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We construct a category of quantum polynomial functors 
which deforms Friedlander and Suslin’s category of strict 
polynomial functors. The main aim of this paper is to develop 
from first principles the basic structural properties of this 
category (duality, projective generators, braiding etc.) in 
analogy with classical strict polynomial functors. We then 
apply the work of Hashimoto and Hayashi in this context 
to construct quantum Schur/Weyl functors, and use this to 
provide new and easy derivations of quantum (GLm, GLn)
duality, along with other results in quantum invariant theory.
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1. Introduction

Let k be a commutative ring and choose q ∈ k
×. The category Pd

q of quantum poly-
nomial functors of homogeneous degree d consists of functors Γd

qV → V, where V is the 
category of finite projective k-modules, and Γd

qV is the category with objects natural 
numbers and morphisms given by

HomΓd
qV(m,n) := HomBd

(V ⊗d
m , V ⊗d

n ).
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Here Bd is the Artin braid group, Vm denotes the free k-module of rank n and the action 
of Bd on V ⊗d

m is given in Section 2.2. We think of the category Γd
qV as the category of 

standard Yang–Baxter spaces (Vn, Rn) (Section 2.2), and the morphisms can be viewed 
as degree d regular functions on the quantum Hom-space between standard Yang–Baxter 
spaces (although, as is usual in quantum algebra, only the regular functions are actually 
defined).

The purpose of this paper is to develop the basic structure theory of the category Pd
q

in analogy with Friendlander and Suslin’s work [8]. We first need to develop a theory 
of quantum linear algebra in great generality using Yang–Baxter spaces, and this is 
undertaken in Section 2.

We define morphisms between Yang–Baxter spaces over an algebra, and provide a 
universal characterization of quantum Hom-space algebra in Lemma 2.4. From this for-
malism we can derive many results about quantum Hom-space algebras functorialy. In 
particular, the dual of the Hom-space between two Yang–Baxter spaces of degree d is 
identified with certain braid group intertwiners, generalizing a well-known description of 
q-Schur algebras (Proposition 2.7). We construct the algebra of quantum m × n matrix 
space by specializing this theory to standard Yang–Baxter spaces.

We note that when the Yang–Baxter spaces are equal the quantum Hom space algebras 
have appeared in [19,14], but in the generality studied here these are new. We further 
remark that the general formalism of quantum linear algebra we develop builds on the 
work of Hashimoto–Hayashi [14], but it is not the same. They only consider the quantum 
Hom-space algebra between the same Yang–Baxter spaces, whereas for us it is crucial to 
build in morphisms between different Yang–Baxter spaces.

After the basic of quantum multilinear algebra are in place, we set out to develop the 
theory of quantum polynomial functors. To begin, the functor Γd,m

q : Γd
qV → V given 

by n �→ HomBd
(V ⊗d

m , V ⊗d
n ) is called the quantum divided power functor. Theorem 4.7

states that Γd,m
q is a projective generator of Pd

q when m ≥ d. This uses a finite generation 
property for quantum polynomial functors, which we prove in Proposition 4.5.

Theorem 4.7 has several corollaries. It implies for instance that when n ≥ d we have 
an equivalence

Pd
q
∼= mod(Sq(n, d)),

between the category of quantum polynomial functors of degree d and the category of 
modules over the q-Schur algebra Sq(n, d) that are finite projective over k. It also allows 
us to construct functors which represent weight spaces for representation of the quantum 
general linear group (Corollary 4.10). We note that from this and Proposition 2.7 one 
can immediately deduce the double centralizer property of Jimbo–Schur Weyl duality 
(Corollary 4.11).

In fact Theorem 4.7 is also needed to show that the R-matrix of the quantum general 
linear group are suitably functorial, that is they are natural with respect to morphisms 
in Γd

qV, and thereby define a braiding on Pq :=
⊕∞

d=0 Pd
q (Theorem 5.2). We emphasize 
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that these results are elementary consequences of the definition of quantum polynomial 
functors.

In Section 6 we use the extensive work of Hashimoto and Hayashi [14] to define 
quantum Weyl/Schur functors. We show that these objects are dual to each other in 
Theorem 6.5, and use them to describe the simple objects in Pq. Finally in Section 7 we 
specialize to the case when k is a field of characteristic zero and q is generic, and give 
new and simplified proofs of the invariant theory of quantum GLn. We use Theorem 4.7
to give an easy proof of the duality between quantum GLm and GLn. We also formulate 
and derive the equivalence of this duality to the quantum first fundamental theorem and 
Jimbo–Schur–Weyl duality.

We remark that quantum (GLm, GLn)-duality is due to Zhang [22] and Phúng [19]. 
(Zhang also derives Jimbo–Schur–Weyl duality from (GLm, GLn)-duality.) The quan-
tum FFT that we prove first appears in [9] with a much more complicated proof. (Other 
versions of the quantum FFT appear in [19] and [17].) We remark also that our ap-
proach to quantum invariant theory applies to the other settings where a theory of strict 
polynomial functors has been constructed (cf. Remark 7.4).

Finally, an important problem concerning Pq remains open: to define composition of 
quantum polynomial functors. In Section 8 we discuss obstructions to defining compo-
sition in our setting, and speculate on possible generalizations of our constructions that 
would allow for composition, and thus provide the sought-after quantum plethysm. We 
hope this paper is a significant step in this program.

This work is inspired by our previous works [11–13] on polynomial functors and cat-
egorifications.

2. Quantum matrix spaces

The theory of quantum n × n matrix space is well-known and highly developed (cf. 
[7,20,18]). In order to develop a theory of quantum polynomial functors, we need to 
generalize this theory, namely we study the quantum m ×n-matrix space where m is not 
necessarily equal to n.

We first develop a version of quantum linear algebra in even greater generality using 
general Yang–Baxter spaces (see below). We introduce the notion of morphisms of Yang–
Baxter spaces over algebras, and study their compositions and quantum Hom-spaces. The 
quantum matrix space of interest are then special cases of these more general quantum 
algebras, and algebraic structures such as products and coproducts are easily obtained 
from the general constructions.

2.1. Quantum linear algebras

Let k be a commutative ring. For any two k-modules V, W , throughout this paper 
Hom(V, W ) denotes Homk(V, W ) for brevity, and similarly V ⊗ W denotes the tensor 
product V ⊗k W . For any k-module V , V ∗ denotes the dual space Homk(V, k).
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Let Bd be the Artin braid group: it is generated by T1, T2, · · · , Td−1 subject to the 
relations

TiTj = TjTi if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1
(2.1.1)

Let Sd denote the symmetric group on d letters. For any w ∈ Sd we define Tw ∈ Bd by 
choosing a reduced expression w = si1 · · · si� and setting Tw = Ti1 · · ·Ti� .

For any free k-module V of finite rank, a Yang–Baxter operator is a k-linear operator 
R : V ⊗2 → V ⊗2 such that R satisfies the Yang–Baxter equation, i.e. the following 
equation holds in End(V ⊗3):

R12R23R12 = R23R12R23,

where R12 = R⊗ 1V and R23 = 1V ⊗R.
Such a pair (V, R) is called a Yang–Baxter space. To (V, R) we associate the right 

representation ρd,V : Bd → End(V ⊗d) via the formula

Ti �→ 1V ⊗i ⊗R⊗ 1
V ⊗d−i−1 .

Often we suppress R in the notation and refer to a free k-module V as a “Yang–Baxter 
space”. In this case, the operator R is implicit and when necessary is denoted RV . For now 
the operator R is quite general, in Section 2.2 we will specialize to a specific (standard) 
set of R-matrices.

Now consider two Yang–Baxter spaces V, W . Let T (V, W ) be the tensor algebra of 
Hom(V, W ), which is graded

T (V,W ) =
⊕
d≥0

T (V,W )d,

where

T (V,W )d := Hom(V,W )⊗d � Hom(V ⊗d,W⊗d).

Let I(V, W ) be the two sided ideal generated by

R(V,W ) := {X ◦RV −RW ◦X | X ∈ Hom(V ⊗2,W⊗2)}.

The ideal I(V, W ) is homogeneous

I(V,W ) =
⊕
d≥0

I(V,W )d,

where I(V, W )d is spanned by
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Hom(V,W )⊗i−1 ⊗R(V,W ) ⊗ Hom(V,W )⊗d−i−1

for i = 1, 2, ..., d − 1. We define

A(V,W ) := T (V,W )/I(V,W ). (2.1.2)

The algebra A(V, W ) is called the quantum Hom-space algebra from W to V (cf. [19, 
§3] and [14, §3]).

Remark 2.1. While it may seem confusing to denote by A(V, W ) the morphisms from
W to V , this is inherent to the quantum point-of-view. One should think of A(V, W ) as 
the ring of regular functions on the space of morphisms from W to V (even though – as 
is typical in the quantum setting – the latter is not defined). Classically, i.e. when the 
Yang–Baxter operators are just the flip maps, A(V, W ) equals S(Hom(V, W )), which is 
of course isomorphic to the regular functions on Hom(W, V ).

A(V, W ) has a natural grading

A(V,W ) =
⊕
d≥0

A(V,W )d,

where

A(V,W )d = T (V,W )d/I(V,W )d. (2.1.3)

Let C be a k-algebra with multiplication m : C ×C → C. We introduce the following 
notion.

Definition 2.2. A Yang–Baxter morphism from (V, RV ) to (W, RW ) over C is a k-linear 
map P : V → W ⊗ C such that the following diagram commutes:

V ⊗2

RV

P (2)

W⊗2 ⊗ C

RW⊗1C

V ⊗2 P (2)

W⊗2 ⊗ C

(2.1.4)

Here P (2) is the composition:

V ⊗2 P⊗P−−−→ W ⊗ C ⊗W ⊗ C
flip−−→ W⊗2 ⊗ C ⊗ C

1⊗m−−−→ W⊗2 ⊗ C.

Let {vi} (resp. {wj}) be a basis of V (resp. W ). With this choice of basis, we can 
write the operator RV in terms of a matrix (Rk�

V,ij),
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vi ⊗ vj �→
∑
k�

Rk�
V,ijwk ⊗ w�. (2.1.5)

Similarly we can express RW in terms of the matrix (Rk�
W,ij).

The following lemma is immediate from the definition of a Yang–Baxter morphism.

Lemma 2.3. Given any k-linear map P : V → W ⊗ C, with

P (vi) =
∑
j

wj ⊗ Pji,

for any i, j, and Pji ∈ C. The map P is a Yang–Baxter morphism over C if and only if 
for any i, j, p, q, the following quadratic relation holds

∑
k,�

Rpq
W,k�PkiP�j =

∑
k,�

Rk�
V,ijPpkPq�. (2.1.6)

Let δV,W : V → W ⊗ Hom(W, V ) be the canonical map induced from the identity 
map Hom(W, V ) → Hom(W, V ). We can precisely describe it: Let {vi} be a basis of V
and {wj} be a basis of W , then δV,W is given by

vi �→
∑
j

wj ⊗ φji,

for any i, where φji : W → V is the map

φji(wk) =
{
vi if k = j

0 otherwise .
(2.1.7)

It is easy to check that δV,W doesn’t depend on the choice of bases.
The map δV,W in further induces a k-linear operator

δV,W : V → W ⊗A(W,V ), (2.1.8)

since A(W, V )1 = Hom(W, V ) is a k-submodule of A(W, V ).

