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The Johnson filtration of the mapping class group of a 
compact, oriented surface is the descending series consisting 
of the kernels of the actions on the nilpotent quotients of the 
fundamental group of the surface. Each term of the Johnson 
filtration admits a Johnson homomorphism, whose kernel is 
the next term in the filtration. In this paper, we consider 
a general situation where a group acts on a group with a 
filtration called an extended N-series. We develop a theory 
of Johnson homomorphisms in this general setting, including 
many known variants of the original Johnson homomorphisms 
as well as several new variants.
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1. Introduction

In the late seventies and eighties, Johnson studied the algebraic structure of the map-
ping class group of a compact, oriented surface Σ by examining its action on the lower 
central series of π1(Σ) [13]. He introduced a filtration of the mapping class group, which is 
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now called the Johnson filtration, and defined homomorphisms on the terms of this filtra-
tion, called the Johnson homomorphisms. His study was preceded by Andreadakis’ work 
on the automorphism group of a free group [1], and further developed by Morita [24]. 
So far, there have been several studies on variants of the Johnson filtrations and ho-
momorphisms for mapping class groups and other groups, including the works [2,3,6,
14,17,18,20,23,26,28,31,32], where the lower central series are replaced with some other 
descending series.

The purpose of this paper is to generalize the Johnson filtrations and homomorphisms 
to an arbitrary group acting on another group with a descending series called an extended 
N-series. Our constructions do not only give a generalized setting in order to view the 
above-mentioned variants from a unified viewpoint, but also provide new variants of the 
Johnson filtration and homomorphisms for the mapping class group of a handlebody.

1.1. Extended N-series and extended graded Lie algebras

An N-series K+ = (Ki)i≥1 of a group K, introduced by Lazard [16], is a descending 
series

K = K1 ≥ K2 ≥ · · ·

such that [Ki, Kj ] ≤ Ki+j for all i, j ≥ 1. The most familiar example of an N-series is 
the lower central series Γ+K = (ΓiK)i≥1 defined inductively by Γ1K = K and Γi+1K =
[K, ΓiK] for i ≥ 1. It is the smallest N-series of K, i.e., we have ΓiK ≤ Ki for all i ≥ 1
and for all N-series (Ki)i≥1 of K.

By a graded Lie algebra we mean a Lie algebra L+ =
⊕

i≥1 Li over Z such that 
[Li, Lj ] ⊂ Li+j for i, j ≥ 1. To every N-series K+ is associated a graded Lie algebra

gr+(K+) =
⊕
i≥1

Ki/Ki+1,

where the Lie bracket is induced by the commutator operation.
An extended N-series, studied in this paper, is a natural generalization of N-series. 

An extended N-series K∗ = (Ki)i≥0 of a group K is a descending series

K = K0 ≥ K1 ≥ K2 ≥ · · · (1.1)

such that [Ki, Kj ] ≤ Ki+j for all i, j ≥ 0. Alternatively, a descending series (1.1) is an 
extended N-series if the positive part K+ = (Ki)i≥1 is an N-series and if Ki is a normal 
subgroup of K for all i ≥ 1. Note that an N-series K+ canonically extends to an extended 
N-series by setting K0 = K1.

An extended graded Lie algebra (abbreviated as eg-Lie algebra) L• = (Li)i≥0 is a pair 
of a graded Lie algebra L+ =

⊕
i≥1 Li and a group L0 acting on L+. To each extended 

N-series K∗, we associate an eg-Lie algebra gr•(K∗) = (gri(K∗))i≥0, consisting of the 
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graded Lie algebra gr+(K∗) = gr+(K+) associated to the N-series part K+ of K∗, and 
the action of gr0(K∗) = K0/K1 on gr+(K+) induced by conjugation.

1.2. Johnson filtrations and Johnson homomorphisms

To recall Johnson’s approach to mapping class groups, assume that Σ is a compact, 
connected, oriented surface with ∂Σ ∼= S1. Let K = π1(Σ, �), where � ∈ ∂Σ, and let G
be the mapping class group of Σ relative to ∂Σ. The natural action of G on K gives rise 
to the Dehn–Nielsen representation

ρ : G −→ Aut(K).

Let K+ = Γ+K be the lower central series of K. The Johnson filtration G∗ = (Gm)m≥0
of G is defined by

Gm = ker(ρm : G −→ Aut(K/Km+1)),

where ρm(g)(kKm+1) = ρ(g)(k)Km+1. The series G∗ is an extended N-series. The sub-
group G1 is known as the Torelli group of Σ, and it is well known that 

⋂
m≥0 Gm = {1}.

For m ≥ 1, the mth Johnson homomorphism

τm : Gm −→ Hom(K1/K2,Km+1/Km+2),

is defined by

τm(g)(kK2) = g(k)k−1Km+2 for g ∈ Gm, k ∈ K1.

Thus, τm measures the extent to which the action of Gm on K/Km+2 fails to be trivial; 
in particular, ker(τm) = Gm+1. We can identify Hom(K1/K2, Km+1/Km+2) with the 
group Derm(gr+(K)) of degree m derivations of gr+(K), since the associated graded Lie 
algebra gr+(K) =

⊕
m≥1 Km/Km+1 is free on its degree 1 part K1/K2. Thus the τm’s 

for m ≥ 1 induce homomorphisms

τ̄m : Gm/Gm+1 −→ Derm(gr+(K)),

forming an injective morphism of graded Lie algebras

τ̄+ : gr+(G) −→ Der+(gr+(K)),

where Der+(gr+(K)) =
⊕

m≥1 Derm(gr+(K)) is the Lie algebra of positive-degree deriva-
tions of gr+(K). This morphism of graded Lie algebras, which contains all the Johnson 
homomorphisms, was introduced by Morita [24, Theorem 4.8]; we call it the Johnson 
morphism. From an algebraic viewpoint, it is important to determine the image of τ̄+, 
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which is a Lie subalgebra of Der+(gr+(K)). We refer the reader to Satoh’s survey [36]
for further details and references.

We can extend Der+(gr+(K)) to an eg-Lie algebra Der•(gr+(K)), where the group 
Der0(gr+(K)) = Aut(gr+(K)) acts on Der+(gr+(K)) by conjugation. Then the map τ̄+
naturally extends to a morphism of eg-Lie algebras

τ̄• : gr•(G) −→ Der•(gr+(K)), (1.2)

whose degree 0 part

τ̄0 : gr0(G) = G0/G1 −→ Der0(gr+(K)) � Aut(H1(Σ;Z))

is given by the natural action of the mapping class group on homology.

1.3. The Johnson morphisms associated to extended N-series actions

We develop a theory of Johnson homomorphisms in the general situation where an 
extended N-series G∗ = (Gm)m≥0 of a group G acts on an extended N-series K∗ =
(Km)m≥0 of another group K. This means that a left action

G×K −→ K, (g, k) 	−→ g(k),

of G on K satisfies

g(k)k−1 ∈ Ki+j for all g ∈ Gi, i ≥ 0 and k ∈ Kj , j ≥ 0. (1.3)

We say that a group G acts on an extended N-series K∗ if g(Kj) = Kj for all j ≥ 0. 
In this case, we have an extended N-series FK∗∗ (G) of G acting on K∗, defined by

FK∗
i (G) = {g ∈ G | g(k)k−1 ∈ Ki+j for all k ∈ Kj , j ≥ 0}. (1.4)

We call FK∗∗ (G) the Johnson filtration of G induced by K∗.
To each extended graded Lie algebra L•, we associate the derivation eg-Lie algebra

Der•(L•) (see Theorem 5.3). The degree 0 part Der0(L•) is the automorphism group 
Aut(L•) of L•; the positive part Der+(L•) is the Lie algebra of positive-degree derivations 
of L•. Here, for m ≥ 1, a degree m derivation of L• consists of a degree m derivation 
d+ of L+ and a 1-cocycle d0 : L0 → Lm satisfying certain compatibility condition (see 
Definition 5.1).

To each action of an extended N-series G∗ on an extended N-series K∗, we associate 
a morphism of extended graded Lie algebras

τ̄• : gr•(G∗) −→ Der•(gr•(K∗)), (1.5)

which we call the Johnson morphism, and which generalizes (1.2). The morphism τ̄• is 
injective if and only if G∗ is the Johnson filtration induced by K∗. (See Theorem 6.4.)
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1.4. The case of N-series

If K∗ is the extension of an N-series K+ = (Km)m≥1, then the previous construc-
tions specialize as follows. The target Der•(gr•(K∗)) = Der•(gr+(K+)) of the Johnson 
morphism (1.5) consists of the automorphism group Der0(gr+(K+)) = Aut(gr+(K+)) of 
the graded Lie algebra gr+(K+) and the graded Lie algebra Der+(gr+(K+)) of positive-
degree derivations of gr+(K+).

These simplifications recover the usual Johnson homomorphisms [13,24] and An-
dreadakis’ constructions [1] since, if K+ = Γ+K is the lower central series of a free 
group K, then Der+(gr+(K+)) is isomorphic to the Lie algebra of “truncated deriva-
tions”

D+(gr+(K+)) :=
⊕
m≥1

Hom(K1/K2,Km+1/Km+2).

We also consider the rational lower central series, and two mod-p versions of the lower 
central series for a prime p. When K = π1(Σ) for a surface Σ, we recover the “mod-p
Johnson homomorphisms” introduced by Paris [28], Perron [32] and Cooper [6], which 
are suitable for the study of the mod-p Torelli group. It is the subgroup of the mapping 
class group consisting of elements acting trivially on H1(Σ; Z/pZ).

After the first version of this manuscript was released, the authors were informed that 
Darné, in his Ph.D. thesis in preparation [7], constructed the same generalization of the 
Johnson morphism for an arbitrary N -series acting on another N -series.

1.5. Extended N-series associated to pairs of groups

We introduce two other types of extended N-series K∗, each associated with a pair 
(K, N) of a group K and a normal subgroup N .

First, we associate to (K, N) an extended N-series K∗ defined by K0 = K and Km =
ΓmN for m ≥ 1. An important case is where N is free; this happens in particular when K
is free. In this case, the positive part gr+(K+) of the associated eg-Lie algebra gr•(K∗)
is a free Lie algebra on its degree 1 part K1/K2 = N/Γ2N . Unlike the classical case 
where K0 = K1, we have a non-trivial action of K0/K1 = K/N on gr+(K+). This 
situation arises when we consider the action of the mapping class group of a handlebody 
Vg of genus g (based with a disk in the boundary) on π1(Vg). In fact, our study of 
generalized Johnson homomorphisms for extended N-series arises from the study of this 
action of the handlebody mapping class group. We remark here that our generalized 
Johnson homomorphisms determine McNeill’s “higher order Johnson homomorphisms” 
[20] on some subgroups of the surface mapping class group, when N is any characteristic 
subgroup of the fundamental group K of a surface.

Second, we associate to a pair (K, N) with [K, K] ≤ N the smallest extended N-
series K∗ such that K0 = K1 = K and K2 = N . An example is the “weight filtration” of 
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K = π1(Σ) for a punctured surface Σ; thus, we recover the generalizations of the Johnson 
homomorphisms on the mapping class group of Σ studied by Asada and Nakamura [3]. 
In a different direction, we obtain a new notion of Johnson homomorphisms on the “La-
grangian” mapping class group of a surface studied from the point of view of finite-type 
invariants by Levine, who also proposed a related notion of Johnson homomorphisms 
[17,18]. This will be studied in the Ph.D. thesis of Vera in connection with the “tree 
reduction” of the LMO functor Z̃ introduced in [5].

1.6. Formality of extended N-series

We show that an action of an N-series G+ of a group G on an extended N-series K∗
of a group K has an “infinitesimal” counterpart if K∗ is formal in the following sense.

The extended N-series K∗ induces a filtration on the group algebra Q[K]. We say that 
K∗ is formal if the completion of Q[K] with respect to this filtration is isomorphic to the 
degree-completion of the associated graded of Q[K] through an isomorphism which is the 
identity on the associated graded. By generalizing Quillen’s result for the lower central 
series [35], we show that the associated graded of Q[K] is canonically isomorphic to 
the “universal enveloping algebra” of the eg-Lie Q-algebra grQ• (K∗) (see Theorem 11.2). 
(Here grQ• (K∗) is given by K0/K1 in degree 0 and by (Km/Km+1) ⊗Q in degree m ≥ 1.) 
We can thus characterize the formality of K∗ in terms of “expansions” of K, generalizing 
the Magnus expansions for free groups. Then, we prove that such an expansion θ induces 
a filtration-preserving map

�θ : G −→
∏
m≥1

Derm(grQ• (K∗)),

which induces

τ̄Q+ : gr+(G∗) −→ Der+(grQ• (K∗)),

the positive part of the rational version τ̄Q• of τ̄• in (1.5) (see Theorem 12.6). Thus, we 
may regard the map �θ as an “infinitesimal version” of the action

G+ −→ Aut(K∗),

containing all the generalized Johnson homomorphisms with coefficients in Q.

1.7. Organization of the paper

We organize the rest of the paper as follows. In Section 2, we fix some notations about 
groups. Sections 3 and 4 deal with extended N-series and extended graded Lie algebras, 
respectively. In Section 5, we introduce the extended graded Lie algebra consisting of 
the derivations of an extended graded Lie algebra. In Section 6, we construct and study 
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the Johnson morphism induced by an extended N-series action. In Section 7, we consider 
truncations of the derivations of an extended graded Lie algebra. In Section 8, we special-
ize our constructions to N-series and, in Section 9, we illustrate these with variants of the 
lower central series in order to recover several versions of the Johnson homomorphisms 
in the literature. In Section 10, we consider two types of extended N-series defined by 
a pair of groups, and we announce some works in progress. Section 11 computes the 
associated graded of the filtration of a group algebra induced by an extended N-series. 
We consider the case of formal extended N-series in Section 12.

Acknowledgment. The work of K.H. is partly supported by JSPS KAKENHI Grant 
Number 15K04873.

2. Preliminaries in group theory

Here we recall a few facts about groups and fix some notations.

2.1. Groups

Let G be a group. By N ≤ G we mean that N is a subgroup of G, and by N 	 G that 
N is a normal subgroup of G. Given a subset S of G, let 〈S〉 denote the subgroup of G
generated by S, and 〈 〈S〉 〉 = 〈 〈S〉 〉G the normal subgroup in G generated by S.

For g, h ∈ G, set

[g, h] = ghg−1h−1, gh = ghg−1, hg = g−1hg.

We will freely use the following commutator identities:

[a, bc] = [a, b] · b[a, c], [ab, c] = a[b, c] · [a, c], (2.1)

[a, b−1]−1 = [a, b]b, [a−1, b]−1 = [a, b]a, (2.2)

[[a, b], bc] · [[b, c], ca] · [[c, a], ab] = 1. (2.3)

We will need the well-known three subgroups lemma:

Lemma 2.1. If A, B, C ≤ G, N 	 G, [A, [B, C]] ≤ N and [B, [C, A]] ≤ N , then we have 
[C, [A, B]] ≤ N .

2.2. Group actions

Consider an action of a group G on a group K:

G×K −→ K, (g, k) 	−→ g(k).
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Let K � G denote the semidirect product of G and K, which is the set K × G with 
multiplication

(k, g) (k′, g′) = (kg(k′), gg′).

We naturally regard K and G as subgroups of K �G. Then, for g ∈ G, k ∈ K,

gk = gkg−1 = g(k) ∈ K ≤ K �G

and

[g, k] = gkg−1k−1 = g(k)k−1 ∈ K ≤ K �G.

