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Abstract

In [A. Turull, J. Algebra 235 (2001), 275–314], we calculated the Schur index of each
of the irreducible characters of the finite special linear groups. In the present paper, we
calculate the Schur index of all the irreducible characters of some overgroups of the
special linear groups. The overgroups in question are the special linear groups extended
by diagonal automorphisms, and the subgroups of the general linear group that contain
the special linear group. To each conjugacy class of irreducible characters of the special
linear group in each overgroup is associated a Clifford class. The Clifford class controls all
the irreducible characters of the overgroup and intermediate subgroups that are related
to the given irreducible by Clifford theory. Knowing only the Clifford class, we can
parametrize all the irreducible characters of the intermediate subgroups, and compute,
for each parametrized irreducible character, its field of character values, as well as its
Schur index over each field. We explicitly compute the Clifford class in each case, and
deduce from it the information on the Schur index of all the irreducible characters of the
overgroups.
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Introduction

Among the many things we learn from the work of John G. Thompson is a
sense of the importance of the study of the finite simple groups. It is through them,
and their closely related quasi-simple, and almost simple groups, that we can
hope to better understand finite groups. The classification of finite simple groups
tells us that many of the covering groups of the finite simple groups are classical
groups. Among these, the special linear groups are an important example. The
present paper is a contribution to our understanding of the representations over
fields in characteristic zero of the finite special linear groups and certain of their
overgroups. It is dedicated to John G. Thompson on the occasion of his 70th
birthday.

Work of Deligne and Lusztig and others has advanced our understanding of
the characters of the finite groups of Lie type, giving us, in particular, a good
parametrization of the irreducible complex characters of many finite groups of
Lie type. Our understanding of the representations of such groups over arbitrary
fields of characteristic zero is less complete. During the last few years, the author
developed tools that allow us to give systematic answers to the question of the
Schur indices for some large families of characters, and hence make the problem
of explicitly describing the Schur index of all the irreducible characters of some
families of groups tractable. The present paper uses these techniques to describe
the Schur index of all the irreducible characters of some classes of overgroups of
the special linear groups.

The complex irreducible characters of the finite general linear groups were
calculated by Green [2]. In [4], Lehrer parametrized the irreducible complex
characters of the finite special linear groups. In [9], we calculated the Schur
indices of all the irreducible characters of the finite special linear groups. In the
present paper, we calculate the Schur indices of all the irreducible characters of
the groups in two families. The first family of groups is that of the subgroups
of the general linear group that contain the special linear group. The second
family is that of any extension of the special linear group by a group of diagonal
automorphisms.

The irreducible characters of the groups in these families are related by Clifford
theory. The standard tools of Clifford theory, namely induction and restriction,
not to mention multiplication by irreducible characters of a quotient group, give
straightforward information on the character values, but the information they give
on the Schur indices is more complicated. However, the types of relationships in
whole families can be classified. Consider a finite groupH and a normal subgroup
J , and an irreducible characterχ ∈ Irr(H). Now, if L ⊇ J is a subgroup ofH ,
thenL has a set of irreducible characters Irr(L,χ) related toχ by Clifford theory,
see below after the statement of Theorem 1.1. LetF be a field characteristic zero,
which, for convenience, we assume contains all the values of the restriction ofχ

to J , but we do not assume thatF is algebraically closed, or even a splitting field.
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SettingG = H/J , there is a set Clif(G,F ), whose elements are called Clifford
classes. This set is briefly described at the beginning of Section 1. A Clifford
class❏χ❑ ∈ Clif (G,F ) is associated naturally withχ . Knowing❏χ❑ alone allows
us to parametrize all Irr(L,χ), and to know what the field of values and the
Schur index of each character is. Hence, the calculation of the Schur indices of all
the irreducible characters of all the subgroupsL can be obtained from the much
simpler calculation of the element❏χ❑ for each irreducible characterχ ∈ Irr(H).
This is the approach we take in the present paper. This approach is analogous to
the one taken in [7] for the double covers of the symmetric and alternating groups,
but here, instead of working with a quotient group of order 2, we are working with
a cyclic quotient group.

SupposeG is a finite cyclic group, andF is an arbitrary field of characteristic
zero. The elements of Clif(G,F ), that is the Clifford classes, can be characterized
easily, see Theorem 1.1 below. Given a Clifford class❏χ❑ ∈ Clif (G,F ), the
irreducible characters ofL ⊇ J any subgroup ofH , can be parametrized from
❏χ❑, see Theorem 1.2 below. Recall that, associated to each irreducible character
ψ ∈ Irr(L), is an element[ψ] the Brauer group Br(F (ψ)) of F(ψ), as follows.
Let M be any module overF(ψ) affording as character a multiple ofψ . Then,
EndF(ψ)L(M) is a central simple algebra overF(ψ), and its equivalence class in
Br(F (ψ)) is [ψ]. If J ⊆ L⊆H , andψ ∈ Irr(L,χ), then Theorem 5.3 in [8] gives
an explicit formula for[ψ] in terms of the Clifford class❏χ❑, and the parameters
that describeψ . As is well known, once[ψ] is known, the Schur index ofψ over
every field can be calculated.

The main results in the present paper are Theorem 3.3, which calculates❏χ❑
for all characters whenH = GL(n, q), and Theorem 4.6, which calculates❏χ❑
for all characters of any extension ofSL(n, q) by its diagonal automorphisms.
As consequences, we have Corollaries 3.8 and 4.9, which calculate[ψ] for their
corresponding subgroups.

For the convenience of the reader, we have tried to limit the amount of
prerequisites for this paper. The required general facts about Clif(G,F ) whenG
is cyclic are taken from [8], with the most important facts described in Section 1.
The technique to calculate❏χ❑ relies on results of [10]. The parametrization used
for the irreducible characters ofSL(n, q) is that of [9], which is very close to the
standard one, and is described in Section 2. A few results from [9] are also used.
However, the present calculation of❏χ❑ does not require the prior calculation
of the [ψ] for ψ ∈ Irr(SL(n, q)). In fact, one can use our present calculations
to obtain[ψ] for eachψ ∈ Irr(SL(n, q)), thus recovering some results of [9].
Conversely, Corollaries 3.8 and 4.9 show how one can use the values of[ψ]
for ψ ∈ Irr(SL(n, q)) to obtain [ζ ] for all ζ ∈ Irr(L). For the most part, the
computation of the Schur indices is only implicitly given in the present paper.
The process to obtain the Schur indices ofψ over every field containingF from
[ζ ] ∈ Br(F (ζ )) is standard, and number theoretical in nature. The type of element
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[ζ ] that arises in the present paper is closely related to the type studied in [9], so
we do not repeat these algorithms here.

Our maps are consistently composed from right to left, so that, in particular, we
may compose characters with other functions, such as Galois automorphisms. In
the present paper, ifn is a positive integer, we denote byn2 the 2-part ofn, that is
the largest power of 2 dividingn. Furthermore, ifn andm are integers, not both 0,
we denote by(n,m) their greatest common divisor. We assume throughout that
q > 1 is a power of a primep.

1. Clifford theory for cyclic quotient groups

Let F be a field of characteristic zero, letF be its algebraic closure and letG
be a finite group. For the action of an elementg ∈G on an elementa ∈ A, A a
G-algebra, we use reverse exponential notationga. We now review some of the
notation, terminology, and results from [8,10].

The set Clif(G,F ) is a generalization of the Brauer group Br(F ). Its elements
are equivalence classes of central simpleG-algebras overF . First we define what
is meant by acentral simpleG-algebraA. Simplemeans, of course, that it has
exactly twoG-invariant two sided ideals.Centralhere means thatCZ(A)(G)= F .
We then define which, among the central simpleG-algebras, aretrivial G-
algebras. These are theG-algebrasE which are just the fullF -endomorphism
algebra of a non-zeroFG-module, with the natural action ofG on E. We say
that two central simpleG-algebrasA andB areequivalentif there exist trivial
G-algebrasE andE′ such that

A⊗E 	 B ⊗E′,

asG-algebras, where the tensor products are overF . This is an equivalence
relation [10] and the set of equivalence classes is denoted by Clif(G,F ). In the
case whereG= 1, this is just the set of elements of the Brauer group ofF .

From [10], we furthermore have the following. LetH be a finite group andJ
be a normal subgroup ofH such thatH/J =G. Letχ be an irreducible character
of H . Let F be a field containing all the values ofχ on elements ofJ . Then,
there exist non-zero modulesM for H over F affording a characterψ such
that ResHJ (ψ) is a rational multiple of ResHJ (χ). Any such moduleM is called
χ -quasi-homogeneous. For eachχ -quasi-homogeneous moduleM, EndFJ (M)
is naturally a central simpleG-algebra overF , and its equivalence class in
Clif (G,F ) depends onχ but does not depend on the chosenM. The equivalence
class of EndFJ (M) is denoted❏χ❑. Furthermore, given❏χ❑ ∈ Clif (G,F ), we can
calculate the Clifford theory ofχ with respect toJ , including the Schur indices
of all the characters involved.
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A description of the elements of Clif(G,F ) is particularly simple in the case
whenG is cyclic. The following theorem appears in [8] as Theorem A, and is
mentioned in [10] as Theorem 1.3.

