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1. Introduction

Throughout this paper, all division rings are non-commutative. Let D be an F-central
division ring with multiplicative group D* and take the unit group GL,, (D) of the full
n xn matrix ring M, (D). The subgroup structure of GL, (D) has attracted the attention
of several researchers. See for example, [1], [4], [7], [9], [11], [12], [15], [23], [25], [31], [32]
and [33]. A good reference for the most important results concerning the subgroups of
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this unit group, namely the skew linear groups, can be found in [14] and [31], as well as
[32] particularly for soluble skew linear groups.

The problem of whether the multiplicative group of D contains non-cyclic free sub-
groups seems to be posed first by Lichtman in [22]. In [11] and [12] stronger versions
of this problem have been investigated which deal with the existence of non-cyclic free
subgroups in normal or subnormal subgroups of GL1(D). Also, the question on the ex-
istence of non-cyclic free subgroups in linear groups over a field was studied by Tits in
[33] which asserts that every subgroup of the general linear group over F either con-
tains a non-cyclic free subgroup or is soluble-by-finite (assuming finitely generated if
CharF > 0). This result of Tits is now referred as the Tits Alternative. Lichtman in
[22] showed that there exists a finitely generated group which is not soluble-by-finite and
does not contain a non-cyclic free subgroup.

As showed in [2], there is a similarity between the group theory properties of normal
or subnormal subgroups of GL;(D) and the maximal ones. So it is natural to ask if
there exists a non-cyclic free subgroup in a maximal subgroup of GL, (D) or SL,(D)
in general. The structure of maximal subgroups of GL,(D) and SL, (D) is studied in
several articles. See for example, [1], [4], [5], [7], [9], [10], [15], [21], [23] and [25].

The following theorem was recently proved in [9].

Theorem. Let D be a finite dimensional division ring over its center F. Assume that
M is a non-abelian mazimal subgroup of GL,(D). Then, either M contains a non-
cyclic free subgroup or there exists a unique mazximal subfield K of M, (D) such that
Nar,(py(K*) =M, K* <M, K/F is Galois with Gal(K/F) = M/K*, and Gal(K/F)
is a finite simple group and F[M] = M, (D).

In addition, in this direction the following theorem was proved in [18].

Theorem. Let D be a finite dimensional division ring over its center F. Suppose that
N be a non-central normal subgroup of GLy, (D) with n > 1. Given a mazimal subgroup
M of N, then either M contains a non-cyclic free subgroup or there exists an abelian
subgroup A such that M /A is locally finite (finite if CharF =0).

The structure of nilpotent maximal subgroups of SL, (D) is studied in [25] and [26].
It is shown that the nilpotent maximal subgroups of SL, (D) are abelian.

The purpose of this article is to prove that for a given F-central division ring D,
N a subnormal subgroup of GL,(D) and M a non-abelian maximal subgroup of N,
if M is a non-abelian soluble maximal subgroup of N, then, n = 1 and D is cyclic of
prime degree p with a maximal cyclic subfield K/F such that the groups Gal(K/F') and
M/(K* N N) are isomorphic. Furthermore, for any € M \ K*, we have 2P € F* and
D =F[M] =@, Ka'.

It should be pointed out that when n > 1 every subnormal subgroup of GL, (D)
contains SL, (D) and is thus normal ( [6, p. 138]).
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2. Notations and conventions

We recall here some of the notations that we will need throughout this article. Given
a subset S and a subring K of a ring R, the subring generated by K and S is denoted by
K[S]. The unit group of R is written as R*. For a group G and subset S C G, Z(G) and
C¢(S) are the center and the centralizer of S in G, and the same notations are applied
for R. N¢/(S) is used for the normalizer of S in G and G’ for the derived subgroup.

Let R be a ring, S a subring of R and G a group of units of R normalizing .S such
that R = S[G]. Suppose that N = S NG is a normal subgroup of G and R = @, t5,
where T is some transversal of N to G. Set F = G/N. Then, we say that R is a crossed
product of S by E and we denote it by (R, S, G, E).