Lemma 2.4. The map δV,W : V → W ⊗ A(W, V ) is a Yang–Baxter morphism over 
A(W, V ).

Proof. Let {vi} (resp. {wj}) be a basis of V (resp. W ). By the construction of δV,W , the 
map δ(2)

V,W : V ⊗2 → W⊗2 ⊗A(W, V ) is given by

vi ⊗ vj �→
∑

wk ⊗ w� ⊗ φkiφ�j ,

k,�
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for any i, j. By Lemma 2.3, we need to check that {φki} satisfies the following quadratic 
relations:

∑
k,�

Rpq
W,k�φkiφ�j =

∑
k,�

Rk�
V,ijφpkφq�,

for any i, j, p, q. These are exactly the quadratic relations defining the algebra A(W, V )
in (2.1.2). �

The following lemma shows that the quantum Hom-space algebra is characterized by 
a universal property. In the case where V = W are the same Yang–Baxter space this 
lemma follows from Theorem 3.2 in [14].

Lemma 2.5. Let (V, RV ), (W, RW ) be two Yang–Baxter spaces. Then the map δV,W :
V → W ⊗A(W, V ) is the unique Yang–Baxter morphism such that for any Yang–Baxter 
morphism P : V → W⊗C over a k-algebra C, there exists a unique morphism of algebras 
P̃ : A(W, V ) → C such that the following diagram commutes:

V
δV,W

P

W ⊗A(W,V )

1W⊗P̃

W ⊗ C

(2.1.9)

Proof. Assume the map P : V → W ⊗ C is given by

vi �→
∑
j

wj ⊗ Pji,

for any i, j, and Pij ∈ C. Then (Pji) satisfies the quadratic relations in (2.1.6). We define 
a map P̃ : Hom(W, V ) → C such that P̃ (φji) = Pji. Then this map uniquely extends to 
a homomorphism of algebras P̃ : A(W, V ) → C, since (φji) and (Pji) satisfies the same 
quadratic relations. Clearly we have the commutative diagram (2.1.9). The uniqueness 
of δV,W is clear. �

Given three Yang–Baxter spaces V, W, U and Yang–Baxter morphisms P : V → W⊗C

and Q : W → U ⊗ D over algebras C and D respectively, we denote by Q ◦ P : V →
U ⊗D ⊗ C the composition of P and Q.

Lemma 2.6. The composition Q ◦P is a Yang–Baxter morphism from (V, RV ) to (U, RU )
over D ⊗ C.

Proof. We choose a basis {vi} in V , {wj} in W , and {uk} in U . Assume P can be 
represented by the matrix (Pij) with respect to the basis {vi} and {wj}, and Q can be 
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represented by the matrix (Qjk) with respect to {wj} and {uk}. Then the composition 
Q ◦P : V → U⊗D⊗C can be represented by the matrix (

∑
s Qjs⊗Psi). By Lemma 2.3, 

it is enough to check that
∑
k,�

Rpq
U,k�(

∑
s

Qks ⊗ Psi)(
∑
t

Q�t ⊗ Ptj) =
∑
k,�

Rk�
V,ij(

∑
s

Qps ⊗ Psk)(
∑
t

Qqt ⊗ Pt�),

(2.1.10)

for any i, j, p, q.
Note that the left hand side is equal to

∑
s,t

(
∑
k,�

Rpq
U,k�QksQ�t) ⊗ PsiPtj (2.1.11)

Since Q is a Yang–Baxter morphism over D, (2.1.11) is equal to
∑
s,t

(
∑
k,�

Rk�
W,stQpkQq�) ⊗ PsiPtj . (2.1.12)

By changing the order of summations, (2.1.12) is equal to
∑
k,�

QpkQq� ⊗ (
∑
s,t

Rk�
W,stPsiPtj). (2.1.13)

Since P is a Yang–Baxter morphism over C, (2.1.13) is equal to
∑
k,�

QpkQq� ⊗ (
∑
s,t

Rst
V,ijPksP�t). (2.1.14)

By switching indices k, � and s, t, (2.1.14) is exactly the right hand side of (2.1.10). �
By Lemma 2.6, the operator δW,V ◦ δU,W is a Yang–Baxter morphism over

A(V,W ) ⊗A(W,U).

Applying Lemma 2.5 to δW,V ◦ δU,W we obtain a morphism of algebras

ΔVWU : A(V,U) → A(V,W ) ⊗A(W,U). (2.1.15)

It preserves degree, i.e. for each d ≥ 0, we have

ΔVWU : A(V,U)d → A(V,W )d ⊗A(W,U)d.

By the universal property of Yang–Baxter morphisms, Δ∗,∗,∗ satisfies co-associativity, 
i.e. for any Yang–Baxter spaces V, W, U, Z, we have
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(1 ⊗ ΔWUZ) ◦ ΔVWZ = (ΔVWU ⊗ 1) ◦ ΔV UZ . (2.1.16)

Let

S(V,W ; d) := (A(W,V )d)∗. (2.1.17)

This space, a kind of “rectangular generalized Schur algebra”, will be used through-
out this paper. We will see below (Section 2.2) that when V = W are the standard 
Yang–Baxter spaces, then S(V, V ; d) is the q-Schur algebra.

From ΔV,W,U , we obtain by duality a k-bilinear map

mUWV : S(W,V ; d) × S(U,W ; d) → S(U, V ; d). (2.1.18)

For any a ∈ S(W, V ; d) and b ∈ S(U, W ; d), we denote by b ◦a the element mUWV (a, b) ∈
S(U, V ; d). It is given by the following composition

A(V,U)d
ΔV WU

b◦a

A(V,W )d ⊗A(W,U)d

a⊗b

k

. (2.1.19)

By co-associativity of Δ∗,∗,∗, we naturally have associativity of m∗,∗,∗, i.e. for any 
Yang–Baxter spaces V, W, U, Z,

mZWV ◦ (1 ×mZUW ) = mVWU ◦ (mUWV × 1). (2.1.20)

The following proposition generalizes [20, Theorem 11.3.1] to the case where V 
= W

and the Hecke algebra is replaced by the braid group. (Note that this proof is simpler; 
in particular no dimension arguments are used and hence we don’t need to produce a 
basis for S(V, W ; d).)

Proposition 2.7. Let V, W be Yang–Baxter spaces. Then there exists a natural isomor-
phism

S(V,W ; d) � HomBd
(V ⊗d,W⊗d).

Proof. We define a representation of Bd on Hom(V ⊗d, W⊗d), where for each i, Ti is the 
following operator

X �→ X ◦ ρd,V (Ti)−1 − ρd,W (Ti)−1 ◦X,

for X ∈ Hom(V ⊗d, W⊗d). Recall that ρd,V (resp. ρd,W ) denotes the right action of 
Bd on V ⊗d (resp. W⊗d). Note that HomBd

(V ⊗d, W⊗d) is the just the invariant space 
Hom(V ⊗d, W⊗d)Bd of Bd on Hom(V ⊗d, W⊗d).
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Similarly we define a representation of Bd on Hom(W⊗d, V ⊗d), where for each i, Ti is 
the following operator

Y �→ Y ◦ ρd,W (Ti) − ρd,V (Ti) ◦ Y,

for Y ∈ Hom(W⊗d, V ⊗d). Note that from (2.1.3) we have that A(W, V )d is the coinvari-
ant space Hom(W⊗d, V ⊗d)Bd

of Bd on Hom(W⊗d, V ⊗d).
Now consider the following perfect non-degenerate pairing

〈·, ·〉 : Homk(V ⊗d,W⊗d) × Hom(W⊗d, V ⊗d) → k,

given by 〈X, Y 〉 := trace(Y ◦ X). It is clear that the representation of Bd on 
Hom(W⊗d, V ⊗d) is contragradient to the representation of Bd on Hom(V ⊗d, W⊗d) with 
respect to the above non-degenerate pairing. Therefore we have a natural isomorphism

(Hom(W⊗d, V ⊗d)Bd
)∗ � Hom(V ⊗d,W⊗d)Bd ,

i.e. there exists a natural isomorphism

S(V,W ; d) � HomBd
(V ⊗d,W⊗d). �

Let Δ : Hom(V, U) → Homk(V, W ) ⊗ Homk(W, U) be the map

Δ(φji) =
∑
s

φjs ⊗ φsi,

where φji ∈ Hom(V, U), φsi ∈ Hom(V, W ) and φjs ∈ Hom(W, U) are defined as in 
(2.1.7) after a choice of bases for V, W, U . The map Δ induces a map of tensor algebras 
Δ : T (V, U) → T (V, W ) ⊗ T (W, U).

Proposition 2.8. Given three Yang–Baxter spaces V, W, U , then the following diagram 
commutes:

S(W,V ; d) ⊗ S(U,W ; d) HomBd
(W⊗d, V ⊗d) ⊗ HomBd

(U⊗d,W⊗d)

S(U, V ; d) HomBd
(U⊗d, V ⊗d)

. (2.1.21)

Proof. Recall that A(V, U) is a quotient of T (V, U) by the relations,
∑
k�

(Rpq
U,k�φki ⊗ φ�j −Rk�

V,ijφpk ⊗ φq�),

for any appropriate indices i, j, p, q after a choice of bases of V, W, U . It is a tedious 
but straight forward to show that the defining quadratic relations for A(V, U) will be 
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sent to zero by the composition map π ⊗ π ◦ Δ : T (V, U) Δ−→ T (V, W ) ⊗ T (W, U) π⊗π−−−→
A(V, W ) ⊗A(W, U), where π is the projection map. It means that we have the following 
commutative diagram

A(V,W ) ⊗A(W,U) T (V,W ) ⊗ T (W,U)
π⊗π

A(V,U)

ΔV,W,U

T (V,U)π

Δ

.

Moreover note that these maps preserve degrees. After taking the dual on each degree 
and applying Proposition 2.7, the commutativity of (2.1.21) follows. �
2.2. Quantum matrix space

We fix a commutative ring k and an element q ∈ k
×. Let Hd be the Iwahori–Hecke 

algebra of type A: it is the k-algebra generated by T1, T2, ..., Td−1 subject to the relations:

TiTj = TjTi if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1

(Ti − q)(Ti + q−1) = 0.

(2.2.22)

The algebra Hd is a quotient of the group algebra of the braid group Bd, by the third 
relation above which we call the “Hecke relation”.

Let (Vn, Rn) be the standard Yang–Baxter space, where Vn = k
n with basis 

e1, e2, · · · , en, and Rn : Vn ⊗ Vn → Vn ⊗ Vn is the k-linear operator defined by:

Rn(ei ⊗ ej) =

⎧⎪⎪⎨
⎪⎪⎩
ej ⊗ ei if i < j

qei ⊗ ej if i = j

(q − q−1)ei ⊗ ej + ej ⊗ ei if i > j

, (2.2.23)

where q ∈ k. The following is well-known and easy to check (see e.g. Lemma 4.8 in [21]).

Lemma 2.9. For any n, Rn : V ⊗2
n → V ⊗2

n is a Yang–Baxter operator. Moreover, Rn

satisfies the Hecke relation in (2.2.22), i.e.

(Rn − q)(Rn + q−1) = 0.