Theorem 1.1. Let F be a field of characteristic zero and letG be a finite cyclic
group, with preferred generatorg0. Given any triple[Z,α,b], whereZ is a
central simple commutativeG-algebra,α ∈ F× andb ∈ Br(F ), we may construct
a central simpleG-algebra which we denote[Z,α,b]. Then, for every central
simpleG-algebraA overF , there exists some[Z,α,b] which is equivalent toA.
In addition, twoG-algebras[Z,α,b] and [Z0, α0, b0] are equivalent if and only
if both of the following hold:

(1) Z 	Z0 asG-algebras.
(2) SettingI = CG(Z) = CG(Z0) andm = |I |, we have thatαα−1

0 = βm for
someβ ∈ F× such thatb = b0 br(G/I,Z,β).

Here, Br(F ) is the Brauer group of the fieldF , br(G/I,Z,β) ∈ Br(F ) and
b0 br(G/I,Z,β) represents the product in the Brauer group Br(F ). The element
br(G/I,Z,β) is constructed by a slight generalization of the usual crossed
product, see [8]. The equivalence class of the crossed product defines an element
of the Brauer group which we denote by

br(G/I,Z,β) ∈ Br(F ).

The subgroupI = CG(Z) ofG depends only on the Clifford class (as can be seen
from Theorem 1.1 in the case whenG is cyclic), and is called theinertia groupof
the Clifford class ofA. The central simpleG-algebra[Z,α,b] of Theorem 1.1 is
an uncomplicated representative of its class in Clif(G,F ). We will use[Z,α,b]
to denote both theG-algebra and its equivalence class in Clif(G,F ).

Assume now thatH/J = G is cyclic with preferred generatorg0, that χ ∈
Irr(H), and that we are given that❏χ❑ = [Z,α,b]. If ψ is any irreducible character
of J contained in the restriction ofχ to J , then the usual Clifford theoretical
inertia group ofψ moduloJ is I = CG(Z), the inertia group of[Z,α,b].

In [8], there is an explicit description the characters associated toχ by Clifford
theory. For each subgroupL, with J � L � H , the set of relevant irreducible
characters is

Irr(L,χ)= {
ψ ∈ Irr(L) | (ResLJ (ψ),ResHJ (χ)

)
J


= 0
}
.

The commutativeG-algebraZ allows for a parametrization of all the irreducible
characters of each subgroup ofH that containsJ and are related toχ via Clifford
theory. The elementsZ andα allow us to give to each parametrized irreducible
character its field of values. Finally,Z, α andb allow us to assign to each of the
parametrized characters an element of the Brauer group of its field of values, and
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hence its Schur index. We proceed to briefly describe this parametrization and
results.

Associated with the Clifford class❏χ❑ ∈ Clif (G,F ) is its centroid ∆ =
∆(❏χ❑), which is defined up to isomorphism.∆ is an I -gradedG-algebra. In
our case∆ is easy to describe. Consider the ringR = Z[X] of polynomials with
coefficients inZ. Then,R is aN-graded infinite dimensionalG-algebra overF .
We can also considerR to be graded byI , where the grading ofX is the smallest
poweri0 of g0 which is inI (that isi0 is the preferred generator ofI ), and powers
of X are graded by the corresponding powers ofi0. Let I be the principal ideal
of R generated byX|I | − α. Then,I is aI -gradedG-invariant ideal ofR. Hence,
R/I is aG-algebra overF , which is graded byI . We have∆	R/I asI -graded
G-algebras. In particular,

∆	Z⊗F F [X]/(X|I | − α)
asG-algebras.

Using the centroid, we can parametrize, from❏χ❑ alone, the irreducible
characters in the Clifford theory ofχ . For each subgroupL, with J � L � H ,
the set of relevant irreducible characters is Irr(L,χ). The elements ofIrr(L,χ)
can be parametrized, using∆ only, as follows. We get the field of character values
of each irreducible character in Irr(L,χ) at the same time.

Theorem 1.2. Let J � L�H and setL̄= L/J �G. SetS to be the sum of∆#
for # ∈ L̄ ∩ I andZL = CS(L̄). Then

ZL 	 CZ(L̄)⊗F F [X]/(X|I∩L̄| − α).
Here ZL is a G-algebra overF , graded byL̄ ∩ I , andF [X] denotes theF -
algebra of polynomials in one variable, and(X|I∩L̄| −α) the ideal in it generated
by the given polynomial. The algebraF [X]/(X|I∩L̄| − α) is graded byL̄ ∩ I ,
assigning to the class ofX as grading the smallest power ofg0 in L̄ ∩ I .
Furthermore,Irr(L,χ) is in one-to-one correspondence with the pairs(e,φ),
where e is a primitive idempotent ofZL, and φ : eZL → F is an F -mono-
morphism. We denote byψ(e,φ) the character corresponding to(e,φ). The field of
values ofψ(e,φ) is simply the imageφ(eZL).

Proof. See Theorem 4.1 in [8].

For a parametrized characterψ ∈ Irr(L,χ), Theorem 5.3 in [8] describes
explicitly [ψ] ∈ Br(F (ψ)), and hence describes the Schur index ofψ . The reader
can use this result, in conjunction with the calculation of the Clifford classes
below, to obtain the exact value of[ψ] in terms of these parameters, for each
ψ ∈ Irr(L,χ), for L any subgroup ofGL(n, q) that containsSL(n, q), or for L
any subgroup of any extension ofSL(n, q) by its diagonal automorphisms. Our
next theorem is a direct consequence of Theorem 5.3 in [8]. It calculates[ψ] as
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far as possible without relying on the details of the parametrization. This will be
sufficient for us in this paper.

Theorem 1.3. Let H be a finite group and letJ be a normal subgroup ofH .
Assume thatH/J = G is cyclic and letg0 be a fixed generator forG. Let
χ ∈ Irr(H) and letF be a field of characteristic zero that contains all the values
of ResHJ (χ). Let ❏χ❑ ∈ Clif (G,F ) be the Clifford class associated withχ . By
Theorem1.1, ❏χ❑ is represented by[Z,α,b], for an appropriate triple. LetK
be the field of values overF of any irreducible character inResHJ (χ), and let
I = CG(Z) be the inertia group. LetL be any subgroup betweenJ andH , and
letψ ∈ Irr(L,χ). Then, there exists someβ ∈ F(ψ)× such thatβ is an|Ī |-th root
of α (with Ī = (L/J )∩ I ), and

[ψ] = br
(
K(ψ)/F(ψ),β−1)b̄ ∈ Br

(
F(ψ)

)
,

where the product is in the Brauer groupBr(F (ψ)) andb̄ is the image ofb under
the extension of scalars mapBr(F )→ Br(F (ψ)).

Furthermore, ifλ is any linear character ofG, then theβ ′ associated with the
irreducible characterResGL(λ)ψ ∈ Irr(L,χ) can be taken to be

β ′ = λ(i0)β
wherei0 is the smallest power ofg0 in Ī .

Proof. See Theorem B in [8].

In the situations of the present paper, the field of values overF of an irreducible
character in ResHJ (χ) is always a very small extension ofF itself. Our next two
corollaries describe what happens in the cases relevant for this paper.

Corollary 1.4. Assume the hypotheses of Theorem1.3. Assume, furthermore, that
the field of values overF of any irreducible character inResHJ (χ) is F , or,
equivalently, assume thatF is a direct summand ofZ. Then,Z is isomorphic
to the direct product of[G : I ] copies ofF permuted transitively byG/I .
Furthermore, there exists someβ ∈ F(ψ)× such thatβ is an|Ī |-th root ofα (with
Ī = (L/J )∩ I ), andF(ψ)= F(β). In addition,[ψ] = b̄ ∈ Br(F (ψ)), whereb̄ is
the image ofb under the extension of scalars mapBr(F )→ Br(F (ψ)).

Proof. The structure ofZ is calculated for example in Theorem 1.4 in [10]. In
particular, the direct summands ofZ are the fields of values of the irreducible
characters in ResHJ (χ), and the structure ofZ is as stated. It follows that, by

Theorem 1.2,ZL is isomorphic to a direct sum of copies ofF [X]/(X|Ī | − α).
It then follows from Theorem 1.2 that, sinceF(ψ) is a homomorphic image
of ZL, there exists someβ ∈ F(ψ)× such thatβ is an |Ī |-th root of α, and
F(ψ) = F(β). SinceK(ψ) = F(ψ) in this case, for everyβ ′ ∈ F(ψ)×, we
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have br(K(ψ)/F(ψ),β ′)= 1. Hence, the value of[ψ] follows immediately from
Theorem 1.3. This completes the proof of the corollary.

