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Given a non-commutative F -central division ring D, N
a subnormal subgroup of GLn(D) and M a non-abelian 
maximal subgroup of N , if M is a non-abelian soluble 
maximal subgroup of N , then, n = 1 and D is cyclic of 
prime degree p with a maximal cyclic subfield K/F such 
that the groups Gal(K/F ) and M/(K∗ ∩M) are isomorphic. 
Furthermore, for any x ∈ M \ K∗, we have xp ∈ F ∗ and 
D = F [M ] =

⊕p
i=1 Kxi.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all division rings are non-commutative. Let D be an F -central 
division ring with multiplicative group D∗ and take the unit group GLn(D) of the full 
n ×n matrix ring Mn(D). The subgroup structure of GLn(D) has attracted the attention 
of several researchers. See for example, [1], [4], [7], [9], [11], [12], [15], [23], [25], [31], [32]
and [33]. A good reference for the most important results concerning the subgroups of 
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this unit group, namely the skew linear groups, can be found in [14] and [31], as well as 
[32] particularly for soluble skew linear groups.

The problem of whether the multiplicative group of D contains non-cyclic free sub-
groups seems to be posed first by Lichtman in [22]. In [11] and [12] stronger versions 
of this problem have been investigated which deal with the existence of non-cyclic free 
subgroups in normal or subnormal subgroups of GL1(D). Also, the question on the ex-
istence of non-cyclic free subgroups in linear groups over a field was studied by Tits in 
[33] which asserts that every subgroup of the general linear group over F either con-
tains a non-cyclic free subgroup or is soluble-by-finite (assuming finitely generated if 
CharF > 0). This result of Tits is now referred as the Tits Alternative. Lichtman in 
[22] showed that there exists a finitely generated group which is not soluble-by-finite and 
does not contain a non-cyclic free subgroup.

As showed in [2], there is a similarity between the group theory properties of normal 
or subnormal subgroups of GL1(D) and the maximal ones. So it is natural to ask if 
there exists a non-cyclic free subgroup in a maximal subgroup of GLn(D) or SLn(D)
in general. The structure of maximal subgroups of GLn(D) and SLn(D) is studied in 
several articles. See for example, [1], [4], [5], [7], [9], [10], [15], [21], [23] and [25].

The following theorem was recently proved in [9].

Theorem. Let D be a finite dimensional division ring over its center F . Assume that 
M is a non-abelian maximal subgroup of GLn(D). Then, either M contains a non-
cyclic free subgroup or there exists a unique maximal subfield K of Mn(D) such that 
NGLn(D)(K∗) = M , K∗ � M , K/F is Galois with Gal(K/F ) ∼= M/K∗, and Gal(K/F )
is a finite simple group and F [M ] = Mn(D).

In addition, in this direction the following theorem was proved in [18].

Theorem. Let D be a finite dimensional division ring over its center F . Suppose that 
N be a non-central normal subgroup of GLn(D) with n � 1. Given a maximal subgroup 
M of N , then either M contains a non-cyclic free subgroup or there exists an abelian 
subgroup A such that M/A is locally finite (finite if CharF = 0).

The structure of nilpotent maximal subgroups of SLn(D) is studied in [25] and [26]. 
It is shown that the nilpotent maximal subgroups of SLn(D) are abelian.

The purpose of this article is to prove that for a given F -central division ring D, 
N a subnormal subgroup of GLn(D) and M a non-abelian maximal subgroup of N , 
if M is a non-abelian soluble maximal subgroup of N , then, n = 1 and D is cyclic of 
prime degree p with a maximal cyclic subfield K/F such that the groups Gal(K/F ) and 
M/(K∗ ∩ N) are isomorphic. Furthermore, for any x ∈ M \K∗, we have xp ∈ F ∗ and 
D = F [M ] =

⊕p
i=1 Kxi.

It should be pointed out that when n > 1 every subnormal subgroup of GLn(D)
contains SLn(D) and is thus normal ( [6, p. 138]).
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2. Notations and conventions

We recall here some of the notations that we will need throughout this article. Given 
a subset S and a subring K of a ring R, the subring generated by K and S is denoted by 
K[S]. The unit group of R is written as R∗. For a group G and subset S ⊂ G, Z(G) and 
CG(S) are the center and the centralizer of S in G, and the same notations are applied 
for R. NG(S) is used for the normalizer of S in G and G′ for the derived subgroup.