We will use these notations whenever a group G acts on another group K.
For G′ ≤ G and K ′ ≤ K, let [G′, K ′] denote the subgroup of K generated by the 

elements [g′, k′] for g′ ∈ G′, k′ ∈ K ′, and let G′
K ′ denote the subgroup of K generated 

by the elements g′
k′ for g′ ∈ G′, k′ ∈ K ′. For g ∈ G, let [g, K ′] denote the set of elements 

of K of the form [g, k′] for all k′ ∈ K ′.

3. Extended N-series and the Johnson filtration

In this section, we introduce the notion of extended N-series and the Johnson filtration 
for an action of a group on an extended N-series.

3.1. N-series

An N-series [16] of a group G is a descending series

G = G1 ≥ G2 ≥ · · · ≥ Gi ≥ · · ·

such that

[Gm, Gn] ≤ Gm+n for m,n ≥ 1. (3.1)

Note that (Gi)i≥1 is a central series, i.e., [G, Gi] ≤ Gi+1 for i ≥ 1. In particular, we have 
Gi 	 G for i ≥ 1.

As mentioned in the introduction, the lower central series of G is the smallest N-series 
of G.

3.2. Extended N-series

An extended N-series G∗ = (Gm)m≥0 is a descending series

G0 ≥ G1 ≥ · · · ≥ Gk ≥ · · ·
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such that

[Gm, Gn] ≤ Gm+n for m,n ≥ 0. (3.2)

For every extended N-series G∗ = (Gm)m≥0, the subseries G+ = (Gm)m≥1 is an 
N -series. Conversely, every N-series (Gm)m≥1 extends to an extended N-series by setting 
G0 = G1.

A morphism f : G∗ → K∗ between extended N-series G∗ and K∗ is a homomorphism 
f : G0 → K0 such that f(Gm) ⊂ Km for all m ≥ 0. Let eNs denote the category of 
extended N-series and morphisms.

In the rest of this section, we adapt several usual constructions for groups to extended 
N-series.

3.3. Actions on extended N-series

Let K∗ be an extended N-series. By an action of an extended N-series G∗ on K∗, we 
mean an action of G0 on K0 such that

[Gm,Kn] ⊂ Km+n for m,n ≥ 0. (3.3)

By an action of a group G on K∗, we mean an action of G on K0 such that

g(Kn) = Kn for g ∈ G, n ≥ 0. (3.4)

Note that if G∗ acts on K∗, then G0 acts on K∗.

3.4. Johnson filtrations

If a group G acts on an extended N-series K∗, then we have an extended N-series 
FK∗∗ (G) of G defined by

FK∗
m (G) = {g ∈ G | [g,Kn] ⊂ Km+n for n ≥ 0} (3.5)

for every m ≥ 0, which we call the Johnson filtration of G induced by K∗.

Proposition 3.1. If a group G acts on an extended N-series K∗, then the Johnson filtration 
FK∗∗ (G) is the largest extended N-series of G acting on K∗.

Proof. Set G∗ = FK∗∗ (G). One easily checks that G∗ is a descending series of G, and 
that [Gm, Kn] ⊂ Km+n for m, n ≥ 0. We have [Gm, Gn] ⊂ Gm+n for m, n ≥ 0, since for 
i ≥ 0
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[[Gm, Gn],Ki] ⊂ 〈〈 [Gm, [Gn,Ki]] · [Gn, [Gm,Ki]] 〉〉K0�G (by Lemma 2.1)

⊂ 〈〈 [Gm,Kn+i] · [Gn,Km+i] 〉〉K0�G

⊂ 〈〈Km+n+i 〉〉K0�G = Km+n+i.

Hence G∗ is an extended N-series acting on K∗. It is clear from the definition of G∗ that, 
if G′

∗ is another extended N-series of G acting on K∗, then G′
m ≤ Gm. �

Remark 3.2. In the proof of Proposition 3.1, we did not use the condition [Km, Kn] ≤
Km+n, m, n ≥ 0. Therefore, we can generalize Proposition 3.1 to any normal series 
K∗ = (Km)m≥0 of a group K.

3.5. Automorphism group of an extended N-series

Let K∗ be an extended N-series. Define the automorphism group of K∗ by

Aut(K∗) = {g ∈ Aut(K0) | g(Ki) = Ki for i ≥ 0}, (3.6)

which is the largest subgroup of Aut(K0) acting on K∗. Note that a homomorphism 
G → Aut(K∗) is equivalent to an action of G on K∗.

Let Aut∗(K∗) denote the Johnson filtration FK∗∗ (Aut(K∗)) of Aut(K∗) induced by K∗; 
thus,

Autm(K∗) = {g ∈ Aut(K∗) | [g,Kn] ⊂ Km+n for n ≥ 0} (3.7)

for m ≥ 0. Note that a morphism G∗ → Aut∗(K∗) of extended N-series is equivalent to 
an action of G∗ on K∗. The following lemma is easily verified.

Lemma 3.3. Let K∗ be an extended N -series.

(1) If Km is characteristic in K0 for all m ≥ 1, then Aut(K∗) = Aut(K0).
(2) If Km is characteristic in K1 for all m ≥ 2, then Aut(K∗) = Aut(K0, K1), where 

Aut(K0, K1) = {g ∈ Aut(K0) | g(K1) = K1}.

Example 3.4. Let K∗ be an extended N-series. Then K∗ acts on itself via the conjugation 
K ×K → K, (k, k′) 	→ kk′. Thus, we have a morphism of extended N-series

AdK∗ : K∗ −→ Aut∗(K∗),

called the adjoint action of K∗. In general, K∗ does not coincide with the Johnson 
filtration FK∗∗ (K0) of K0 induced by its action on K∗. For example, if K0 is abelian, 
then FK∗∗ (K0) = (K0)n≥0, which is different from K∗ in general. See Remark 10.4 for 
an example where we have K∗ = FK∗∗ (K0).
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4. Extended graded Lie algebras

It is well known [16] that to each N-series is associated a graded Lie algebra over Z. 
Here we associate to each extended N-series an eg-Lie algebra.

4.1. Graded Lie algebras

Recall that a graded Lie algebra L+ = (Lm)m≥1 consists of abelian groups Lm, m ≥ 1, 
and bilinear maps

[·, ·] : Lm × Ln → Lm+n

for m, n ≥ 1 such that

• [x, x] = 0 for x ∈ Lm, m ≥ 1,
• [x, y] + [y, x] = 0 for x ∈ Lm, y ∈ Ln, m, n ≥ 1,
• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x ∈ Lm, y ∈ Ln, z ∈ Lp, m, n, p ≥ 1.

Also, let L+ denote the direct sum 
⊕

m≥1 Lm by abuse of notation.
A morphism f+ : L+ → L′

+ of graded Lie algebras is a family f+ = (fi)i≥1 of 
homomorphisms fi : Li → L′

i such that fi+j([x, y]) = [fi(x), fj(y)] for all x ∈ Li, 
y ∈ Lj , i, j ≥ 1. An automorphism of L+ is an invertible morphism from L+ to itself. 
Let Aut(L+) denote the group of automorphisms of L+.

An action of a group G on L+ is a homomorphism from G to Aut(L+). In other 
words, it is a degree-preserving action (g, x) 	→ gx of G on L+ such that

g[x, y] = [gx, gy] for g ∈ G and x, y ∈ L+. (4.1)

4.2. Extended graded Lie algebras

An extended graded Lie algebra (abbreviated as eg-Lie algebra) L• = (Lm)m≥0 consists 
of

• a group L0,
• a graded Lie algebra L+ = (Lm)m≥1,
• an action (g, x) 	→ gx of L0 on L+.

A morphism f• = (fm : Lm → L′
m)m≥0 : L• → L′

• between eg-Lie algebras L• and 
L′
• consists of

• a homomorphism f0 : L0 → L′
0,

• a graded Lie algebra morphism f+ = (fm)m≥1 : L+ → L′
+,
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such that

fm(xy) = f0(x)(fm(y))

for all x ∈ L0, y ∈ Lm, m ≥ 1. Let egL denote the category of eg-Lie algebras and 
morphisms.

4.3. From extended N-series to eg-Lie algebras

For each extended N-series K∗, we define the associated eg-Lie algebra K̄• = gr•(K∗)
as follows. Set

K̄m = grm(K∗) = Km/Km+1

for all m ≥ 0. The group K̄0 is not abelian in general, whereas K̄m is abelian for m ≥ 1. 
Thus we will use multiplicative notation for the former, and the additive notation for 
the latter. The Lie bracket [·, ·] : K̄m × K̄n → K̄m+n in K̄• is given by

[aKm+1, bKn+1] = [a, b]Km+n+1 (4.2)

for m, n ≥ 1, and the action of K̄0 on K̄m is given by

(aK1)(bKm+1) = (ab)Km+1. (4.3)

Observe that K̄+ is the usual graded Lie algebra associated to the N-series K+ (see [16, 
Theorem 2.1]).

There is a functor gr• : eNs → egL. Indeed, every morphism f : G∗ → K∗ in eNs
induces a morphism gr•(f) : gr•(G∗) → gr•(K∗) in egL defined by

gr•(f)(gGm+1) = f(g)Km+1, (g ∈ Gm,m ≥ 0). (4.4)

5. Derivation eg-Lie algebras of eg-Lie algebras

In this section, we introduce the derivation eg-Lie algebra of an eg-Lie algebra, which 
generalizes the derivation Lie algebra of a graded Lie algebra.

5.1. Derivations of an eg-Lie algebra

Let L• be an eg-Lie algebra.

Definition 5.1. Let m ≥ 1. A derivation d = (di)i≥0 of L• of degree m is a family of maps 
di : Li → Lm+i satisfying the following conditions.
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(1) d+ = (di)i≥1 is a derivation of the graded Lie algebra L+, i.e., the di for i ≥ 1 are 
homomorphisms such that

di+j([a, b]) = [di(a), b] + [a, dj(b)]

for a ∈ Li, b ∈ Lj , i, j ≥ 1.
(2) The map d0 : L0 → Lm is a 1-cocycle. In other words, we have

d0(ab) = d0(a) + a(d0(b))

for a, b ∈ L0.
(3) We have

di(ab) = [d0(a), ab] + a(di(b))

for a ∈ L0, b ∈ Li, i ≥ 1.

For m ≥ 1, let Derm(L•) be the group of derivations of L• of degree m. Set Der+(L•) =
(Derm(L•))m≥1.

Theorem 5.2. We have a graded Lie algebra structure on Der+(L•) such that, for 
m,n ≥ 1, the Lie bracket

[·, ·] : Derm(L•) × Dern(L•) −→ Derm+n(L•)

is given by

[d, d′]i(a) =
{
dn(d′0(a)) − d′m(d0(a)) − [d0(a), d′0(a)] (i = 0, a ∈ L0),
dn+i(d′i(a)) − d′m+i(di(a)) (i ≥ 1, a ∈ Li).

(5.1)

We call Der+(L•) the derivation graded Lie algebra of L•.

Proof of Theorem 5.2. For simplicity of notation, set D+ = Der+(L•).
For d ∈ Dm, d′ ∈ Dn, m, n ≥ 1, define [d, d′] = ([d, d′]i : Li → Li+m+n)i≥0 by (5.1). 

We prove [d, d′] ∈ Dm+n as follows.
First, [d, d′]+ = ([d, d′]i)i≥1 is a derivation of L+ since the commutator of two deriva-

tions of a Lie algebra is a derivation.
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Second, we verify that [d, d′]0 : L0 → Lm+n is a 1-cocycle. For a, b ∈ L0,

[d, d′](ab)

= dd′(ab) − d′d(ab) − [d(ab), d′(ab)]

= d
(
d′(a) + a(d′(b))

)
− d′

(
d(a) + a(d(b))

)
−

[
d(a) + a(d(b)), d′(a) + a(d′(b))

]
= dd′(a) +

[
d(a), a(d′(b))

]
+ a(dd′(b)) − d′d(a) −

[
d′(a), a(d(b))

]
− a(d′d(b))

− [d(a), d′(a)] −
[
d(a), a(d′(b))

]
−

[
a(d(b)), d′(a)

]
−

[
a(d(b)), a(d′(b))

]
= dd′(a) + a(dd′(b)) − d′d(a) − a(d′d(b)) − [d(a), d′(a)] − a[d(b), d′(b)]

= [d, d′](a) + a
(
[d, d′](b)

)
.

Third, for a ∈ L0, b ∈ Li, i ≥ 1, we have

[d, d′](ab) = dd′(ab) − d′d(ab)

= d
(
[d′(a), ab] + a(d′(b))

)
− d′

(
[d(a), ab] + a(d(b))

)
= [dd′(a), ab] + [d′(a), d(ab)] + [d(a), a(d′(b))] + a(dd′(b))

− [d′d(a), ab] − [d(a), d′(ab)] − [d′(a), a(d(b))] − a(d′d(b))

= [dd′(a), ab] +
[
d′(a), [d(a), ab] + a(d(b))

]
+ [d(a), a(d′(b))] + a(dd′(b))

− [d′d(a), ab] −
[
d(a), [d′(a), ab] + a(d′(b))

]
− [d′(a), a(d(b))] − a(d′d(b))

= [dd′(a), ab] + [d′(a), [d(a), ab]] + a(dd′(b))

− [d′d(a), ab] − [d(a), [d′(a), ab]] − a(d′d(b))

=
[
dd′(a) − d′d(a) − [d(a), d′(a)], ab

]
+ a

(
dd′(b) − d′d(b)

)
= [[d, d′](a), ab] + a

(
[d, d′](b)

)
.

Therefore, [d, d′] is a derivation of L• of degree m + n.
Now we show that the maps [·, ·] : Dm×Dn → Dm+n for m, n ≥ 1 define a graded Lie 

algebra structure on D+. Clearly, we have [d, d] = 0 and [d, d′] +[d′, d] = 0 for d, d′ ∈ D+. 
Thus it remains to check the Jacobi identity

[d, [d′, d′′]](a) + [d′′, [d, d′]](a) + [d′, [d′′, d]](a) = 0 (5.2)

for d, d′, d′′ ∈ D+ and a ∈ Li with i ≥ 0. For i ≥ 1, this is the standard fact that 
derivations of a Lie algebra form a Lie algebra. For i = 0, we have

[d, [d′, d′′]](a) = d[d′, d′′](a) − [d′, d′′]d(a) −
[
d(a), [d′, d′′](a)

]
= d

(
d′d′′(a) − d′′d′(a) − [d′(a), d′′(a)]

)
−

(
d′d′′d(a) − d′′d′d(a)

)
−

[
d(a), d′d′′(a) − d′′d′(a) − [d′(a), d′′(a)]

]
= dd′d′′(a) − dd′′d′(a) − [dd′(a), d′′(a)] − [d′(a), dd′′(a)]
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− d′d′′d(a) + d′′d′d(a)

− [d(a), d′d′′(a)] + [d(a), d′′d′(a)] + [d(a), [d′(a), d′′(a)]],

from which (5.2) follows. �
5.2. Derivation eg-Lie algebras

Let L• be an eg-Lie algebra.

Theorem 5.3. The derivation graded Lie algebra Der+(L•) extends to an eg-Lie algebra 
Der•(L•) by setting Der0(L•) = Aut(L•) and by defining an action

Der0(L•) × Derm(L•) −→ Derm(L•), (f, d) 	−→ fd, (5.3)

for m ≥ 1 by

(fd)i(a) = fm+idif
−1
i (a) (i ≥ 0, a ∈ Li). (5.4)

We call Der•(L•) = (Derm(L•))m≥0 the derivation eg-Lie algebra of L•.