Corollary 1.5. Assume the hypotheses of Theorem1.3. Assume, furthermore, that
the field of values overF of any irreducible character inResHJ (χ) is a quadratic
extensionK of F , or, equivalently, assume thatZ contains a direct summand
K which is a quadratic extension ofF . Setr = [G : I ]. Then,r is even, andZ is
isomorphic to the direct product ofr/2 copies ofK permuted transitively byG/I ,
where the subgroup of order2 ofG/I acts as the Galois automorphism ofK/F
on each copy ofK. The remaining information depends on whether or notr2 (the
2-part of r) divides[G : L]. As before, we set̄I = (L/J )∩ I .

(1) Supposer2 divides[G :L]. Then, there exists someβ ∈ F(ψ)× such thatβ is
an |Ī |-th root of α, andF(ψ) = K(β). In addition, [ψ] = b̄ ∈ Br(F (ψ)),
where b̄ is the image ofb under the extension of scalars mapBr(F ) →
Br(F (ψ)).

(2) Supposer2 does not divide[G :L]. Then, there exists someβ ∈ F(ψ)× such
that β is an |Ī |-th root ofα, F(ψ) = F(β). Furthermore, there exists some
β0 ∈ F(ψ)× such thatβ0 is an|I |2-th root ofα, and

[ψ] = br
(
K(ψ)/F(ψ),β−1

0

)
b̄ ∈ Br

(
F(ψ)

)
,

where the product is in the Brauer groupBr(F (ψ)), and b̄ is the image ofb
under the extension of scalars mapBr(F )→ Br(F (ψ)).

Proof. Again, the structure ofZ is calculated for example in Theorem 1.4 in [10].
In particular, the direct summands ofZ are the fields of values of the irreducible
characters in ResHJ (χ), and the structure ofZ is as stated. Suppose first thatr2
divides [G : L]. It follows that, by Theorem 1.2,ZL is isomorphic to a direct
sum of copies ofK[X]/(X|Ī | − α). Hence, from Theorem 1.2, we obtain that,
sinceF(ψ) is a homomorphic image ofZL, there exists someβ ∈ F(ψ)× such
thatβ is an|Ī |-th root ofα, andF(ψ)=K(β). Now sinceK ⊆ F(ψ), we have
F(ψ)=K(ψ), and it follows from Theorem 1.3 that[ψ] = b̄ ∈ Br(F (ψ)), where
b̄ is the image ofb under the extension of scalars map Br(F )→ Br(F (ψ)), as
desired.

Suppose now thatr2 does not divide[G : L]. It follows that, by Theorem 1.2,
ZL is isomorphic to a direct sum of copies ofF [X]/(X|Ī | − α). Hence, from
Theorem 1.2, we obtain that, sinceF(ψ) is a homomorphic image ofZL, there
exists someβ ∈ F(ψ)× such thatβ is an|Ī |-th root ofα, andF(ψ)= F(β). By
Theorem 1.3, there exists someβ1 ∈ F(ψ)× such thatβ1 is an|Ī |-th root ofα,
and

[ψ] = br
(
K(ψ)/F(ψ),β−1

1

)
b̄ ∈ Br

(
F(ψ)

)
,
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where the product is in the Brauer group Br(F (ψ)) andb̄ is the image ofb under
the extension of scalars map Br(F )→ Br(F (ψ)). The degree of the extension
K(ψ)/F(ψ) is at most 2, so that, for example, by Proposition a in [6, p. 260],
the order of br(K(ψ)/F(ψ),β−1

0 ) as an element of the Brauer group is at most 2.
Furthermore, sinceG is cyclic andr2 does not divide[G : L], we must have
|I |2 = |Ī |2. Let d be the odd part of|Ī |. Then, settingβ0 = βd1 , we have thatβ0

is a |I |2-th root of α, and br(K(ψ)/F(ψ),β−1
1 ) = br(K(ψ)/F(ψ),β−1

0 ). The
result follows.

2. Parametrizing the characters of SL(n, q) and GL(n, q)

The irreducible characters ofGL(n, q) have been described by J.A. Green [2].
We will use the notation of [9], which was suggested by the results of Lehrer [4]
and Karkar and Green [3], to parameterize the characters ofGL(n, q). We now
describe this parametrization.

We letp be a prime number and we letq be a power ofp. We have the finite
field Fp, with exactlyp elements. We fix an algebraic closure ofFp , which we
denoteFp. We think of each finite field in characteristicp as a subfield ofFp.
In particular,Fq is a subfield ofFp. For each positive integerd , we denote by
Fd = F×

qd
the multiplicative group of the fieldFqd . We denote bŷFd the character

group ofFd , that is F̂d is the group of group homomorphismsFd → C×. We
defineσq : F̂d → F̂d by σq(θ)= θq .

Definition 2.1.

(1) Two charactersθ andφ in F̂d areconjugateif σkq (θ)= φ for some integerk.
This yields an equivalence relation.

(2) A d-simplexs is a conjugacy class of sized in F̂d . If θ is some element ofs,
we writes = 〈θ〉.

(3) Thedegreeof ad-simplexs is d(s)= d .
(4) We denote byGd the union of all thed-simplexes, and byG the union⋃∞

d=1Gd .
(5) LetP be the set of all partitions. For eachν ∈ P , we denote, as usual, by|ν|

the sum of its parts.
(6) We let F be the set of all functionsλ :G → P , which assign the empty

partition to almost all elements ofG and have the property that, for every
θ ∈ G, we haveλ(σq(θ))= λ(θ).

(7) For eachλ ∈ F , we define itsdegreeto be

deg(λ)=
∑
θ∈G

∣∣λ(θ)∣∣.



A. Turull / Journal of Algebra 257 (2002) 560–587 569

(8) We denote byFn the set of all elements ofF of degreen.
(9) For eachλ ∈ Fn, we denote byχλ the irreducible character(· · · 〈θ〉λ(θ) · · ·),

where we take〈θ〉λ(θ) once for each simplex. Hence,χλ ∈ Irr(GL(n, q)).

Theorem 2.2. The mapλ �→ χλ is a bijectionFn → Irr(GL(n, q)).

Proof. See Theorem 2.4 in [9].

Two types of action on the set of irreducible characters ofGL(n, q) play a key
role in this paper. They are the Galois action, and the multiplication of irreducible
characters by linear characters. Both these actions correspond to easily described
actions on the parameter set. We now proceed to describe them in turn.

Definition 2.3.

(1) For eachλ ∈ F , we denote byQ(λ) the fieldQ extended by the values of all
theθ in the support ofλ. Hence,Q(λ) is Q extended by a primitivem-th root
of 1, wherem is the least common multiple of all the|θ(Fd)| for θ ∈ Gd such
thatλ(θ) is not the empty partition.

(2) Let λ ∈ Fn, and letσ ∈ Gal(Q(λ)/Q). Then, we defineσλ :G → P , by,
for θ ∈ G, settingσλ(θ) = λ(σ−1θ) if θ is such thatQ(θ) ⊆ Q(λ), and
σλ(θ) is the empty partition otherwise. Naturally, hereσ−1θ denotes function
composition. We have thatσλ ∈ Fn.

(3) Letλ ∈ Fn. We set

Galg(λ)= {
σ ∈ Gal(Q(λ)/Q): σλ= λ}.

(4) For any subgroupH of Gal(Q(λ)/Q), we denote byH ′ the fixed field ofH .

Lemma 2.4. Let λ ∈ Fn. ThenQ(χλ) ⊆ Q(λ) and, for eachσ ∈ Gal(Q(λ)/Q),
we have that the composition of the character with the Galois automorphism is
simplyσχλ = χσλ, see Definition2.3.

Proof. See Lemma 2.7 in [9].

The second type of action that plays a major role in this paper is the action
on Irr(GL(n, q)) by linear characters ofGL(n, q), that is by linear characters
of GL(n, q)/SL(n, q). It too corresponds to some easily described action of the
parameter set which we now proceed to describe. This action was first described
in [3].

We let n be a positive integer. ThenFqn can be viewed as a vector space
overFq of dimensionn. We setGL(n, q) to be the group of all invertible linear
transformations of the vector spaceFqn overFq onto itself. Each element ofFn
acts on the vector spaceFqn by left multiplication, so we think ofFn as a subgroup
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of GL(n, q). There is the determinant functiondet which provides a surjective
homomorphism

det : GL(n, q)→ F1,

whose kernel is denotedSL(n, q), and which provides a fixed isomorphism from
GL(n, q)/SL(n, q) ontoF1. Hence, the determinant functiondet provides a fixed
isomorphism fromGL(n, q)/SL(n, q) ontoF1. If α ∈ F̂1, thenα det is a linear
character ofGL(n, q). Building on some results of Lehrer [4], Karkar and Green
[3] described the multiplication action of this character on Irr(GL(n, q)). We now
recall the notation introduced in [9] to describe their result, and to study certain
aspects of the multiplication action, and its interaction with the Galois action
introduced earlier.

