∑

n=1
λ
[
In/(Jd−1I

n−1 + In)
]

= 0

and the result holds.
Now we assume I is not m-primary. Hence depth (R/I) ≥ 1. We use induction on i to 

prove depth (R/(Ji : I + I)) ≥ 1 for 0 ≤ i ≤ d − 2, where Ji = (x1, . . . , xi) is defined as 
before. If i = 0, by the exact sequence

0 → 0 : I → R/I → R/(0 : I + I) → 0,

and depth(0 : I) = d ≥ 2 (see [29]), we have depth (R/(0 : I + I)) ≥ min{depth(0 :
I) − 1, depth(R/I)} ≥ 1. Let 1 ≤ i ≤ d − 2 and assume depth (R/(Ji−1 : I + I)) ≥ 1. By 
the exact sequence

0 → Ji : I/ (Ji−1 : I + (xi)) → R/ (Ji−1 : I + (xi)) → R/Ji : I → 0,

one has depth (Ji : I/ (Ji−1 : I + (xi))) ≥ min{depth (R/ (Ji−1 : I + (xi))) , depth(R/Ji :
I) + 1} = min{d − i, d − i + 1} = d − i ≥ 2. Since

(Ji : I + I)/(Ji−1 : I + I) ∼= Ji : I/ (Ji−1 : I + (Ji : I) ∩ I) = Ji : I/ (Ji−1 : I + (xi)) ,

we have the following exact sequence

0 → Ji : I/ (Ji−1 : I + (xi)) → R/(Ji−1 : I + I) → R/(Ji : I + I) → 0,
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and therefore depth (R/(Ji : I + I)) ≥ min{depth (Ji : I/ (Ji−1 : I + (xi)))−1, depth(R/

(Ji−1 : I + I))} ≥ min{2 − 1, 1} = 1. Hence we have (Ji : I + I) :R m∞ = Ji : I + I for 
0 ≤ i ≤ d − 2.

For 1 ≤ i ≤ d − 3, one has

Li
0 = (Ji : I + I) :Ji+1:I m∞/

[
Ji : I + Ji+1 + xi+1[(Ji : I + R) :R m∞]

]
= [((Ji : I + I) :R m∞) ∩ (Ji+1 : I)] /(Ji : I + Ji+1)

= (Ji : I + I) ∩ (Ji+1 : I)/(Ji : I + Ji+1)

= [Ji : I + I ∩ (Ji+1 : I)] /(Ji : I + Ji+1) = (Ji : I + Ji+1)/(Ji : I + Ji+1) = 0,

N i
0 = (Ji+1 : I + I) :R m∞/

[
Ji+1 : I + (Ji : I + I) :R m∞]

= (Ji+1 : I + I)/(Ji+1 : I + Ji : I + I) = 0.

Since depth(G) ≥ d −1, for n ≥ 1 and 1 ≤ i ≤ d −1, by a similar proof as in Theorem 2.3,

Ji ∩ In+1/
(
Ji ∩ JIn + Ji−1 ∩ In+1) = JiI

n/
(
Ji ∩ JIn + Ji−1 ∩ In+1) = 0,

L̃d−2
n = Jd−1 ∩ In/[Jd−2 ∩ In + Jd−1 ∩ In+1 + xd−1I

n−1]

= Jd−1I
n−1/

(
Jd−2I

n−1 + Jd−1I
n + xd−1I

n−1) = Jd−1I
n−1/Jd−1I

n−1 = 0,

Ld−2
n = (Jd−2 ∩ In + In+1) :Jd−1∩In m∞/

[
Jd−2 ∩ In + Jd−1 ∩ In+1

+ xd−1[((Jd−2 : I) ∩ In−1 + In) :In−1 m∞]
]

= (Jd−2I
n−1 + In+1) :Jd−1In−1 m∞/

[
Jd−2I

n−1 + Jd−1I
n

+ xd−1[((Jd−2 : I) ∩ In−1 + In) :In−1 m∞]
]

= (Jd−2I
n−1 + In+1) :Jd−1In−1 m∞/

[
Jd−2I

n−1

+ xd−1[((Jd−2 : I) ∩ In−1 + In) :In−1 m∞]
]

= 0,

since

(Jd−2I
n−1 + In+1) :Jd−1In−1 m∞

=
[
(Jd−2I

n−1 + In+1) :R m∞]
∩ (Jd−2I

n−1 + xd−1I
n−1)