Proof. For simplicity of notation, set D• = Der•(L•). For f ∈ D0, d ∈ Dm, m ≥ 1, 
define fd = ((fd)i : Li → Li+m)i≥0 by (5.4). We prove fd ∈ Dm as follows.

First, we check that (fd)+ is a derivation of L+. For a ∈ Li, b ∈ Lj , i, j ≥ 1,

(fd)([a, b]) = fdf−1([a, b])

= fd([f−1(a), f−1(b)])

= f
(
[df−1(a), f−1(b)] + [f−1(a), df−1(b)]

)
= [fdf−1(a), b] + [a, fdf−1(b)]

=
[
(fd)(a), b

]
+

[
a, (fd)(b)

]
.

Second, we check that (fd)0 : L0 → Lm is a 1-cocycle. For a, b ∈ L0,

(fd)(ab) = fdf−1(ab)

= fd
(
f−1(a)f−1(b)

)
= f

(
df−1(a) + f−1(a)(df−1(b)

))
= fdf−1(a) + a(fdf−1(b)) = (fd)(a) + a

(
(fd)(b)

)
.
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Third, we have for a ∈ L0, b ∈ Li, i ≥ 1,

(fd)(ab) = fdf−1(ab)

= fd(f
−1(a)(f−1(b)))

= f
([

df−1(a), f
−1(a)(f−1(b))

]
+ f−1(a)(df−1(b)

))
=

[
fdf−1(a), ab

]
+ a

(
fdf−1(b)

)
=

[
(fd)(a), ab

]
+ a

(
(fd)(b)

)
.

Therefore, fd is a derivation of the eg-Lie algebra L• of degree m.
It is easy to check that the maps D0 × Dm → Dm, (f, d) 	→ fd for m ≥ 1 form an 

action of D0 on the graded abelian group D+. Let us verify that this action preserves 
the Lie bracket of D+. Let g ∈ D0, d ∈ Dm, d′ ∈ Dn with m, n ≥ 1, and let a ∈ Li with 
i ≥ 0. For i ≥ 1, we have

(g[d, d′])(a) = g[d, d′]g−1(a)

= g(dd′ − d′d)g−1(a) = (gdg−1gd′g−1 − gd′g−1gdg−1)(a) = [gd, gd′](a)

and, for i = 0, we have

(g[d, d′])(a) = g[d, d′]g−1(a)

= gdd′g−1(a) − gd′dg−1(a) − g[dg−1(a), d′g−1(a)]

= gdg−1gd′g−1(a) − gd′g−1gdg−1(a) − [gdg−1(a), gd′g−1(a)]

= [gd, gd′](a).

Hence D• is an eg-Lie algebra. �
Example 5.4. Let L• be an eg-Lie algebra. There is a morphism of eg-Lie algebras

ad = adL• : L• −→ Der•(L•), (5.5)

called the adjoint action of L•. It is defined by

ad(a)(b) =
{

ab for a ∈ L0, b ∈ Ln, n ≥ 0,
[a, b] for a ∈ Lm, m ≥ 1, b ∈ Ln, n ≥ 0,

where we set [a, b] = a − ba for a ∈ Lm, m ≥ 1 and b ∈ L0. The proof is straightforward 
and left to the reader.
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6. The Johnson homomorphisms of an extended N-series action

In this section, we generalize Johnson homomorphisms for an arbitrary action of 
extended N-series G∗ on K∗. These “Johnson homomorphisms” form a “Johnson mor-
phism”

τ̄• : gr•(G∗) −→ Der•(gr•(K∗))

with values in the derivation eg-Lie algebra of gr•(K∗).

6.1. Generalized Johnson homomorphisms

In this subsection, we consider an extended N-series G∗ acting on an extended N-series 
K∗, and we set K̄• = gr•(K∗). For every m ≥ 0, we will define a homomorphism

τm = τG∗,K∗
m : Gm −→ Derm(K̄•),

which we call the mth (generalized) Johnson homomorphism. We treat the cases m = 0
and m > 0 separately.

Proposition 6.1. There is a homomorphism

τ0 : G0 −→ Aut(K̄•)

which maps each g ∈ G0 to τ0(g) = (τ0(g)i : K̄i → K̄i)i≥0 defined by

τ0(g)i (aKi+1) = (ga)Ki+1. (6.1)

Proof. Let End(K̄•) denote the monoid of endomorphisms of the eg-Lie algebra K̄•. Let 
g ∈ G0. We prove that τ0(g) ∈ End(K̄•) is well defined as follows. It is easy to see that 
τ0(g)i : K̄i → K̄i is a well-defined homomorphism for i ≥ 0.

Next, (τ0(g)i)i≥1 : K̄+ → K̄+ is a graded Lie algebra automorphism since, for a ∈ Ki, 
b ∈ Kj , i, j ≥ 1, we have

τ0(g)([aKi+1, bKj+1]) = τ0(g)([a, b]Ki+j+1) = (g[a, b])Ki+j+1 = [ga, gb]Ki+j+1

=
[
(ga)Ki+1, (gb)Kj+1

]
= [τ0(g)(aKi+1), τ0(g)(bKj+1)].

We now check the equivariance property:

τ0(g)
((aK1)(bKi+1)

)
= τ0(g)

(
(ab)Ki+1

)
= (g(ab))Ki+1 =

((ga)(gb)
)
Ki+1

= (ga)K1
(
(gb)Ki+1

)
= τ0(g)(aK1)

(
τ0(g)(bKi+1)

)
for a ∈ K0, b ∈ Ki, i ≥ 1. Thus, we have τ0(g) ∈ End(K̄•).
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The map τ0 : G0 → End(K̄•) is a monoid homomorphism, i.e., we have τ0(gg′) =
τ0(g)τ0(g′) for g, g′ ∈ G0. Indeed, for a ∈ Ki, i ≥ 0, we have

τ0(gg′)(aKi+1) =
((gg′)a

)
Ki+1 =

(
g(g

′
a)
)
Ki+1 = τ0(g)

(
(g

′
a)Ki+1

)
= τ0(g)

(
τ0(g′)(aKi+1)

)
= (τ0(g)τ0(g′))(aKi+1).

Hence τ0 takes values in Aut(K̄•). �
Proposition 6.2. For m ≥ 1, there is a homomorphism

τm : Gm −→ Derm(K̄•)

which maps each g ∈ Gm to τm(g) = (τm(g)i : K̄i → K̄m+i)i≥0 defined by

τm(g)i (aKi+1) = [g, a]Km+i+1. (6.2)

Proof. Let g ∈ Gm. We show that τm(g) ∈ Derm(K̄•) is well defined as follows.
Since G∗ acts on K∗, we easily see that the map τm(g)i : K̄i → K̄m+i is well defined 

by (6.2) for all i ≥ 0. The map τm(g)i : K̄i → K̄m+i is a 1-cocycle if i = 0 and a 
homomorphism if i ≥ 1: indeed, for all a, b ∈ Ki, we have

τm(g)
(
(aKi+1)(bKi+1)

)
= τm(g)(abKi+1)

= [g, ab]Km+i+1

=
(
[g, a] · a[g, b]

)
Km+i+1

=
{
τm(g)(a) + (aK1)

(
τm(g)(b)

)
if i = 0,

τm(g)(a) + τm(g)(b) if i ≥ 1.

Next, we verify that (τm(g)i)i≥1 is a derivation of K̄+. For a ∈ Ki, b ∈ Kj , i, j ≥ 1, 
we have

τm(g)
(
[aKi+1, bKj+1]

)
= τm(g)

(
[a, b]Ki+j+1

)
= [g, [a, b]]Km+i+j+1

= ([[g, a], b]Km+i+j+1) + ([a, [g, b]]Km+i+j+1)

= [[g, a]Km+i+1, bKj+1] + [aKi+1, [g, b]Km+j+1]

= [τm(g)(aKi+1), bKj+1] + [aKi+1, τm(g)(bKj+1)].

It remains to check that

τm(g)
((aK1)(bKi+1)

)
=

[
τm(g)(aK1), (aK1)(bKi+1)

]
+ (aK1)

(
τm(g)(bKi+1)

)
(6.3)
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for a ∈ K0 and b ∈ Ki, i ≥ 1. Indeed, since

a[g, b] = [ag, ab] = [[a, g]g, ab] = [a,g][g, ab] · [[a, g], ab]
≡ [g, ab] · [[g, a]−1, ab] ≡ [g, ab] · [[g, a], ab]−1 (mod Km+i+1),

we obtain

(aK1)
(
τm(g)(bKi+1)

)
= (aK1)([g, b]Km+i+1)

= (a[g, b])Km+i+1

=
(
[g, ab] · [[g, a], ab]−1)Km+i+1

=
(
[g, ab]Km+i+1

)
−
(
[[g, a], ab]Km+i+1

)
= τm(g)

(
(ab)Ki+1

)
−

[
[g, a]Km+1, (ab)Ki+1

]
= τm(g)

((aK1)(bKi+1)
)
− [τm(g)(aK1), (aK1)(bKi+1)],

proving (6.3). Thus, we have τm(g) ∈ Derm(K̄•).
Finally, we show that the map τm : Gm → Derm(K̄•) is a homomorphism. Indeed, for 

g, g′ ∈ Gm, a ∈ Ki, i ≥ 0, we have

τm(gg′)(aKi+1) = [gg′, a]Km+i+1

=
(
g[g′, a] · [g, a]

)
Km+i+1

=
(
[g′, a] · [g, a]

)
Km+i+1

= [g′, a]Km+i+1 + [g, a]Km+i+1

= τm(g′)(aKi+1) + τm(g)(aKi+1) = (τm(g) + τm(g′))(aKi+1). �
It is easy to prove the following.

Proposition 6.3. For m ≥ 0, we have

ker(τm) = Gm ∩ FK∗
m+1(G0) = {g ∈ Gm | [g,Ki] ⊂ Km+i+1 for i ≥ 0}, (6.4)

where FK∗∗ (G0) is the Johnson filtration of G0 induced by K∗.

Set Ḡm = grm(G∗) for each m ≥ 0. By Propositions 6.1 and 6.2, τm induces a 
homomorphism

τ̄m : Ḡm −→ Derm(K̄•). (6.5)

By Proposition 6.3, we have

ker(τ̄m) = (Gm ∩ FK∗
m+1(G0))/Gm+1. (6.6)
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6.2. The Johnson morphism

In this subsection, we show that the family of all generalized Johnson homomorphisms 
form a morphism of eg-Lie algebras, which we call the Johnson morphism.

Theorem 6.4. Let an extended N-series G∗ act on an extended N-series K∗, and set 
Ḡ• = gr•(G∗), K̄• = gr•(K∗). Then the family τ̄• = (τ̄m)m≥0 of all homomorphisms τ̄m
defined by (6.5) is a morphism of eg-Lie algebras

τ̄• : Ḡ• −→ Der•(K̄•). (6.7)

Moreover, τ̄• is injective if and only if G∗ is the Johnson filtration FK∗∗ (G0).

Proof. We know that τ̄m is a homomorphism for each m ≥ 0. Let us check that (τ̄m)m≥1 :
Ḡ+ → Der+(K̄•) preserves the Lie bracket. For g ∈ Gm, g′ ∈ Gn, m, n ≥ 1, a ∈ Ki, 
i ≥ 0, we have

τ̄m+n([gKm+1, g
′Kn+1])(aKi+1)

= τ̄m+n([g, g′]Km+n+1)(aKi+1)

= [[g, g′], a]Km+n+i+1

=
[
[g, g′], [a, g′] · g′

a
]
Km+n+i+1

=
[
[g, g′], g

′
a
]
Km+n+i+1

=
([

gg′, [a, g]
]
·
[
ag, [g′, a]

])
Km+n+i+1

=
([

[g, g′]g′, [a, g]
]
·
[
[a, g]g, [g′, a]

])
Km+n+i+1

=
([
g′, [a, g]

]
·
[
g, [g′, a]

]
·
[
[a, g], [g′, a]

])
Km+n+i+1

=
([
g′, [g, a]−1] · [g, [g′, a]] · [[g, a]−1, [g′, a]

])
Km+n+i+1

= −τ̄n(g′Gn+1)
(
τ̄m(gGm+1)(aKi+1)

)
+ τ̄m(gGm+1)

(
τ̄n(g′Gn+1)(aKi+1)

)
− δi,0

[
τ̄m(gGm+1)(aKi+1), τ̄n(g′Gn+1)(aKi+1)

]
=

[
τ̄m(gGm+1), τ̄n(g′Gn+1)

]
(aKi+1).

Hence (τ̄m)m≥1 is a morphism of graded Lie algebras.
It remains to verify the equivariance property for τ̄•. For g ∈ G0, g′ ∈ Gm, m ≥ 1, 

a ∈ Ki, i ≥ 1, we have

τ̄m
((gG1)(g′Gm+1)

)
(aKi+1) = τ̄m

(
(gg′)Gm+1

)
(aKi+1)

= [gg′, a]Km+i+1

= g
[
g′, g

−1
a
]
Km+i+1
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= τ̄0(gG1)
(
τ̄m(g′Gm+1)

(
τ̄0(gG1)−1(aKi+1)

))
=

(
τ̄0(gG1)τ̄m(g′Gm+1)

)
(aKi+1).

Hence τ̄• is a morphism of eg-Lie algebras.
The second statement of the theorem says that τ̄m is injective for all m ≥ 0 if and 

only if we have Gm = FK∗
m (G0) for all m ≥ 0. This equivalence is easily checked by 

induction on m ≥ 0 using (6.6). �
As a special case of Theorem 6.4, we obtain the following.

Corollary 6.5. Let K∗ be an extended N-series. Then we have an injective morphism of 
eg-Lie algebras

τ̄• : gr•(Aut∗(K∗)) −→ Der•(gr•(K∗)), (6.8)

where Aut∗(K∗) is the Johnson filtration of Aut(K∗) defined by (3.7).

Example 6.6. Continuing Examples 3.4 and 5.4, let us consider the adjoint actions AdK∗

and adgr•(K∗). The morphism τ̄• in (6.8) fits into the following commutative diagram:

gr•(K∗)
gr•(AdK∗ )

adgr•(K∗)

gr•(Aut∗(K∗))

τ̄•

Der•(gr•(K∗)).

7. Truncation of a derivation eg-Lie algebra

Here we define the “truncation” D•(L•) of the derivation eg-Lie algebra Der•(L•) of 
an eg-Lie algebra L•. This structure is useful mainly when the positive part L+ of L• is 
a free Lie algebra generated by its degree 1 part.

7.1. Truncation of a derivation eg-Lie algebra

Let L• be an eg-Lie algebra. Here we define a graded group D•(L•) = (Dm(L•))m≥0, 
which we call the truncation of Der•(L•). Set

D0(L•) = {(d0, d1) ∈ Aut(L0) × Aut(L1)

| d1(ab) = d0(a)(d1(b)) for a ∈ L0, b ∈ L1},
(7.1)

which is a subgroup of Aut(L0) ×Aut(L1). For m ≥ 1, define an abelian group Dm(L•)
by
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Dm(L•) = {(d0, d1) ∈ Z1(L0, Lm) × Hom(L1, Lm+1)

| d1(ab) = [d0(a), ab] + a(d1(b)) for a ∈ L0, b ∈ L1},
(7.2)

where Z1(L0, Lm) denotes the group of Lm-valued 1-cocycles on L0:

Z1(L0, Lm) = {d0 : L0 → Lm | d0(ab) = d0(a) + a(d0(b)) for a, b ∈ L0}. (7.3)

For every m ≥ 0, there is a homomorphism

tm : Derm(L•) −→ Dm(L•), (di)i≥0 	−→ (d0, d1). (7.4)

Lemma 7.1. If the positive part L+ of an eg-Lie algebra L• is generated by its degree 1
part L1, then tm is injective for each m ≥ 0.