Definition 2.5. Let α ∈ F̂1. Then, we wish to define the actions ofα on various
objects.

(1) By abuse of notation, we may also viewα as a linear character ofGL(n, q)
(strictly speaking as the compositionα det), or as a linear character ofFd
for any positive integerd (strictly speaking as the compositionαNorm,
where Norm is the norm homomorphism Norm:F×

qd
→ F×

q ). The context
will determine which version ofα needs to be used.

(2) If χ ∈ Irr(GL(n, q)), thenαχ is simply the product of the two characters of
GL(n, q).

(3) If θ ∈ F̂d , for some positive integerd , thenαθ is simply the product of the
two elements of̂Fd .

(4) If λ ∈ F , then we defineαλ :G → P by αλ(θ) = λ(α−1θ). It is easy to see
thatαλ ∈ F anddeg(αλ)= deg(λ).

(5) If λ ∈ F , then we define the following subgroup ofF1:

I(λ)=
⋂{

ker(α): α ∈ F̂1 andαλ= λ}.
(6) Letλ ∈Fn. We set

Galr(λ)= {
σ ∈ Gal

(
Q(λ)/Q

)
: for someα ∈ F̂1 we haveσλ= αλ}.

Theorem 2.6. For eachα ∈ F̂1 and eachλ ∈Fn, αχλ is an irreducible character
of GL(n, q), and in fact

αχλ = χαλ.

Proof. See Theorem 3.4 in [9].

Finally, we set up notation for the irreducible characters ofSL(n, q). The
characters ofSL(n, q) were originally parameterized by Lehrer [4]. We now set
up notation for them as in [9].
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Definition 2.7. Let λ ∈ Fn, then we denote byψλ any irreducible character
contained in

ResGL(n,q)
SL(n,q) (χλ).

Remark. The characterψλ is only defined up to conjugation by some element of
GL(n, q).

Proposition 2.8. Each irreducible character ofSL(n, q) is GL(n, q) conjugate
to someψλ, for someλ ∈Fn. Furthermore, ifλ,λ′ ∈ Fn, then theGL(n, q)-orbit
of characters conjugate toψλ′ is the same as that of characters conjugate toψλ
if and only if there exists someα ∈ F̂1 such thatλ′ = αλ.

Proof. See Proposition 4.2 in [9].

3. Clifford classes for the general linear group

In this section, we calculate the Clifford class❏χλ❑ ∈ Clif (G,F ) for each
irreducible characterχλ of GL(n, q) in terms of its parameterλ. From this, we
easily obtain, for each irreducible characterψ of some subgroup ofGL(n, q)
that containsSL(n, q), its field of valuesF(ψ), its element in the Brauer group
[ψ] ∈ Br(F (ψ)), and its Schur index. Here we takeH = GL(n, q), J = SL(n, q),
andG=H/J . The determinant provides a standard isomorphism betweenG and
F

×
q .G is cyclic of orderq−1, and we may apply the results of Section 1. We will

takeF to be any field containing all the values of the restriction ofχλ to J . The
field Q(ResHJ (χλ)) is contained in the field of values of each of the irreducible
characters involved. Hence, the requirement thatF contain all the values ofχλ
on J does not affect the later calculation of fields of values and Schur indices
of the characters related toχ by Clifford theory. For completeness, we begin by
calculating the fieldQ(ResHJ (χλ)) itself.

Proposition 3.1. SetH = GL(n, q), J = SL(n, q), and G = H/J . Let χ ∈
Irr(H) be such thatχ = χλ, whereλ ∈ Fn, see Theorem2.2. Then, we have

Q
(
ResHJ (χ)

) = Galr(λ)′

whereGalr(λ) is defined in Definition2.5, and the prime in Definition2.3.

Proof. By Lemma 2.4, we know thatQ(χ) ⊆ Q(λ). SinceQ(λ)/Q is a Galois
extension, our result will follow once we prove that, forσ ∈ Gal(Q(λ)/Q),
we haveσ ResHJ (χ) = ResHJ (χ) if and only if σ ∈ Galr(λ). By Theorem 2.4,
σχ = χσλ. The restriction ResHJ (χ) is the sum of a singleGL(n, q)-conjugacy
class of irreducible characters ofJ . Hence, our result follows immediately from
Proposition 2.8.
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Two irreducible characters ofGL(n, q) have the same Clifford theory if and
only if one of them is the other times some character ofGL(n, q)/SL(n, q).

Proposition 3.2. SetH = GL(n, q), J = SL(n, q), andG=H/J . Letχλ,χµ ∈
Irr(GL(n, q)). Then the following are equivalent:

(1) There exists a linear characterα ∈ Irr(GL(n, q)/SL(n, q)) such thatαχλ =
χµ.

(2) There exists someα ∈ F̂1 such thatαλ= µ.
(3) The restriction ofχλ andχµ to SL(n, q) are equal, i.e.,

ResGL(n,q)
SL(n,q) (χλ)= ResGL(n,q)

SL(n,q) (χµ).

Proof. That (1) and (2) are equivalent follows immediately from Theorem 2.6,
sinceF̂1 is identified with Irr(GL(n, q)/SL(n, q)). It is immediate that (1) implies
(3). The converse follows from standard Clifford theory, using the fact that,
sinceGL(n, q)/SL(n, q) is cyclic, the restriction of any irreducible character
of GL(n, q) to SL(n, q) will be the sum of some irreducible character and its
GL(n, q) conjugates, each with multiplicity one.

Hence, it would be enough to calculate❏χλ❑ only for a set of representatives
of the classes of irreducible characters ofGL(n, q) under the equivalence of the
proposition. However, we simply calculate❏χλ❑ for all λ ∈ Fn, and notice that, as
expected, our results are unchanged whenλ is replaced byαλ. Our next theorem
describes the Clifford classes for the general linear group.

Theorem 3.3. We setH = GL(n, q), J = SL(n, q), andG = H/J . Let χ ∈
Irr(H) be such thatχ = χλ, whereλ ∈ Fn, see Theorem2.2. We letF be a field
containing the values ofχ on J . We fix a generatorg0 of the cyclic groupG.
Then,❏χ❑ ∈ Clif (G,F ), and, by Theorem1.1, ❏χ❑ = [Z,α,b], for appropriateZ,
α, andb, which are as follows.

We takeη to be a primitivep-th root of unity. If2 � n2 � (p − 1)2, we set
s = 2(p− 1)2/n2, otherwise we sets = 1. Letr be the size of the stabilizer of the
action of F̂1 on λ. Seti0 = gr0, andI to be the subgroup ofG generated byi0.
There necessarily exists somej0 ∈ i0 such thatχ(j0) 
= 0. We setα0 = χ(j0)|I |,
for any one suchj0. If p is odd,q is not a square,2 � n2 � (p−1)2, and, for any
elementβ ∈ F̂1 of ordern2, we haveβλ = λ, then we setK = F(√εp ), where
ε ∈ {1,−1} andp ≡ ε (mod 4). Otherwise, we setK = F . With this notation, we
have:

(1) Z is isomorphic to the direct sum ofr/[K : F ] copies ofK, which are
permuted transitively byG/I , and where the subgroup ofG/I of order
[K : F ] acts on each copy ofK as the Galois group ofK/F .
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(2) α can be taken to be the product ofα0 ∈ F× times the|I |-th power of any
element ofF×.

(3) b = br(F (η)/F,α(p−1)/s).

In addition, we always haveb2 = 1. Furthermore, if eitherp = 2, or n is odd, or
n2> (p− 1)2, thenb = 1 ∈ Br(F ).

Remark 3.4. There are, of course, formulas to calculate the value ofχ(j0).
Alternatively, we note that the value ofχ(j0) up to multiplication by some
element ofF× is determined by the action of Galr(λ). Indeed, ifσ ∈ Galr(λ),
then, by Definition 2.5, there exists someασ ∈ F̂1 such thatσλ = ασλ. By
Theorem 2.6, it follows thatσ(χ(j0))/χ(j0) = ασ (i0). Even thoughασ may
not be uniquely determined byσ , this equation implies thatασ (i0) is uniquely
determined byσ . Hence, the mapσ �→ ασ (i0) is uniquely defined from the action
of Galr(λ). Furthermore, it determinesχ(j0) up to multiplication byF× in the
following sense. Supposeγ ∈ Q(λ)× is such that, for eachσ ∈ Galr(λ), we have
σ(γ )/γ = ασ (i0). Then, it follows thatχ(j0)/γ ∈ Q(ResHJ (χ))

× ⊆ F×.