A field of positive characteristic is called locally finite if every finite subset of the field
is contained in a finite subfield.

Given a division ring D with center F' and subgroup G of GL,,(D), the space of column
n-vectors V.= D™ over D is a G-D bimodule. G is called irreducible (resp. completely
reducible, reducible) if V' is irreducible (resp. completely reducible, reducible) as G-D
bimodule. Furthermore, G is absolutely irreducible if F[G] = M,,(D).

An irreducible group G is said to be imprimitive if for some integer m > 2, there
exist subspaces Vi, -+, V,, of V such that V = @.", V; and for any g € G the mapping
Vi — ¢V, is a permutation of the set {V1,---,V,,}; otherwise G is called primitive.

Here, we define the wreath product of a skew linear group and a permutation group.
(See [32, pp. 106-109])

Let U be a linear space over a division ring D, G; a subgroup of GL(U), and T a
subgroup of a symmetric group Sy, on {1,...,k},k > 1. The Cartesian product U* = V;
can be regarded as a linear space over D, and we write any vector v € Vj in the form
v = (ui,...,ux), u; € U. For any fi,...,fr € G1 and s € T', we define a mapping
f*vi—=v, f={(fH, .., fr,s), by setting

f(v):f(uh'"?uk)zﬁgvlv

where the s(v)th component of T is f,(u,), v = 1,..., k. Obviously f is an automorphism
of Vi. The group of all such automorphisms is called the wreath product of the skew
linear group G; and the permutation group I', and is denoted by G1:T". The group G1:T’
is imprimitive. In addition, by Lemma 5 of [32, p. 108], any imprimitive subgroup P of
GL,(D) is conjugate to a subgroup of (GL,(D)1Sy), when n = rk for some natural
numbers r and k with & > 1.

For example, recall that a monomial matrix is a square matrix with exactly one
non-zero entry in each row and column. It is not hard to see that the set of all n x n
monomial matrices over D is conjugate to D*S,,, when n > 1.

Let n = rk, for some natural numbers r and k, when & > 1. Obviously, (GL,.(D)1S) C
GL, (D). Let A be the set of all k& x k monomial matrices with entries in D and choose
A € A. We construct a new matrix in GL, (D) as follows. We replace each nonzero entry
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in A with a matrix from GL,(D). Also, we replace each zero entry in A with the zero
matrix from M, (D). Denote the set of these new matrices by B. Hence B C GL,, (D). It
is not hard to see that B = (GL, (D)1 Sk).

3. Preliminary results

This section contains some preliminary results that we use throughout this article.

Theorem A (/3/, Theorem 1.1]). Let D = E(G) be a division ring generated as such by its
nilpotent subgroup G of class at most 2 and its division subring E. Assume E < Cp(Q)
and suppose that E also contains the center Z(G) of G. Set H = Np«(G) and let
T = 7(@Q), the mazimal periodic normal subgroup of G.

(1) If T is not abelian, then Char(D) = 0 and T has a unique quaternion subgroup
Q = (i,j) of order 8 and H = QT GE*, where QT = (Q,1+j,—(1 +i+j +1ij)/2).
Also, Q is normal in QT and QT /(—1,2) = Aut(Q) = S,.

(2) If T is abelian with a non-central (in D) element x of order 4, then Char(D) # 2
and H = (1 + z) GE*. Also, (1+x)? =2z € GE*.

(3) In all other cases, H = GE*.

Theorem B (/3/, Proposition 4.1]). Let D = E(M) be a division ring generated as such
by its metabelian subgroup M and its division subring E such that E C Cp(M). Set
K = Np:(M), G = Cy(M'"), T = 7(G),F = E(ZG)), L = Np-(M) = KNF. If
M has a quaternion subgroup Q of order 8 with M = QCp(Q), then K = QYML. If
T is abelian and contains an element x of order 4 not in the center of G, then K =
(14 2y ML and K = ML in all other cases. In addition, G is nilpotent of class at most
2, Cp(M’) = E(G).