Proof. First, we prove that the kernel of t0 is trivial. Take d = (di)i≥0 such that (d0, d1) =
(idL0 , idL1). We prove di = idLi

for all i ≥ 0 by induction on i ≥ 0. Let i ≥ 2. Since L1
generates L+, Li is generated by the elements [x, y] with x ∈ L1, y ∈ Li−1. We have

di([x, y]) = [d1(x), di−1(y)] = [x, y]

by the induction hypothesis. Hence di = idLi
.

Now we prove that the kernel of tm is trivial for m ≥ 1. Take d = (di)i≥0 with 
(d0, d1) = (0, 0). We prove di = 0 for all i ≥ 0 by induction on i ≥ 0. Let i ≥ 2. Since L1
generates L+, Li is generated by the elements [x, y] with x ∈ L1, y ∈ Li−1. We have

di([x, y]) = [d1(x), y] + [x, di−1(y)] = 0

by the induction hypothesis. Hence di = 0. �
Lemma 7.2. Let L+ =

⊕
i≥1 Li be the graded Lie algebra freely generated by an abelian 

group A in degree 1. For m ≥ 1, every homomorphism d1 : A = L1 → Lm+1 extends 
(uniquely) to a derivation d of L+ of degree m.

This lemma is well known at least for A a free abelian group. (See [34, Lemma 0.7]
for instance.) We give a proof here since we could not find a suitable reference for the 
general case.

Proof of Lemma 7.2. Let M =
⊕

i≥1 Mi be the non-unital, non-associative algebra freely 
generated by A in degree 1. (Thus we have M1 = A, M2 = A ⊗A, M3 = A ⊗ (A ⊗A) ⊕
(A ⊗ A) ⊗ A, etc.) Let ∗ : M ×M → M denote the multiplication in M . Then the free 
Lie algebra L+ may be defined as the quotient M/I of M by the ideal I generated by 
the elements

b ∗ b, b1 ∗ (b2 ∗ b3) + b2 ∗ (b3 ∗ b1) + b3 ∗ (b1 ∗ b2)

for all b, b1, b2, b3 ∈ M .
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Let d̃1 : M1 → Mm+1 be a lift of d1 to Mm+1, i.e., we require that the diagram

M1

idA
∼=

d̃1
Mm+1

p

L1
d1

Lm+1

commutes, where p denotes the projection. The map d̃1 extends uniquely to a degree m
derivation d̃+ = (d̃i : Mi → Mm+i)i≥1 of M . One easily checks d̃+(I) ⊂ I. Therefore, d̃+
induces a family of homomorphisms d+ = (di : Li → Lm+i)i≥1. Clearly, d+ is a degree 
m derivation of L+. �
Proposition 7.3. If the positive part L+ of an eg-Lie algebra L• is freely generated by its 
degree 1 part L1, then tm is an isomorphism for all m ≥ 0.

Proof. By Lemma 7.1, tm is injective. Thus it suffices to check that if (d0, d1) ∈ Dm(L•), 
then it extends to at least one (di)i≥0 ∈ Derm(L•).

First, let m = 0. The automorphism d1 of L1 extends uniquely to an automorphism 
d+ = (di : Li → Li)i≥1 of the graded Lie algebra L+. It suffices to prove the equivariance 
property, i.e.,

di(ab) = d0(a)(di(b)) (7.5)

for a ∈ L0, b ∈ Li, i ≥ 1, which is verified by induction on i ≥ 1.
Now, let m ≥ 1. By Lemma 7.2, we can extend the homomorphism d1 to a derivation 

d+ = (di : Li → Lm+i)i≥1 of L+ of degree m. It suffices to prove that

di(ab) = [d0(a), ab] + a(di(b)) (7.6)

for a ∈ L0, b ∈ Li, i ≥ 1. The proof is by induction on i ≥ 1. Let i ≥ 2. We may assume 
b = [b′, b′′], b′ ∈ L1, b′′ ∈ Li−1. Then we have

di(ab) = di([ab′, ab′′])

= [d1(ab′), ab′′] + [ab′, di−1(ab′′)]

=
[
[d0(a), ab′] + a(d1(b′)), ab′′

]
+

[
ab′, [d0(a), ab′′] + a(di−1(b′′))

]
=

[
[d0(a), ab′], ab′′

]
+ [a(d1(b′)), ab′′] +

[
ab′, [d0(a), ab′′]

]
+ [ab′, a(di−1(b′′))]

=
[
d0(a), [ab′, ab′′]

]
+ a[d1(b′), b′′] + a[b′, di−1(b′′)]

=
[
d0(a), a[b′, b′′]

]
+ a(di([b′, b′′])) = [d0(a), ab] + a(di(b)),

where the third identity is given by the induction hypothesis. �
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7.2. The eg-Lie algebra structure of the truncation

Let L• be an eg-Lie algebra whose positive part L+ is freely generated by L1. 
By Proposition 7.3, D•(L•) is endowed with a unique eg-Lie algebra structure such that

t• = (tm)m≥0 : Der•(L•) −→ D•(L•) (7.7)

is an eg-Lie algebra isomorphism. The following is easily derived from the definition of 
Der•(L•) given in Section 5.2.

Proposition 7.4. Let L• be an eg-Lie algebra such that L+ is freely generated by L1 as 
a graded Lie algebra. Then the graded group D•(L•) has the following eg-Lie algebra 
structure.

(1) The Lie bracket [d, d′] ∈ Dm+n(L•) of d = (d0, d1) ∈ Dm(L•) and d′ = (d′0, d′1) ∈
Dn(L•) with m, n ≥ 1 is defined by

[d, d′]0(a) = dn(d′0(a)) − d′m(d0(a)) − [d0(a), d′0(a)] for a ∈ L0,

[d, d′]1(b) = dn+1(d′1(b)) − d′m+1(d1(b)) for b ∈ L1,

where d+ = (di)i≥1 and d′+ = (d′j)j≥1 are the derivations of L+ extending d1 and 
d′1, respectively.

(2) The action fd ∈ Dm(L•) of f = (f0, f1) ∈ D0(L•) on d = (d0, d1) ∈ Dm(L•) with 
m ≥ 1 is defined by

(fd)0(a) = fmd0f
−1
0 (a) for a ∈ L0,

(fd)1(b) = fm+1d1f
−1
1 (b) for b ∈ L1,

where f+ = (fi)i≥1 is the automorphism of L+ extending f1.

8. Extended N-series associated with N-series

In this section, we illustrate the constructions of the previous sections with the ex-
tended N-series defined by N-series.

8.1. Extended N-series associated with N-series

Let K+ = (Km)m≥1 be an N-series of a group K = K1. We consider here the extended 
N-series K∗ = (Km)m≥0 obtained by setting K0 = K1 = K.

By an action of an extended N-series G∗ on K+ we mean an action of G∗ on K∗.
Let L+ be a graded Lie algebra. Let Der0(L+) = Aut(L+) be the automorphism 

group of L+ and, for m ≥ 1, let Derm(L+) denote the group of derivations of L+ of 
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degree m. We call Der+(L+) = (Derm(L+))m≥1 the graded Lie algebra of positive-
degree derivations of L+. The group Aut(L+) acts on Der+(L+) by conjugation. Thus 
Der•(L+) = (Derm(L+))m≥0 is an eg-Lie algebra.

Theorem 6.4 implies the following.

Corollary 8.1. Let an extended N-series G∗ act on an N-series K+, and let Ḡ• = gr•(G∗), 
K̄+ = gr+(K+). Then the family τ̄• = (τ̄m)m≥0 of all homomorphisms τ̄m defined by 
(6.5) is a morphism of eg-Lie algebras

τ̄• : Ḡ• −→ Der•(K̄+). (8.1)

Moreover, τ̄• is injective if and only if G∗ is the Johnson filtration FK∗∗ (G0).

In the rest of this section, we consider N -series with special properties (called N0-series
and Np-series). We show that if a group G acts on such a special N-series, then the 
positive part of the Johnson filtration of G is an N-series of the same kind.

8.2. N0-series

An N0-series of a group K is an N-series K+ such that K/Km is torsion-free for all 
m ≥ 1.

An N-series K+ can be transformed into an N0-series 
√

K+ by considering the root 
sets of its successive terms. Specifically, we define for all m ≥ 1√

Km = {x ∈ K |xi ∈ Km for some i ≥ 1}.

See [29, §IV.1.3] or [30, §11, Lemma 1.8] in the case of the lower central series, and [21, 
Lemma 4.4] in the general case. Note that 

√
K+ is the smallest N0-series of K containing 

K+: thus, 
√
K+ = K+ if and only if K+ is an N0-series.

Example 8.2. The rational lower central series of a group K is the N0-series 
√

Γ+K =
(
√

ΓmK)m≥1 associated to the lower central series Γ+K of K. It is the smallest N0-series 
of K.

Proposition 8.3. Let a group G act on an N0-series K+. Then the positive part FK∗
+ (G)

of the Johnson filtration FK∗∗ (G) is an N0-series.

Proof. Set G∗ = FK∗∗ (G). By Proposition 3.1, G+ is an N-series of G1. Therefore, it 
remains to show that Gm/Gm+1 is torsion-free for m ≥ 1. By Corollary 8.1, the mth 
Johnson homomorphism induces an injection

τ̄m : Gm/Gm+1 −→ Derm(K̄+).

Hence it suffices to check that Derm(K̄+) is torsion-free. This follows since K̄+ itself is 
torsion-free. �
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8.3. Np-series

Let p be a prime. An Np-series of a group K is an N-series K+ such that (Km)p ⊂ Kmp

for all m ≥ 1. By a result of Lazard [16, Corollary 6.8], K̄+ =
⊕

i≥1 Ki/Ki+1 is a 
restricted Lie algebra over the field Fp = Z/pZ, whose p-operation

(·)[p] : K̄+ −→ K̄+

is defined by (xKi+1)[p] = (xpKip+1) for x ∈ Ki, i ≥ 1.
Every N-series K+ can be transformed into an Np-series K [p]

+ defined by

K [p]
m =

∏
i≥1, j≥0, ipj≥m

Kpj

i for m ≥ 1.

See [29, §IV.1.22] or [30, §11, Lemma 1.18] in the case of the lower central series, and [21, 
Lemma 4.6] in the general case. Note that K [p]

+ is the smallest Np-series of K containing 

K+: thus, K [p]
+ = K+ if and only if K+ is an Np-series.

Example 8.4. The Zassenhaus mod-p lower central series (also called the Zassenhaus 
filtration) of a group K [41] is the Np-series Γ[p]

+ K associated to the lower central series 
Γ+K of K:

Γ[p]
mK =

∏
i≥1, j≥0, ipj≥m

(ΓiK)p
j

for m ≥ 1. (8.2)

This “mod-p” variant of Γ+K should not be confused with the Stallings mod-p lower 
central series (also called the lower exponent-p central series) Γ〈p〉

+ K [38], which is defined 

inductively by Γ〈p〉
1 K = K and

Γ〈p〉
m+1K = (Γ〈p〉

m K)p [K,Γ〈p〉
m K] for m ≥ 1. (8.3)

Indeed Γ[p]
+ K is the smallest Np-series of K, whereas Γ〈p〉

+ K is the smallest N-series K+
of K such that (Km)p ⊂ Km+1 for m ≥ 1.

Proposition 8.5. Let a group G act on an Np-series K+. Then the positive part FK∗
+ (G)

of the Johnson filtration FK∗∗ (G) is an Np-series.

Proof. Set G∗ = FK∗∗ (G). Since G+ is an N-series of G1 by Proposition 3.1, it suffices 
to check (Gm)p ⊂ Gmp for all m ≥ 1. Let g ∈ Gm and x ∈ Kj , j ≥ 1. By Dark’s 
commutator formula (see [30, §11, Theorem 1.16]), we have

[gp, x] =
p∏

c
(p
i

)
i ,
i=1
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where ci is a product of iterated commutators, each with at least i components equal to 
g±1 and at least one component equal to x±1. It follows that

ci ∈ Kj+im, for i = 1, . . . , p.

Therefore, cp ∈ Kj+pm and, for i ∈ {1, . . . , p − 1}, we have

c
(p
i

)
i ∈ (Kj+im)p ⊂ Kjp+imp ⊂ Kj+mp

since p divides 
(
p
i

)
and K+ is an Np-series. Hence [gp, x] ∈ Kj+mp and gp ∈ Gmp. �

Remark 8.6. Let a group G act on an Np-series K+. Since K̄+ is a restricted Lie alge-
bra over Fp, so is Der+(K̄+) with p-operation defined by the p-th power. Besides, by 
Proposition 8.5, gr+FK∗

+ (G) is a restricted Lie algebra over Fp. One can expect that the 
positive part of the Johnson morphism in Corollary 8.1,

τ̄+ : gr+FK∗
+ (G) −→ Der+(K̄+),

is a morphism of restricted Lie algebras (i.e., it preserves the p-operations). Furthermore, 
it is plausible that τ̄+ takes values in the restricted Lie subalgebra of Der+(K̄+) consisting 
of restricted derivations in the sense of Jacobson [11].

In degree 0, it is easily verified that τ̄0 : FK∗
0 (G)/FK∗

1 (G) → Aut(K̄+) takes values in 
the subgroup of automorphisms of the restricted Lie algebra K̄+.

Remark 8.7. An exponent-p N-series of a group K is an N-series K+ of K such that 
(Km)p ≤ Km+1 for all m ≥ 1. For instance, the Stallings mod-p lower central series 
Γ〈p〉

+ K of K satisfies this property. We have the following variant of Proposition 8.5: If 
a group G acts on an exponent-p N-series K+, then the positive part FK∗

+ (G) of the 
Johnson filtration FK∗∗ (G) is an exponent-p N-series. The proof is easy and left to the 
reader.

9. The lower central series and its variants

In this section, we consider the lower central series Γ+K of a group K and its variants: 
the rational lower central series 

√
Γ+K, the Zassenhaus mod-p lower central series Γ[p]

+ K

and the Stallings mod-p lower central series Γ〈p〉
+ K.

9.1. The filtration G1
∗

Let K+ be an N-series of a group K, and extend it to an extended N-series K∗ with 
K0 = K. Let a group G act on K∗, and let G∗ = FK∗∗ (G) be the Johnson filtration of G
induced by K∗. Define a descending series G1

∗ = (G1
m)m≥0 of G by
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G1
m = {g ∈ G | [g,K] ⊂ Km+1} = ker(G → Aut(K/Km+1)). (9.1)

Clearly, G1
m ≥ Gm for m ≥ 0, and G1

0 = G = G0.
The filtration G1

∗ is not an extended N-series in general, but it is so for the lower 
central series and its variants. In fact, Andreadakis was the first to study the filtration 
G1

∗ in the case of K+ = Γ+K with G = Aut(K), and he proved the following proposition 
in this case [1, Theorem 1.1.(i)]. See also [6, Lemma 3.7] and [28, proof of Theorem 2.4]
for K+ = Γ〈p〉

+ K, and see [23, Lemma 2.2.4] for K+ = Γ[p]
+ K.