Proof of Theorem 3.3. ψλ is an irreducible character ofJ contained in ResHJ (χ).
By Proposition 4.2 of [9], the ordinary Clifford inertia group ofψλ in H is the set
of all elements ofH whose determinant is inI(λ). Hence, by Definition 2.5, it is
the subgroup ofH that containsJ and has indexr in H . Hence,I is the image
in G of the inertia group inH of ψλ. As explained at the beginning of Section 1,
the image inG of the ordinary Clifford theoretic inertia group of any irreducible
summand of ResHJ (χ) is the inertia group of the Clifford class❏χ❑. Hence,I is
the inertia group of❏χ❑. In addition, it follows from Theorem 4.8 in [9] that in
every caseK = F(ψλ).

Theorem 1.4 in [10] now tells us thatj0 exists, thatα0 = χ(j0)|I | ∈ F×, and
thatZ andα are as given. We takeβ ∈ F× to be any element such thatβ |I |α0 = α.

Suppose the theorem holds over some fieldF0. Then, the invariants over a
larger fieldF such thatF0 ⊆ F are obtained simply by extending the scalars
appropriately. Hence, by, for example, Corollary c in page 278 of [6], the theorem
also holds overF . Hence, we assume, without loss, thatF = Q(ResHJ (χ)) =
Galr(λ)′, the smallest possible field given by Proposition 3.1. In particular, we
have[F(η) : F ] = p− 1.

Let U be the Sylowp-subgroup ofGL(n, q) of unipotent upper triangular
matrices. Then, by Zelevinsky’s theorem, see Theorem 4.5 in [9], there exists a
linear characterθ = θλ of U such that(

ResGL(n,q)
U (χλ), θ

)
U

= 1,

with some further special properties. In particular,θ = 1 if and only if χ is a
character whose kernel containsJ . Let ν ∈ F1 be an element of orderp − 1,
and letx ∈ GL(n, q) be the diagonal matrix whose entries areνn−1, νn−2, . . . ,1.
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Then, by Lemma 4.6 in [9],Q(θ) is contained in the field ofp-th roots of 1, the
elementx normalizesU , its determinant isdet(x)= ν(n2), andθx = τ0θ , where
τ0 is a generator of the group Gal(Q(θ)/Q). This implies that the hypotheses of
Theorem 4.3 in [10] are satisfied. Accordingly, we pick someγ in the algebraic
closure ofF such thatγ r = βχ(j0). Notice that sincer|I | = |G|, we have
α = β |I |α0 = γ |G| ∈ F×.

Let φ : Gal(F (θ)/F )→H be the group homomorphism that assigns toτ0 the
elementx ∈ H . LetL be a finite Galois extension ofF such thatF(θ) ⊆ L and
γ ∈ L. Letφ′ : Gal(L/F)→H beφ preceded by restriction to Gal(F (θ)/F ). For
each elementh ∈ H set ε(h) to be the smallest non-negative integer such that
h ∈ gε(h)0 . Then, by Theorem 4.3 in [10], the elementb ∈ Br(F ) is represented as
an element ofH 2(Gal(L/F),L×) by the 2-cocyclef defined as follows:

f : Gal(L/F)× Gal(L/F)→L×

is such that

f (σ, τ )=
(
σ(γ )

γ

)−ε(φ′(τ ))
.

Consider the functiond : Gal(L/F)→ L× defined byd(τ)= γ ε(φ′(x)). It shows
that the function

f1 : Gal(L/F)× Gal(L/F)→ L×

defined by

f1(σ, τ )= γ ε(φ′(σ ))−ε(φ′(στ))σ (γ )ε(φ
′(τ ))

is a coboundary. Now settingf2 = ff1 we see thatf2 also represents the element
b ∈ Br(F ), and

f2(σ, τ )= γ−ε(φ′(στ))+ε(φ′(σ ))+ε(φ′(τ )).

Sinceφ′ followed by the projection toG is a group homomorphism, we have
that, for eachσ, τ ∈ Gal(L/F), the integer−ε(φ′(στ)) + ε(φ′(σ )) + ε(φ′(τ ))
is divisible by |G|. Sinceγ |G| ∈ F×, f2 has values inF×. Since the value of
f2(σ, τ ) depends only on the restriction ofσ andτ to Gal(F (θ)/F ), by inflation,
b is also represented as an element ofH 2(Gal(F (θ)/F ),F (θ)×) by the 2-cocycle
f3 such that

f3(σ, τ )= γ−ε(φ(στ))+ε(φ(σ ))+ε(φ(τ )).
Now Gal(F (θ)/F ) is cyclic, and sob = br(F (θ)/F, δ), for some appropriate
δ ∈ F(θ)×. The δ can easily be calculated fromf3, see, for example, the
argument of Corollary 5.4 in [10], and we obtainδ = γm|Gal(F (θ)/F )|, where
m= ε(φ(τ0))= ε(x).

Since the determinant ofx is det(x)= ν(n2), the order of the image ofx in G
is (p− 1)/(p− 1,

(
n
2

)
). It follows that the order ofgm0 is (p− 1)/(p− 1,

(
n
2

)
).



A. Turull / Journal of Algebra 257 (2002) 560–587 575

Suppose thatθ = 1. Then, by the above,b = 1. Furthermore, the restriction of
χ to SL(n, q) is the trivial character,χ is a linear character ofG, and only one
element ofG is assigned a non-empty partition underλ. In this case,I =G, and
β ′λ 
= λ for eachβ ′ ∈ F̂1. Sinceα0 = χ(j1)|I | = 1,β |I | = α, and, asp−1 divides
|I |, ands dividesp− 1, it follows thatα(p−1)/s is the(p − 1)-th power of some
element ofF×. Hence, 1= br(F (η)/F,α(p−1)/s), as[F(η) : F ] = p− 1. Hence,
the theorem holds in this case. We assume henceforth thatθ 
= 1. Hence,θ has
orderp, F(θ)= F(η), and[F(θ) : F ] = p− 1.

By the argument of Remark 3.4, we see that ify, z ∈ GL(n, q) have the same
determinant andχ(z) 
= 0, thenχ(y)/χ(z) ∈ F . Hence, whenevery ∈ i0 then
χ(y)/γ r ∈ F . Setk = |GL(n, q)|/|CGL(n,q)(j0)| to be the number of conjugates
of j0. Then,χ(j0)k/χ(1) is the value of the central character associated withχ

on the conjugacy class sumS of j0. It follows that, for each positive integerc,
χ(j0)

ckc/χ(1)c is the value of the central character onSc. Since all summands of
Sc are ingrc0 , it follows that for eachy ∈ grc0 , we haveχ(y)/χ(j0)c ∈ F , which
implies thatχ(y)/γ rc ∈ F . If c is not divisible byr, thenχ(y)= 0 for eachy ∈ gc0
sincey /∈ I . It follows that, for each positive integerc, we haveχ(x)/γ c ∈ F for
eachx ∈ gc0.

Suppose that eitherp = 2, or n is odd, orn2 > (p − 1)2. Then,s = 1, and
it suffices to show thatb = 1. Let y be the central matrix inGL(n, q) whose
diagonal entries are allν. Then,det(y)= νn has multiplicative order(p−1)/(p−
1, n). By the above, the determinant ofgm0 has order(p− 1)/(p− 1,

(
n
2

)
). Hence,

there is some powerya of y that has the same determinant asgm0 . The value
of χ on ya is anF× multiple of a (p − 1)-th root of unity. By the previous
paragraph,γm is also anF× multiple of a (p − 1)-th root of unity. Hence,
δ = γm|Gal(F (η)/F )| = γm(p−1) is the(p− 1)-th power of some element ofF×. It
then follows that

b= br
(
F(η)/F, δ

) = br
(
F(η)/F,1

) = 1,

and the theorem holds in this case.
We assume, henceforth, that 2� n2 � (p − 1)2. Hence, we also haves =

2(p − 1)2/n2. We seti1 ∈ G to be the 2-part ofgm0 . Then,i1 is an element of
orders. Let y be again the central matrix inGL(n, q) whose diagonal entries are
ν. The order ofdet(y) = νn is (p − 1)/(p − 1, n). Since(p − 1)/(p − 1, n)
is a multiple of the order ofdet(g2m

0 ), for some positive integerc we have
det(yc) = det(g2m

0 ). Hence, we have thatdet(yc) = det(g2m
0 ), and this implies

thatγ 2m is a(p−1)-th root of unity up to multiplication by some element ofF×.
Therefore,

b2 = br
(
F(θ)/F,γ 2m(p−1)) = 1.

Since 2� s, ands is the 2-part of the order ofgm0 , we havem2 = (q − 1)2/s.
Let o be the odd part ofm. Now we have
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b = br
(
F(η)/F,γ m(p−1))

= br
(
F(η)/F,γ (q−1)2(p−1)/s)o = br

(
F(η)/F,γ (q−1)(p−1)/s)o,

the last equation because, sinceb2 = 1, any odd power ofb is equal tob. However,
we haveα = γ q−1, so we get

b= br
(
F(η)/F,α(p−1)/s)o.