Theorem C (/35, Corollary 24]). Let A be a one-sided Artinian ring. Suppose S is a
right Goldie subring of A and G is a locally soluble subgroup of the group of units of A
normalizing S. Set R = S[G] C A and assume R is prime. Then R is right Goldie.

Theorem D ([20, Theorem 2]). Let R be a prime ring with 1, Z = Z(R) be the center
of R containing at least five elements, and U the Z-subalgebra of R generated by R*.
Assume that U contains a nonzero ideal of R. If N is a soluble normal subgroup of R*,
then either R is a domain or N C Z.

Theorem E (/5]). Let N be normal in a primitive subgroup M of GL, (D). Then, we
have:

(1) F[N] is a prime ring;
(2) Ca,(py(N) is a simple Artinian ring;
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(3) If Cn,(py(N) is a division ring, then N is irreducible.

Theorem F ([2/, p. 104]). Let K be a field of characteristic 0 and let A denote an Abelian
subgroup of a group G.

(1) If |G : A] < oo, then KG satisfies a polynomial identity of degree 2[G : A].
(2) If KG satisfies a polynomial identity of degree n, then G has such a subgroup A with
[G : A] bounded by a fized function of n.

Theorem G ([28, p. 36]). Suppose R is a primitive ring satisfying a polynomial identity
of degree d. Then R has some PIl-degree n < [d/2], and R = My(D) for a division ring
D (unique up to isomorphism) with n> = [R: Z(R)] = t*|D : Z(D)].

Let D be a division ring with center F. Let IV be a non-central subnormal subgroup
of GL, (D) with a maximal subgroup M. For each d € D*, denote by A; € GL,(D)
the matrix obtained from the unit matrix by replacing the (1,1)th and (n,n)th entries
with d and d~!, respectively. In Lemma 1 of [17] and Lemma 1 of [18] it is shown that
either M is irreducible or there exists P € GL,(D) such that P~1A,P € M for all
d € D*. Therefore, the authors conclude that either M is irreducible or it contains an
isomorphic copy of D*. This result is used in several papers, for example in [17], [18]
and [26]. Set S = {4, | d € D*}. This set is not closed under multiplication. Hence,
S is not a group. But in fact what the proof in [17] shows is that M contains a copy
of Dy = {diag(a,b) : a,b € D*} N SLy(D) = {diag(a,b) : ab € D'}. This is a group,
which fits into the short exact sequence 1 — D’ — D; — D* — 1, so a copy of D’ is
immediate. Consequently, we have the following:

Lemma 3.1. Given a division ring D, let N be a mon-central subnormal subgroup of
GL, (D) with n > 1. Assume that M is a maximal subgroup of N. Then, either M is
primitive or contains an isomorphic copy of D’.

Lemma 3.2. Let D be a finite dimensional division ring over its center F. Suppose
that K is a subfield of My,(D) containing F, when n > 1. If G C Ngr,(p)(K™)
is a subgroup of GLy(D) such that Cqr,(py(G) = F*, then K/F is Galois. Also,
G/Cq(K*) = Gal(K/F).

Proof. Counsider the homomorphism f : G — Gal(K/F) given by f(a) = f,, where
fa(z) = aza™!, for any z € K. It is clear that ker(f) = Cg(K*). We have F C
Fix(Gal(K/F)) C Fiz(im(f)) = F, which implies that K/F is a Galois extension.
By Proposition 2.14 of [27], f is surjective. Therefore, we conclude that G/Cq(K*) =
Gal(K/F), as desired. O

Lemma 3.3. Let D be a finite dimensional division ring over its center F. Assume that G
be an absolutely irreducible primitive subgroup of GL, (D). If N be a non-central normal
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abelian subgroup of G, then K = F[N] is a subfield of M,(D) containing F such that
K/F is Galois and G/Cq(N) = Gal(K/F). Thus, G has a normal subgroup of finite
indez.