Let R be a ring, S a subring of R and G a group of units of R normalizing S such 
that R = S[G]. Suppose that N = S ∩G is a normal subgroup of G and R =

⊕
t∈T tS, 

where T is some transversal of N to G. Set E = G/N . Then, we say that R is a crossed 
product of S by E and we denote it by (R, S, G, E).

A field of positive characteristic is called locally finite if every finite subset of the field 
is contained in a finite subfield.

Given a division ring D with center F and subgroup G of GLn(D), the space of column 
n-vectors V = Dn over D is a G-D bimodule. G is called irreducible (resp. completely 
reducible, reducible) if V is irreducible (resp. completely reducible, reducible) as G-D
bimodule. Furthermore, G is absolutely irreducible if F [G] = Mn(D).

An irreducible group G is said to be imprimitive if for some integer m ≥ 2, there 
exist subspaces V1, · · · , Vm of V such that V =

⊕m
i=1 Vi and for any g ∈ G the mapping 

Vi → gVi is a permutation of the set {V1, · · · , Vm}; otherwise G is called primitive.
Here, we define the wreath product of a skew linear group and a permutation group. 

(See [32, pp. 106–109])
Let U be a linear space over a division ring D, G1 a subgroup of GL(U), and Γ a 

subgroup of a symmetric group Sk on {1, . . . , k}, k > 1. The Cartesian product Uk = V1
can be regarded as a linear space over D, and we write any vector v ∈ V1 in the form 
v = (u1, . . . , uk), uj ∈ U . For any f1, . . . , fk ∈ G1 and s ∈ Γ, we define a mapping 
f : V1 → V1, f = 〈f1, . . . , fk, s〉, by setting

f(v) = f(u1, . . . , uk) = v ∈ V1,

where the s(v)th component of v is fv(uv), v = 1, . . . , k. Obviously f is an automorphism 
of V1. The group of all such automorphisms is called the wreath product of the skew 
linear group G1 and the permutation group Γ, and is denoted by G1 
Γ. The group G1 
Γ
is imprimitive. In addition, by Lemma 5 of [32, p. 108], any imprimitive subgroup P of 
GLn(D) is conjugate to a subgroup of (GLr(D) 
 Sk), when n = rk for some natural 
numbers r and k with k > 1.

For example, recall that a monomial matrix is a square matrix with exactly one 
non-zero entry in each row and column. It is not hard to see that the set of all n × n

monomial matrices over D is conjugate to D∗ 
 Sn, when n > 1.
Let n = rk, for some natural numbers r and k, when k > 1. Obviously, (GLr(D) 
Sk) ⊆

GLn(D). Let A be the set of all k × k monomial matrices with entries in D and choose 
A ∈ A. We construct a new matrix in GLn(D) as follows. We replace each nonzero entry 
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in A with a matrix from GLr(D). Also, we replace each zero entry in A with the zero 
matrix from Mr(D). Denote the set of these new matrices by B. Hence B ⊆ GLn(D). It 
is not hard to see that B = (GLr(D) 
 Sk).

3. Preliminary results

This section contains some preliminary results that we use throughout this article.

Theorem A ([34, Theorem 1.1]). Let D = E(G) be a division ring generated as such by its 
nilpotent subgroup G of class at most 2 and its division subring E. Assume E ≤ CD(G)
and suppose that E also contains the center Z(G) of G. Set H = ND∗(G) and let 
T = τ(G), the maximal periodic normal subgroup of G.

(1) If T is not abelian, then Char(D) = 0 and T has a unique quaternion subgroup 
Q = 〈i, j〉 of order 8 and H = Q+GE∗, where Q+ = 〈Q, 1 + j,−(1 + i + j + ij)/2〉. 
Also, Q is normal in Q+ and Q+/ 〈−1, 2〉 ∼= Aut(Q) ∼= S4.

(2) If T is abelian with a non-central (in D) element x of order 4, then Char(D) 
= 2
and H = 〈1 + x〉GE∗. Also, (1 + x)2 = 2x ∈ GE∗.

(3) In all other cases, H = GE∗.

Theorem B ([34, Proposition 4.1]). Let D = E(M) be a division ring generated as such 
by its metabelian subgroup M and its division subring E such that E ⊆ CD(M). Set 
K = ND∗(M), G = CM (M ′), T = τ(G), F = E(Z(G)), L = NF∗(M) = K ∩ F . If 
M has a quaternion subgroup Q of order 8 with M = QCM (Q), then K = Q+ML. If 
T is abelian and contains an element x of order 4 not in the center of G, then K =
〈1 + x〉ML and K = ML in all other cases. In addition, G is nilpotent of class at most 
2, CD(M ′) = E(G).