Since the order of br(F (η)/F,α(p−1)/s) dividess, it must be a power of 2, and,
sinceo is odd, it follows that the order of br(F (η)/F,α(p−1)/s) is actually 2, and
b= br(F (η)/F,α(p−1)/s). This concludes the proof of the theorem.

Remark 3.5. In effect, Theorem 3.3 describes all the characters of all the
subgroups ofGL(n, q) that containSL(n, q), including their fields of values,
and the element of the Brauer group associated with each of them. Indeed, for
eachχ ∈ Irr(GL(n, q)), we are given[Z,α,b], and then Theorem 1.2 describes
a parametrization for all the characters in Irr(L,χ), which yields in particular
their field of values, and Theorem 5.3 in [8] then describes the element of the
Brauer group associated with each character. Once the element of the Brauer
group corresponding to each character is known, it is straight forward to calculate
the Schur index, and the local Schur indices. In fact, the techniques used in [9]
apply directly to elements of the Brauer group as given in the forms that they arise
here.

We close this section with some general results on the Schur indices and the
element of the Brauer group associated with the irreducible characters of any
subgroup ofGL(n, q) that containsSL(n, q).

Corollary 3.6. LetL⊇ SL(n, q) be a subgroup ofGL(n, q), and letψ ∈ Irr(L).
Then the Schur index ofψ at most2.

Proof. Let χλ ∈ Irr(GL(n, q)) be such that it containsψ in its restriction toL.
We setF = Galr(λ)′ to be the smallest base field, as given in Proposition 3.1.
We will work, without loss, overF as our base field. Then Theorem 3.3 gives
us❏χλ❑ = [Z,α,b] ∈ Clif (G,F ) explicitly. We have thatb2 = 1. Furthermore, in
the notation of Theorem 3.3, we have the fieldK, and, eitherK = F or K is a
quadratic extension ofF . Hence, by the structure ofZ given in Theorem 3.3, the
element of the Brauer group[ψ] ∈ Br(F (ψ)) associated withψ is given either
by Corollary 1.4 or by Corollary 1.5. We have that either[ψ] = b̄ ∈ Br(F (ψ)),
whereb̄ is the image ofb under the extension of scalars map Br(F )→ Br(F (ψ)),
or there exists someβ0 ∈ F(ψ)× such that

[ψ] = br
(
K(ψ)/F(ψ),β−1

0

)
b̄ ∈ Br

(
F(ψ)

)
,

where the product is in the Brauer group Br(F (ψ)). Since[K : F ] � 2, by, for
example, Proposition a in page 260 of [6], we have that br(K(ψ)/F(ψ),β−1

0 )
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has order 1 or 2 in Br(F (ψ)). It then follows that[ψ] has likewise order 1 or 2 in
Br(F (ψ)), which implies that the Schur index ofψ is at most 2, as desired.

Corollary 3.7. LetL⊇ SL(n, q) be a subgroup ofGL(n, q), and letψ ∈ Irr(L).
If 2 � n2 � (p − 1)2, we sets = 2(p − 1)2/n2, otherwise we sets = 1. Assume
that s divides[L : SL(n, q)]. Then the Schur index ofψ is 1.

Proof. ψ will be contained in the restriction of some irreducible characterχ =
χλ ∈ Irr(GL(n, q)). We setF = Galr(λ)′ to be the smallest base field, as given
in Proposition 3.1. We will work, without loss, overF as our base field. Then
Theorem 3.3 gives us❏χλ❑ = [Z,α,b] ∈ Clif (G,F ) explicitly, and we use the
notation of this theorem. We setĪ = (L/J ) ∩ I , whereI is the inertia group of
❏χ❑.

Suppose first thats divides |I |. Then, sr divides q − 1. Suppose, in this
case, thatp is odd,q is not a square, 2� n2 � (p − 1)2, and, for any element
β ∈ F̂1 of ordern2, we haveβλ = λ. Thens = 2(p − 1)2/n2, andn2 divides
r, and (q − 1)2 = (p − 1)2. This implies that 2(p − 1)2 divides (p − 1)2, a
contradiction. Hence, our second assumption does not hold, and it follows from
Theorem 3.3 thatK = F . This implies thatZ is a direct sum of copies ofF . By
Corollary 1.4, there exists someβ ∈ F(ψ)× such thatβ is an |Ī |-th root of α,
andF(ψ) = F(β). In addition,[ψ] = b̄ ∈ Br(F (ψ)), whereb̄ is the image of
b under the extension of scalars map Br(F )→ Br(F (ψ)). By Theorem 3.3, we
haveb = br(F (η)/F,α(p−1)/s). By, for example, Corollary c in page 278 in [6],
we have that

b̄= br
(
F(ψ,η)/F (ψ),α(p−1)/s).

Since s divides [L : SL(n, q)], and s divides |I |, we also have thats divides
|Ī | = |(L/J ) ∩ I |. Hence,α is thes-th power of some element ofF(ψ), which
implies thatα(p−1)/s is the (p − 1)-th power of some element ofF(ψ). This
implies thatb̄= 1, as desired.

Now suppose thats does not divide|I |. This implies thats 
= 1, which yields
that 2� n2 � (p − 1)2, and thats = 2(p − 1)2/n2. Sinces is a power of 2,
we have that|I |2 dividess/2 = (p − 1)2/n2. Considering the determinant of 2-
elements of the center ofGL(n, q), we see that(q−1)2/n2 divides|I |2. It follows
that q is not a square, and|I |2 = (p − 1)2/n2. Sinces divides [L : SL(n, q)],
this further implies that|Ī |2 = |I |2 = s/2. Furthermore, sincer|I | = q − 1, this
yields thatr2 = n2. By the definition ofr in Theorem 3.3, it follows that, for any
elementβ ∈ F̂1 of ordern2, we haveβλ = λ. Hence, we haveK = F(

√
εp ),

whereε ∈ {1,−1} andp ≡ ε (mod 4). Sinces divides[L : SL(n, q)], we have
that [G : L]2 divides 1

2(q − 1)2n2/(p − 1)2 = n2/2. Hence,r2 does not divide
[G : L] and we are in the second case of Corollary 1.5. Hence, there exists some
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β ∈ F(ψ)× such thatβ is an |Ī |-th root ofα, and,F(ψ) = F(β). Furthermore,
there exists someβ0 ∈ F(ψ)× such thatβ0 is ans/2-th root ofα, and, we have

[ψ] = br
(
K(ψ)/F(ψ),β−1

0

)
b̄ ∈ Br

(
F(ψ)

)
,

where the product is in the Brauer group Br(F (ψ)) and b̄ is the image ofb
under the extension of scalars map Br(F )→ Br(F (ψ)). By Theorem 3.3,b =
br(F (η)/F,α(p−1)/s). From Theorem 3.3, we know thatα0 = χ(j0)|I |, and that
α is α0 times the|I |-th power of some element ofF×. Since|Ī | divides|I |, the
values ofχ are contained inF extended byp′-th roots of unity, andp does not
divide |I |, it follows thatF(ψ) is contained in the field ofp′-th roots of unity.
Hence,K(ψ) ⊆ F(η,ψ) and [F(η,ψ) : K(ψ)] = (p − 1)/2. By, for example,
Corollary b in page 277 of [6], we have

br
(
K(ψ)/F(ψ),β−1

0

) = br
(
F(η,ψ)/F (ψ),β

−(p−1)/2
0

)
.

Sinceβs/20 = α, and s/2 divides (p − 1)/2, we haveβ−(p−1)/2
0 = α−(p−1)/s .

Hence,

[ψ] = br
(
F(η,ψ)/F (ψ),α−(p−1)/s)br

(
F(η,ψ)/F (ψ),α(p−1)/s)

= 1 ∈ Br
(
F(ψ)

)
.

Hence,[ψ] = 1, and the Schur index ofψ is 1, as desired.

Corollary 3.8. LetL⊇ SL(n, q) be a subgroup ofGL(n, q), letψ ∈ Irr(L), and
letF be a field of characteristic zero. Then,[ψ] ∈ Br(F (ψ)) can be calculated as
follows. If 2 � n2 � (p − 1)2, we sets = 2(p − 1)2/n2, otherwise we sets = 1.
Then

(1) If s divides[L : SL(n, q)], then[ψ] = 1.
(2) Supposes does not divide[L : SL(n, q)]. Letλ ∈ Fn be such that(

ResLSL(n,q)(ψ),ResGL(n,q)
SL(n,q) (χλ)

) 
= 0.

Letψλ be any irreducible character ofSL(n, q) contained in the restriction
of χλ. Then,F(ψλ) ⊆ F(ψ), and [ψ] ∈ Br(F (ψ)) is simply the image of
[ψλ] ∈ Br(F (ψλ)) under extension of scalars.