Proof. We know that G is a primitive skew linear group. Hence, using Theorem E, we
obtain that F[N] is a commutative prime ring and so a commutative integral domain.
We know that a finite dimensional integral domain is a field, hence we conclude that
K = F[N] is a subfield of M, (D). Consequently, G C N, p)(K*). Using Lemma 4.2,
we can conclude that K/F is Galois and G/Cq(N) = Gal(K/F), as desired. O

The following lemma is a direct generalization of a similar lemma that appears in [8].

Lemma 3.4. Let D be a finite dimensional division ring over its center F. Suppose that G
be an absolutely irreducible subgroup of GLy, (D) withn > 1. If K is a subfield of M, (D)
containing I such that [G : Cq(K™)] = [K : F], then Cy;, (py(K) = F[Cq(K™)].

Proof. Set A = Cy,(p)(K) and B = F[Cg(K*)]. Since B C A, we conclude that
[B : F] < [A : F]. Using Double Centralizer Theorem (see [6, p. 42]), we obtain that
M, (D) ®r K = My, (F) ®r Cy,(p)(K), when m = [K : F]. This means that [A :
Fl[K : F] = [M,(D) : F]. On the other hand, F[G] = M, (D). We supposed that
[G: Co(K*)] =[K: F], so

(Mo (D) : F] < [FICo(K™)] : FI[G : Ca(K™)] = (B FI[K : F).
Hence, [A: F] < [B: F|. Thus A = B, as we claimed. O

Using Double Centralizer Theorem, Lemma 3.2 and Lemma 3.4, we have following
result.

Corollary 3.5. Let D be a finite dimensional division ring over its center F'. Assume that
G be an absolutely irreducible subgroup of GL,(D) with n > 1. If K is a subfield of
M, (D) containing F' such that G C Ngp, (p)(K*), then F[Cq(K*)] is a simple ring.

4. Soluble maximal subgroups in SL,, (D)

The following lemma will play a key role in the proof of our main theorem.

Lemma 4.1. Let R be a ring and K C R a subfield. Let M C Ng«(K*) such that
Cy(K*) = K*NM. Then, for any subgroup H of M such that H/(HNK™) is a nontriv-
ial finite group, we have (K[H),K,H,H/(K* N H)) is a crossed product. In particular,
dimyx K[H) = |H/(H 0 K*)|.
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Proof. Given a set {m;} of distinct representatives of the cosets of K* N H in H, it is
enough to show that {m;} is a linearly independent set over K. To do this, assume that
kimi+---+ksms = 0 is a nontrivial relation with s minimal. Since Cp;(K*) = K*NM,
there exists an element x € K* such that 1 = mlmml_l #+ mgmmz_l = x5. Therefore,
0= (kimi+---+ksmg)x—xz1(kymy+- -+ ksms) = (x2 —x1)kama+ -+ (x5 — 1) ksms
with z; = m;azm; 1, which is a nontrivial relation with a smaller number of nonzero
summands and hence the representatives m; are linearly independent. O

By using the above results, we are now in the position to prove the following:

Theorem 4.2. Given an F-central division algebra D and N a subnormal subgroup of
GL, (D), let M be a non-abelian maximal subgroup of N. If M is soluble then F[M] =
M, (D).

Proof. We may assume F* C M. Otherwise, we may replace M and N by F*M and
F*N, respectively.