Theorem C ([35, Corollary 24]). Let A be a one-sided Artinian ring. Suppose S is a 
right Goldie subring of A and G is a locally soluble subgroup of the group of units of A
normalizing S. Set R = S[G] ⊆ A and assume R is prime. Then R is right Goldie.

Theorem D ([20, Theorem 2]). Let R be a prime ring with 1, Z = Z(R) be the center 
of R containing at least five elements, and U the Z-subalgebra of R generated by R∗. 
Assume that U contains a nonzero ideal of R. If N is a soluble normal subgroup of R∗, 
then either R is a domain or N ⊆ Z.

Theorem E ([5]). Let N be normal in a primitive subgroup M of GLn(D). Then, we 
have:

(1) F [N ] is a prime ring;
(2) CMn(D)(N) is a simple Artinian ring;
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(3) If CMn(D)(N) is a division ring, then N is irreducible.

Theorem F ([24, p. 104]). Let K be a field of characteristic 0 and let A denote an Abelian 
subgroup of a group G.

(1) If [G : A] < ∞, then KG satisfies a polynomial identity of degree 2[G : A].
(2) If KG satisfies a polynomial identity of degree n, then G has such a subgroup A with 

[G : A] bounded by a fixed function of n.

Theorem G ([28, p. 36]). Suppose R is a primitive ring satisfying a polynomial identity 
of degree d. Then R has some PI-degree n � [d/2], and R ∼= Mt(D) for a division ring 
D (unique up to isomorphism) with n2 = [R : Z(R)] = t2[D : Z(D)].

Let D be a division ring with center F. Let N be a non-central subnormal subgroup 
of GLn(D) with a maximal subgroup M . For each d ∈ D∗, denote by Ad ∈ GLn(D)
the matrix obtained from the unit matrix by replacing the (1, 1)th and (n, n)th entries 
with d and d−1, respectively. In Lemma 1 of [17] and Lemma 1 of [18] it is shown that 
either M is irreducible or there exists P ∈ GLn(D) such that P−1AdP ∈ M for all 
d ∈ D∗. Therefore, the authors conclude that either M is irreducible or it contains an 
isomorphic copy of D∗. This result is used in several papers, for example in [17], [18]
and [26]. Set S = {Ad | d ∈ D∗}. This set is not closed under multiplication. Hence, 
S is not a group. But in fact what the proof in [17] shows is that M contains a copy 
of D1 = {diag(a, b) : a, b ∈ D∗} ∩ SL2(D) = {diag(a, b) : ab ∈ D′}. This is a group, 
which fits into the short exact sequence 1 → D′ → D1 → D∗ → 1, so a copy of D′ is 
immediate. Consequently, we have the following:

Lemma 3.1. Given a division ring D, let N be a non-central subnormal subgroup of 
GLn(D) with n � 1. Assume that M is a maximal subgroup of N . Then, either M is 
primitive or contains an isomorphic copy of D′.

Lemma 3.2. Let D be a finite dimensional division ring over its center F . Suppose 
that K is a subfield of Mn(D) containing F , when n � 1. If G ⊆ NGLn(D)(K∗)
is a subgroup of GLn(D) such that CGLn(D)(G) = F ∗, then K/F is Galois. Also, 
G/CG(K∗) ∼= Gal(K/F ).

Proof. Consider the homomorphism f : G → Gal(K/F ) given by f(a) = fa, where 
fa(x) = axa−1, for any x ∈ K. It is clear that ker(f) = CG(K∗). We have F ⊆
Fix(Gal(K/F )) ⊆ Fix(im(f)) = F , which implies that K/F is a Galois extension. 
By Proposition 2.14 of [27], f is surjective. Therefore, we conclude that G/CG(K∗) ∼=
Gal(K/F ), as desired. �
Lemma 3.3. Let D be a finite dimensional division ring over its center F . Assume that G
be an absolutely irreducible primitive subgroup of GLn(D). If N be a non-central normal 
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abelian subgroup of G, then K = F [N ] is a subfield of Mn(D) containing F such that 
K/F is Galois and G/CG(N) ∼= Gal(K/F ). Thus, G has a normal subgroup of finite 
index.