Proof. If s divides [L : SL(n, q)], then the result follows immediately from
Corollary 3.7. Hence, we assume thats does not divide[L : SL(n, q)], and we
are in the situation of (2). There is no loss in assuming thatF contains all the
values of the restriction ofχλ to SL(n, q), so we do. Theorem 3.3 gives us❏χλ❑ =
[Z,α,b] ∈ Clif (G,F ) explicitly, and we use the notation of this theorem. We set
Ī = (L/J ) ∩ I , whereI is the inertia group of❏χ❑. It follows from Theorem 1.3
that[ψλ] = b̄, whereb̄ is the extension of scalars ofb to b̄ ∈ Br(F (ψλ)), because
we have, in this caseK = F(ψλ). Notice that the 2 part of the order of the center
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of GL(n, q) is divisible by(p − 1)2/n2, which implies, sinces does not divide
[L : SL(n, q)], that [L : Ī ] is odd. It follows thatF(ψ) and [ψ] are given by
Corollary 1.4 or Corollary 1.5(1). In either case, we have thatK ⊆ F(ψ), and[ψ]
is the extension of scalars of the elementb ∈ Br(F ). Hence,[ψ] is the extension
of scalars of[ψλ], as desired.

Remark 3.9. We refer the reader to [9], where[ψλ] is calculated explicitly for
eachλ, and its local Schur indices analyzed.

4. Clifford classes for extensions by diagonal automorphisms

The groupJ = SL(n, q) has a group of diagonal automorphismsD, which is
cyclic of orderd = (q − 1, n), see, for example, [1]. Let̃H be an extension of
J byD. As we see below, such a group always exists. However, the groupH̃ is
not uniquely determined by this information, and could be any one of a family of
isoclinic groups, see [1]. We construct below each of the possibilities. The Clifford
classes and Schur indices of the characters ofH̃ depend on which isoclinic group
is chosen.

Let χ̃ ∈ Irr(H̃ ). Our goal is to calculate the Clifford class of̃χ , that is the
element❏χ̃❑ ∈ Clif (D,F ), whereF is any field that contains all the values
of the restriction ofχ̃ to J . The argument of Proposition 3.2 shows that the
restriction of χ̃ to J is the sum of aGL(n, q) conjugacy class of irreducible
characters ofSL(n, q). Hence, we have Res̃HJ (χ̃)= ResHJ (χλ) for an appropriate
elementλ ∈ Fn, where we keep the notationH = GL(n, q). By Proposition 3.2,
χ̃ determines uniquelyλ, up to multiplication by any elementα ∈ F̂1. Our goal is
to calculate❏χ̃❑ ∈ Clif (D,F ) as a function ofλ and the particular̃H . Of course,
❏χ̃❑ will remain the same if̃χ is replaced by its product times a linear character
of D, or if λ is replaced byαλ for someα ∈ F̂1.

We begin by constructing the groups in question. Fix a special linear group
J = SL(n, q), and letD be its group of diagonal automorphisms. We wish to
construct an extensioñH of SL(n, q) byD. We refer the reader to [1] for standard
results onD. In particular, we have thatD is cyclic,D is naturally isomorphic to
GL(n, q)/SL(n, q)Z(GL(n, q)), and the order ofD is d := (q − 1, n). We keep
the notationH = GL(n, q), so that we haveD 	 H/J Z(H). The group(F×

q )
d

of d-th powers ofF×
q is a group of order(q − 1)/d , and it follows that taking

n/d-th powers in it is an automorphism. Hence, there exists some automorphism
φ1 : (F×

q )
d → (F×

q )
d such that, for allx ∈ (F×

q )
d , we havexφ1(x)

n/d = 1. The
automorphismφ1 can be extended, in various ways, to an endomorphismφ2
of the cyclic groupF

×
q . (The various extensions give rise to different isoclinic

groups, see Proposition 4.1 below.) LetFq be the algebraic closure ofFq . LetC
be the subgroup of orderd(q − 1) of F

×
q . We can viewH = GL(n, q) andF

×
q as
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subgroups ofGL(n,Fq), whereF
×
q is identified with the group of scalar matrices.

ThenC ∩ J is the subgroup of orderd of F
×
q . Furthermore, the mapC → F

×
q

given by x �→ xd is a surjective homomorphism with kernelC ∩ J . We let
φ3 :F×

q → C/(C∩SL(n, q)) be the mapφ2 followed by the induced isomorphism

F
×
q → C/(C ∩ SL(n, q)). Hence,φ3 is an homomorphism, and for allx ∈ (F×

q )
d ,

if c ∈ φ3(x), then we havexcn = 1. Finally, setφ : GL(n, q)→ C/(C ∩ J ) to be
det followed byφ3. Let π :C → C/(C ∩ J ) be the projection homomorphism.
We define

H̃ = {
hc | h ∈H, c ∈ C andφ(h)= π(c)}.

Both H and H̃ are normal subgroups ofHC, and J ⊆ H ∩ H̃ . We set
G̃= H̃/J . Furthermore, there is natural surjective group homomorphismG→ G̃

given byhJ �→ hφ(h)J . We setg1 ∈ G̃ to be the image ofg0, the preferred
generator ofG=H/J , under this homomorphism.g1 is a generator for̃G.

Proposition 4.1. H̃ is an extension ofSL(n, q) by D, which is uniquely
determined by a choice ofφ2. Furthermore, the different choices ofφ2 give rise
to all the different extensions ofSL(n, q) byD up to isomorphism.

Proof. By the above,J ⊆ H̃ , andH̃ /J = G̃ is a natural homomorphic image
of G=H/J . In particular,G̃ is generated byg1, the image of any generatorg0
under the homomorphism. Lethc ∈ gd1 . Then,hc ∈ GL(n, q), det(h) ∈ (F×

q )
d ,

andφ(h)= π(c). It follows, by our choice ofφ, thatdet(h)cn = 1. This tells us
that det(hc) = 1, in other words, thathc ∈ SL(n, q). Hence,[H̃ : J ] � d . The
cyclic groupD is generated by the action ofg0 on J , which is the same as the
action ofg1 onJ . Hence,[H̃ : J ] = d , andH̃ is an extension ofSL(n, q) byD.

Given SL(n, q), our conditions uniquely determineφ1. The groupH̃ is
uniquely determined byφ, which in turn is uniquely determined byφ3, which
itself is uniquely determined byφ2. However,φ2 is just any extension ofφ1. If
θ is any homomorphism fromF×

q to itself such thatθd = 1, then,φ′
2 = θφ2 is

another extension ofφ1, and furthermore, all extensions ofφ1 have this form. Let
φ′, H̃ ′, andg′

1 be the map, the group and the generator arising fromφ′
2 which

correspond toφ, H̃ , andg1, respectively. Leth ∈ g0, and choosec, c′ ∈ C such
that hc ∈ H̃ andhc′ ∈ H̃ ′. Then, by the definition of̃H and H̃ ′, we have that
(hc)d = hdφ2(det(h)), and

(hc′)d = hdφ′
2

(
det(h)

) = hdφ2
(
det(h)

)
θ
(
det(h)

)
.

Comparing this result with the isoclinisms described, for example, in [1], we see
that the differentθ give rise to all extensions ofSL(n, q) by D. This completes
the proof of the proposition.

Remark 4.2. Our calculations of the Clifford classes, therefore, involve a
particular choice ofφ or φ2. The reader may note that the relationship among
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the Clifford classes of the various isoclinic groups in our case is exactly the one
predicted in general by the results in [11].

Lemma 4.3. Let λ ∈ Fn, let F be a field containing the values ofχλ on
SL(n, q), and let Z be the commutative central simpleG-algebra overF
defined in Theorem3.3. Then, the action ofG onZ factors through the natural
homomorphismG→D. Hence, there is a commutative central simpleD-algebra
Z̃ whose elements and algebra structure are those ofZ, and whose action from
D is that induced from the action ofG on Z and the natural homomorphism.
Furthermore, the inertia group̃I of Z̃ is simply the projection ofI in D, and has
order |Ĩ | = |I |d/(q − 1).

Proof. We have

G= GL(n, q)/SL(n, q) and D = GL(n, q)/SL(n, q)Z
(
GL(n, q)

)
.

There is a natural projection homomorphismG → D. The projection of
Z(GL(n, q)) in G is the kernel of this projection, and the order of this kernel
is (q − 1)/d . As remarked in the proof of Theorem 3.3, the inertia groupI is
the image inG of the inertia groupI0 in GL(n, q) of ψλ. SinceZ(GL(n, q))
will certainly be contained in the inertia groupI0, it follows that the projection of
Z(GL(n, q)) in G is contained inI . Since in Theorem 3.3I is acting trivially on
Z, the action ofG onZ does factor through the natural homomorphismG→D.
Hence,Z̃ is a central simple commutativeD-algebra overF . As recalled in
Section 1, the inertia group̃I is the centralizer of the action ofD on Z̃. Hence, its
preimage inG is simply the inertia groupI of Z. The result follows.