First, assume that n > 1. Let L = F[M] N N. By maximality of M in N, we have
either L = N or L = M. If the first case occurs, we conclude that N C F[M]. By
Lemma 2.3 of [12], SL,(D) € N and thus N is a normal subgroup of GL,,(D). Hence,
SL,(D) C F[M]*. By Corollary 1 of [29], we have F[M] = M, (D). If the second case
happens, then M is a normal subgroup of F[M]*. Assume that M is imprimitive. By
Lemma 3.1, M contains an isomorphic copy of D’, which contradicts the Hua’s Theorem
of [16], which asserts that D* is insoluble. Consider that M is primitive, then F[M] is a
prime ring by Theorem E and Goldie by Theorem C. The Z(F[M])-subalgebra of F[M]
generated by F[M]* is F[M]. Using Theorem D, we conclude that either M is abelian
or F[M] is an ore domain. The first case cannot happen. Finally, assume F[M] is an ore
domain. By Theorem 5.7.8 of [31], the ring @ of quotients of F[M] is naturally embedded
in M, (D). Then Q is a division ring. The same argument as above conclude that either
Q = M, (D) or M is a soluble normal subgroup of @*. Since n > 1, the first case cannot
occur. The second case contradicts Theorem 14.4.4 of [30].

Consider now the case n = 1. We shall prove the remaining part of proof of the
theorem in the following cases.

(1) M is metabelian. By Theorem 3.3 of [13], we conclude that F[M] = D.

(2) M contains a characteristic subgroup G which is nilpotent of class two. Set A =
F(G). We claim that A = D. We have M C Ny(A*) C N. If M = Ny (A*), then
A*NN C M. This means that A* NN is a soluble subnormal subgroup of A*. Using
Theorem 14.4.4 of [30], we obtain that G is abelian, which is a contradiction. Hence,
by the maximality of M in N, we may consider N = Ny(A*). By Theorem 14.3.8
of [30], we conclude that D = A = F(G), as we claimed. Set H = Np«(G), and so
M C H. Next, we shall use the conclusions of Theorem A. If the case (1) occurs, then
B = F[Q] is a division ring. On the other hand, any group has a unique maximal
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periodic normal subgroup. Therefore, T is a characteristic subgroup of G and @ is
a characteristic subgroup of 7. Since the characteristic property is transitive, we
conclude that @ is a normal subgroup of M. By a similar argument as above, we
have either @) is abelian or D = F[Q]. But, F[Q] C F[M] and @ is a quaternion
group of order 8. Consequently, both cases cannot happen. If the case (2) happens,
then (z) is characteristic in G and hence normal in M. Therefore, C' = F[z] is a field
which is normalized by M. As z is not central, we have Cp(x) & D which in turn
implies that M C Ny(Cp(z)*) C N. By a similar argument as above and the fact
that Cp(x) € D, we have Cp(z)* N N C M. On the other hand, x is a non-central
FC-element. By Theorem 3.2 of [13], we obtain that Cp(z) = F(z) = F[z]. Using
Double Centralizer Theorem of [6], we conclude that [D : F] is finite, i.e., F[M]
is a division ring. By maximality of M in N, we have either M = F[M]* N N or
N C F[M]*. Using Theorems 14.4.4 and 14.3.8 of [30], we conclude that both cases
cannot occur. Finally, if the case (3) of Theorem A occurs, then H = F*G, and so
H and M are nilpotent which contradicts Theorem 2.3 of [26].

(3) Other cases. Let 7 be the least number such that M C F* and M=V ¢ F*. If
M1 is not abelian, then M("~1 is a non-abelian nilpotent characteristic subgroup
of class two, and the proof follows from the case (2). Otherwise, M (r=1) is abelian
and set L := M("~2) which is a non-abelian metabelian characteristic subgroups of
M. Consider now G = C,(L') which is a nilpotent characteristic subgroup of M of
class at most two. If G is of class two, by the case (2) we are done, otherwise we
may assume G abelian. Thus, by Theorem B, we have the following three cases to
consider.

(a) L = QCL(Q). Then Cr(Q) < L and so we conclude that L/CL(Q) = Q/Q N
Cr(Q) =Q/Z(Q) = Cyx Cy is abelian. Thus, L' C CL(Q) and so Q C CL(L') =
G, which is a contradiction since G is abelian.

(b) The case (2) of Theorem B cannot occur since G is abelian.