Proof. We know that G is a primitive skew linear group. Hence, using Theorem E, we 
obtain that F [N ] is a commutative prime ring and so a commutative integral domain. 
We know that a finite dimensional integral domain is a field, hence we conclude that 
K = F [N ] is a subfield of Mn(D). Consequently, G ⊂ NGLn(D)(K∗). Using Lemma 4.2, 
we can conclude that K/F is Galois and G/CG(N) ∼= Gal(K/F ), as desired. �

The following lemma is a direct generalization of a similar lemma that appears in [8].

Lemma 3.4. Let D be a finite dimensional division ring over its center F . Suppose that G
be an absolutely irreducible subgroup of GLn(D) with n � 1. If K is a subfield of Mn(D)
containing F such that [G : CG(K∗)] = [K : F ], then CMn(D)(K) = F [CG(K∗)].

Proof. Set A = CMn(D)(K) and B = F [CG(K∗)]. Since B ⊆ A, we conclude that 
[B : F ] � [A : F ]. Using Double Centralizer Theorem (see [6, p. 42]), we obtain that 
Mn(D) ⊗F K ∼= Mm(F ) ⊗F CMn(D)(K), when m = [K : F ]. This means that [A :
F ][K : F ] = [Mn(D) : F ]. On the other hand, F [G] = Mn(D). We supposed that 
[G : CG(K∗)] = [K : F ], so

[Mn(D) : F ] � [F [CG(K∗)] : F ][G : CG(K∗)] = [B : F ][K : F ].

Hence, [A : F ] � [B : F ]. Thus A = B, as we claimed. �
Using Double Centralizer Theorem, Lemma 3.2 and Lemma 3.4, we have following 

result.

Corollary 3.5. Let D be a finite dimensional division ring over its center F . Assume that 
G be an absolutely irreducible subgroup of GLn(D) with n � 1. If K is a subfield of 
Mn(D) containing F such that G ⊆ NGLn(D)(K∗), then F [CG(K∗)] is a simple ring.

4. Soluble maximal subgroups in SLn(D)

The following lemma will play a key role in the proof of our main theorem.

Lemma 4.1. Let R be a ring and K ⊆ R a subfield. Let M ⊆ NR∗(K∗) such that 
CM (K∗) = K∗∩M . Then, for any subgroup H of M such that H/(H∩K∗) is a nontriv-
ial finite group, we have (K[H], K, H, H/(K∗ ∩H)) is a crossed product. In particular, 
dimKK[H] = |H/(H ∩K∗)|.
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Proof. Given a set {mi} of distinct representatives of the cosets of K∗ ∩H in H, it is 
enough to show that {mi} is a linearly independent set over K. To do this, assume that 
k1m1 + · · ·+ksms = 0 is a nontrivial relation with s minimal. Since CM (K∗) = K∗∩M , 
there exists an element x ∈ K∗ such that x1 = m1xm

−1
1 
= m2xm

−1
2 = x2. Therefore, 

0 = (k1m1 + · · ·+ksms)x −x1(k1m1 + · · ·+ksms) = (x2−x1)k2m2 + · · ·+(xs−x1)ksms

with xi = mixm
−1
i , which is a nontrivial relation with a smaller number of nonzero 

summands and hence the representatives mi are linearly independent. �
By using the above results, we are now in the position to prove the following:

Theorem 4.2. Given an F -central division algebra D and N a subnormal subgroup of 
GLn(D), let M be a non-abelian maximal subgroup of N . If M is soluble then F [M ] =
Mn(D).

Proof. We may assume F ∗ ⊆ M . Otherwise, we may replace M and N by F ∗M and 
F ∗N , respectively.

First, assume that n > 1. Let L = F [M ] ∩ N . By maximality of M in N , we have 
either L = N or L = M . If the first case occurs, we conclude that N ⊆ F [M ]. By 
Lemma 2.3 of [12], SLn(D) ⊆ N and thus N is a normal subgroup of GLn(D). Hence, 
SLn(D) ⊆ F [M ]∗. By Corollary 1 of [29], we have F [M ] = Mn(D). If the second case 
happens, then M is a normal subgroup of F [M ]∗. Assume that M is imprimitive. By 
Lemma 3.1, M contains an isomorphic copy of D′, which contradicts the Hua’s Theorem 
of [16], which asserts that D∗ is insoluble. Consider that M is primitive, then F [M ] is a 
prime ring by Theorem E and Goldie by Theorem C. The Z(F [M ])-subalgebra of F [M ]
generated by F [M ]∗ is F [M ]. Using Theorem D, we conclude that either M is abelian 
or F [M ] is an ore domain. The first case cannot happen. Finally, assume F [M ] is an ore 
domain. By Theorem 5.7.8 of [31], the ring Q of quotients of F [M ] is naturally embedded 
in Mn(D). Then Q is a division ring. The same argument as above conclude that either 
Q = Mn(D) or M is a soluble normal subgroup of Q∗. Since n > 1, the first case cannot 
occur. The second case contradicts Theorem 14.4.4 of [30].