Proposition 9.1. If K+ is one of Γ+K, 
√

Γ+K, Γ[p]
+ K and Γ〈p〉

+ K, then we have G∗ = G1
∗. 

(In particular, G1
∗ is an extended N-series.)

Proof. To prove Proposition 9.1, it suffices to check G1
m ≤ Gm = FK∗

m (G) for m ≥ 1. 
Thus, we need to check

[G1
m,Kn] ≤ Km+n for m ≥ 1, n ≥ 2. (9.2)

We prove (9.2) in the four cases separately.

Case 1: K+ = Γ+K. Here we repeat Andreadakis’ proof. We verify (9.2) by induction 
on n as follows:

[G1
m,Kn] = [G1

m, [K,Kn−1]]

≤ 〈〈 [[G1
m,K],Kn−1] · [[G1

m,Kn−1],K] 〉〉K�G (by Lemma 2.1)

≤ 〈〈 [Km+1,Kn−1] · [Km+n−1,K] 〉〉K�G (by the induction hypothesis)

≤ 〈〈 Km+n 〉〉K�G = Km+n. �
Case 2: K+ =

√
Γ+K. By induction on n, we will prove that [g, a] ∈ Km+n for g ∈ G1

m

and a ∈ Kn. We have at ∈ ΓnK for some t ≥ 1. We have

[g, a]t ≡
(mod Km+n)

t∏
i=1

ai−1
[g, a] = [g, at] ∈ [G1

m,ΓnK] ≤ [G1
m, [K,Kn−1]],

where ≡ follows from

[ai−1, [g, a]] ∈ [Kn, [G1
m,K]] ≤ [Kn,Km+1] ≤ Km+n+1 ≤ Km+n.

Similarly to Case 1, we obtain [G1
m, [K, Kn−1]] ≤ Km+n using the induction hypothesis. 

Therefore, we have [g, a]t ∈ Km+n, hence [g, a] ∈ Km+n. �
Case 3: K+ = Γ[p]

+ K. By (8.2), it suffices to prove by induction on n that [g, zpj ] ∈ Km+n

if g ∈ G1
m, z ∈ ΓiK, i ≥ 1, j ≥ 0 and ipj ≥ n.
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If j = 0, then z ∈ ΓiK ≤ ΓnK = [K, Γn−1K] ≤ [K, Kn−1]. Then we proceed as in 
Case 1 using the induction hypothesis.

Let j ≥ 1. By Dark’s commutator formula (see [30, §11, Theorem 1.16]), we have

[g, zp
j

] =
pj∏
d=1

c
(pj

d

)
d , (9.3)

where cd is a product of iterated commutators, each with at least d components equal to 
z±1 and at least one component equal to g±1. We can assume without loss of generality 
that i is the least integer greater than or equal to n/pj, so that i < n. By z ∈ ΓiK ≤ Ki

and the induction hypothesis, we have [g±1, z±1] ∈ Km+i. It follows that

cd ∈ Km+di. (9.4)

For each k ≥ 1, let |k|p denote the p-part of k, which is the unique power of p such 

that k/|k|p is an integer coprime to p. Then we have 
∣∣∣(pj

d

)∣∣∣
p
≥ pj

|d|p (see, e.g., the proof 
of [30, §11, Lemma 1.18]). Therefore,∣∣∣∣(pjd

)∣∣∣∣
p

(m + di) ≥ pj

d
(m + di) ≥ pj

d
m + pji ≥ m + n.

Since K+ is an Np-series, (9.4) implies c
(pj

d

)
d ∈ Km+n. Hence, by (9.3), we have [g, zpj ] ∈

Km+n. �
Case 4: K+ = Γ〈p〉

+ K. By (8.3), it suffices to prove by induction on n that we have 
[G1

m, [K, Kn−1]] ⊂ Km+n and [G1
m, (Kn−1)p] ⊂ Km+n. The former is proved simi-

larly to Case 1 by using the induction hypothesis; to prove the latter, we will verify 
[g, zp] ∈ Km+n for g ∈ G1

m and z ∈ Kn−1. We have

[g, zp] =
p∏

i=1

zi−1
[g, z] ≡

(mod Km+n)
[g, z]p ∈ [G1

m,Kn−1]p ≤ (Km+n−1)p ≤ Km+n,

where ≡ follows from

[zi−1, [g, z]] ∈ [Kn−1, [G1
m,Kn−1]] ≤ [Kn−1,Km+n−1] ≤ Km+2n−2 ≤ Km+n.

Hence [g, zp] ∈ Km+n. �
This completes the proof of Proposition 9.1. �
We now observe that the Johnson filtration G1

∗ = G∗ can be given a ring-theoretic 
description, in the case of the rational (resp. Zassenhaus mod-p) lower central series.
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Corollary 9.2. If K+ =
√

Γ+K, then for m ≥ 0 we have

Gm = G1
m = ker(Aut(K) → Aut(Q[K]/Im+1)),

where I = ker(ε : Q[K] → Q) is the augmentation ideal.

Proof. This follows from a classical result of Malcev, Jennings and P. Hall, which com-
putes the “dimension subgroups” with coefficients in Q:

(1 + Im+1) ∩K =
√

Γm+1K ⊂ Q[K] for m ≥ 0.

(See, e.g., [29, §IV.1.5] or [30, §11, Theorem 1.10].) �
Corollary 9.3. If K+ = Γ[p]

+ K, then for m ≥ 0 we have

Gm = G1
m = ker(G → Aut(Fp[K]/Im+1)),

where I = ker(ε : Fp[K] → Fp) is the augmentation ideal.

Proof. This follows from a classical result of Jennings and Lazard, which computes the 
“dimension subgroups” with coefficients in Fp:

(1 + Im+1) ∩K = Γ[p]
m+1K ⊂ Fp[K] for m ≥ 0.

(See, e.g., [29, §IV.2.8] or [30, §11, Theorem 1.20].) �
9.2. Examples and remarks

In the light of Proposition 9.1, we now relate the results and constructions of the 
previous sections to those in the literature.

Example 9.4. Andreadakis [1] mainly considered the case where K+ = Γ+K is the lower 
central series of a free group K and G = Aut(K). (By Lemma 3.3, G acts on K+.) In 
this case, the Johnson filtration Aut∗(K∗) = G∗ = G1

∗ is usually called the Andreadakis–
Johnson filtration. Note that K̄+ is the free Lie algebra Lie(Kab) on the abelianization 
Kab = K/Γ2K. Hence, by Proposition 7.3, the eg-Lie algebra morphism (7.7)

t• : Der•(K̄+) −→ D•(K̄+)

is an isomorphism, where D•(K̄+) = (Dm(K̄+))m≥0 is given by

D0(K̄+) = Aut(Kab) and Dm(K̄+) = Hom(Kab,Liem+1(Kab))
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and has the eg-Lie algebra structure described in Proposition 7.4. For a finitely generated 
free group K, the composition

t•τ̄• : gr•(G∗) −→ D•(K̄+)

has been extensively studied since Andreadakis’ work; we refer to [37] for a survey.

Example 9.5. Let Σg,1 be a compact, connected, oriented surface of genus g with one 
boundary component, and let K = π1(Σg,1, �), where � ∈ ∂Σg,1. The mapping class 
group

G = MCG(Σg,1, ∂Σg,1)

of Σg,1 relative to ∂Σg,1 acts on K+ = Γ+K in the natural way. By Proposition 9.1, 
the Johnson filtration G∗ in our sense coincides with the Johnson filtration G1

∗ in the 
usual sense, and its first term G1 = G1

1 = ker(G → Aut(H1(Σg,1; Z))) is known as 
the Torelli group. By Example 9.4, we have an injective morphism of eg-Lie algebras 
t•τ̄• : gr•(G∗) → D•(K̄+). The components

tmτm : Gm −→ Hom(H,Liem+1(H))

for m ≥ 1, where H = H1(Σg,1; Z), are the original Johnson homomorphisms introduced 
by Johnson [12,13] and Morita [24]. See [36] for a survey.

Remark 9.6. (i) Since the rational lower central series of a free group coincides with the 
lower central series, we could replace the latter by the former in Examples 9.4 and 9.5. 
Thus, Corollary 9.2 implies that the Johnson filtration of the mapping class group of Σg,1
(resp. the Andreadakis–Johnson filtration of the automorphism group of a free group) 
can be described using Fox’s free differential calculus [24,31].

(ii) Example 9.5 can be adapted to a closed oriented surface Σg of genus g. In this 
case, additional technicalities arise since K = π1(Σg) is not free, and the mapping classes 
of Σg act on K as outer automorphisms. The Johnson homomorphisms in this case were 
introduced by Morita [25].

Example 9.7. As in Example 9.5, we consider the mapping class group G = MCG(Σg,1,

∂Σg,1) acting on K = π1(Σg,1, �). Here, let K+ be one of the two versions of the mod-p
lower central series. Note that the associated graded Lie algebra K̄+ is defined over Fp in 
both cases. If K+ = Γ[p]

+ K (resp. Γ〈p〉
+ K), then the Johnson filtration G∗ induced by K∗

coincides with the “Zassenhaus (resp. Stallings) mod-p Johnson filtration” considered by 
Cooper in [6], and its first term G1 = ker(G → Aut(H1(Σg,1; Fp))) is the mod-p Torelli 
group. Furthermore, the “mth Zassenhaus (resp. Stallings) mod-p Johnson homomor-
phism” for m ≥ 1 defined in [6] coincides with the composition
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Gm
τm−→ Derm(K̄+) tm−→ Hom(K̄1, K̄m+1).

According to Proposition 9.1, we have ker(tmτm) = Gm+1. In fact, these constructions 
for K+ = Γ〈p〉

+ K had been used by Paris [28] to prove that the mod-p Torelli group (of 
an arbitrary compact, oriented surface) is residually a p-group.

Now let us focus on the case K+ = Γ[p]
+ K. In this case, the graded Lie algebras K̄+, 

Der+(K̄+) and Ḡ+ are restricted over Fp. (See Proposition 8.5 and Remark 8.6.) 
Since K is a free group, K̄+ is the free restricted Lie algebra over Fp generated by 
K̄1 � H1(Σg,1; Fp) [16, Theorem 6.5]. By Corollary 9.3, we can describe G∗ using Fox’s 
free differential calculus, so that G∗ coincides with Perron’s “modulo p Johnson filtration” 
[32]. (See also [6, Theorem 4.7] in this connection.) By Proposition 8.5, this filtration 
satisfies (Gm)p ⊂ Gmp for m ≥ 1; this fact does not seem to have been observed be-
fore.

Remark 9.8. It seems plausible that one can adapt the constructions of this paper to 
the setting of (extended) N-series of profinite groups and, in particular, pro-p groups. 
In fact, the literature offers several such constructions for the lower central series of a 
pro p-group, or its variants. For instance, Asada and Kaneko [2] introduced analogues 
of the Johnson homomorphisms on the automorphism group of the pro-p completion 
of a surface group. More recently, Morishita and Terashima [23] studied the Johnson 
homomorphisms for the automorphism group of the Zassenhaus filtration of a finitely 
generated pro-p groups, which may be regarded as variants of Cooper’s “Zassenhaus 
mod-p Johnson homomorphisms”.

10. Two types of series associated with pairs of groups

In this section, we consider two types of series K∗ = (Km)m≥0 determined by their 
first few terms: the smallest extended N-series with given K0 and K1, and the smallest 
N-series with given K0 = K1 and K2.

10.1. Extended N-series determined by K0 and K1

Let K = K0 be a group, and let K1 	 K. Define an extended N-series K∗ = (Km)m≥0
by

Km =
{
K if m = 0,
ΓmK1 if m ≥ 1.

(10.1)

Note that K∗ is the smallest extended N-series with these K0 and K1. The eg-Lie algebra 
K̄• = gr•(K∗) associated to K∗ is given by

K̄0 = K0/K1 and K̄m = ΓmK1/Γm+1K1 for m ≥ 1.



K. Habiro, G. Massuyeau / Journal of Algebra 510 (2018) 205–258 237
Let a group G act on K in such a way that GK1 = K1. Since Ki = ΓiK1 is charac-
teristic in K1 for all i ≥ 1, G acts on the extended N-series K∗ (see Lemma 3.3). Define 
three descending series G0

∗, G1
∗ and G∗ of G by

G0
m = {g ∈ G | [g,K0] ⊂ Km} = ker(G → Aut(K0/Km)),

G1
m = {g ∈ G | [g,K1] ⊂ Km+1} = ker(G → Aut(K1/Km+1)),

Gm = G0
m ∩G1

m = {g ∈ G | [g,K0] ⊂ Km, [g,K1] ⊂ Km+1}.

The Johnson filtration FK∗∗ (G) has the following simpler description.

Proposition 10.1. We have G∗ = FK∗∗ (G). (Hence G∗ is an extended N-series.) Moreover, 
G1

∗ is an extended N-series.

Proof. By Proposition 9.1, we have

G1
m = {g ∈ G | [g,Kn] ⊂ Km+n for n ≥ 1} (10.2)

for m ≥ 0, and G1
∗ is an extended N-series. By (10.2), we have

Gm = G0
m ∩G1

m = FK∗
m (G) (10.3)

for m ≥ 0. �
Since G1

m ≥ G0
m+1 for m ≥ 0, the filtrations G∗ and G0

∗ are nested:

G = G0
0 = G0 ≥ G0

1 ≥ G1 ≥ · · · ≥ Gm−1 ≥ G0
m ≥ Gm ≥ · · · . (10.4)

Theorem 10.2. If K1 is a non-abelian free group, then, for each m ≥ 0, we have

Gm = G1
m ≤ G0

m.

Proof. Note that G1
m ≤ G0

m implies Gm = G1
m. Hence it suffices to prove by induction 

on m ≥ 0 that if g ∈ G, [g, K1] ⊂ Km+1, then [g, K0] ⊂ Km. The case m = 0 is trivial; 
let m ≥ 1. Let y ∈ K0. By the induction hypothesis, we have [g, y] ∈ [g, K0] ⊂ Km−1, 
i.e., g(y) = zy for some z ∈ Km−1. For each x ∈ K1, we have

yx ≡ g(yx) = g(y)g(x) ≡ g(y)x = zyx = [z, yx] yx (mod Km+1),

where each ≡ follows from [g, K1] ⊂ Km+1. Therefore [z, K1] ⊂ Km+1. By Lemma 10.3
below, we have z ∈ Km and hence [g, y] ∈ Km. �
Lemma 10.3. If F is a non-abelian free group and m ≥ 1, then we have

{a ∈ F | [a, F ] ⊂ Γm+1F} = ΓmF.
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Proof. Let Lm = {a ∈ F | [a, F ] ⊂ Γm+1F}. We will prove Lm = ΓmF for m ≥ 1
by induction. Let m ≥ 2. Clearly, ΓmF ≤ Lm. By the induction hypothesis, we have 
Lm ≤ Lm−1 ≤ Γm−1F . The quotient group Lm/ΓmF , regarded as a subgroup of

Γm−1F/ΓmF � Liem−1(F ab), where F ab = F/Γ2F,

is the centralizer of Lie1(F ab) = F ab in the free Lie algebra Lie(F ab). Since 
rank(F ab) ≥ 2, the center of Lie(F ab) is trivial. Hence Lm/ΓmF is trivial. �
Remark 10.4. Lemma 10.3 can be restated as follows. Let F be a non-abelian free group, 
let F+ = Γ+F be its lower central series, and extend F+ to an extended N-series F∗ with 
F0 = F1. Then, letting F act on F∗ by conjugation, the Johnson filtration of F induced 
by F∗ coincides with F∗.