(¢) H = LF(G)*. In this case H/F(G)* =2 L/F(G)* N L is abelian because L' C
F(G)*NL,and sois H' C F(G)*. This means that H is metabelian. But, M C H
and hence M is metabelian, which reduces to the case (1). O

Theorem 4.3. Given an F'-central division algebra D and N a subnormal subgroup of
GL,(D), if M is a non-abelian absolutely irreducible soluble mazimal subgroup of N,
then, n = 1 and there exists a non-central maximal normal abelian subgroup A of M
such that K = F[A] is a mazimal subfield of D. Also, D is cyclic of prime degree p
such that the groups Gal(K/F) and M/(K* N N) are isomorphic. Furthermore, for any
z € M\ K*, we have 2P € F* and D = F[M] = @!_, Kz'.

Proof. As in the proof of Theorem 4.2, we may assume F* C M and M primitive. Since
M is a soluble absolutely irreducible skew linear group, by Corollary 5.6.8 of [31], it is
abelian-by-locally finite. Let A be a maximal abelian normal subgroup of M such that
M/A is locally finite. We consider the following two cases.
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(1) A is non-central. We claim that A is irreducible. Since M C N¢r, (py(Car, (py(A)*)

and A is not central, by Theorem 14.3.8 of [30] and Corollary 1 of [29], we obtain
Cwm,(py(A)* NN C M, and using Theorem E, we see that Cy, (p)(A) is a simple
Artinian ring. If Cyy, (p)(A)* is finite, then F* and A become finite. Therefore, by
Theorem E, F[A] is a finite simple ring. Since C, (p)(Car, (p)(F[A])) = F[A], using
Double Centralizer Theorem, we conclude that D is algebraic over F. Hence, by
Jacobson’s Theorem [19, p. 208], we have D = F, which is a contradiction. Now,
assume that C'y, (p)(A) is infinite. We know that Cyy,, (p)(A) = M(D;), where Dy is
a division ring. First, assume s = 1. As Cj, (py(A) is a division ring, by Theorem E,
A is irreducible, as claimed. Now, assume s > 1. By Lemma 2.3 of [12], SL,(D) C N.
Now, we have Cyy, (py(A)* NN C M, which means SL,(D;) is soluble. Therefore,
Ch,,(py(A)* is the multiplicative group of a field. Therefore, by Theorem F, A is
irreducible.

Since M is a primitive skew linear group, by Theorem E, we conclude that F[A]
is a commutative prime ring and hence a commutative integral domain. Now, by
Theorem 5.7.8 of [31], the field of fractions of F[N]is embedded in M, (D). Therefore,
there exists a subfield K of M, (D) such that F[A] C K. It is clear that M C
Negr, (py(K*) and Cy(K*) = K* N M = A. We next claim that M/A is simple.
To do this, assume that L is a subgroup of M such that A g L < M and set
R = F[L] = KJ[L]. Since L/A is locally finite, we may write K[L] = UgK[H],
where the union is taken over all subgroups H of L containing A such that H/A is
finite. As we saw, A is irreducible and so is any subgroup containing it. Thus, by
Theorem 1.1.14 of [31], K[H] = F[H] is a prime ring that is of finite dimension over
K and hence a simple Artinian ring. Therefore, K[A] is the union of simple Artinian
rings. Now, since that M C Ngp, (p)(R*). If M = Ny(R*), then R* NN C M and
hence K[H|*NN C M. Thus, a similar argument as above leads to the commutativity
of K[H]*NN and H. Therefore, for any z,y € L, we have zy = yx, which contradicts
the maximality of A, and consequently Ny (R*) = N. Using Theorem 14.3.8 of [30]
and Corollary 1 of [29], we obtain M, (D) = F[A], ie., F[M] = F[A]. Now, to
complete the proof of the simplicity of M /A, it is enough to verify that L = M. To
do so, given z € M, there exists a subgroup H of L with A= K*NM C HC L
such that H/A is finite and € K[H], and also by Lemma 4.1, (K[H|, K, H, H/A)
is a crossed product central simple algebra with center E, say. Setting C = K[H],
the Skolem-Noether Theorem gives us H/A C Ng«(K)/A = Gal(K/E). Therefore,
|[H/A| < |Gal(K/E)| = dimgK = dimgC = |H/A|, which implies that H/A =
Ne«(K)/A. But © € Ne»(K) = H which says that z € L, and hence L = M.
Therefore, M/A is simple as well as soluble, ie., M/A = C,, for some prime p.
This also implies that p = dimxg K[M] = dimg F[M| = dimg M, (D), and hence
[D : F] is finite, by Lemma 6 of [1]. Finally, the Double Centralizer Theorem yields
dimpM, (D) = dimgM,(D)?* = p? ie,n =1, [D : F] = p?. Therefore, K is a
maximal subfield of M, (D) and F[M] = >* | Kz'. Thus the equality [D : K| =
[K : F] = p implies that D = F[M] = @!_, Kz'. Now, if x € M\ K*, then z? € K*.
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Therefore, K C Cp(aP). Since x € Cp(xP) and by the fact that [K : F] = p, we
obtain that Cp(zP) = D, and so 2P € F'*. By a similar argument as above, we have
A=K*NM=K*NN.