Consider now the case n = 1. We shall prove the remaining part of proof of the 
theorem in the following cases.

(1) M is metabelian. By Theorem 3.3 of [13], we conclude that F [M ] = D.
(2) M contains a characteristic subgroup G which is nilpotent of class two. Set A =

F (G). We claim that A = D. We have M ⊆ NN (A∗) ⊆ N . If M = NN (A∗), then 
A∗ ∩N ⊆ M . This means that A∗∩N is a soluble subnormal subgroup of A∗. Using 
Theorem 14.4.4 of [30], we obtain that G is abelian, which is a contradiction. Hence, 
by the maximality of M in N , we may consider N = NN (A∗). By Theorem 14.3.8 
of [30], we conclude that D = A = F (G), as we claimed. Set H = ND∗(G), and so 
M ⊆ H. Next, we shall use the conclusions of Theorem A. If the case (1) occurs, then 
B = F [Q] is a division ring. On the other hand, any group has a unique maximal 
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periodic normal subgroup. Therefore, T is a characteristic subgroup of G and Q is 
a characteristic subgroup of T . Since the characteristic property is transitive, we 
conclude that Q is a normal subgroup of M . By a similar argument as above, we 
have either Q is abelian or D = F [Q]. But, F [Q] ⊆ F [M ] and Q is a quaternion 
group of order 8. Consequently, both cases cannot happen. If the case (2) happens, 
then 〈x〉 is characteristic in G and hence normal in M . Therefore, C = F [x] is a field 
which is normalized by M . As x is not central, we have CD(x) � D which in turn 
implies that M ⊆ NN (CD(x)∗) ⊆ N . By a similar argument as above and the fact 
that CD(x) � D, we have CD(x)∗ ∩N ⊆ M . On the other hand, x is a non-central 
FC-element. By Theorem 3.2 of [13], we obtain that CD(x) = F (x) = F [x]. Using 
Double Centralizer Theorem of [6], we conclude that [D : F ] is finite, i.e., F [M ]
is a division ring. By maximality of M in N , we have either M = F [M ]∗ ∩ N or 
N ⊆ F [M ]∗. Using Theorems 14.4.4 and 14.3.8 of [30], we conclude that both cases 
cannot occur. Finally, if the case (3) of Theorem A occurs, then H = F ∗G, and so 
H and M are nilpotent which contradicts Theorem 2.3 of [26].

(3) Other cases. Let r be the least number such that M (r) ⊆ F ∗ and M (r−1) � F ∗. If 
M (r−1) is not abelian, then M (r−1) is a non-abelian nilpotent characteristic subgroup 
of class two, and the proof follows from the case (2). Otherwise, M (r−1) is abelian 
and set L := M (r−2) which is a non-abelian metabelian characteristic subgroups of 
M . Consider now G = CL(L′) which is a nilpotent characteristic subgroup of M of 
class at most two. If G is of class two, by the case (2) we are done, otherwise we 
may assume G abelian. Thus, by Theorem B, we have the following three cases to 
consider.
(a) L = QCL(Q). Then CL(Q) � L and so we conclude that L/CL(Q) ∼= Q/Q ∩

CL(Q) = Q/Z(Q) ∼= C2×C2 is abelian. Thus, L′ ⊆ CL(Q) and so Q ⊆ CL(L′) =
G, which is a contradiction since G is abelian.