Let ρd,n : Hd → End(V ⊗d
n ) denote the corresponding right Hd-module. Recall the 

map δVn,Vm
: Vn → Vm ⊗Aq(m, n) given in (2.1.8), we can write

δVn,Vm
(ei) =

∑
ej ⊗ xji,
j



J. Hong, O. Yacobi / Journal of Algebra 479 (2017) 326–367 337
where {xji} is the standard basis of Hom(Vm, Vn) mapping ek �→ δikej and δik is the 
Kronecker symbol.

Lemma 2.10. The algebra A(Vm, Vn) is generated by xji, 1 ≤ j ≤ m, 1 ≤ i ≤ n, subject 
to the following relations:

k > � ⇒ xikxi� = qxi�xik

i > j ⇒ xikxjk = qxjkxik

k > � and i > j ⇒ xi�xjk = xjkxi�

k > � and i > j ⇒ xikxj� − xj�xik = (q − q−1)xi�xjk.

Proof. By Lemma 2.4, δVn,Vm
is a Yang–Baxter morphism from (Vn, Rn) to (Vm, Rm)

over Aq(m, n). Then our lemma follows from Lemma 2.3. �
By this lemma, the algebra A(Vm, Vn) is a deformation of the ring of functions on 

the space of m × n matrices over k. Indeed by the above lemma when q = 1 we have 
A(Vm, Vn) ∼= O(Hom(kn, km)), the algebra of functions on Hom(kn, km).

Since from now on we will only be working with the standard Yang–Baxter spaces we 
will drop the V from the notation and write:

Aq(m,n) = A(Vm, Vn)

Aq(m,n)d = A(Vm, Vn)d

Sq(m,n; d) = S(Vm, Vn; d)

We refer to Aq(m, n) as the algebra of quantum m ×n matrices. Note that when m = n

Aq(n, n) is a bialgebra with counit ε : Aq(n, n) → k given by ε(xij) = δij . In fact, 
Aq(n, n) is the well-known algebra of quantum n × n matrices (cf. [21, §4]).

We now record a monomial basis of Aq(m, n). This is easiest to formulate using the 
following ordering. Consider the set {xji : i, j = 1, 2, ...} of infinitely many variables with 
a total order so that

x11 < x21 < x22 < x31 < x22 < x13 < x41 < · · ·

This induces a total order on {xji : 1 ≤ j ≤ m, 1 ≤ i ≤ n}. Now given a monomial 
m =

∏
ij x

aij

ij ∈ Aq(m, n) let �m be the reordered monomial so that the variables appear 
from smallest to biggest. For instance, if m = x2

21x11x
2
31 then �m = x11x

2
21x

2
31.

Lemma 2.11. The set of ordered monomials {�m : m =
∏

ij x
aij

ij , aij ≥ 0} is a basis of 
Aq(m, n).
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Proof. We apply the Bergman Diamond Lemma [3]. The set-up is as follows. Let X =
{xji : 1 ≤ j ≤ m, 1 ≤ i ≤ n} and let 〈X〉 be the free monoid generated by X. Endow 
X with the reverse total order as the one above; 〈X〉 is then endowed with the induced 
lexicographic total order

Let S be the set of relations from Lemma 2.10. Every relation in S is of the form 
m − f where m ∈ 〈X〉, f ∈ k 〈X〉 and m is strictly bigger than every monomial in f (m
is simply the leftmost monomial in each one of the relations above). In other words, this 
order is “compatible with reductions” in the sense of [3]. (Recall for a relation m − f

the corresponding reduction is an endomorphism of k 〈X〉 that maps AmB �→ AfB and 
every other element of 〈X〉 to itself.)

Note that the irreducible monomials, i.e. those unchanged by all reductions, are pre-
cisely the ordered monomials in the statement of the lemma. Therefore by the Diamond 
Lemma, to conclude that these form a basis of Aq(m, n) we need to show that one can 
resolve all minimal ambiguities. This means that any sequence of reductions that one can 
apply to a degree three monomial xikxj�xrs results in the same irreducible monomial. 
This is a straightforward case-by-case analysis. �

As a consequence of Lemma 2.11, as k-modules Aq(m, n) and Aq(m, n)d are free 
over k.

Consider Δ�,m,n = ΔV�,Vm,Vn
: Aq(�, n) → Aq(�, m) ⊗Aq(m, n) defined as in (2.1.15). 

On generators Δ�,m,n is given by

xij �→
m∑

k=1

xik ⊗ xkj .

Usually �, m, n are clear from context and we omit them from the notation.
Recall from (2.1.17) that

Sq(m,n; d) = (Aq(n,m)d)∗.

Note that Sq(n, n; d) is an algebra with the multiplication from (2.1.18), and it is the 
well-known q-Schur algebra (cf. [21, §11]), which is usually denoted Sq(n, d). Thus we 
can regard Sq(m, n; d) as a kind of “rectangular q-Schur algebra” generalizing the m = n

case. These will serve as the morphism spaces in the quantum divided power category 
which we define below.

Let εn : Aq(n, n)d → k be the restriction of ε : Aq(n, n) → k. The following lemma is 
well-known.

Lemma 2.12. εn is the unit of the q-Schur algebra Sq(n, n; d).

Proof. It is enough to check that εn is a counit of Aq(n, n)d, i.e. to check that the 
following diagrams commute:
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Aq(n, n)d
Δ

�

Aq(n, n)d ⊗Aq(n, n)d

1⊗εn

k⊗Aq(n, n)d

, Aq(n, n)d
Δ

�

Aq(n, n)d ⊗Aq(n, n)d

εn⊗1

Aq(n, n)d ⊗ k

But these diagrams are just the degree d part of the left co-unit and right co-unit 
diagrams for Aq(n, n), where ε is the co-unit of Aq(n, n), and hence are known to be 
commutative [20, Section 3.6]. �
3. Main definitions

3.1. Classical polynomial functors

Let V be the category of finite projective k-modules. To motivate our definition of 
quantum polynomial functors we first recall the classical category of strict polynomial 
functors. For any V ∈ V the symmetric group Sd acts on the tensor product V ⊗d by 
permuting factors.

For V ∈ V the d-th divided power of V is defined as the invariants Γd(V ) = (⊗dV )Sd . 
Let ΓdV denote the category consisting of objects V ∈ V and morphisms

HomΓdV(V,W ) = Γd(Hom(V,W )).

The diagonal inclusion Sd ⊂ Sd ×Sd induces a morphism

Γd(U) ⊗ Γd(V ) → Γd(U ⊗ V ).

Composition in ΓdV is then defined as

Γd(Hom(V,U)) ⊗ Γd(Hom(W,V )) Γd(Hom(V,U) ⊗ Hom(W,V ))

Γd(Hom(W,U)).

Let Pd be the category consisting of k-linear functors ΓdV → V. Morphisms Pd are 
natural transformations of functors. Pd is the category of polynomial functors of homo-
geneous degree d.

We remark that this is not the definition of Pd which originally appears in Friedlander 
and Suslin’s work [8] on the finite generation of the cohomology of finite group schemes. 
In their presentation polynomial functors have both source and target the category V, 
and it is required that maps between Hom-spaces are polynomial. In the presentation 
we use, the polynomial condition is encoded in the category ΓdV. For details see [15,16]
and references therein.
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3.2. Definition of quantum polynomial functors

Note that in the above setup, Γd(Hom(V, W )) ∼= HomSd
(V ⊗d, W⊗d). This observation 

motivates our definition of quantum polynomial functors.
For any d ≥ 0, we define quantum divided power category Γd

qV: it consists of objects 
0, 1, 2, ... and the morphisms are defined as

HomΓd
qV(m,n) := HomBd

(V ⊗d
m , V ⊗d

n ). (3.2.24)

We should think of Γd
qV as the category of standard Yang–Baxter spaces (Vn, Rn), and 

morphisms are given by d-th degree part of quantum Hom-space algebras.
A quantum polynomial functor of degree d is defined to be a k-linear functor

F : Γd
qV → V.

We denote by Pd
q the category of quantum polynomial functors of degree d. Morphisms 

are natural transformations of functors.
The category Pd

q is an exact category in the sense of Quillen. Foror the basics on exact 
categories see [6]. Let Pq be the category of quantum polynomial functors of all possible 
degrees,

Pq :=
⊕
d

Pd
q .

Given F ∈ Pq we denote the map on hom-spaces by Fm,n : HomBd
(V ⊗d

m , V ⊗d
n ) →

Hom(F (m), F (n)).

Remark 3.1. When q = 1 our construction recovers the classical category Pd. Indeed 
the natural functor Γd

1V → ΓdV defined by n �→ k
n is an equivalence of categories, and 

induces an equivalence Pd
1
∼= Pd.

Remark 3.2. In the definition of the morphisms (3.2.24) in Γd
qV we can replace Bd by 

Hd since the action of Bd on tensor powers of the standard Yang–Baxter space factors 
through Hd.

Pq has a monoidal structure. For any F ∈ Pd
q and G ∈ Pe

q define the tensor product 
F ⊗ G ∈ Pd+e

q as follows: for any n, (F ⊗ G)(n) := F (n) ⊗ G(n) and for any m, n, the 
map on morphisms is given by the composition
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HomBd+e
(V ⊗d+e

m , V ⊗d+e
n ) HomBd⊗Be

(V ⊗d
m ⊗ V ⊗e

m , V ⊗d
n ⊗ V ⊗e

n )

HomBd
(V ⊗d

m , V ⊗d
n ) ⊗ HomBe

(V ⊗e
m , V ⊗e

n )

Fm,n⊗Gm,n

Hom(F (m), F (n)) ⊗ Hom(G(m), G(n))

Hom(F (m) ⊗G(m), F (n) ⊗G(n))

,

where the second morphism is in fact an isomorphism, which follows from the following 
general lemma.

Lemma 3.3. Let A and B be k-algebras. Given A-modules V1, V2 and B-modules W1, W2

such that V1, V2, W1, W2 are free over k of finite rank, then the natural inclusion

α : HomA(V1, V2) ⊗ HomB(W1,W2) → HomA⊗B(V1 ⊗W1, V2 ⊗W2))

is an isomorphism.

Proof. First of all we can identify Hom(V1, V2) ⊗ Hom(W1, W2) � Hom(V1 ⊗W1, V2 ⊗
W2). Hence the injectivity of α is clear. Given any f ∈ HomA⊗B(V1 ⊗ W1, V2 ⊗ W2)), 
we can write f as 

∑
i ei ⊗ ψi, where {ei} is a basis of Hom(V1, V2), and for each i, 

ψi ∈ Hom(W1, W2). By assumption f intertwines with the action of 1 ⊗ B. Since {ei}
is a basis, it follows that for every i, ψi intertwines with the action of B, i.e. f ∈
Hom(V1, V2) ⊗HomB(W1, W2). Now we can write f =

∑
j φj ⊗ aj , where {aj} is a basis 

of HomB(W1, W2). Note that f also intertwines with A ⊗ 1. It follows that for any j, φj

intertwines with the action of A. It shows the surjectivity of the inclusion α. �
A duality is defined on Pq as follows. We first identify Vm

∼= V ∗
m via the standard 

basis ei, i.e. if e∗1, ..., e∗m denotes the dual basis of V ∗
m then Vm → V ∗

m is given by ei �→ e∗i . 
This induces an identification

σ : HomBd
(V ⊗d

m , V ⊗d
n ) → HomBd

(V ⊗d
n , V ⊗d

m ).