= Jd−2I
n−1 +

[
(Jd−2I

n−1 + In+1) :R m∞]
∩ xd−1I

n−1

= Jd−2I
n−1 + xd−1

[[
(Jd−2I

n−1 + In+1) :R m∞]
:In−1 xd−1

]
= Jd−2I

n−1 + xd−1
[
(Jd−2I

n−1 + In+1) :In−1 xd−1m
∞]

= Jd−2I
n−1 + xd−1

[[
(Jd−2I

n−1 + In+1) :R xd−1
]

:In−1 m∞]
= Jd−2I

n−1 + xd−1
[
((Jd−2 : I) ∩ In−1 + In) :In−1 m∞]

.
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Finally since for n ≥ 1, λ(In/Jd−1 ∩ In + In+1) < ∞, one has

Nd−2
n = (Jd−1 ∩ In + In+1) :In m∞/

[
Jd−1 ∩ In + (Jd−2 ∩ In + In+1) :In m∞]

= In/
[
Jd−1I

n−1 + (Jd−2I
n−1 + In+1) :In m∞]

,

and by Corollary 3.3,

j1(I) =
∞∑

n=0
λ(In+1/JIn) + λ (R/(Jd−1 : I + I)) − λ

[
H0

m (R/(0 : I + I))
]
+

∞∑
n=1

λ(Nd−2
n )

=
∞∑

n=0
λ(In+1/JIn) + λ (R/(Jd−1 : I + I)) − λ[H0

m (R/(0 : I + I))]

+
∞∑

n=1
λ
[
In/

(
Jd−1I

n−1 + (Jd−2I
n−1 + In+1) :In m∞)]

. �

4. Generalized Northcott’s inequality

In 1959, D. G. Northcott proved a basic lower bound for the first Hilbert coefficient 
e1(I), which can be restated as e1(I) ≥ λ(I/J), where I is an m-primary ideal in a 
Cohen–Macaulay local ring R, J is a minimal reduction of I [23]. By this inequality, he 
obtained that, in order that I is generalized by a system of parameters, it is necessary 
and sufficient that the first Hilbert coefficient e1(I) vanishes [23]. J. P. Fillmore extended 
Northcott’s result to Cohen–Macaulay modules (see [7]). Later, C. Huneke (see [17]) 
and A. Ooishi (see [24]) proved that equality holds (i.e., e1(I) = λ(I/J)) if and only 
if the reduction number of I is at most 1 (i.e., I2 = JI). When this is the case, by 
Valabrega–Valla criterion, the associated graded ring of I is Cohen–Macaulay and the 
Hilbert function HI(n) is easily described (see for instance [27]). This result has been 
extended to the ideal filtrations of Cohen–Macaulay rings by Guerrieri and Rossi in [13]. 
Goto and Nishida in [11] generalized the inequality, with suitable correction terms, to 
any local ring not necessarily Cohen–Macaulay and they studied the equality in the 
Buchsbaum case. All of their results are based on the condition that the ideal filtrations 
must have finite colength (like the m-primary case), a condition that is required to define 
the classical Hilbert function.

As an application of Corollary 3.3, we generalize Northcott’s inequality to ideals that 
are not necessarily m-primary.

Theorem 4.1. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies �(I) = d, 
the Gd condition and the weakly (d − 2)-residually (S2). Then for a general minimal 
reduction J = (x1, . . . , xd) of I, one has the following generalized Northcott’s inequality:

j1(I) ≥ λ(I/J) + λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] .
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In particular, if I is m-primary, then the above residual conditions are automatically 
satisfied, the length λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] = 0, and the above in-
equality becomes the original Northcott’s inequality j1(I) ≥ λ(I/J).

Proof. Set S = R/Jd−2 : I, where Jd−2 = (x1, . . . , xd−2). Then S is Cohen–Macaulay of 
dimension 2 since R is weakly (d − 2)-residually (S2). Furthermore, j1(I) = j1(IS), IS
satisfies �(IS) = 2, the G2 condition and the AN−

0 (see [26] and [29]). By Corollary 3.3, 
we have

j1(I) = j1(IS)

=
∞∑

n=0
λ(In+1S/JInS) + λ (S/(xd−1S :S IS + IS)) − λ

[
H0

m(S/IS)
]

+
∞∑

n=1

{
λ
[
(xd−1S) ∩ InS/

(
(xd−1S) ∩ In+1S + xd−1I

n−1S
)]

− λ
[
In+1S :(xd−1S:SIS)∩InS m∞/

(
(xd−1S :S IS) ∩ In+1S + xd−1(InS :In−1S m∞)

)]}
+

∞∑
n=1

λ
[
((xd−1S :S IS) ∩ InS + In+1S) :InS m∞/

(
(xd−1S :S IS) ∩ InS

+ In+1S :InS m∞)]
−

∞∑
n=1

λ
[
xd−1S ∩ In+1S/xd−1S ∩ JInS

]
≥ λ(I/J) + λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] .