(b) The case (2) of Theorem B cannot occur since G is abelian.
(c) H = LF (G)∗. In this case H/F (G)∗ ∼= L/F (G)∗ ∩ L is abelian because L′ ⊆

F (G)∗∩L, and so is H ′ ⊆ F (G)∗. This means that H is metabelian. But, M ⊆ H

and hence M is metabelian, which reduces to the case (1). �
Theorem 4.3. Given an F -central division algebra D and N a subnormal subgroup of 
GLn(D), if M is a non-abelian absolutely irreducible soluble maximal subgroup of N , 
then, n = 1 and there exists a non-central maximal normal abelian subgroup A of M
such that K = F [A] is a maximal subfield of D. Also, D is cyclic of prime degree p
such that the groups Gal(K/F ) and M/(K∗ ∩N) are isomorphic. Furthermore, for any 
x ∈ M \K∗, we have xp ∈ F ∗ and D = F [M ] =

⊕p
i=1 Kxi.

Proof. As in the proof of Theorem 4.2, we may assume F ∗ ⊂ M and M primitive. Since 
M is a soluble absolutely irreducible skew linear group, by Corollary 5.6.8 of [31], it is 
abelian-by-locally finite. Let A be a maximal abelian normal subgroup of M such that 
M/A is locally finite. We consider the following two cases.
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(1) A is non-central. We claim that A is irreducible. Since M ⊆ NGLn(D)(CMn(D)(A)∗)
and A is not central, by Theorem 14.3.8 of [30] and Corollary 1 of [29], we obtain 
CMn(D)(A)∗ ∩ N ⊂ M , and using Theorem E, we see that CMn(D)(A) is a simple 
Artinian ring. If CMn(D)(A)∗ is finite, then F ∗ and A become finite. Therefore, by 
Theorem E, F [A] is a finite simple ring. Since CMn(D)(CMn(D)(F [A])) = F [A], using 
Double Centralizer Theorem, we conclude that D is algebraic over F . Hence, by 
Jacobson’s Theorem [19, p. 208], we have D = F , which is a contradiction. Now, 
assume that CMn(D)(A) is infinite. We know that CMn(D)(A) ∼= Ms(D1), where D1 is 
a division ring. First, assume s = 1. As CMn(D)(A) is a division ring, by Theorem E, 
A is irreducible, as claimed. Now, assume s > 1. By Lemma 2.3 of [12], SLn(D) ⊆ N . 
Now, we have CMn(D)(A)∗ ∩ N ⊂ M , which means SLs(D1) is soluble. Therefore, 
CMn(D)(A)∗ is the multiplicative group of a field. Therefore, by Theorem E, A is 
irreducible.
Since M is a primitive skew linear group, by Theorem E, we conclude that F [A]
is a commutative prime ring and hence a commutative integral domain. Now, by 
Theorem 5.7.8 of [31], the field of fractions of F [N ] is embedded in Mn(D). Therefore, 
there exists a subfield K of Mn(D) such that F [A] ⊂ K. It is clear that M ⊂
NGLn(D)(K∗) and CM (K∗) = K∗ ∩ M = A. We next claim that M/A is simple. 
To do this, assume that L is a subgroup of M such that A � L � M and set 
R = F [L] = K[L]. Since L/A is locally finite, we may write K[L] = ∪HK[H], 
where the union is taken over all subgroups H of L containing A such that H/A is 
finite. As we saw, A is irreducible and so is any subgroup containing it. Thus, by 
Theorem 1.1.14 of [31], K[H] = F [H] is a prime ring that is of finite dimension over 
K and hence a simple Artinian ring. Therefore, K[A] is the union of simple Artinian 
rings. Now, since that M ⊆ NGLn(D)(R∗). If M = NN (R∗), then R∗ ∩N ⊆ M and 
hence K[H]∗∩N ⊆ M . Thus, a similar argument as above leads to the commutativity 
of K[H]∗∩N and H. Therefore, for any x, y ∈ L, we have xy = yx, which contradicts 
the maximality of A, and consequently NN (R∗) = N . Using Theorem 14.3.8 of [30]
and Corollary 1 of [29], we obtain Mn(D) = F [A], i.e., F [M ] = F [A]. Now, to 
complete the proof of the simplicity of M/A, it is enough to verify that L = M . To 
do so, given x ∈ M , there exists a subgroup H of L with A = K∗ ∩ M ⊆ H ⊆ L

such that H/A is finite and x ∈ K[H], and also by Lemma 4.1, (K[H], K, H, H/A)
is a crossed product central simple algebra with center E, say. Setting C = K[H], 
the Skolem-Noether Theorem gives us H/A ⊆ NC∗(K)/A ∼= Gal(K/E). Therefore, 
|H/A| ≤ |Gal(K/E)| = dimEK = dimKC = |H/A|, which implies that H/A =
NC∗(K)/A. But x ∈ NC∗(K) = H which says that x ∈ L, and hence L = M . 
Therefore, M/A is simple as well as soluble, i.e., M/A ∼= Cp, for some prime p. 
This also implies that p = dimKK[M ] = dimKF [M ] = dimKMn(D), and hence 
[D : F ] is finite, by Lemma 6 of [1]. Finally, the Double Centralizer Theorem yields 
dimFMn(D) = dimKMn(D)2 = p2, i.e., n = 1, [D : F ] = p2. Therefore, K is a 
maximal subfield of Mn(D) and F [M ] =