For F ∈ Pd
q we define F � ∈ Pd

q by:

(i) F �(n) := F (n)∗,
(ii) F �

m,n : HomBd
(V ⊗d

m , V ⊗d
n ) → Hom(F �(m), F �(n)) is given by the composition
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HomBd
(V ⊗d

m , V ⊗d
n ) σ HomBd

(V ⊗d
n , V ⊗d

m )
Fn,m

Hom(F (n), F (m))

∼=

Hom(F (m)∗, F (n)∗)

Given a morphism f : F → G in Pq, we define f � : G� → F � by f �(n) = f(n)∗. It is 
straightforward to check that f � is a morphism of polynomial functors. Note that the 
functor ∗ is a contravariant duality functor on V. Therefore � defines a contravariant 
duality � : Pq → Pq.

Lemma 3.4. Given any two quantum polynomial functors F and G of homogeneous de-
gree, then we have a canonical isomorphism

(F ⊗G)� � F � ⊗G�.

Proof. The lemma is routine to check. It follows from the constructions of tensor product 
⊗ and the contravariant functor �. �
3.3. Examples

The identity functor I ∈ P1
q is given by I(n) = Vn. On morphisms it is the identity 

map. We denote by 
⊗d the d-th tensor product functor. It is given by n �→ V ⊗d

n and on 
morphisms by the natural inclusion

HomBd
(V ⊗d

n , V ⊗d
m ) → Hom(V ⊗d

n , V ⊗d
m ).

Notice that 
⊗d = I⊗d. It is also easy to see that the right action of Bd on V ⊗d

n gives 
rise to endomorphisms of 

⊗d as quantum polynomial functors, i.e. for any w ∈ Sd, 
Tw :

⊗d →
⊗d is a morphism.

An important role will be played by the functors

Γd,m
q : n �→ HomBd

(V ⊗d
m , V ⊗d

n ).

Note that Γd,m
q (n) = HomBd

(V ⊗d
m , V ⊗d

n ). By Proposition 2.7 and Lemma 2.11, Γd,m
q is a 

well-defined object in Pq. In particular when m = 1, it gives the d-th q-divided power
Γd
q .
Let χ+ be the character of Bd given by χ+(Ti) = q, and let χ− be the character given 

by χ−(Ti) = −q−1. We define the d-th q-symmetric power Sd
q by

n �→ V ⊗d
n ⊗Bd

χ+,

and the d-th q-exterior power
∧d

q by
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n �→
d∧
q

:= V ⊗d
n ⊗Bd

χ−.

For any n, Sd
q (n) and 

∧d
q(n) are free k-modules of finite rank, hence Sd

q , 
∧d

q are examples 
in Pq.

The quantum polynomial functors Γd
q , S

d
q and 

∧d
q are quantum analogues of divided 

power, symmetric power, exterior power functors. Moreover (Sd
q )� � Γd

q . Indeed when 
q = 1 we recover the classical divided power, symmetric power and exterior power strict 
polynomial functors. For instance, Γd

1(n) = (V ⊗d
n )Sd , which is precisely the d-th divided 

power of Vn. Moreover, Sd
q (n) and 

∧d
q(n) recover the constructions of quantum symmetric 

and exterior powers due to Berenstein and Zwicknagl [5].
We remark also that since we are using the standard Yang–Baxter spaces the action of 

Bd on V ⊗d
n factors through the Hecke algebra Hd. Therefore we could have replaced the 

occurrences of the braid group above by the Hecke algebra. Now note that the characters 
χ± are the only two rank one modules of the Hecke algebra Hd, and they are the quantum 
analogues of trivial and sign representation of symmetric group Sd. The characters χ±
are used here to define the quantum symmetric and exterior powers in the same way 
that the trivial and sign representations are used to define the classical symmetric and 
exterior powers.

3.4. An equivalent characterization of quantum polynomial functors

Given a quantum polynomial functor F of degree d we get a finite projective k-module 
F (n) for any n ≥ 0 and for any m, n, by Proposition 2.7, we get a map:

Fm,n : Sq(m,n; d) → Hom(F (m), F (n)).

This gives rise to maps

F ′
m,n : Sq(m,n; d) ⊗ F (m) → F (n),

and also

F ′′
m,n : F (m) → F (n) ⊗Aq(n,m)d.

The following proposition gives an equivalent characterization of quantum polynomial 
functors in terms of the quantum matrix algebra.

Proposition 3.5. A quantum polynomial functor F of degree d is equivalent to the follow-
ing data:

1. for each positive integer a finite projective k-module F (n) ∈ V;
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2. given any two nonnegative integers m, n a k-linear map

F ′′
m,n : F (m) → F (n) ⊗Aq(n,m)d

such that, for any �, m, n, the following diagrams commute

F (�)
F ′′

�,n

F ′′
�,m

F (n) ⊗Aq(n, �)d

1⊗Δn,m,�

F (m) ⊗Aq(m, �)d
1⊗F ′′

m,n

F (n) ⊗Aq(n,m)d ⊗Aq(n, �)d

(3.4.25)

and for any n,

F (n)

id

F ′′
n,n

F (n) ⊗Aq(n, n)d

1⊗ε

F (n) ⊗ k

(3.4.26)

Here ε : Aq(n, n)d → k is the co-unit map (cf. Lemma 2.12).

Proof. By Proposition 2.7, for any n, m, Aq(n, m)d is dual to HomBd
(V ⊗d

m , V ⊗d
n ) as 

k-modules. Given any element φ ∈ HomBd
(V ⊗d

m , V ⊗d
n ), it is equivalent to give a k-linear 

functional φ̃ : Aq(n, m)d → k.
Given a tuple of data (F (n), F ′′

m,n) which satisfies (3.4.25) and (3.4.26), we can con-
struct a quantum polynomial functor F , which assigns each n ≥ 0 to F (n), and on the 
level of morphisms, for any φ ∈ HomBd

(V ⊗d
m , V ⊗d

n ), we set

F (φ) := (1F (n) ⊗ φ̃) ◦ F ′′
m,n.

For any φ ∈ HomBd
(V ⊗d

m , V ⊗d
n ) and φ ∈ HomBd

(V ⊗d
n , V ⊗d

� ), we need to check that

F (ψ ◦ φ) = F (ψ) ◦ F (φ).

This follows from (3.4.25) and Proposition 2.8 by chasing diagrams. Similarly (3.4.26) im-
plies that for the identity map 1 ∈ HomBd

(V ⊗d
n , V ⊗d

n ), we have F (1) = 1F (n). Therefore 
F is a well-defined quantum polynomial functor.

Conversely, given a quantum polynomial functor F , we have explained in the beginning 
of this subsection how to get a tuple of data (F (n), F ′′

m,n), and (3.4.25) and (3.4.26) easily 
follow from the functor axioms. �
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4. Finite generation and representability

Definition 4.1. The quantum polynomial functors F ∈ Pd
q is m-generated if for any n

the map

F ′
m,n : Sq(m,n; d) ⊗ F (m) → F (n)

is surjective. F is finitely generated if it is m-generated for some m.

Let i = {i1, ..., ir} be a set of positive integers. Define a homomorphism

φi : Aq(n, �) → k

by xk� �→ 1 if k = � and k ∈ i, and otherwise xk� �→ 0. By Lemma 2.10 φi is a well-defined 
homomorphism of algebras. By restriction we get a k-linear map

φd
i : Aq(n,m)d → k.

In other words, φd
i ∈ Sq(m, n; d). For F ∈ Pd

q we get a morphism

Fm,n(φd
i ) ∈ Hom(F (m), F (n)).

Lemma 4.2 (Lemma 2.8, [8]). Let V be a free k-module of finite rank. We fix elements 
v1, v2, · · · , vn ∈ V . For any homogeneous polynomial f ∈ Sd(V ∗) of degree d, if d < n

then

f(v1 + v2 + · · · + vn) =
∑

i⊂{1,2,··· ,n},|i|≤d

(−1)n−|i|f(
∑
k∈i

vk),

where |i| is the cardinality of the set i ⊂ {1, 2, · · · , n}.

Lemma 4.3. If m > d then φd
{1,...,m} ∈ Sq(m, m; d) is an integral linear combination of 

φd
i where |i| ≤ d.

Proof. There is a homomorphism of algebras δ : Aq(m, m) → k[t1, t2, · · · , tm] given by 
xkk �→ tk; xk� �→ 0 if k 
= �. Note that for any i, φi factors through the homomorphism 
φ̃i : k[t1, t2, · · · , tm] → k, where

φ̃i(tk) =
{

1 if k ∈ i

0 otherwise
,

i.e. we have the following commutative diagram:
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Aq(m,m) δ

φi

k[t1, · · · , tm]

φ̃i

k

. (4.0.27)

Let φ̃d
i be the restriction of φ̃i to k[t1, t2, · · · , tm]d, where k[t1, t2, · · · , tm]d is the space of 

homogeneous polynomials in t1, t2, · · · , tm of degree d. Observe that for any polynomial 
f ∈ k[t1, t2, · · · , tm]d, we have

φ̃d
i (f) = f(

∑
i∈i

ei),

where ei is the i-th basis in km. Therefore the lemma follows from Lemma 4.2. �
Lemma 4.4. Let i, j be sets of positive integers and consider φd

i ∈ Sq(�, m; d) and φd
j ∈

Sq(m, n; d). Furthermore consider φd
i∩j ∈ Sq(�, n; d). Then we have

φd
j ◦ φd

i = φd
i∩j .

Therefore Fm,n(φd
j ) ◦ F�,m(φd

i ) = Fm,n(φd
i∩j).

Proof. It suffices to show that (φj ⊗ φi) ◦ Δn,m,� = φi∩j , and for this it suffices to show 
that both sides of the equation agree on xab ∈ Aq(n, �):

(φj ⊗ φi)(Δn,m,�(xab)) = (φj ⊗ φi)(
m∑

p=1
xap ⊗ xpb) (4.0.28)

=
m∑

p=1
φj(xap)φi(xpb) (4.0.29)

Since φj(xap)φi(xpb) = 1 if and only if a = b = p and a ∈ i ∩ j we have that

m∑
p=1

φj(xap)φi(xpb) = φi∩j(xab).

The second statement of the lemma follows immediately. �
Proposition 4.5. F ∈ Pd

q is m-generated for any m ≥ d.

Proof. We need to show that F ′
m,n : Sq(m, n; d) ⊗ F (m) → F (n) given by φ ⊗ v �→

Fm,n(φ)(v) is surjective for any n.
Suppose m ≥ n and choose i = {1, ..., n}. By Lemma 4.4, Fn,n(φd

i ) = Fm,n(φd
i ) ◦

Fm,n(φd
i ). Now note that φd

i ∈ Sq(n, n; d) is the unit element by Lemma 2.12, and hence 
Fn,n(φd

i ) = 1F (n). Therefore Fm,n(φd
i ) is surjective which implies that F ′

m,n is as well.
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Now suppose m < n. By Lemma 4.3 the identity operator 1F (n) is an integral linear 
combination of Fm,m(φd

i ), where |i| ≤ d. Therefore we have, by Lemma 4.4,

1F (n) =
∑
|i|≤d

aiFn,n(φd
i )

=
∑
|i|≤d

aiFm,n(φd
i ) ◦ Fn,m(φd

i ),

where ai ∈ Z and only finitely many are nonzero. Given v ∈ F (n) let vi = (Fn,m(φd
i ))(v). 

Then we have that v =
∑

|i|≤d ai(Fm,n(φd
i ))(vi), i.e.