In what follows, let K1 be a non-abelian free group. Then K̄+ = (Km/Km+1)m≥1 is 
the free Lie algebra on K̄1 = Kab

1 . By Theorem 6.4 and Proposition 7.4, we obtain an 
injective eg-Lie algebra morphism

Ḡ•
τ̄•−→ Der•(K̄•)

t•−→
�

D•(K̄•),

where Ḡ• = (Gm/Gm+1)m≥0. By (7.1) and (7.2), the mth Johnson homomorphism 
tmτm : Gm → Dm(K̄•) has two components

τ0
0 : G0 −→ Aut(K0/K1), τ1

0 : G0 −→ Aut(Kab
1 )

for m = 0, and

τ0
m : Gm −→ Z1(K0/K1,Liem(Kab

1 )), τ1
m : Gm −→ Hom(Kab

1 ,Liem+1(Kab
1 ))

for m ≥ 1. Furthermore, these two components are related to each other by

τ1
m(g)(ab) =

{
τ0
0 (g)(a)(τ1

0 (g)(b)
)

(m = 0),[
τ0
m(g)(a), ab

]
+ a

(
τ1
m(g)(b)

)
(m ≥ 1)

(10.5)

for g ∈ Gm, a ∈ K, b ∈ K1. Note also that

ker τ0
m = G0

m+1, ker τ1
m = G1

m+1 = Gm+1 (m ≥ 0).

Proposition 10.5. The homomorphism τ1
0 restricts to

τ1
0 |G0

1
: G0

1 −→ AutZ[K/K1](K
ab
1 ).
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For m ≥ 1, the homomorphism τ1
m restricts to

τ1
m|G0

m+1
: G0

m+1 −→ HomZ[K/K1](K
ab
1 ,Liem+1(Kab

1 )).

Proof. This immediately follows from (10.5). �
Proposition 10.6. Let m ≥ 1. There is a map

τ̃0
m : G0

m −→ Z1(K0,Liem(Kab
1 ))

which is a homomorphism for m ≥ 2 (resp., a 1-cocycle for m = 1) with kernel G0
m+1, 

and which makes the following diagram commute:

G0
m

τ̃0
m

Z1(K0,Liem(Kab
1 ))

Gm

τ0
m

Z1(K0/K1,Liem(Kab
1 ))

(10.6)

(Here the arrow on the left is the inclusion, and that on the right is induced by the 
projection K0 → K0/K1.)

Proof. For g ∈ G0
m, the map g′ : K0 → Km/Km+1 � Liem(Kab

1 ) defined by g′(x) = [g, x]
is a 1-cocycle. Thus the map τ̃0

m : G0
m → Z1(K0, Liem(Kab

1 )) defined by τ̃0
m(g) = g′ makes 

the diagram (10.6) commute. For g, h ∈ G0
m and x ∈ K0, we have

(gh)′(x) = [gh, x]Km+1 = g[h, x][g, x]Km+1 = g(h′(x)) + g′(x).

Hence, τ̃0
m is a 1-cocycle for m = 1, and a homomorphism for m > 1. Clearly, its kernel 

is G0
m+1. �

We now illustrate the above constructions with a few examples.

Example 10.7. As in Example 9.5, we consider the mapping class group G =
MCG(Σg,1, ∂Σg,1) acting on K = π1(Σg,1, �). If H := K1 is a characteristic subgroup 
of K, then the filtration (G0

m)m≥1 of G0
1 coincides with the “higher order Johnson fil-

tration” defined by McNeill [20], and her “higher order Johnson homomorphism” τHm
coincides with our τ1

m−1|G0
m

for m ≥ 2. When H = Γ2K, the subgroup G0
1 of G is the 

Torelli group, and G0
2 is the kernel of the so-called “Magnus representation”: the study 

of this case is carried out in [20].

Example 10.8. Let K0 = 〈x1, . . . , xp, y1, . . . , yq〉 be the free group of rank p + q, p, q ≥ 0. 
Set K1 = 〈 〈x1, . . . , xp〉 〉 	 K0. We have K0/K1 � Fq := 〈y1, . . . , yq〉. Let K∗ be the 
extended N-series defined by (10.1). We call
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G = Aut(K∗) = {f ∈ Aut(K0) | f(K1) = K1}

the fake handlebody group of type (p, q), and

G0
1 = ker(G −→ Aut(Fq))

the fake twist group of type (p, q); see Example 10.9 below to clarify this terminology. If 
p ≥ 1 and (p, q) �= (1, 0), then K1 is a non-abelian free group, and Theorem 10.2 applies. 
We will study these groups in more details in [10] using the Johnson homomorphisms 
(τ1

m)m≥0 and (τ̃0
m)m≥0 defined on the two nested filtrations (Gm)m≥0 and (G0

m)m≥0, 
respectively.

Example 10.9. Let Vg be a handlebody of genus g ≥ 1, fix a disk S ⊂ ∂Vg and let 
Σg,1 = ∂Vg \ int(S). Let � ∈ ∂Σg,1 and set

K0 = π1(Σg,1, �) and K1 = ker(i∗ : π1(Σg,1, �) −→ π1(Vg, �)),

where i∗ is induced by the inclusion i : Σg,1 ↪→ Vg. Let MCG(Σg,1, ∂Σg,1) act on K0 in 
the canonical way. The subgroup

G = {f ∈ MCG(Σg,1, ∂Σg,1) | f∗(K1) = K1}

is usually called the handlebody group, since it is the image of MCG(Vg, S) in 
MCG(Σg,1, ∂Σg,1) by the restriction homomorphism (which is injective). The subgroup

G0
1 = ker(G −→ Aut(K0/K1))

� ker(MCG(Vg, S) −→ Aut(π1(Vg, �))),

usually called the twist group, is generated by Dehn twists along the boundaries of 2-disks 
properly embedded in Vg \S [19]. The present example corresponds to Example 10.8 with 
p = q = g, where the basis (x1, . . . , xg, y1, . . . , yg) of K0 is a system of meridians and 
parallels on Σg,1, and the automorphisms of K0 are required to fix the homotopy class 
of ∂Σg,1. We will prove in [10] that this boundary condition implies that the two nested 
filtrations (10.4) on G agree:

Gm = G0
m for all m ≥ 0.

In this case, the Johnson homomorphisms (τ1
m)m≥0 and (τ̃0

m)m≥0 = (τ0
m)m≥0 are in-

terchangeable and correspond to the “tree reduction” of the Kontsevich-type functor Z
introduced in [9]. Moreover, the maps τ1

m|G0
m+1

given in Proposition 10.5 are trivial.
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10.2. N-series determined by K1 and K2

Let K = K1 be a group, and let K2 	 K with K2 ≥ [K,K]. Let K+ = (Km)m≥1 be 
the smallest N-series of K with these K1 and K2, i.e., K+ is defined by

Km = [Km−1,K1] · [Km−2,K2] (10.7)

inductively for m ≥ 3. Note that

ΓmK ⊂ Km ⊂ Γ	m/2
K

for m ≥ 1, where �m/2� = min{n ∈ Z | n ≥ m/2}. Extend K+ to an extended N-series 
K∗ = (Km)m≥0 with K0 = K1.

Let a group G act on K in such a way that GK2 = K2. Then each g ∈ G satisfies 
g(Kj) ⊂ Kj for all j ≥ 3, as can be verified inductively using (10.7). Hence G acts on 
K∗ and we can consider the induced Johnson filtration FK∗∗ (G). It has the following 
description. Set

Gm = {g ∈ G | [g,K1] ⊂ Km+1, [g,K2] ⊂ Km+2} for m ≥ 0. (10.8)

Proposition 10.10. We have FK∗
m (G) = Gm for all m ≥ 0. Hence G∗ = (Gm)m≥0 is an 

extended N-series.

Proof. Obviously, FK∗
m (G) ⊂ Gm and G0 = G = FK∗

0 (G).
It remains to prove Gm ⊂ FK∗

m (G) for m ≥ 1. It suffices to check that if g ∈ G satisfies 
[g, K1] ⊂ Km+1 and [g, K2] ⊂ Km+2, then we have [g, Ki] ⊂ Km+i for all i ≥ 1. This is 
obvious for i = 1, 2. The case i ≥ 3 is proved by an induction using (10.7), similarly to 
the proof of Proposition 9.1 in the case K+ = Γ+K. �

By Corollary 8.1, we have an injective morphism of eg-Lie algebras

τ̄• : Ḡ• −→ Der•(K̄+). (10.9)

In contrast with Section 10.1, the graded Lie algebra K̄+ is not generated by its degree 1
part. Thus, Proposition 7.1 does not apply and t• : Der•(K̄+) → D•(K̄+) might not 
be injective. Nonetheless, K̄+ is generated by its degree 1 and 2 parts. This observation 
motivates the following definitions.

Let L+ be a graded Lie algebra, and let A be a subgroup of L2 such that L2 =
[L1, L1] + A. We define a graded group D•(L+, A) as follows. For m ≥ 1, consider the 
abelian group

Dm(L+, A) = Hom(L1, Lm+1) × Hom(A,Lm+2)



242 K. Habiro, G. Massuyeau / Journal of Algebra 510 (2018) 205–258
and, for m = 0, set

D0(L+, A) =
{

(u, v) ∈ Aut(L1) × Hom(A,L2)∣∣∣ the map [x1, y1] + a �−→ [u(x1), u(y1)] + v(a)
defines an automorphism of [L1, L1] + A = L2

}
.

The subgroup

{(d1, d2) ∈ Aut(L1) × Aut(L2) | d2([b, c]) = [d1(b), d1(c)] for b, c ∈ L1}

of Aut(L1) × Aut(L2) is mapped bijectively onto D0(L+, A) by (d1, d2) 	→ (d1, d2|A). 
Hence D0(L+, A) inherits from Aut(L1) × Aut(L2) a group structure. For every m ≥ 0, 
there is a homomorphism

tm : Derm(L+) −→ Dm(L+, A), (di)i≥1 	−→ (d1, d2|A).

Clearly, t• = (tm)m≥0 is injective if the graded Lie algebra L+ is generated by its degree 
1 and 2 parts (and, so, by L1 ⊕A). Furthermore, t• is bijective if L+ is freely generated 
by L1 ⊕ A, where L1 and A are in degree 1 and 2, respectively. Hence, in this case, 
there is a unique eg-Lie algebra structure on D•(L+, A) such that t• is an eg-Lie algebra 
isomorphism.

Now, let K̄+ be freely generated by B = K̄1 and a subgroup A of K̄2. Then, the 
previous paragraph gives an injective eg-Lie algebra morphism

Ḡ•
τ̄•−→ Der•(K̄+) t•−→

�
D•(K̄+, A).

The mth Johnson homomorphism tmτm : Gm → Dm(K̄+, A) has two components

τ1
0 : G0 −→ Aut(B), τ2

0 : G0 −→ Hom(A,Λ2B) × Aut(A)

for m = 0, and

τ1
m : Gm −→ Hom(B,Liem+1(B;A)), τ2

m : Gm −→ Hom(A,Liem+2(B;A))

for m ≥ 1. Here Lie(B; A) denotes the graded Lie algebra freely generated by B ⊕ A, 
where B and A are in degree 1 and 2, respectively.

We illustrate the above constructions with a few examples. The following lemma is 
easily deduced from [15, Proposition 1].

Lemma 10.11. Let K = K1 = 〈x1, . . . , xp, y1, . . . , yq〉 be a free group of rank p + q with 
p, q ≥ 0, and let

K2 = Γ2K · 〈〈x1, . . . , xp〉〉 = ker(K → 〈y1, . . . , yq〉ab).
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Then the graded Lie algebra K̄+ is freely generated by y1K2, . . . , yqK2 in degree 1 and 
by x1K3, . . . , xpK3 in degree 2.

Example 10.12. This generalizes Example 9.5. Let Σp
g,1 be the surface Σg,1 with p ≥ 0

punctures, and let i : Σp
g,1 → Σg,1 be the inclusion. Set K = K1 = π1(Σp

g,1, �), where 
� ∈ ∂Σp

g,1 = ∂Σg,1, and

K2 = ker
(
π1(Σp

g,1, �)
i∗−→ π1(Σg,1, �) −→ π1(Σg,1, �)ab � H1(Σg,1;Z)

)
.

The smallest N-series K+ = (Km)m≥1 with these K1 and K2 is known as the weight fil-
tration. It was introduced by Kaneko [14] in the framework of pro-
 groups following ideas 
of Oda, and has been studied by several authors including Nakamura and Tsunogai [26], 
and Asada and Nakamura [3].

Set B = K1/K2 = H1(Σg,1; Z) and

A = ker(i∗ : H1(Σp
g,1;Z) −→ H1(Σg,1;Z)).

We regard A as a subgroup of K2/K3 as follows. Let x1, . . . , xp ∈ K be represented by 
loops (based at �) around the p punctures. Since A is free abelian with basis [x1], . . . , [xp], 
there is a unique homomorphism j : A → K2/K3 defined by j([xi]) = xiK3; one easily 
checks that j does not depend on the choice of x1, . . . , xp. By Lemma 10.11, j is injective 
and the graded Lie algebra K̄+ is freely generated by B ⊕ j(A), where B and j(A) are 
in degree 1 and 2, respectively.

The mapping class group G = MCG(Σp
g,1, ∂Σp

g,1) acts on K in the canonical way, and 
we have GK2 = K2. The extended N-series G = G0 ≥ G1 ≥ G2 ≥ · · · coincides with the 
filtration

Γ∗
g,[p+1] ≥ Γ∗

g,p+1(1) ≥ Γ∗
g,p+1(2) ≥ · · ·

in [3, §2.1]. Furthermore, for m ≥ 1, the Johnson homomorphism tmτm = (τ1
m, τ2

m) is 
essentially the same as the homomorphism cm in [3, §2.2].

There is a short exact sequence

1 −→ Bp(Σg,1) −→ G −→ MCG(Σg,1, ∂Σg,1) −→ 1,

where Bp(Σg,1) is the braid group in Σg,1 on p strands. Thus, the homomorphisms τ im
(for m ≥ 1, i = 1, 2) generalize both the “classical” Johnson homomorphisms (p = 0) 
and Milnor’s μ-invariants (g = 0). The former are contained in the “tree reduction” 
of the LMO functor [5], while the latter are contained in the “tree reduction” of the 
Kontsevich integral [8]. It seems possible to describe diagrammatically the generalized 
Johnson homomorphisms τ im for any g, p ≥ 0 and to relate them to the “tree reduction” 
of the extended LMO functor introduced in [27].
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Example 10.13. As in Example 10.9, consider a handlebody Vg of genus g ≥ 1 and a 
surface Σg,1 ⊂ ∂Vg of genus g. Set K = K1 = π1(Σg,1, �) and

K2 = ker
(
π1(Σg,1, �)

i∗−→ π1(Vg, �) −→ π1(Vg, �)ab � H1(Vg;Z)
)
.