∑p
i=1 Kxi. Thus the equality [D : K] =

[K : F ] = p implies that D = F [M ] =
⊕p

i=1 Kxi. Now, if x ∈ M \K∗, then xp ∈ K∗. 
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Therefore, K ⊆ CD(xp). Since x ∈ CD(xp) and by the fact that [K : F ] = p, we 
obtain that CD(xp) = D, and so xp ∈ F ∗. By a similar argument as above, we have 
A = K∗ ∩M = K∗ ∩N .

(2) A is central. Since F [M ] = Mn(D), we conclude that Z(M) = F ∗. So we have M/F ∗

is locally finite. This implies that M/Z(M) is a locally finite group. Therefore, by 
Lemma 3 of [1], we obtain that M ′ is locally finite. Since M is primitive, by the same 
argument as that used in the previous case, we conclude that either F [M ′] = Mn(D)
or M ′ ⊆ Z(M) = F ∗.
Suppose that M ′ ⊆ Z(M) = F ∗. Now, given x, y ∈ M\F such that x 
= y, we have 
xyx−1y−1 ∈ F ∗. Therefore, F ∗ 〈x, y〉 � M , which means M ⊆ NN (F [〈x, y〉]∗). Now, 
by maximality of M , we obtain either NN (F [〈x, y〉]∗) = M or NN (F [〈x, y〉]∗) = N . 
Since x, y are algebraic over F , we have F [〈x, y〉] = F [x, y]. Because M/F ∗ is locally 
finite, we obtain that F [M ] is locally finite dimensional. Therefore, [F [x, y] : F ] < ∞. 
By a similar argument as above, we have F [〈x, y〉] = Mn(D). This means that 
[Mn(D) : F ] < ∞. Since M is irreducible, we find that M is completely reducible. 
Consequently, M is a completely reducible linear group and nilpotent, so by Corollary 
6.5 of [3], we have M/Z(M) is finite, which contradicts Theorem 1 of [18].
We may assume F [M ′] = Mn(D). Assume that K is a maximal locally finite subfield 
of F . By Theorem 1.1.12 of [31] and Theorem E, K[M ′] is a simple Artinian ring, and 
hence K[M ′] ∼= Ms(D1), where D1 is a division ring. If a ∈ U(K[M ′]), then there 
exist n1, ..., nk in M ′ and a1, ..., ak in K such that a = a1n1 + ... + aknk. Since M ′