F ′
m,n

⎛
⎝∑

|i|≤d

aiφ
d
i ⊗ vi

⎞
⎠ = v

proving that F ′
m,n is surjective. �

Proposition 4.6. For any n ≥ 0, the divided power Γd,n
q represents the evaluation functor 

Pd
q → V given by F �→ F (n), i.e. there exists a canonical isomorphism

HomPd
q
(Γd,n

q , F ) � F (n).

Hence Γd,n
q is a projective object in Pd

q .

Proof. We first show that given F ∈ Pd
q there are natural isomorphisms

HomPd
q
(Γd,n

q , F ) ∼= F (n)

for any n. Consider the map φ : F (n) → HomPd
q
(Γd,n

q , F ) given by w �→ φw, where 

φw : Γd,n
q → F is the natural transformation

φw(−) = evw ◦ Fn,−.

In other words, φw(m) : Γd,n
q (m) → F (m) is the map

x ∈ HomBd
(V ⊗d

n , V ⊗d
m ) �→ Fn,m(x)(w) ∈ F (m).

Conversely, consider the map ψ : HomPd
q
(Γd,n

q , F ) → F (n) defined as follows:

f ∈ HomPd
q
(Γd,n

q , F ) � f(n) : EndBd
(V ⊗d

n ) → F (n)

� f(n)(1n) ∈ F (n)

where 1n ∈ EndBd
(V ⊗d

n ) is the identity operator.
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Unpackaging these definitions we see that φ is inverse to ψ, proving that Γd,n
q repre-

sents the evaluation functor. It follows that Γd,n
q is projective since the evaluation functor 

evn : Pd
q → V, F �→ F (n) is exact. �

For an algebra A we let mod(A) denote the category of left A-modules that are finite 
projective over k.

Theorem 4.7. If n ≥ d then Γd,n
q is a projective generator of Pd

q . Hence the evaluation 
functor Pd

q → mod(Sq(n, n; d)) is an equivalence of categories.

Proof. By Proposition 4.6 we have that Γd,n
q is projective. To see that it’s a generator 

when n ≥ d it suffices to show that F ′
n,− : Γd,n

q ⊗ F (n) → F is surjective. This follows 
immediately from Proposition 4.5, which gives us that for every m the map F ′

n,m is 
surjective. Hence the equivalence follows. �

Let comod(Aq(n, n)d) be the category of right comodules over the coalgebra Aq(n, n)d
that are finite projective over k. It is clear that the category mod(Sq(n, n; d)) is equivalent 
to comod(Aq(n, n)d). Therefore Theorem 4.7 immediately implies that the evaluation 
functor Pd

q → comod(Aq(n, n)d) is an equivalence if n ≥ d.

Remark 4.8. Theorem 4.7 can be stated in slightly greater generality, where Pd
q is re-

placed by the category of k-linear functors from Γd
q to all projective k-modules, and 

mod(Sq(n, n; d)) is replaced by Mod(Sq(n, n; d)), the category of all Sq(n, n; d)-modules 
that are projective over k. The same proofs carry over to this setting.

We now state a series of corollaries of Theorem 4.7. The first is well-known (cf. [4, 
p. 26]) and it is an immediate consequence.

Corollary 4.9. Let d ≥ 0 be an integer. For any two integers m, n ≥ d the q-Schur algebras 
Sq(n, n; d) and Sq(m, m; d) are Morita equivalent.

To state another corollary, we first note that the functor Γd,n
q has a natural decom-

position

Γd,n
q

∼=
⊕

d1+···+dn=d

Γd1
q ⊗ · · · ⊗ Γdn

q . (4.0.30)

Indeed, by Frobenius reciprocity and Remark 3.2 we have

Γd1
q (m) ⊗ · · · ⊗ Γdn

q (m) ∼= HomHd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+, V

⊗d
m )

∼= HomHd
(IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+), V ⊗d

m )

and so (4.0.30) follows from the isomorphism which is due to Dipper–James ([21, Propo-
sition 11.5])
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V ⊗d
n

∼=
⊕

d1+···+dn=d

IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+). (4.0.31)

This isomorphism can be made explicit by mapping e⊗d1
1 · · · e⊗dn

n to

1 ∈ IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+),

and extending by Hd-linearity.
By Proposition 2.7, (4.0.31) induces a partition of the unit of Sq(n, n; d) into orthog-

onal idempotents: 1 =
∑

1	d, where the sum ranges over all �d = (d1, ..., dn) such that 
d1 + · · ·+ dn = d. For M ∈ mod(Sq(n, n; d)) there is a corresponding decomposition into 
weight spaces

M =
⊕

M	d,

where M	d = 1	dM .

Corollary 4.10. Let M ∈ Pd
q , n ≥ 0 and d1, ..., dn ≥ 0 such that d1 + · · · + dn = d. Then 

under the isomorphism HomPq
(Γd,n

q , F ) ∼= F (n) we have

HomPq
(Γd1

q ⊗ · · · ⊗ Γdn
q , F ) ∼= F (n)(d1,...,dn).

Proof. There is a canonical element ι(d1,...,dn) ∈ Γd1
q (n) ⊗ · · · ⊗ Γdn

q (n) corresponding to 
the inclusion

IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+) ↪→ V ⊗d

n

under (4.0.31). The map HomPq
(Γd1

q ⊗ · · · ⊗ Γdn
q , F ) → F (n)d1,...,dn

is given by f �→
f(n)(ι(d1,...,dn)). This map lands in the (d1, ..., dn) weight space since f is a natural 
transformation. More precisely, under our identifications we have the following commu-
tative diagram:

HomHd
(IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+), V ⊗d

n )
f(n)

1(d1,...,dn)

F (n)

1(d1,...,dn)

HomHd
(IndHd

Hd1⊗···⊗Hdn
(χ+ ⊗ · · · ⊗ χ+), V ⊗d

n )
f(n)

F (n)

which implies that f(n)(ι(d1,...,dn)) = 1(d1,...,dn)f(n)(ι(d1,...,dn)). Consider the diagram

HomPq
(Γd1

q ⊗ · · · ⊗ Γdn
q , F ) F (n)d1,...,dn

HomPq
(Γd,n

q , F ) F (n)
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This diagram clearly commutes. Since both vertical maps are inclusions and the bottom 
map is an isomorphism by Theorem 4.7, the top map is an isomorphism. �

The final corollary recovers a basic result relating the Hecke algebra and the q-Schur 
algebra. Recall from Section 3.3 that for any w ∈ Sd we have a morphism of quantum 
polynomial functors Tw :

⊗d →
⊗d. Since the Ti satisfy the Hecke relation this induces 

a map Hd → HomPq
(⊗d, ⊗d).

Corollary 4.11. The map Hd → HomPq
(
⊗d

, 
⊗d) is an isomorphism. Hence for any 

n ≥ d, the map Hd → HomSq(n,n;d)(V ⊗d
n , V ⊗d

n ) is an isomorphism of algebras.

Proof. By Corollary 4.10, we have HomPd
(
⊗d

, 
⊗d) � (V ⊗d

d )1,...,1. The space (V ⊗d
d )1,...,1

has of basis ei1⊗ei2⊗· · ·⊗eid , where i1, i2, · · · , id are all distinct. Under this isomorphism, 
the map Hd → (V ⊗d

d )1,...,1 is given by Tw �→ ew(1) ⊗ ew(2) ⊗ · · · ⊗ ew(d), for any w ∈ Sd. 
It is easy to see that this is a bijection.

The second statement now follows from the first one using Theorem 4.7. �
Corollary 4.11 together with Proposition 2.7 recovers the double centralizer property 

between Hecke algebra and q-Schur algebra in the stable range when n ≥ d.

5. Braiding on Pq

In this section we will use Theorem 4.7 to define a braiding on the category of quantum 
polynomial functors, thus showing that Pq is a braided monoidal category.

Observe first that if F ∈ Pd
q then, by Proposition 3.5, the map F ′′

n,n induces on F (n)
the structure of an Aq(n, n)d-comodule:

F ′′
n,n : F (n) → F (n) ⊗Aq(n, n; d).

We will use the Sweedler notation to denote this coaction:

v ∈ F (n) �→
∑

v0 ⊗ v1 ∈ F (n) ⊗Aq(n, n; d)

For a coalgebra C we let comod(C) be the category of right C-comodules that are 
finite projective over k. Now suppose we are given

V ∈ comod(Aq(n, n)d) and W ∈ comod(Aq(n, n)e).

Then V ⊗W ∈ comod(Aq(n, n)d+e) and there is a well-known morphism induced from 
the R-matrix

RV,W : V ⊗W → W ⊗ V,
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which is an isomorphism of Aq(n, n)d+e-comodules. We recall the construction of RV,W

following Takeuchi [21, §12].
Define σ : Hom(Vn, Vn) × Hom(Vn, Vn) → k by

σ(xii, xjj) =

⎧⎪⎨
⎪⎩

1 if i < j

q if i = j

1 if i > j

and in addition σ(xij , xji) = q − q−1 if i < j and σ(xij , xkl) = 0 otherwise.
Recall that Hom(Vn, Vn) = Aq(n, n)1 ⊂ Aq(n, n), so we can extend σ to a braiding 

on Aq(n, n) [21, Proposition 12.9]. This means that it is an invertible bilinear form on 
Aq(n, n) such that for all x, y, z ∈ Aq(n, n):

σ(xy, z) =
∑

σ(x, z1)σ(y, z2)

σ(x, yz) =
∑

σ(x1, z)σ(x2, y)

σ(x1, y1)x2y2 =
∑

y1x1σ(x2, y2)

Here we again we use the Sweedler notation for the coproduct Δ : Aq(n, n) → Aq(n, n) ⊗
Aq(n, n) so Δ(x) =

∑
x1 ⊗ x2. The R-matrix is given by

RV,W (v ⊗ w) =
∑

σ(v1, w1)w0 ⊗ v0.

Note that RVn,Vn
= Rn, where Rn is defined in Section 2.2.

Lemma 5.1. Let d, e ≥ 0. Then there exists κ ∈ Hd+e such that for all m ≥ 1

RV d
m,V e

m
= ρd+e,m(κ).

In particular κ = Twd,e
where wd,e ∈ Sd+e is given by

w(i) =
{

i + e if 1 ≤ i ≤ d

i− d if d < i

Proof. For

U ∈ comod(Aq(m,m)d), V ∈ comod(Aq(m,m)e), and W ∈ comod(Aq(m,m)f )

the following two diagrams commute:

U ⊗ V ⊗W
RU,V ⊗W

RU,V ⊗1W

V ⊗W ⊗ U

V ⊗ U ⊗W

1V ⊗RU,W

(5.0.32)



352 J. Hong, O. Yacobi / Journal of Algebra 479 (2017) 326–367
and

U ⊗ V ⊗W
RU⊗V,W

1U⊗RV,W

W ⊗ U ⊗ V

U ⊗W ⊗ V

RU,W⊗1V

(5.0.33)

These are well-known properties of the R-matrix, and follow from the fact that σ is a 
braiding.