A is central. Since F[M] = M, (D), we conclude that Z(M) = F*. So we have M/F*
is locally finite. This implies that M/Z (M) is a locally finite group. Therefore, by
Lemma 3 of [1], we obtain that M’ is locally finite. Since M is primitive, by the same
argument as that used in the previous case, we conclude that either F[M'] = M, (D)
or M' C Z(M) = F*.

Suppose that M’ C Z(M) = F*. Now, given z,y € M\ F such that x # y, we have
ryx~ly~1 € F*. Therefore, F* (x,y) < M, which means M C Ny (F[(z,y)]*). Now,
by maximality of M, we obtain either Ny (F[{z,y)]*) = M or Ny(F[{z,y)]*) = N.
Since z,y are algebraic over F', we have F[(z,y)] = Fl[z,y]. Because M/F* is locally
finite, we obtain that F[M] is locally finite dimensional. Therefore, [F[z,y] : F] < cc.
By a similar argument as above, we have F[(z,y)] = M, (D). This means that
[M,(D) : F] < co. Since M is irreducible, we find that M is completely reducible.
Consequently, M is a completely reducible linear group and nilpotent, so by Corollary
6.5 of [3], we have M/Z(M) is finite, which contradicts Theorem 1 of [18].

We may assume F[M'] = M, (D). Assume that K is a maximal locally finite subfield
of F. By Theorem 1.1.12 of [31] and Theorem E, K[M’] is a simple Artinian ring, and
hence K[M'] =2 M,(D;), where D; is a division ring. If a € U(K[M’']), then there
exist n,...,n; in M’ and aq,...,a; in K such that a = ayny + ... + axng. Since M’
is a locally finite group, we conclude that Fy[{(a1, ..., ax)][(n1, ..., ng)] is a finite ring.
So, a must be torsion. Thus U(K[M']) is a torsion group. Set F} = Z(D;), hence
by Jacobson’s Theorem [19, p. 208], we have Fy = D;. If s = 1, then K[M'] = F3.
Thus, M’ is abelian. On the other hand, we have F[M'] = M, (D). Therefore,
n =1 and D = F, which is a contradiction. So, we may assume that s > 1. In
that case we have U(K[M']) = GLs(Fy). This means that GL,(F}) is torsion and
so Fy is a torsion group. Thus, F; is a locally finite field. Now, we have, K* C
Z(U(K[M'])) € Cw,(p)(F[M']) = F. Therefore, Z(U(K[M'])) U {0} is a locally
finite field. By maximality of K, we conclude that K* = Z(U(K[M'])). It is clearly
seen that K[M'] = M,(K). We conclude that GL,,(D) contains an isomorphic copy
of GL4(K). Since M, (D) contains an isomorphic copy of M(K), by Theorem 1.1.9
of [31], we conclude that s < n. On the other hand, F[K[M']] = F[M'] = M, (D).
Using the fact that [K[M'] : K| = s%, we obtain [M,(D) : F] < s% Therefore
[D: Fln? < s%. So, D = F, which is a contradiction.