The reason is in the following. First by Lemma 2.1 and the diagram

In+1S → xd−1S ∩ In+1S

↓ ↓
JInS → xd−1S ∩ JInS,

one has λ(In+1S/JInS) = λ(xd−1S ∩ In+1S/xd−1S ∩ JInS) + λ
(
In+1S/

(
JInS +

xd−1S ∩ In+1S
))

. Therefore

∞∑
n=0

λ(In+1S/JInS) −
∞∑

n=1
λ
[
xd−1S ∩ In+1S/xd−1S ∩ JInS

]
= λ(IS/JS) +

∞∑
n=1

[
λ(In+1S/JInS) − λ

[
xd−1S ∩ In+1S/xd−1S ∩ JInS

]]
= λ(I/J) +

∞∑
n=1

λ
[
In+1S/

(
JInS + xd−1S ∩ In+1S

)]
≥ λ(I/J). (6)
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Next, since (xd−1S :S IS) ∩ IS = xd−1S, one has

λ (S/(xd−1S :S IS + IS))

= λ (S/(xd−1S :S IS + JS)) − λ ((xd−1S :S IS + IS)/(xd−1S :S IS + JS))

= λ (S/(xd−1S :S IS + JS)) − λ (IS/ ((xd−1S :S IS) ∩ IS + JS))

= λ (S/(xd−1S :S IS + JS)) − λ(IS/JS). (7)

By the fact that λ(IS/JS) < ∞, one also has

λ
[
H0

m(S/IS)
]

= λ
[
IS :S m∞/IS

]
= λ

[
JS :S m∞/IS

]
= λ

[
JS :S m∞/JS

]
− λ(IS/JS).

(8)

Moreover, since depth(S/xd−1S) ≥ 1 (see [29]), for every p ∈ Ass(S/xd−1S), one has 
that p is not maximal and ISp = (xd−1)Sp = Jp if p ∈ V (I), or otherwise Ip = Rp. 
Hence

[(xd−1S :S IS) ∩ (JS :S m∞)]
p

= xd−1Sp

for every p ∈ Ass(S/xd−1S), which yields that (xd−1S :S IS) ∩ (JS :S m∞) = xd−1S. 
Therefore

(xd−1S :S IS + JS) ∩ (JS :S m∞) = JS + (xd−1S :S IS) ∩ (JS :S m∞) = JS. (9)

Now by equations (7), (8), (9), Lemma 2.1 and the diagram

S → JS :S m∞

↓ ↓
xd−1S :S IS + JS → JS,

one has

λ (S/(xd−1S :S IS + IS)) − λ
[
H0

m(S/IS)
]

= [λ (S/(xd−1S :S IS + JS)) − λ(IS/JS)] − [λ (JS :S m∞/JS) − λ(IS/JS)]

= λ (S/(xd−1S :S IS + JS)) − λ (JS :S m∞/JS)

= λ (S/(xd−1S :S IS + JS :S m∞)) − λ ((xd−1S :S IS + JS) ∩ (JS :S m∞)/JS)

= λ (S/(xd−1S :S IS + JS :S m∞)) − λ(JS/JS)

= λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) : m∞)] .

Finally for n ≥ 1,
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λ
[
xd−1S ∩ InS/(xd−1S ∩ In+1S + xd−1I

n−1S)
]

− λ
[
In+1S :(xd−1S:SIS)∩InS m∞/

(
(xd−1S :S IS) ∩ In+1S + xd−1(InS :In−1S m∞)

)]
= λ

[
xd−1S ∩ InS/(xd−1S ∩ In+1S + xd−1I

n−1S)
]

− λ
[
In+1S :xd−1S ∩ InS m∞/

(
xd−1S ∩ In+1S + xd−1(InS :In−1S m∞)

)]
≥ 0,

since there is a map

In+1S :xd−1S ∩ InS m∞ → xd−1S ∩ InS/(xd−1S ∩ In+1S + xd−1I
n−1S)

with kernel

[
In+1S :xd−1S ∩ InS m∞]

∩
[
xd−1S ∩ In+1S + xd−1I

n−1S
]

= xd−1S ∩ In+1S +
[
In+1S :xd−1S ∩ InS m∞]

∩ xd−1I
n−1S

= xd−1S ∩ In+1S +
[
xd−1I

nS :xd−1S ∩ InS m∞]
∩ xd−1I

n−1S

= xd−1S ∩ In+1S + xd−1(InS :In−1S m∞),

where the second equality holds because λ(In+1S/xd−1I
nS) < ∞. �

The following theorem shows that the ideal I enjoys nice properties when equality 
holds. It generalizes the classical result of [17] and [24].