We will use these diagrams to prove the lemma by induction on d + e. If d + e = 2
then the statement is tautological. If d + e > 2 then suppose first e ≥ 2. By (5.0.32) and 
the inductive hypothesis we have:

RV ⊗d
m ,V ⊗e

m
= RV ⊗d

m ,V ⊗e−1
m ⊗Vm

= (1V ⊗e−1
m

⊗RV ⊗d
m ,Vm

) ◦ (RV ⊗d
m ,V ⊗e−1

m
⊗ 1Vm

)

= (1V ⊗e−1
m

⊗ ρd+1,m(Twd,1) ◦ (ρd+e−1,m(Twd,e−1) ⊗ 1Vm
)

= ρd+e,m(Tw1) ◦ ρd+e,m(Tw2)

= ρd+e,m(Tw1Tw2)

where w1, w2 ∈ Sd+e are given by

w1(i) =

⎧⎪⎨
⎪⎩

i if 1 ≤ i ≤ e− 1
i + 1 if e ≤ i ≤ e + d− 1
e if i = e + d

and

w2(i) =

⎧⎪⎨
⎪⎩

e− 1 + i if 1 ≤ i ≤ d

i− d if d + 1 ≤ i ≤ e + d− 1
e + d if i = e + d

Since w1w2 = wd,e and �(w1) + �(w2) = �(wd,e) (where � is the usual length function), 
we have that Tw1Tw2 = Twd,e

and the result follows.
In the case that e < 2 then d ≥ 2 and a similar induction applies, where one uses 

(5.0.33) instead of (5.0.32). �
Now suppose F ∈ Pd

q and G ∈ Pe
q . Define

RF,G : F ⊗G → G⊗ F

by RF,G(m) = RF (m),G(m).
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Theorem 5.2. R induces a braiding on the category Pq. In other words, let F ∈ Pd
q and 

G ∈ Pe
q . Then RF,G ∈ HomPq

(F ⊗G, G ⊗ F ) and moreover RF,G is an isomorphism.

Proof. We only need to show that RF,G ∈ HomPq
(F ⊗G, G ⊗ F ); the fact that RF,G is 

an isomorphism then follows immediately.
We first prove RF,G ∈ HomPq

(F ⊗G, G ⊗F ) in the case where F =
⊗d and G =

⊗e. 
In that case we need to show that for any x ∈ HomHd+e

(V ⊗d+e
m , V ⊗d+e

n ) the diagram

V ⊗d
m ⊗ V ⊗e

m

⊗d+e(x)

R
V

⊗d
m ,V

⊗e
m

V ⊗d
n ⊗ V ⊗e

n

R
V

⊗d
n ,V

⊗e
n

V ⊗e
m ⊗ V ⊗d

m

⊗d+e(x)
V ⊗e
n ⊗ V ⊗d

n

(5.0.34)

commutes. Clearly we have that 
⊗d+e(x) ∈ HomHd+e

(V ⊗d+e
m , V ⊗d+e

n ), i.e. for all τ ∈
Hd+e

⊗d+e(x) ◦ ρd+e,m(τ) = ρd+e,n(τ) ◦
⊗d+e(x).

In particular this is true for τ = κ, which, by Lemma 5.1, is precisely the commutativity 
of (5.0.34).

Now, by Theorem 4.7, any F ∈ Pd
q is a subquotient of some copies of 

⊗d. Therefore to 
prove the theorem in general it suffices to prove it for F = F ′/F ′′ and G = G′/G′′ such 
that F, G ∈ Pq, where F ′′ ⊂ F ′ ⊂

⊗d and G′′ ⊂ G′ ⊂
⊗e. In other words, we need to 

show that for F and G as in the previous sentence and any x ∈ HomHd+e
(V ⊗d+e

m , V ⊗d+e
n )

the diagram

F (m) ⊗G(m)
F⊗G(x)

RF (m),G(m)

F (n) ⊗G(n)

RF (n),G(n)

G(m) ⊗ F (m)
G⊗F (x)

G(n) ⊗ F (n)

the diagram commutes. This is a consequence of the commutativity of (5.0.34) and 
the fact that the R-matrix is compatible with restriction. In other words, given V ∈
comod(Aq(m,m)d) and W ∈ comod(Aq(m,m)e) and sub-comodules V ′ ⊂ V and W ′ ⊂
W then RV ′,W ′ = RV,W |V ′⊗W ′ . �

Let Ω(n, d) be the set of tuples I = (i1, i2, · · · , id), where 1 ≤ ik ≤ n for any 1 ≤ k ≤ d. 
We call I increasing if i1 ≤ i2 ≤ · · · ≤ id and I is strictly increasing if i1 < i2 < · · · < id. 
We denote by eI the element ei1 ⊗ ei2 ⊗ · · · ⊗ eid ∈ V ⊗d

n . We now introduce a pairing (, )
on V ⊗d

n , for any I, J ∈ Ω(n, d),
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(eI , eJ) := δIJ ,

where δIJ is the Kronecker symbol.

Lemma 5.3. Given any w ∈ Sd, I, J ∈ Ω(n, d), we have

(eI · Tw, eJ) = (eI , eJ · Tw−1).

Proof. It can be reduced to the case d = 2. In this case, it suffices to check that for any 
i, j, k, �,

(Rn(ei ⊗ ej), ek ⊗ e�) = (ei ⊗ ej , Rn(ek ⊗ e�)).

This is a straightforward computation from the definition of the R-matrix Rn. �
The following lemma follows from the definition of duality functor �.

Lemma 5.4. There exists a canonical isomorphism. (
⊗d)� �

⊗d.

By this lemma, we can identify 
⊗d and (

⊗d)�.

Proposition 5.5. Given any w ∈ Sd, we have

(Tw)� = Tw−1 :
⊗d →

⊗d
.

Proof. It follows from Lemma 5.3 and Lemma 5.4. �
The following proposition is about the compatibility between the duality functor �

and the braiding R.

Proposition 5.6. Given any two quantum polynomial functors F, G ∈ Pq, we have

(RF,G)� = RG�,F � .

Proof. It suffices to check the following diagram commutes,

(G⊗ F )�

�

(RF,G)�
(F ⊗G)�

�

G� ⊗ F �
R

G�,F�

F � ⊗G�

, (5.0.35)

where the horizontal maps are the canonical isomorphisms in Lemma 3.4. By the func-
toriality of R, as the argument in Theorem 5.2 we can reduce to the case F =

⊗d and 
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G =
⊗e. Under the identification (

⊗n)� �
⊗n for any n, it is enough for us to check 

(R⊗d,⊗e)� = R⊗e,⊗d . By Theorem 5.2 and Proposition 5.5, we only need to show that 
w−1

d,e = we,d, which is clearly true. �
6. Quantum Schur and Weyl functors

In this section we assume q2 
= −1. We define quantum Schur and Weyl functors. 
As in the setting of classical strict polynomial functors, these families of functors play 
a fundamental role, and we use them here to construct the simple objects in Pq (up to 
isomorphism). In several key calculations in this section we appeal to theorems in [14].

6.1. Quantum symmetric and exterior powers

We call I ∈ Ω(n, d) strict if for any 1 ≤ k 
= � ≤ d, ik 
= i�. Let Ω++(n, d)
be the set of strictly increasing tuples of integers in Ω(n, d). We denote by xIJ the 
monomials xi1j1xi2j2 · · ·xidjd in Aq(n, m) where I = (i1, i2, · · · , id) ∈ Ω(n, d) and 
J = (j1, j2, · · · , jd) ∈ Ω(m, d).

Recall that by Remark 3.2
∧d

q(n) = V ⊗d
n ⊗Hd

χ−. Note that 
∧d

q(n) is isomorphic to 
the dth graded component of

∧•
q(n) := T (Vn)/I(Rn)

where T (Vn) is the tensor algebra of Vn and I(Rn) is the two-sided ideal of T (Vn), 
generated in degree two by Rn(v ⊗ w) + q−1w ⊗ v, for v, w ∈ Vn.

As usual for exterior algebras, we use ∧ to denote the product in the algebra 
∧•

q(n). 
For any I ∈ Ω(n, d) we denote by ēI the image of eI in 

∧d
q(n):

ēI = ei1 ∧ ei2 ∧ · · · ∧ eid .

Moreover we have the following basic calculus of q-wedge products:

ei ∧ ej =
{

0 if i = j

−q−1ej ∧ ei if i > j

Lemma 6.1. Let I = (i1, i2, · · · , id) ∈ Ω(n, d).

1. If there exists 1 ≤ k 
= � ≤ d such that ik = i� then ei1 ∧ ei2 ∧ · · · ∧ eid = 0.
2. If I is strictly increasing and σ ∈ Sd, then

eiσ(1) ∧ eiσ(2) ∧ · · · ∧ eiσ(d) = (−q−1)�(σ)ei1 ∧ ei2 ∧ · · · ∧ eid ,

where �(σ) is the length of σ.
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Proof. Both parts follow easily from the definition of the q wedge products, cf. Equa-
tions (2.3), (2.4) in [14]. �

A consequence of above lemma is that 
∧d

q(n) has a basis ei1 ∧ · · · ∧ eid for 1 ≤ i1 <

· · · < id ≤ n. The q-antisymmetrization map αd(n) :
∧d

q(n) → V ⊗d
n is given by

ei1 ∧ · · · ∧ eid �→
∑

w∈Sd

(−q−1)�(w)eiw(1) ⊗ · · · ⊗ eiw(d) ,

for 1 ≤ i1 < · · · < id ≤ n.
We define the following elements of Hd:

xd =
∑

w∈Sd

q�(w)Tw

yd =
∑

w∈Sd

(−q−1)�(w)Tw.

In the current setting, it is convenient for us to denote the right action of Hd on V ⊗d
n by 

a dot.

Lemma 6.2. Given any tuple I = (i1, i2, · · · , id) ∈ Ω(n, d) we have

αd(n)(ei1 ∧ · · · ∧ eid) = eI · yd.

Proof. Suppose first that I is strict. Let I0 be the strictly increasing tuple such that 
I = I0 · σ for a unique permutation σ ∈ Sd. The following computation proves the 
lemma in this case:

αd(n)(ēI) = (−q−1)�(σ)αd
q(ēI0)

= (−q−1)�(σ)
∑

w∈Sd

(−q−1)�(w)eI0·w

= (−q−1)�(σ)eI0 · yd
= eI0 · (Tσ · yd)

= eI · yd

(6.1.36)

where the first equality follows from Lemma 6.1 (2), the third and the last equalities 
holds because I0 is strictly increasing and the fourth equality follows from the following 
fact:

Tσ · yd = (−q−1)�(σ)yd.

Now suppose that I is not strict. Then by Lemma 6.1 (1) it is enough to show
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eI · yd = 0. (6.1.37)

Let I = (i1, i2, · · · , id). Assume that k is the maximal number such that i1, i2, · · · , ik
are all distinct but ik+1 is equal to one of i1, i2, · · · , ik. Let σ be the (unique) element 
in Sk ⊂ Sd, such that (iσ−1(1), iσ−1(2). · · · , iσ−1(k)) are strictly increasing. Then eI =
eI·σ−1Tσ and

eI · yd = eI·σ−1(Tσyd) = (−q−1)�(σ)eI·σ−1 · yd.

Hence to show the formula (6.1.37), we can always assume that i1 < i2 < · · · < ik
and ik+1 = ia, where 1 ≤ a ≤ k. Take the element S = Ta+1 · · ·Tk−1Tk ∈ Hd. Then 
eI = eI′ ·S, where I ′ = (i1, i2, · · · , ia, ik+1, ia+1, ia+2, · · · , ik, ik+2, ik+3, · · · , id) and then

eI · yd = eI′(Syd) = (−q−1)k−aeI′ · yd.