Next assume that Char(F) = 0. Since M is a locally finite normal subgroup of M, by
Corollary 5.4.6 of [31], M/Cy(M’) is locally finite and it has a metabelian normal
subgroup of finite index. Since F[M'] = M,(D), we have Cp;(M') = F*. Thus,
M/F* has a metabelian normal subgroup of finite index. Suppose G is a normal
subgroup of M such that G/F* is a metabelian normal subgroup of M/F* and
[M/F* : G/F*] < oco. Hence, we obtain that [M : G] < oo and G” C F. Since M
is primitive, arguing as in the previous case, we may conclude that either F[G] =
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M, (D) or G C Z(M) = F*. Consider that G C F*. Then [M : F*] < co. Using
Theorem 1 of [18], we arrive at a contradiction. So, G is non-central and F[G] =
M, (D).

First, Assume that G’ € F. Since G’ C M’ and M’ is a locally finite group, we obtain
that G’ is a locally finite group. By Theorem 1.1.14 of [31] and Theorem E, we con-
clude that F[G'] is a simple Artinian ring. We have M C Ny (F[G']*), by maximality
of M, two cases may occur, i.e., either M = Ny (F[G']*) or N = Ny (F[G']*).

If M = Ngr,,(p)(F[G']*), then F[G']* "N € M. Since M is soluble, we obtain that
G’ is non-central abelian normal subgroup of M, which reduces to the previous case.
Consider N = Ngy,, (p)(F[G']*). Using Theorem 14.3.8 of [30] and Corollary 1 of [29],
we have either G’ C F or F[G'] = M, (D). By our assumption the first case cannot
happen. Now, assume that F[G'] = M,,(D). Since G’ C F we have G"” C Z(G"). This
implies that G’ is nilpotent. Therefore, by 2.5.2 of [31], G’ is abelian-by-finite. Thus,
by Theorem F, the group ring FG’ satisfies a polynomial identity. We conclude that
F[G’] satisfies a polynomial identity, and hence D satisfies a polynomial identity.
Now, by Theorem G, we have [D : F] < oco. Since M is an absolutely irreducible
skew linear group, we conclude that M is an irreducible linear group (cf. [32, p. 100]).
Therefore, by Theorem 6 of [32, p. 135], M contains an abelian normal subgroup
H, say, of finite index. If H C F™*  then M/F* is finite. Using Theorem 1 of [18], we
arrive at a contradiction. So, H is non-central, which reduces to the previous case.

Now, consider that G’ C F. Thus, G is nilpotent. With a similar argument as
before, we obtain that either M' NG C F* or FIM' NG| = M,(D). M'NG is a
locally finite nilpotent group. As above, the second case cannot happen. Now, assume
M' NG C F*. Since F[M'] = M, (D) and [M' : M' N G] < oo, we conclude that
[D : F] < co. A similar argument as above holds. O

Combining Theorems 4.2 and 4.3, we obtain our final result as follows:

Theorem 4.4. Let D be an F-central division algebra and N a subnormal subgroup of
GL,(D). If M is a non-abelian soluble maximal subgroup of N, then, n = 1 and D
is cyclic of prime degree p with a mazimal cyclic subfield K/F such that the groups
Gal(K/F) and M/(K*NN) are isomorphic. Furthermore, for any x € M\ K*, we have
P € F* and D = FIM] = @!_, Ka".

As another application, we obtain the following result.

Corollary 4.5. Let D be an F'-central division algebra and M is a non-abelian soluble

mazimal subgroup of SL, (D). Then, n = 1 and D is cyclic of prime degree p with

a mazimal cyclic subfield K/F such that the groups Gal(K/F) and M/(K* N N) are

isomorphic. Furthermore, for any © € M \ K*, we have 2P € F* and D = F[M] =
b Ka'.
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