Theorem 4.2. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies 
�(I) = d, the Gd condition, the AN−

d−2 and depth(R/I) ≥ min{1, dimR/I}. Then 
for a general minimal reduction J = (x1, . . . , xd) of I, one has that j1(I) = λ(I/J) +
λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] if and only if r(I) ≤ 1. When this is the case, 
the associated graded ring of I is Cohen–Macaulay.

Proof. By Eq. (6) (see p. 195), if j1(I) = λ(I/J) + λ[R/(Jd−1 :R I + (Jd−2 :R I + I) :R
m∞)] then for every n ≥ 1, the length λ 

[
In+1S/

(
JInS + (xd−1S :S IS) ∩ In+1S

)]
= 0. 

Hence

I2 ⊆ JI + (Jd−1 :R I) ∩ I2 = JI

since (Jd−1 :R I) ∩ I2 = Jd−1I by [25, Lemma 3.2]. Now the desired result follows from 
[20, Theorem 3.1]. �

In the following example, we provide an ideal with equality holds in the generalized 
Northcott’s inequality. Therefore by Theorem 4.2, the reduction number of the ideal is 
1 and the associated graded ring is Cohen–Macaulay. This example is taken from [21].
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Example 4.3. Let R = C�x, y, z�/(x, y) ∩ (x2, z) = C�x, y, z�/(x2, xz, yz) and I = (x, y). 
Then R is a 1-dimensional Cohen–Macaulay local ring and I is a Cohen–Macaulay ideal of 
height 0 which satisfies �(I) = 1, the G1 condition, and the AN−

−1. By computations, the 
generalized Hilbert–Samuel polynomial is PI(n) = 2(n +1) −2. Hence j0(I) = j1(I) = 2. 
For a general minimal reduction J = (ξ) of I, one has

λ(I/J) + λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)]

= λ
[
(x, y)/(ξ)

]
+ λ

[
C�x, y, z�/(x, y, z)

]
= 1 + 1 = j1(I).

Therefore by Theorem 4.2, the reduction number r(I) = 1 and the associated graded 
ring grI(R) is Cohen–Macaulay (indeed, by computations, JI = I2 and grI(R) ∼=
C[x, y, z, t, u]/(x, y, zu, t2, zt)).

As an application of Theorem 4.2, we obtain the following corollary.

Corollary 4.4. Assume R is Cohen–Macaulay. Let I be an R-ideal which satisfies �(I) = d, 
the Gd condition and the weakly (d − 2) residually (S2). Then for a general minimal 
reduction J = (x1, . . . , xd) of I, one has

(a) j1(I) ≥ 0.
(b) j1(I) = λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] if and only if I = J is a minimal 

reduction.
(c) Assume R is excellent. Then j1(I) = λ(I/J) if and only if I is m-primary.
(d) Assume R is excellent. Then j1(I) = 0 if and only if I is a complete intersection.

Proof. (a) and (b) are clear. To prove (c), assume R is excellent. Then

λ [R/ (Jd−1 :R I + (Jd−2 :R I + I) :R m∞)] = 0

implies Jd−1 :R I + (Jd−2 :R I + I) :R m∞ = R. Since �(I) = d, one has Jd−1 :R I �= R. 
Hence (Jd−2 :R I + I) :R m∞ = R, i.e., height (Jd−2 :R I + I) = d. Since R is excellent, 
by [6], height(Jd−2 :R I + I) = max{height I, d − 1} = d, which yields height I = d, i.e., 
I is m-primary. The assertion (d) follows by (b) and (c). �

We remark that (a) and (d) recover the work on the positivity of j1(I) by G. Colomé-
Nin, C. Polini, B. Ulrich and Y. Xie [6].

We will finish the paper by an example from [6] that shows if residual properties do 
not satisfy then the generalized Northcott’s inequality fails to hold. The Macaulay2 code 
for computing this example can be found in [6] which will appear later.

Example 4.5. Let R = k�x, y�/(x3 −x2y) and J = (xyt) for any t ≥ 0. Notice that R is a 
one-dimensional Cohen–Macaulay local ring and �(J) = 1. However, J does not satisfy 
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the G1. By Macaulay2 [12], one sees that j0(J) = t + 1, j1(J) = 2 − t, which is strictly 
less than 0 if t > 2.
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