Note that eI′Ta = qeI′ . On the other hand

eI′(Ta · yd) = (−q−1)(eI′ · yd).

By the assumption that q2 
= −1, it forces eI′ · yd = 0, and hence eI · yd = 0. �
Recall also that we have the quantum symmetric power

Sd
q (n) = V ⊗d

n ⊗Hd
χ+,

and the quantum divided power functor

Γd
q(n) = HomHd

(χ+, V
⊗d
n ).

Let pd be the projection map pd :
⊗d →

∧d
q and let qd be the projection morphism 

qd :
⊗d → Sd

q . Let id : Γd
q →

⊗d be the natural inclusion map. It is clear that pd, qd, id
are morphisms of quantum polynomial functors.

Proposition 6.3. The q-antisymmetrization αd :
∧d

q →
⊗d is a morphism of quantum 

polynomial functors.

Proof. We work with the characterization of quantum polynomial functors given by 
Proposition 3.5. We need to check that, for any n, m, the following diagram commutes:

∧d
q(m)

αd(n)

∧d
q(n) ⊗Aq(n,m)d

αd(n)⊗1

V ⊗d
m V ⊗d

n ⊗Aq(n,m)d

. (6.1.38)
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The quantum polynomial functor 
⊗d gives rise to the bottom map, which for any 

I ∈ Ω(m, d), is given by

eI �→
∑

J∈Ω(n,d)

eJ ⊗ xJI .

It also induces the quantum polynomial functor structure on 
∧d

q , and so for any m, n
and for any I ∈ Ω(n, d) the top map is given by

ēI �→
∑

J∈Ω(n,d)

ēJ ⊗ xJI ,

where ēI ∈
∧d

q(m) and ēJ ∈
∧d

q(n).
We start with an element ēI ∈

∧d
q(m), where I is strictly increasing. In the diagram 

(6.1.38), if we go up-horizontal and then downward, then by Lemma 6.2, ēI is mapped 
to ∑

J∈Ω(n,d)

eJ · yd ⊗ xJI =
∑

J∈Ω(n,d)

∑
w∈Sd

(−q−1)�(w)eJ · Tw ⊗ xJI

=
∑

w∈Sd

(−q−1)�(w)(
∑

J∈Ω(n,d)

eJ · Tw ⊗ xJI)

=
∑

w∈Sd

(−q−1)�(w)(
∑

J∈Ω(n,d)

eJ ⊗ xJ(I·w))

, (6.1.39)

where the last equality holds since Tw is an endomorphism of the quantum polynomial 
functor 

⊗d, and also eI · Tw = eI·w.
If we go downward and then down-horizontal, ēI is exactly mapped to

∑
w∈Sd

(−q−1)�(w)(
∑

J∈Ω(n,d)

eJ ⊗ xJ(I·w))

showing the commutativity of the diagram (6.1.38). �
Proposition 6.4. There exist canonical isomorphisms

(
∧d

q)� �
∧d

q , (Sd
q )� � Γd

q .

Under these identifications, we have the following equalities:

(pd)� = αd, (qd)� = id.

Proof. We first consider 
∧d

q . Let {(ēI)∗}I∈Ω(n,d)++ be the dual basis of {ēI}I∈Ω(n,d)++ in 

(
∧d

q(n))∗, where ēI = ei1∧ei2∧· · ·∧ein ∈
∧d

q(n) for I = (i1, i2, · · · , in). It naturally gives 
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a set of elements in (V ⊗d
n )∗ via the inclusion map (

∧d
q(n))∗ → (V ⊗d

n )∗. By Lemma 6.1, 
the element (ēI)∗ can be identified with

eI · yd =
∑

w∈Sd

(−q−1)�(w)eI·w.

It exactly coincides with the of image of ēI after the q-antisymmetrization map αd(n). 
It implies that (

∧d
q)� �

∧d
q under the correspondences (ēI)∗ �→ ēI , moreover αd = (pd)�.

We now consider the projection map qd :
⊗d → Sd

q . Note that the q-symmetric power 
Sd
q (n) is the quotient

V ⊗d
n∑d−1

i=1 Im(Ti − q)
,

and the q-divided power Γd
q(n) is the subspace of V ⊗d

n ,

d−1⋂
i=1

Ker(Ti − q).

By Lemma 5.3, the operator Ti − q : V ⊗d
n → V ⊗d

n is self-adjoint, with respect to the 

bilinear form (, ). Therefore V ⊗d
n∑d−1

i=1 Im(Ti−q)
is dual to 

⋂d−1
i=1 Ker(Ti − q). In particular it 

also implies that (Sd
q )� � Γd

q and (qd)� = id. �
6.2. Definition and properties of quantum Schur and Weyl functors

Let λ = (λ1, ..., λs) be a partition. By convention our partitions have no zero parts, 
so λ1 ≥ · · · ≥ λs > 0. The size of λ is |λ| := λ1 + · · ·+λs and the length of λ is �(λ) := s. 

We depict partitions using diagrams, e.g. (3, 2) = . Let λ′ denote the conjugate 
partition.

The canonical tableau of shape λ is the tableau with entries 1, ..., |λ| in sequence along 
the rows. For example

1 2 3
4 5

is the canonical tableau of shape (3, 2). Let σλ ∈ Sd be given by the column reading 
word of the canonical tableau. For instance, if λ = (3, 2) then σλ = 14253 (in one-line 
notation). Define the following quantum polynomial functors of degree d:

∧λ
q =

∧λ1
q ⊗ · · · ⊗

∧λs

q

Sλ
q = Sλ1

q ⊗ · · · ⊗ Sλs
q

Γλ
q = Γλ1

q ⊗ · · · ⊗ Γλs
q
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and the following morphisms:

αλ = αλ1 ⊗ αλ2 ⊗ · · · ⊗ αλs

iλ = iλ1 ⊗ iλ2 ⊗ · · · ⊗ iλs

pλ = pλ1 ⊗ pλ2 ⊗ · · · ⊗ pλs

qλ = qλ1 ⊗ qλ2 ⊗ · · · ⊗ qλs
.

We define the quantum Schur functor Sλ as the image of the composition of the following 
morphisms

∧λ
q

αλ ⊗d
Tσλ ⊗d qλ′

Sλ′
q .

Define the quantum Weyl functor Wλ as the image of the composition of the following 
morphisms:

Γλ
q

iλ ⊗d
Tσλ ⊗d pλ′ ∧λ′

q .

For any partition λ, Sλ and Wλ are well-defined objects in Pq. This uses that for any 
n, Sλ(n) and Wλ(n) are free k-module of finite rank, which we have by the remarkable 
results of Hashimoto and Hayashi on the freeness of quantum Schur and Weyl modules 
[14, Theorem 6.19, Theorem 6.23].

Theorem 6.5. For any partition λ, we have a canonical isomorphism

Wλ′ � (Sλ)�.

Proof. We first note that σλ′ = (σλ)−1. Then the theorem follows from Propositions 5.5, 
6.4. �

Suppose that �(λ) ≤ n. By work of Hashimoto and Hayashi Sλ(n) is the Schur module 
and Wλ(n) is the Weyl module of the q-Schur algebra Sq(n, n; d) (cf. Definition 6.7, 
Theorem 6.19, and Definition 6.21 [14]). Let Lλ be the socle of the functor Sλ′ . Recall 
that this is the maximal semisimple subfunctor of Sλ′ .

Proposition 6.6. The functors Lλ, where λ ranges over all partitions of d, form a complete 
set of representatives for the isomorphism classes of irreducible objects in Pd

q .

Proof. By Theorem 4.7, Pd
q
∼= mod(Sq(n, n; d)) for any n ≥ d. To prove the statement 

it suffices to show that {Lλ(n)} form a complete set of representatives for irreducible 
Sq(n, n; d)-modules. This follows from Lemma 8.3 and Proposition 8.4 in [14]. �
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7. Invariant theory of quantum general linear groups

In this section, we assume k is algebraically closed and q is a generic element in k. Our 
aim is to show that the theory of quantum polynomial functors affords a streamlined 
derivation of the invariant theory of the quantum general linear groups Oq(GLn), with 
significantly simpler proofs. Essentially, the proofs are immediate consequences of the 
representability theorem (Theorem 4.7).

Recall that Oq(GLn) is the localization of Aq(n, n) by the quantum determinant,

detq :=
∑
σSn

(−q−1)�(σ)x1σ(1) · · ·xnσ(n).

Oq(GLn) is a Hopf algebra, and we denote its antipode by ι. For more details a good 
source is Chapter 5 of [20].

Following Howe’s approach to classical invariant theory (cf. [10]), we first prove a 
quantum analog of (GLm, GLn) duality. In the classical case Howe’s proof is based on a 
geometric argument that the matrix space is spherical [10] (although one can give also 
combinatorial proofs using the Cauchy decomposition formula1). While this geometric 
argument fails in the quantum case, we show that Quantum (GLm, GLn) duality is a 
direct consequence of the Theorem 4.7. We then show that, as in the classical case, 
quantum analogs of the first fundamental theorem and Schur–Weyl duality follow from 
Quantum (GLm, GLn) duality.

By definition a representation of Oq(GLn) is a right comodule V of Oq(GLn). A left 
module of the q-Schur algebra Sq(n, n; d) is naturally a representation of Oq(GLn). By 
analogy with the classical setting, any representation of Oq(GLn) coming from Sq(n, n; d)
is a polynomial representation of degree d.

By Theorem 6.6 Lλ(n) is an irreducible representation Oq(GLn), and any irreducible 
representation of Oq(GLn) is isomorphic to Lλ(n) for a unique λ such that �(λ) ≤ n.

The comultiplication Δ : Aq(�, n) → Aq(�, m) ⊗Aq(m, n) induces actions of the quan-
tum general linear group by left and right multiplication on quantum m × n matrices:

μ′
L : Aq(m,n) → Oq(GLm) ⊗Aq(m,n)

μR : Aq(m,n) → Aq(m,n) ⊗Oq(GLn)

These maps commute and preserve degree. We define

μL := P ◦ (ι⊗ 1) ◦ μ′
L : Aq(m,n) → Aq(m,n) ⊗Oq(GLm),

where P is the flip map. Then using (μL⊗1) ◦μR, we regard Aq(m, n) as a representation 
of Oq(GLm) ⊗Oq(GLn).

1 We thank the anonymous referee for pointing this out to us.
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Given a representation V of Oq(GLn) let V ∗ be the contragredient representation
of V , i.e. twist the left coaction of Oq(GLn) on the dual space V ∗ by the antipode ι.

Theorem 7.1 (Quantum (GLm, GLn) duality). As a representation of Oq(GLm) ⊗
Oq(GLn) we have a multiplicity-free decomposition:

Aq(m,n)d ∼=
⊕
λ

Lλ(m)∗ ⊗ Lλ(n),

where λ runs over all partitions of d such that �(λ) ≤ min(m, n).

Proof. By Theorem 4.7 the category Pd
q is equivalent to the category mod(Sq(n, n; d)). 