The smallest N-series K+ = (Km)m≥1 with these K1 and K2 is given by

K2 = Γ2K · A, K3 = Γ3K · [K,A], etc.,

where A = ker
(
i∗ : π1(Σg,1, �) −→ π1(Vg, �)

)
. Let

A = ker
(
i∗ : H1(Σg,1;Z) −→ H1(Vg;Z)

)
and B = H1(Vg;Z).

Identify B with K1/K2, and let j : A → K2/K3 be the canonical homomorphism

A � Γ2K · A
Γ2K

� A
Γ2K ∩ A = A

[K,A] −→
K2

K3
.

Then, by Lemma 10.11, j is injective and the graded Lie algebra K̄+ is freely generated 
by B ⊕ j(A), where B and j(A) are in degree 1 and 2, respectively.

The subgroup G of MCG(Σg,1, ∂Σg,1) that preserves the Lagrangian subgroup A ⊂
H1(Σg,1; Z) is usually called the Lagrangian mapping class group of Σg,1. It acts on K

in the canonical way and satisfies GK2 = K2. Hence we obtain an extended N-series 
G∗ = (Gm)m≥0, which is the Johnson filtration induced by K∗. The generalized Johnson 
homomorphisms τ im (for m ≥ 0, i = 1, 2) will be studied by Vera [40] in relation with 
the “tree reduction” of the LMO functor introduced in [5]. This is also connected to the 
“Lagrangian” versions of the Johnson homomorphisms introduced by Levine in [17,18].

11. Filtrations on group rings and their associated graded

In this section, we consider filtrations on group rings induced by extended N-series 
and we compute their associated graded. By a ring we mean an associative ring with 
unit.

11.1. Filtrations on group rings

A filtered ring J∗ = (Jm)m≥0 is a ring J0 together with a decreasing sequence

J0 ⊃ J1 ⊃ · · · ⊃ Jk ⊃ Jk+1 ⊃ · · ·

of additive subgroups such that

JmJn ⊂ Jm+n for m,n ≥ 0. (11.1)
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Note that Jm is an ideal of J0 for each m ≥ 0. The associated graded of J∗,

gr•(J∗) =
⊕
k≥0

Jk
Jk+1

,

has the obvious graded ring structure.
Let K∗ be an extended N-series, and Z[K0] the group ring of K0. For m ≥ 1, we set

Im(K∗) = ker
(
Z[K0]

Z[πm]−→ Z[K0/Km]
)
,

where πm : K0 → K0/Km is the projection. We associate to K∗ the filtered ring

J∗(K∗) = (Jm(K∗))m≥0 (11.2)

defined by J0(K∗) = Z[K0] and by

Jm(K∗) =
∑

m1,...,mp≥1, p≥1
m1+···+mp≥m

Im1(K∗) · · · Imp
(K∗) for m ≥ 1.

Note that Jm(K∗) is the ideal of Z[K0] generated by the elements (x1−1) · · · (xp−1) for 
all x1 ∈ Km1 , . . . , xp ∈ Kmp

, m1 + · · · + mp ≥ m, m1, . . . , mp ≥ 1, p ≥ 1. For instance, 
if K∗ is the extended N-series defined by the lower central series of the group K0, then 
we have Jm(K∗) = Im, where I is the augmentation ideal of Z[K0].

Now we equip the group ring Z[K0] with the usual Hopf algebra structure with co-
multiplication Δ, counit ε and antipode S. Since

Δ(Ik(K∗)) ⊂ Ik(K∗) ⊗ Z[K0] + Z[K0] ⊗ Ik(K∗)

for k ≥ 0, we have

Δ(Jm(K∗)) ⊂
∑

i+j=m

Ji(K∗) ⊗ Jj(K∗).

Clearly, we have ε(Jm(K∗)) = 0 and S(Jm(K∗)) = Jm(K∗) for all m ≥ 1. Hence J∗(K∗)
has the structure of a filtered Hopf algebra and, consequently, the associated graded

gr•(J∗(K∗)) =
⊕
i≥0

Ji(K∗)
Ji+1(K∗)

has the structure of a graded Hopf algebra.
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11.2. Universal enveloping algebras of eg-Lie algebras

Let L• be an eg-Lie algebra. Then we have two Hopf algebras Z[L0] and U(L+), the 
universal enveloping algebra of L+. The action of L0 on L+ induces an action of Z[L0]
on U(L+). The universal enveloping algebra U(L•) of L• is defined to be the crossed 
product (or the smash product) U(L+) � Z[L0] of U(L+) and Z[L0], which is the Hopf 
algebra structure on U(L+) ⊗Z[L0] with multiplication and comultiplication defined by

(u⊗ g) · (u′ ⊗ g) = u (gu′) ⊗ gg′ for u, u′ ∈ U(L+), g, g′ ∈ L0, (11.3)

Δ(u⊗ g) =
∑

(u′ ⊗ g) ⊗ (u′′ ⊗ g) for u ∈ U(L+), g ∈ L0, (11.4)

where Δ(u) =
∑

u′ ⊗ u′′.
We usually write u ⊗g = u ·g in U(L•), and we regard both U(L+) and Z[L0] as Hopf 

subalgebras of U(L•). By (11.3) we have

g · u · g−1 = gu for g ∈ L0, u ∈ U(L+).

The grading of L+ makes U(L•) a graded Hopf algebra.

11.3. Taking rational coefficients

Here we carry out some of the previous constructions over Q. First of all, there is 
a notion of filtered Q-algebra similar to that of filtered ring in Section 11.1. For each 
extended N-series K∗, there is a filtration JQ

∗ (K∗) of Q[K0] whose definition is parallel 
to that of J∗(K∗).

We define an eg-Lie Q-algebra L• in the same way as an eg-Lie algebra in Section 4.2: 
here L+ is assumed to be a graded Lie algebra over Q. For each extended N-series 
K∗, there is an associated eg-Lie Q-algebra grQ• (K∗) defined by grQ0 (K∗) = K0/K1 and 
grQm(K∗) = (Km/Km+1) ⊗Q for m ≥ 1.

The contents of Section 5.2 can also be adapted to an eg-Lie Q-algebra L•. Thus we 
define the derivation eg-Lie Q-algebra Der•(L•) of L•, and Theorem 5.3 works over Q
as well.

Finally, the definitions of Section 11.2 work also over Q. The universal enveloping 
algebra U(L•) of an eg-Lie Q-algebra L• is the Q-vector space U(L+) ⊗Q Q[L0] with 
multiplication · defined by (11.3). Note that U(L•) has a graded Hopf Q-algebra struc-
ture. Let Û(L•) denote its degree-completion, which is a complete Hopf algebra.

Lemma 11.1. For every eg-Lie Q-algebra L•, the group-like part of Û(L•) is

{exp(
) · g | 
 ∈ L̂+, g ∈ L0},

where L̂+ denotes the degree-completion of L+.
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Proof. It is easy to see that exp(
) · g is group-like in Û(L•) for 
 ∈ L̂+, g ∈ L0.
Conversely, let x be a group-like element of Û(L•). We can write

x =
∑
g∈L0

xg · g, (11.5)

where xg ∈ Û(L+) are uniquely determined by x, and for each m ≥ 0 there are only 
finitely many g ∈ L0 such that the degree m part of xg is non-zero. We have

Δ(x) =
∑
g∈L0

∑(
x′
g · g

)
⊗

(
x′′
g · g

)
,

where Δ(xg) =
∑

x′
g ⊗ x′′

g . We also have

x⊗ x =
∑

g,h∈L0

(xg · g) ⊗ (xh · h).

Since Δ(x) = x ⊗ x, it follows that

Δ(xg) = xg ⊗ xg for all g ∈ L0,

xg ⊗ xh = 0 for all g, h ∈ L0, g �= h.

Since x �= 0, there is g ∈ L0 such that x = xg · g and xg is group-like. Hence 
 = log(xg)
is primitive in Û(L+). Since the primitive part of U(L+) is L+, the element 
 belongs to 
the degree-completion of L+. �
11.4. Quillen’s description of the associated graded of a group ring

A well-known result of Quillen describes the associated graded of a group ring filtered 
by powers of the augmentation ideal [35]. This result is generalized to the filtration of a 
group ring induced by any extended N-series, as follows.

Theorem 11.2. Let K∗ be an extended N-series. There is a (unique) ring homomorphism

Υ : U(gr•(K∗)) −→ gr•(J∗(K∗)) (11.6)

defined by Υ(gK1) = g + J1(K∗) for g ∈ K0 and by Υ(xKi+1) = (x − 1) + Ji+1(K∗) for 
x ∈ Ki, i ≥ 1. Furthermore, the rational version of Υ

ΥQ : U(grQ• (K∗)) −→ gr•(JQ
∗ (K∗))

is a Q-algebra isomorphism.
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Proof. The N-series K+ = (Km)m≥1 defined by K∗ induces a filtration

J ′
+(K+) = (J ′

m(K+))m≥1, (11.7)

where J ′
m(K+) is the subgroup of Z[K1] spanned by the elements (x1 − 1) · · · (xp − 1)

for all x1 ∈ Km1 , . . . , xp ∈ Kmp
, m1 + · · · + mp ≥ m, m1, . . . , mp ≥ 1, p ≥ 1. (It is an 

ideal of Z[K1] contained in Jm(K∗).) Let

gr+(J ′
+(K+)) =

⊕
m≥1

J ′
m(K+)

J ′
m+1(K+)

be the associated graded ring, and let

gr+(K+) =
⊕
m≥1

Km

Km+1

be the graded Lie algebra associated to the N -series K+. It is easily checked that the 
graded abelian group homomorphism

gr+(K+) −→ gr+(J ′
+(K+)), (xKm+1) 	−→ (x− 1) + J ′

m+1(K+)

preserves the Lie bracket and hence induces a ring homomorphism

Υ′ : U(gr+(K+)) −→ gr+(J ′
+(K+)).

By composing it with the canonical map gr+(J ′
+(K+)) → gr+(J∗(K∗)), we obtain a ring 

homomorphism

Υ : U(gr+(K∗)) = U(gr+(K+)) −→ gr•(J∗(K∗)). (11.8)

Besides, the inverse of the canonical isomorphism Z[K0]/J1(K∗) → Z[K̄0], where K̄0 =
K0/K1, defines a ring homomorphism

Υ : Z[K̄0] −→ gr•(J∗(K∗)). (11.9)

A straightforward computation shows that (11.8) and (11.9) define together a ring homo-
morphism (11.6) on U(gr•(K∗)) = U(gr+(K∗)) � Z[K̄0].

As a generalization of Quillen’s result mentioned above, it is known that the rational 
version Υ′ Q of Υ′ is an isomorphism [21, Corollary 5.4]. Thus, to conclude that ΥQ is an 
isomorphism, it suffices to prove that gr+(J∗(K∗)) is isomorphic to gr+(J ′

+(K+)) ⊗Z[K̄0]. 
Specifically, we need to prove that the group homomorphism

r : J ′
m(K+)

′ ⊗ Z[K̄0] −→
Jm(K∗)
Jm+1(K+) Jm+1(K∗)
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defined by r((u + J ′
m+1(K+)) ⊗ (gK1)) = (ug + Jm+1(K∗)) is an isomorphism for each 

m ≥ 1. Clearly, r is surjective. To construct a left inverse to r, let π : K0 → K̄0 denote 
the canonical projection, and let s : K̄0 → K0 be a set-theoretic section of π. Then there 
is a unique group homomorphism

q : Z[K0] −→ Z[K1] ⊗ Z[K̄0]

defined by q(g) = (g (sπ(g))−1) ⊗ π(g) for g ∈ K0. For any x1 ∈ Km1 , . . . , xp ∈ Kmp

with m1 + · · · + mp ≥ m, m1, . . . , mp ≥ 1, p ≥ 1, and for any y ∈ K0, we have

q
(
(x1 − 1) · · · (xp − 1)y

)
= (x1 − 1) · · · (xp − 1)

(
y(sπ(y))−1)⊗ π(y),

which shows that q(Jm(K∗)) ⊂ J ′
m(K+) ⊗ Z[K̄0]. Therefore, q induces a group homo-

morphism

q : Jm(K∗)
Jm+1(K∗)

−→ J ′
m(K+) ⊗ Z[K̄0]

J ′
m+1(K+) ⊗ Z[K̄0]

� J ′
m(K+)

J ′
m+1(K+) ⊗ Z[K̄0],

which satisfies qr = id. �
Remark 11.3. It is easily verified that Υ preserves the graded Hopf algebra structures. 
Hence ΥQ is a graded Hopf Q-algebra isomorphism.

12. Formality of extended N-series

Assuming that an extended N-series K∗ is “formal” in some sense, we here show that 
an action of an extended N-series G∗ on K∗ has an “infinitesimal” counterpart containing 
all the Johnson homomorphisms. In this section, we work over Q.

12.1. Formality and expansions

Let K∗ be an extended N-series and consider the completion

Q̂[K∗] = lim←−−
k

Q[K0] /JQ
k (K∗)

of the group Q-algebra Q[K0] with respect to the rational version JQ
∗ (K∗) of the filtra-

tion (11.2). The filtered Hopf Q-algebra structure of Q[K0] extends to a complete Hopf 
algebra structure on Q̂[K∗], whose filtration is denoted by ĴQ

∗ (K∗).
An extended N-series K∗ is said to be formal if the complete Hopf algebra Q̂[K∗] is 

isomorphic to the degree-completion of its associated graded, namely

ĝr•(JQ
∗ (K∗)) =

∏
k≥0

JQ
k (K∗)

JQ
k+1(K∗)

,

through an isomorphism whose associated graded is the identity.
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Recall that Û(grQ• (K∗)) denotes the degree-completion of the universal enveloping 
algebra of the eg-Lie Q-algebra grQ• (K∗) associated to the extended N-series K∗. An 
expansion of an extended N-series K∗ is a homomorphism

θ : K0 −→ Û(grQ• (K∗))

which maps any x ∈ Ki, i ≥ 0 to a group-like element of the form

θ(x) =
{

1 + (xKi+1) + (deg > i) if i > 0,
(xK1) + (deg > 0) if i = 0.

(12.1)

Example 12.1. Assume that K∗ is associated with the lower central series of a free group 
K0 = K1. Let Lie(HQ) denote the free Lie Q-algebra generated by HQ = (K1/K2) ⊗Q

in degree 1. Then the identity of HQ extends uniquely to an isomorphism Lie(HQ) �
grQ+(K∗) of graded Lie Q-algebras, so that we have a canonical isomorphism of graded 
Hopf Q-algebras

U(grQ• (K∗)) = U(grQ+(K∗)) � U(Lie(HQ)) = T (HQ),

where T (HQ) is the tensor algebra generated by HQ in degree 1. Hence, in this case, an 
expansion of K∗ is a homomorphism θ : K0 → T̂ (HQ) such that

θ(x) = exp
(
[x] + (series of Lie elements of degree > 1)

)
(12.2)

for all x ∈ K0, where [x] = (xK2) ⊗ 1 ∈ HQ. For instance, for each basis b = (bi)i of K0, 
there is a unique expansion θb of K∗ such that θb(bi) = exp([bi]).

The following establishes the relationship between formality and expansions.

Proposition 12.2. An extended N-series K∗ is formal if and only if it has an expansion.