is a locally finite group, we conclude that Fp[〈a1, ..., ak〉][〈n1, ..., nk〉] is a finite ring. 
So, a must be torsion. Thus U(K[M ′]) is a torsion group. Set F1 = Z(D1), hence 
by Jacobson’s Theorem [19, p. 208], we have F1 = D1. If s = 1, then K[M ′] = F1. 
Thus, M ′ is abelian. On the other hand, we have F [M ′] = Mn(D). Therefore, 
n = 1 and D = F , which is a contradiction. So, we may assume that s > 1. In 
that case we have U(K[M ′]) ∼= GLs(F1). This means that GLs(F1) is torsion and 
so F1 is a torsion group. Thus, F1 is a locally finite field. Now, we have, K∗ ⊆
Z(U(K[M ′])) ⊆ CMn(D)(F [M ′]) = F . Therefore, Z(U(K[M ′])) ∪ {0} is a locally 
finite field. By maximality of K, we conclude that K∗ = Z(U(K[M ′])). It is clearly 
seen that K[M ′] ∼= Ms(K). We conclude that GLn(D) contains an isomorphic copy 
of GLs(K). Since Mn(D) contains an isomorphic copy of Ms(K), by Theorem 1.1.9 
of [31], we conclude that s � n. On the other hand, F [K[M ′]] = F [M ′] = Mn(D). 
Using the fact that [K[M ′] : K] = s2, we obtain [Mn(D) : F ] ≤ s2. Therefore 
[D : F ]n2 ≤ s2. So, D = F , which is a contradiction.
Next assume that Char(F ) = 0. Since M ′ is a locally finite normal subgroup of M , by 
Corollary 5.4.6 of [31], M/CM (M ′) is locally finite and it has a metabelian normal 
subgroup of finite index. Since F [M ′] = Mn(D), we have CM (M ′) = F ∗. Thus, 
M/F ∗ has a metabelian normal subgroup of finite index. Suppose G is a normal 
subgroup of M such that G/F ∗ is a metabelian normal subgroup of M/F ∗ and 
[M/F ∗ : G/F ∗] < ∞. Hence, we obtain that [M : G] < ∞ and G′′ ⊆ F . Since M
is primitive, arguing as in the previous case, we may conclude that either F [G] =
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Mn(D) or G ⊆ Z(M) = F ∗. Consider that G ⊆ F ∗. Then [M : F ∗] < ∞. Using 
Theorem 1 of [18], we arrive at a contradiction. So, G is non-central and F [G] =
Mn(D).
First, Assume that G′ � F . Since G′ ⊆ M ′ and M ′ is a locally finite group, we obtain 
that G′ is a locally finite group. By Theorem 1.1.14 of [31] and Theorem E, we con-
clude that F [G′] is a simple Artinian ring. We have M ⊆ NN (F [G′]∗), by maximality 
of M , two cases may occur, i.e., either M = NN (F [G′]∗) or N = NN (F [G′]∗).
If M = NGLn(D)(F [G′]∗), then F [G′]∗ ∩N ⊆ M . Since M is soluble, we obtain that 
G′ is non-central abelian normal subgroup of M , which reduces to the previous case.
Consider N = NGLn(D)(F [G′]∗). Using Theorem 14.3.8 of [30] and Corollary 1 of [29], 
we have either G′ ⊆ F or F [G′] = Mn(D). By our assumption the first case cannot 
happen. Now, assume that F [G′] = Mn(D). Since G′′ ⊆ F we have G′′ ⊆ Z(G′). This 
implies that G′ is nilpotent. Therefore, by 2.5.2 of [31], G′ is abelian-by-finite. Thus, 
by Theorem F, the group ring FG′ satisfies a polynomial identity. We conclude that 
F [G′] satisfies a polynomial identity, and hence D satisfies a polynomial identity. 
Now, by Theorem G, we have [D : F ] < ∞. Since M is an absolutely irreducible 
skew linear group, we conclude that M is an irreducible linear group (cf. [32, p. 100]). 
Therefore, by Theorem 6 of [32, p. 135], M contains an abelian normal subgroup 
H, say, of finite index. If H ⊆ F ∗, then M/F ∗ is finite. Using Theorem 1 of [18], we 
arrive at a contradiction. So, H is non-central, which reduces to the previous case.
Now, consider that G′ ⊆ F . Thus, G is nilpotent. With a similar argument as 
before, we obtain that either M ′ ∩ G ⊆ F ∗ or F [M ′ ∩ G] = Mn(D). M ′ ∩ G is a 
locally finite nilpotent group. As above, the second case cannot happen. Now, assume 
M ′ ∩ G ⊆ F ∗. Since F [M ′] = Mn(D) and [M ′ : M ′ ∩ G] < ∞, we conclude that 
[D : F ] < ∞. A similar argument as above holds. �

Combining Theorems 4.2 and 4.3, we obtain our final result as follows:

Theorem 4.4. Let D be an F -central division algebra and N a subnormal subgroup of 
GLn(D). If M is a non-abelian soluble maximal subgroup of N , then, n = 1 and D
is cyclic of prime degree p with a maximal cyclic subfield K/F such that the groups 
Gal(K/F ) and M/(K∗∩N) are isomorphic. Furthermore, for any x ∈ M \K∗, we have 
xp ∈ F ∗ and D = F [M ] =

⊕p
i=1 Kxi.

As another application, we obtain the following result.

Corollary 4.5. Let D be an F -central division algebra and M is a non-abelian soluble 
maximal subgroup of SLn(D). Then, n = 1 and D is cyclic of prime degree p with 
a maximal cyclic subfield K/F such that the groups Gal(K/F ) and M/(K∗ ∩ N) are 
isomorphic. Furthermore, for any x ∈ M \ K∗, we have xp ∈ F ∗ and D = F [M ] =
⊕p

i=1 Kxi.
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