Hence the category Pd
q is semi-simple, and the simple objects are, up to equivalence, the 

functors Lλ where λ ranges over partitions of d. (Since q is generic Lλ
∼= Wλ

∼= Sλ′ .) By 
Proposition 4.6 for any m ≥ 0 there exists a natural isomorphism HomPq

(Γd,m
q , Lλ) �

Lλ(m). Moreover, Lλ(m) = 0 if m > �(λ). Hence we have the following decomposition

Γd,m
q

∼=
⊕
λ

Lλ ⊗ HomPd
q
(Lλ,Γd,m

q )

∼=
⊕
λ

Lλ ⊗ HomPd
q
(Γd,m

q , Lλ)∗

∼=
⊕
λ

Lλ ⊗ Lλ(m)∗,

where the second isomorphism follows from the natural pairing

HomPd
q
(Lλ,Γd,m

q ) × HomPd
q
(Γd,m

q , Lλ) → HomPd
q
(Lλ, Lλ) � k.

Evaluating both sides at n yields

HomHd
(V ⊗d

m , V ⊗d
n ) ∼=

⊕
λ

Lλ(n) ⊗ Lλ(m)∗. (7.0.40)

This proves the theorem, since

Aq(m,n) ∼= (Sq(n,m; d))∗ ∼= (HomHd
(V ⊗d

n , V ⊗d
m ))∗ �

⊕
λ

Lλ(m)∗ ⊗ Lλ(n). �

In analogy with the classical setting, Quantum (GLm, GLn) duality is equivalent to 
quantum FFT and Jimbo–Schur–Weyl duality. We briefly mention these connections.

Given three numbers �, m, n define a representation of Oq(GLm) on Aq(n, m) ⊗
Aq(m, �) as follows:
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Aq(n,m) ⊗Aq(m, �)
μR⊗μL

Aq(n,m) ⊗Oq(GLm) ⊗Aq(m, �) ⊗Oq(GLm)

Aq(n,m) ⊗Aq(m, �) ⊗Oq(GLm)

In the above diagram, the downward map is given by multiplication in Oq(GLm).
Recall that given a right comodule a : V → V ⊗ A of a Hopf algebra A, the space of 

A-invariants in V is a subspace of V

V A := {v ∈ V |a(v) = v ⊗ 1}

Theorem 7.2 (Quantum FFT). For any �, m, n the image of the comultiplication

Δ : Aq(n, �) → Aq(n,m) ⊗Aq(m, �)

lies in the subspace of Oq(GLm)-invariants, and, moreover, gives rise to a surjective map

Aq(n, �) → (Aq(n,m) ⊗Aq(m, �))Oq(GLm).

Proof. First we note that for any representation V of Oq(GLm), by complete reducibility, 
we have (V ∗)Oq(GLm) � (V Oq(GLm))∗. Then taking duals, by Proposition 2.7, it suffices 
to show that the following map is injective:

(HomHd
(V ⊗d

� , V ⊗d
m ) ⊗ HomHd

(V ⊗d
m , V ⊗d

n ))Oq(GLm) → HomHd
(V ⊗d

� , V ⊗d
n ), (7.0.41)

where Oq(GLm) acts diagonally on the left hand side. This follows immediately from 
(Oq(GLm), Oq(GLn)) duality, since by Equation (7.0.40) the above map is precisely the 
inclusion

⊕
�(λ)≤�,m,n

Lλ(�)∗ ⊗ Lλ(n) →
⊕

�(λ)≤�,n

Lλ(�)∗ ⊗ Lλ(n). �

Finally, consider tensor space V ⊗d
m . As a representation of Oq(GLm) we have a de-

composition

V ⊗d
m

∼=
⊕
λ

Lλ(m) ⊗Mλ (7.0.42)

where the λ runs over all partitions of d, and Mλ = HomOq(GLm)(Lλ(m), V ⊗d
m ). Notice 

that by the construction of Lλ, we have that Lλ(m) = 0 if �(λ) > m. Hence the sum 
above is over all partitions λ of d such that �(λ) ≤ m. Note also that Mλ are naturally 
Hd-modules.
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Theorem 7.3 (Jimbo–Schur–Weyl duality). Equation (7.0.42) is a multiplicity-free decom-
position of V ⊗d

m as an Oq(GLm) ×Hd-representation. In particular, Mλ are irreducible 
pairwise inequivalent Hd-modules.

Proof. We will deduce this result from the quantum FFT. Indeed, applying Theorem 7.2
to the case n = m = �, it follows that for any partition λ of d such that �(λ) ≤ m, the 
following map is injective:

⊕
μ

HomHd
(Mλ,Mμ) ⊗ HomHd

(Mμ,Mλ) → HomHd
(Mλ,Mλ),

where μ runs over all partition of d with �(μ) ≤ m. This implies that Mλ is irreducible as 
Hd-module and for any λ 
= μ, Mλ and Mμ are non-isomorphic, proving the result. �
Remark 7.4.

1. One can easily show that Jimbo–Schur–Weyl duality implies (Oq(GLm), Oq(GLm))
duality using Proposition 2.7. This completes the chain of equivalences, and hence the 
three basic theorems of quantum invariant theory (Oq(GLm), Oq(GLm)) duality, the 
quantum FFT, and Jimbo–Schur–Weyl duality are all equivalent, as in the classical 
case done by Howe [10].

2. Recall our standing assumption that q is generic and k is algebraically closed. The 
approach taken here essentially uses only the fact that the functors Γd,n

q are projective 
generators for n ≥ d, and this will work in any other setting of polynomial functors 
which has an analogous property, namely the classical and super cases [8,1]. Note 
that in the super-case, although we don’t have semisimplicity of representations in 
general, the tensor powers of the standard representation of glm|n are semisimple [2]
and so the methods here do carry over to the super case. Therefore this approach 
can be used to give a new and uniform development for the classical, quantum and 
super invariant theories of the general linear group.

8. Obstructions to quantum plethysm

Composition of quantum polynomial functors, which would provide a sought-after 
theory of quantum plethysm, is absent from our theory. In this final section we discuss 
why this is the case, and further speculate on possible generalisations of our construction 
to allow for composition. For convenience, we assume k is a field.

First we recall how composition works in the classical setting of Section 3.1. Let F ∈
Pd and G ∈ Pe. Then F ◦G ∈ Pde is given as follows: On objects F ◦G(V ) = F (G(V ))
and for spaces V, W we define HomΓdeV(V, W ) → Hom(FG(V ), FG(W )) in steps. First 
consider

HomΓeV(V,W ) → Hom(G(V ), G(W )).
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Apply the functor Γd to this linear map to obtain

Γd(HomΓeV(V,W )) → Γd(Hom(G(V ), G(W ))).

Note that for any space X we have Γde(X) ⊂ Γd(Γe(X)), which is compatible with 
the standard embedding Sd × Se ⊂ Sde. Therefore we have HomΓdeV(V, W )) →
Γd(Hom(G(V ), G(W ))), which we compose with

Γd(Hom(G(V ), G(W ))) → Hom(FG(V ), FG(W ))

to obtain the desired map.
This construction does not generalize to the quantum setting for several reasons. 

We focus on the most basic one, namely that we can’t make sense of F (G(n)) in our 
construction since G(n) is not an object in the quantum divided power category. Of 
course we really think of n as the standard Yang–Baxter space (Vn, Rn), and so we 
should restate this problem by saying that G(n) is not a Yang–Baxter space, let alone 
a standard one. This suggests that we should enlarge the set of objects of the quantum 
divided power category.

More precisely, let Y be the category of all Yang–Baxter spaces (how we define 
morphisms is not important for the purposes of this discussion), and let Yst be the 
subcategory of standard Yang–Baxter spaces. We would like an intermediate category 
Yst ⊂ C ⊂ Y to use as the objects of the quantum divided power category ΓdC. Then we 
would like representations F : ΓdC → V to satisfy the property that for V ∈ C we have 
F (V ) ∈ C, allowing us to make sense of F (G(V )) for two such functors F, G.

Let’s suppose such a category C exists and try to determine some of its properties. 
Perhaps the most basic quantum polynomial functor we seek is the tensor product func-
tor. It turns out that a notion of tensor product is relatively easy to construct. Indeed 
given a Yang–Baxter space (V, R) ∈ Y and any d > 0 define wd ∈ S2d by

wd(i) =
{
i + d if i ≤ d,

i− d if i > d.

Then it’s straight-forward to verify that Twd
: V ⊗2d → V ⊗2d is a Yang–Baxter operator 

and hence we can define (V, R)⊗d = (V ⊗d, Twd
) ∈ Y.

Therefore we require that C contains, along with all the standard Yang–Baxter spaces, 
their tensor products (V ⊗d

n , Twd
). Note that this tensor product is consistent in the sense 

that (V ⊗d
n , Twd

)⊗e = (V ⊗de
n , Twde

).
Next we would like to define analogs of symmetric and exterior powers. We will see 

that this becomes very subtle, and for this we focus on symmetric and exterior squares.
Classically we of course have 

⊗2 ∼= S2 ⊕
∧2. This decomposition is closely related to 

the fact that for any V ∈ V the spectrum of the flip operator V ⊗ V → V ⊗ V given by 
v⊗w �→ w⊗ v has spectrum ±1, as long as dim(V ) ≥ 2. In our quantum setting we also 
have 

⊗2 ∼= S2
q ⊕

∧2
q since the spectrum of Rn is {q, −q−1} for n ≥ 2.
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The corresponding spectrum for Yang–Baxter spaces in C is much more complicated. 
Indeed, consider the following table, which we computed with the help of a computer:

YB space V Spectrum of YB operator on V ⊗ V

V ⊗2
2 q−2 → 1, −1 → 3, −q2 → 3, q2 → 4, q4 → 5

V ⊗2
3 −q−2 → 3, q−2 → 9, −1 → 18, −q2 → 15, q2 → 21, q4 → 15

V ⊗2
4 q−4 → 1, −q−2 → 15, q−2 → 35, −1 → 60, −q2 → 45, q2 → 65, q4 → 35

V ⊗3
2 −q−3 → 1, q−1 → 3, −q2 → 6, q2 → 6, −q3 → 8, q3 → 1, −q5 → 3

q5 → 9, −q6 → 10, q6 → 10, q9 → 7

In the right column, we use the notation “eigenvalue → multiplicity”, so for instance 
the Yang–Baxter operator on V ⊗2

3 ⊗V ⊗2
3 has eigenvalue −q−2 with multiplicity 3. We see 

that the spectrum of the Yang–Baxter operators on tensor squares of objects in C does 
not necessarily stabilize as the dimension of the Yang–Baxter space gets big. (Although 
one might speculate that if d is fixed and we let n → ∞ then the spectrum of the 
Yang–Baxter operator of V ⊗d

n does stabilize.)
This suggests that instead of just decomposing 

⊗2 into a symmetric and exterior 
square, we should have an infinite decomposition

⊗2 =
⊕

±,n∈Z
F±,n,

where F±,n : Γ2C → V is given by F±,n(V, R) = ±qn-eigenspace of R.
If true, a consequence is that in order for composition to be defined, for every 

(V, R) ∈ C we must ensure that the Yang–Baxter spaces F±,n(V, R) belong to C. Hence 
also the tensor powers of F±,n(V, R) must belong to C, as well as the compositions 
F±,n ◦ F±,m(V, R), etc. It appears that the resulting theory, if it can be constructed, 
will be much wilder than the quantum polynomial functors considered here. (This is 
perhaps not surprising as the representation theory of the braid group is known to be 
extremely complicated.) One must study fundamentally different phenomenon, which 
are no doubt interesting but pose significant challenges. We hope the ideas put forth 
here are a significant first step in this story.
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