Proof. Consider the diagram

K0
θ

ι

Û(grQ• (K∗))

Υ̂Q�

Q̂[K∗]
f

�

θ̂

�

ĝr•(JQ
∗ (K∗)),

(12.3)

where ι is the canonical map and Υ̂Q is the isomorphism in Theorem 11.2.
Assume that K∗ is formal. Then there is a complete Hopf algebra isomorphism f

in (12.3) inducing the identity on the associated graded. The complete Hopf algebra 
isomorphism θ̂ := (Υ̂Q)−1f satisfies
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θ̂(y) = (ΥQ)−1
(
y + JQ

m+1(K∗)
)

+ (deg > m) for y ∈ JQ
m(K∗), m ≥ 0,

which implies (12.1) for the homomorphism θ := θ̂ι. Since ι(K0) is contained in the 

group-like part of Q̂[K∗] and θ̂ preserves the comultiplication, θ(K0) is contained in the 
group-like part of Û(grQ• (K∗)).

Conversely, assume that K∗ has an expansion, i.e., a homomorphism θ in (12.3). Ex-
tend θ by linearity to an algebra homomorphism θ : Q[K0] → Û(grQ• (K∗)), which is 
filtration-preserving by (12.1). Hence it induces a complete algebra homomorphism θ̂ in 

(12.3). Since ι(K0) generates Q̂[K∗] as a topological vector space and since θ̂ maps ι(K0)
into the group-like part of Û(grQ• (K∗)), it follows that θ̂ preserves the comultiplication: 
therefore, θ̂ is a complete Hopf algebra homomorphism. By (12.1), θ̂ induces the isomor-
phism (ΥQ)−1 on the associated graded: hence θ̂ is an isomorphism. Thus, f := ΥQθ̂

tells us that K∗ is formal. �
Remark 12.3. Let θ be an expansion of an extended N-series K∗. The arguments in the 
proof of Proposition 12.2 shows that θ induces a complete Hopf algebra isomorphism

θ̂ : Q̂[K+] −→ Û(grQ+(K∗)),

where Q̂[K+] denotes the completion of Q[K1] with respect to the rational version of the 
filtration J ′

+(K+) defined at (11.7).

Remark 12.4. Assume that K∗ is the extended N-series defined by the lower central 
series of a group. Then an expansion of K∗ in our sense is called a “Taylor expansion” 
in [4] and a “group-like expansion” in [22] (in the case of a free group). Note that K∗
is formal in our sense if and only if it is “filtered-formal” (over Q) in the sense of [39]. 
Proposition 12.2 is a generalization of [22, Proposition 2.10] and [39, Theorem 8.5].

12.2. Actions of extended N-series in the formal case

Let a group G act on an extended N-series K∗. This action induces a homomorphism

ρ : G −→ Aut(Q̂[K∗])

with values in the automorphism group of the complete Hopf algebra Q̂[K∗]. Here, ρ
maps each g ∈ G to the unique automorphism ρ(g) extending the automorphism of K0
defined by x 	→ gx.

Now, assume that K∗ is formal, and fix an expansion θ of K∗. According to the proof 
of Proposition 12.2, θ extends uniquely to a complete Hopf algebra isomorphism

θ̂ : Q̂[K∗] −→ Û(K̄Q
• ),
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where U(K̄Q
• ) is the universal enveloping algebra of the eg-Lie Q-algebra K̄Q

• := grQ• (K∗)
associated to the extended N-series K∗. Thus θ induces a homomorphism

ρθ : G −→ Aut(Û(K̄Q
• ))

defined by ρθ(g) = θ̂ρ(g)θ̂−1 for g ∈ G.
Furthermore, we assume that G is equipped with an N-series G+ = (Gm)m≥1 and that 

(the extended N-series corresponding to) G+ acts on K∗. Recall that Der+(K̄Q
• ) denotes 

the derivation graded Lie algebra of the eg-Lie Q-algebra K̄Q
• , and let D̂er+(K̄Q

• ) denote 
its degree-completion. Here is the main construction of this section:

Lemma 12.5. Let an N-series G+ of a group G act on a formal extended N-series K∗, 
and let θ be an expansion of K∗. Then, for any g ∈ Gm, m ≥ 1, the series

log(ρθ(g)) =
∑
k≥1

(−1)k+1

k
(ρθ(g) − id)k ∈ EndQ(Û(K̄Q

• ))

converges and its restriction to K̄Q
0 = K0/K1 and K̄Q

+ = K̄+ ⊗ Q defines an element 
�θ(g) of the degree ≥ m part of D̂er+(K̄Q

• ).

Proof. Let g ∈ Gm, m ≥ 1 and let r = ρ(g). Since

r(x) = x + (r(x)x−1 − 1)x ∈
(
x + JQ

m(K∗)
)

for x ∈ K0,

we have (r − id)(Q̂[K∗]) ⊂ ĴQ
m(K∗); similarly, since

r(x− 1) = (x− 1) + (r(x)x−1 − 1)x ∈
(
(x− 1) + JQ

i+m(K∗)
)

for x ∈ Ki, i ≥ 1,

we have (r − id)(ĴQ
n (K∗)) ⊂ ĴQ

n+m(K∗) for all n ≥ 1. Hence

(r − id)p(ĴQ
n (K∗)) ⊂ ĴQ

n+pm(K∗) for all n ≥ 0, p ≥ 1. (12.4)

Taking n = 0 in (12.4), we see that

log(r) =
∑
k≥1

(−1)k+1

k
(r − id)k

is well defined as a linear endomorphism of Q̂[K∗] and, taking p = 1 in (12.4), we see 
that log(r) increases the filtration step by m:

log(r)(ĴQ
n (K∗)) ⊂ ĴQ

n+m(K∗) for all n ≥ 0.
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Furthermore, since r is an algebra automorphism, log(r) is a derivation of the algebra 

Q̂[K∗]. (It is well known that the logarithm of an algebra automorphism is a derivation 
whenever it is defined; see e.g. [33, Theorem 4], whose combinatorial argument given for 
a commutative algebra works in general.)

Of course, the conclusions of the previous paragraph for r apply to rθ := ρθ(g) as 
well. Thus we obtain

(rθ − id)p(Û≥n(K̄Q
• )) ⊂ Û≥n+pm(K̄Q

• ) for all n ≥ 0, p ≥ 1, (12.5)

and log(rθ) is a well-defined derivation of the algebra Û(K̄Q
• ) which increases the filtration 

step by m.
Now we prove that log(rθ) maps Û(K̄Q

+) · x into itself for each x ∈ K̄0: it suffices to 
prove the same property for rθ. As a topological vector space, Û(K̄Q

+) is spanned by its 
group-like elements: for instance, this follows from Remark 12.3 since Q̂[K+] is spanned 
by the homomorphic image of K1 as a topological vector space. Therefore, it suffices 
to check rθ(u · x) ∈ Û(K̄Q

+) · x for any group-like u ∈ Û(K̄Q
+). Since u · x is group-like, 

rθ(u · x) is group-like and, by Lemma 11.1, we have

rθ(u · x) = exp(
) · y = y + 
 · y + 1
2


2 · y + · · ·

for some 
 in the degree-completion ˆ̄KQ
+ of K̄Q

+ and y ∈ K̄0. Property (12.5) with p = 1
shows that rθ induces the identity on the associated graded. Hence rθ(u · x) and u · x
have the same degree 0 part, and we deduce that y = x.

Next, we show that log(rθ) maps any x ∈ K̄0 into ˆ̄KQ
+ ·x. By the previous paragraph, 

we have log(rθ)(x) = tx for some t ∈ Û(K̄Q
+). Thus we need to show that t is primitive. 

Since rθ is a coalgebra homomorphism, log(rθ) is a coderivation. It follows that

Δ(tx) =
(

log(rθ) ⊗ id + id⊗ log(rθ)
)
Δ(x)

=
(

log(rθ) ⊗ id + id⊗ log(rθ)
)
(x ⊗̂ x) = tx ⊗̂ x + x ⊗̂ tx

and we deduce that Δ(t) = t ⊗̂ 1 + 1 ⊗̂ t. Similarly, we can show that log(rθ) maps any 


 ∈ K̄Q
+ to ˆ̄KQ

+: indeed, by the previous paragraph, we know that log(rθ)(
) belongs to 
Û(K̄Q

+) and, using that log(rθ) is a coderivation, it is easily checked that log(rθ)(
) is 
primitive.

Thus, by the previous paragraph, we can define a map d0 : K̄0 → ˆ̄KQ
+ and a group 

homomorphism d+ : K̄Q
+ → ˆ̄KQ

+ by

log(rθ)(x) = d0(x) · x and log(rθ)(
) = d+(
),
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respectively. It remains to show that (d0, d+) is an element of D̂er+(K̄Q
• ), i.e., (d0, d+) is 

an infinite sum of derivations of the eg-Lie Q-algebra K̄Q
• . (Those derivations will have 

degree ≥ m since we have seen that log(rθ) increases the filtration step by m.)
First, d+ consists of derivations (in the usual sense) of the Lie Q-algebra K̄Q

+ since it 
is a restriction of the derivation log(rθ) of the algebra Û(K̄Q

• ). Next, we check that d0 is 
a 1-cocycle. For any x, y ∈ K̄0, we have

log(rθ)(xy) = x · log(rθ)(y) + log(rθ)(x) · y

= x · d0(y) · y + d0(x) · x · y =
(
xd0(y) + d0(x)

)
· xy,

which shows that d0(xy) = d0(x) + xd0(y). Finally, for any x ∈ K̄0 and 
 ∈ K̄Q
+, we have

log(rθ)(x
) = log(rθ)
(
x · 
 · x−1)

= log(rθ)(x) · 
 · x−1 + x · log(rθ)(
) · x−1 + x · 
 · log(rθ)(x−1)

= d0(x) · x
 + xd+(
) − x · 
 · x−1 · log(rθ)(x) · x−1

= d0(x) · x
 + xd+(
) − x
 · d0(x),

which shows that d+(x
) = [d0(x), x
] + xd+(
). We conclude that �θ(g) := (d0, d+)
belongs to D̂er+(K̄Q

• ). �
We can now prove the main result of this section.

Theorem 12.6. Let an N-series G+ of a group G act on a formal extended N-series K∗
with an expansion θ. Then the filtration-preserving map

�θ : G −→ D̂er+(K̄Q
• )

in Lemma 12.5 induces the rational version of the Johnson morphism:

gr(�θ) = τ̄Q+ : Ḡ+ −→ Der+(K̄Q
• ).

Proof. Let g ∈ Gm, m ≥ 1. Set r = ρ(g) and rθ = ρθ(g). The leading term of �θ(g) is a 
derivation of degree m of the eg-Lie Q-algebra K̄Q

• , which is denoted by d = (di)i≥0.
We prove that d0 : K̄0 → K̄m ⊗ Q is the rationalization of τm(g)0 : K̄0 → K̄m. Let 

x ∈ K̄0. By definition of d0, we have

log(rθ)(x) · x−1 = d0(x) + (deg > m) ∈ ˆ̄KQ
+.

Besides, it follows from (12.5) that

log(rθ)(x) = (rθ(x) − x) + (deg > m) ∈ Û
(
K̄Q

•
)
;
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hence

d0(x) =
(
degree m part of (rθ(x) · x−1 − 1)

)
.

Let y ∈ K0 be a representative of x: since θ(y) = x + (deg ≥ 1) by (12.1), we have 
θ̂−1(x) = ι(y)z, where z ∈ (1 + ĴQ

1 (K∗)). Therefore,

θ̂−1(rθ(x) · x−1 − 1
)

= r
(
θ̂−1(x)

) (
θ̂−1(x)

)−1 − 1

= r(ι(y))r(z)z−1ι(y)−1 − 1.

However, (12.4) shows that r(z) −z ∈ ĴQ
m+1(K∗), which implies that r(z)z−1 is congruent 

to 1 modulo ĴQ
m+1(K∗). It follows that

θ̂−1(rθ(x) · x−1 − 1
)
≡ r(ι(y))ι(y)−1 − 1 (mod ĴQ

m+1(K∗)).

We deduce that

d0(x) =
(
degree m part of (θ([g, y]) − 1)

) (12.1)= ([g, y]Km+1) = τm(g)0(x).

Let i ≥ 1. Now we prove that di : K̄i ⊗ Q → K̄i+m ⊗ Q is the rationalization of 
τm(g)i : K̄i → K̄i+m. Let 
 ∈ K̄i. By definition of di, we have

log(rθ)(
) = di(
) + (deg > i + m)

Besides, it follows from (12.5) that

log(rθ)(
) = (rθ(
) − 
) + (deg > i + m) ∈ Û(K̄Q
• );

hence

di(
) =
(
degree (i + m) part of (rθ(
) − 
)

)
.

Let y ∈ Ki be a representative of 
. Then we have θ(y) = 1 + 
 + (deg > i) by (12.1), 
which implies that θ̂−1(
) ≡

(
ι(y) − 1

)
(mod ĴQ

i+1(K∗)). Using (12.4), we deduce that

θ̂−1(rθ(
) − 

)

= (r − id)
(
θ̂−1(
)

)
≡ (r − id)

(
ι(y) − 1

)
(mod ĴQ

m+i+1(K∗))

= r(ι(y)) − ι(y)

≡ r(ι(y))(ι(y))−1 − 1 (mod ĴQ
m+i+1(K∗)).

We conclude that

di(
) =
(
degree (i + m) part of θ([g, y] − 1)

) (12.1)= ([g, y]Ki+m+1) = τm(g)i(
). �



256 K. Habiro, G. Massuyeau / Journal of Algebra 510 (2018) 205–258
Remark 12.7. We can regard the map �θ : G → D̂er+(K̄Q
• ) in Theorem 12.6 as a “lin-

earization” or an “infinitesimal version” of the extended N-series action of G+ on K∗. 
Let D̂er+(K̄Q

• )BCH denote the group whose underlying set is D̂er+(K̄Q
• ) and whose mul-

tiplication · is defined by the Baker–Campbell–Hausdorff series:

d · e := d + e + 1
2[d, e] + 1

12 [d, [d, e]] + 1
12 [e, [e, d]] + · · · for d, e ∈ D̂er+(K̄Q

• ).

(Here [·, ·] denotes the degree-completion of the Lie bracket defined in Theorem 5.2.) 
Then

�θ : G −→ D̂er+(K̄Q
• )BCH

is a group homomorphism, which maps G+ into the N-series of D̂er+(K̄Q
• )BCH whose 

mth term is D̂er≥m(K̄Q
• ) for every m ≥ 1.

Remark 12.8. In Theorem 12.6, let K+ be an N0-series of K1 (see Section 8.2). Then the 
canonical map K̄+ → K̄Q

+ is injective. Therefore, one can trade the Johnson morphism 
τ̄• with its rational version τ̄Q• without loss of information. It follows that the map �θ in 
Theorem 12.6 determines all the Johnson homomorphisms.

Example 12.9. Assume as in Example 9.5 that K∗ is the extended N-series associated 
with the lower central series of K0 = K1 := π1(Σg,1, �), and let G∗ denote the “clas-
sical” Johnson filtration of G0 := MCG(Σg,1, ∂Σg,1). Then, by Proposition 8.3, G+ is 
an N0-series of G := G1, namely the Torelli group of Σg,1. Since K0 is a free group, 
Example 12.1 applies: an expansion of K∗ is a homomorphism

θ : K0 −→ T̂ (HQ), where HQ = H1(Σ;Q)

satisfying (12.2). According to Remark 12.8, the map �θ in Theorem 12.6 contains all 
the “classical” Johnson homomorphisms. It is shown in [22] that, for an appropriate 
expansion θ, the map �θ can be identified with the “tree reduction” of the LMO functor 
introduced in [5].
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