Lemma 4.4. Let φ2 be as in Proposition4.1. Let λ ∈ Fn, and setχ = χλ. The
groupG has a preferred generatorg0. Set

µ= χ(φ2(det(g0)))

χ(1)
,

where we viewφ2(det(g0)) as a scalar matrix in the center ofGL(n, q). Thenµ
is a (q − 1)-th root of1, andµ(1−q)/d ∈ Q(ResHJ (χ)). Furthermore, the2-part of
the multiplicative order ofµ(1−q)/d in F× dividesd2, and it isd2 unlessd is even
and either the central involution ofH is in the kernel ofχ , or the2-part of the
multiplicative order ofφ2 is not(q − 1)2.

Proof. The mapφ2 is an endomorphismφ2 :F×
q → F

×
q , and F

×
q is identified

with the centerZ(GL(n, q)). Henceχ can be evaluated at any value ofφ2, and
φ2(det(g0)) is an element of order a divisor ofq − 1. Furthermore, sincedet(g0)

is a generator forF×
q , the multiplicative order ofφ2 is the order ofφ2(det(g0)).

The restriction ofχ to the center is a multiple of some linear character. Hence

µ= χ(φ2(det(g0)))

χ(1)
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is some(q − 1)-th root of 1. Furthermore, the subgroup of orderd of Z(H)
is contained inJ , and since the value ofχ at some appropriate element of
this subgroup is a non-zero rational multiple ofµ(1−q)/d , we haveµ(1−q)/d ∈
Q(ResHJ (χ)). The 2-part of the order ofµ(1−q)/d always dividesd2. Suppose, it
is not d2. Then,d is even, and the 2-part of the order ofµ divides(q − 1)2/2,
which implies that either the central involution ofH is in the kernel ofχ , or the
2-part of the order ofφ2(det(g0)) is not(q − 1)2. Hence, the result holds.

Lemma 4.5. Let H̃ be the groupSL(n, q) extended by its groupD of diagonal
automorphisms, as described in Proposition4.1, and use the notation of the
beginning of this section. Let̃χ ∈ Irr(H̃ ), and letF be a field containing the
values of the restriction of̃χ to J . Letλ ∈ Fn be such thatResHJ (χλ)= Res̃HJ (χ̃).
Setχ = χλ. Let Z̃ and Ĩ be as in Proposition4.3. By Theorem3.3, and in its
notation, there exists somej0 ∈ i0 such thatχ(j0) 
= 0. Letµ be as in Lemma4.4.
Then,µχ(j0)|Ĩ | ∈ F×, and we set̃α0 = µχ(j0)|Ĩ | ∈ F×. Take anỹα ∈ F× such
that, up to|Ĩ |-th powers inF×, it is α̃0. Then, settingα = µ(1−q)/dα̃(q−1)/d , we
have that❏χ❑ = [Z,α,b] ∈ Clif (G,F ) for some explicit uniqueb ∈ Br(F ) (see
Theorem3.3), and furthermore

❏χ̃❑= [Z̃, α̃, b] ∈ Clif (D,F ).

Proof. BothH andH̃ are normal subgroups of the groupHC. Sinceχ ∈ Irr(H),
andC is cyclic and central, there exists some extensionρ ∈ Irr(HC) of χ to
HC. Let χ̃ ′ = ResHC

H̃
(ρ). Then Res̃HJ (χ̃

′)= ResHJ (χ)= Res̃HJ (χ̃). It follows that
χ̃ ′ is irreducible, and it is equal tõχ times some linear character ofD. Hence,
❏χ̃ ′❑= ❏χ̃❑ ∈ Clif (D,F ). Hence, we assume, without loss, thatχ̃ ′ = χ̃ .

Theorem 3.3 calculates❏χ❑, and we adopt its notation. By, for example,
Theorem 1.4 in [10], we see that the first entry of❏χ̃❑ ∈ Clif (D,F ) is Z̃, as
given in Lemma 4.3. In the notation of Theorem 3.3, we havej0 ∈ i0 = gr0, and
r = [G : I ] = [G̃ : Ĩ ]. Let c0 ∈ φ(g0). Thenj0cr0 ∈ H̃ , and furthermorej0cr0 ∈ gr1.
c0 ∈ C, so that it is in the center ofHC, and it follows thatρ(c0)/χ(1) is a root
of unity, and we setµ′ = ρ(c0)/χ(1). Hence,̃χ(j0cr0) = (µ′)rχ(j0) 
= 0. Since

r|Ĩ | = d , it then follows from Theorem 1.4 in [10] that̃α0 := (µ′)dχ(j0)|Ĩ | ∈ F×,
and that the second coordinate of❏χ̃❑ is equal tõα0, up to |Ĩ |-th powers inF×.

However,cd0 = φ2(det(g0)) by our choice ofφ, so(µ′)d = µ, and̃α0 = µχ(j0)|Ĩ |.
Now pick α̃ = β |Ĩ |α̃0, for someβ ∈ F×. We takeα = β |I |α0, andα ∈ F×

is allowable in Theorem 3.3, so that there is a uniqueb ∈ Br(F ), such that
❏χ❑ = [Z,α,b] ∈ Clif (G,F ). Since by Lemma 4.3,|Ĩ | = |I |d/(q − 1), we have
that

α = (
βχ(j0)

)|I | = ((
βχ(j0)

)|Ĩ |)(q−1)/d = µ(1−q)/dα̃(q−1)/d .
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Chooseγ to be anr-th root of βχ(j0), so thatγ r = βχ(j0). Let L be a
finite Galois extension ofF which is a splitting field forρ, and such that
γ ∈ L. Let M be aHC-module overL affording the characterρ. Let g ∈ g0
be any representative ofg0, and setA = EndFJ (M), and setB = CA(gγ−1).
By Lemma 3.1 in [10],B is a central simple algebra representing the element
b ∈ Br(F ), where❏χ❑ = [Z,α,b]. However,M affords the character̃χ when
restricted toH̃ . Hence, we may apply again Lemma 3.1 in [10], with̃G in place
of G, g1 in place ofg0, gc0 in place ofg, andµ′γ in place ofγ . Since the action
of c0 onM is multiplication byµ′, we have that the action ofgc0(µ′γ )−1 onM
is the same as that ofgγ−1, it follows thatB = CA(gc0(µ′γ )−1). Hence,

❏χ̃❑ = [
Z̃, α̃, b

]
.

This concludes the proof of the lemma.

Theorem 4.6. Let H̃ be the groupSL(n, q) extended by its groupD of diagonal
automorphisms, as described in Proposition4.1, and use the notation of the
beginning of this section. In particular, we haveJ = SL(n, q), H = GL(n, q),
H̃ /J = D, andH/J = G. Let χ̃ ∈ Irr(H̃ ), and letF be a field containing the
values of the restriction of̃χ to J . Letλ ∈Fn be such thatResHJ (χλ)= Res̃HJ (χ̃).
Setχ = χλ. We fix a generatorg0 ofG, and the corresponding generatorg1 of the
cyclic groupD. Then,❏χ̃❑ ∈ Clif (D,F ), and, by Theorem1.1, ❏χ̃❑ = [Z̃, α̃, b̃],
for appropriateZ̃, α̃, andb̃, which are as follows.

We takeη to be a primitivep-th root of unity. Letµ be as in Lemma4.4. Let r
be the size of the stabilizer of the action ofF̂1 on λ. Seti0 = gr0, andI to be the
subgroup ofG generated byi0, and Ĩ to be the subgroup ofD generated bygr1.

There necessarily exists somej0 ∈ i0 such thatχ(j0) 
= 0. We set̃α0 = µχ(j0)|Ĩ |,
for any one suchj0. If q is not a square,2 � n2 � (p − 1)2, and, for any
elementβ ∈ F̂1 of ordern2, we haveβλ = λ, then we setK = F(√εp ), where
ε ∈ {1,−1} andp ≡ ε (mod 4). Otherwise, we setK = F . If 2 � n2 � (p− 1)2,
the central involution ofH is not in the kernel ofχ , and (q − 1)2 divides the
multiplicative order ofφ2, then we setµ1 = −1. Otherwise, we setµ1 = 1.
Finally, if 2 � n2 � (p − 1)2, andq is not a square, then we setm = 1. We set
m= 0, otherwise. With this notation, we have:

(1) Z̃ is isomorphic to the direct sum ofr/[K : F ] copies ofK, which are
permuted transitively byD/Ĩ , and where the subgroup ofD/Ĩ of order
[K : F ] acts on each copy ofK as the Galois group ofK/F .

(2) α̃ can be taken to be the product ofα̃0 ∈ F× times the|Ĩ |-th power of any
element ofF×.

(3) b̃ = br(F (η)/F,µ1(̃α
m)(p−1)/2).

In particular, if either p = 2, or n is odd, or n2 > (p − 1)2, then b̃ = 1.
Furthermore, if2� n2 � (p− 1)2, andq is a square, theñb = br(F (η)/F,µ1).
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Proof. The structure of̃Z, and the possible values for̃α follow immediately from
Lemma 4.5. If eitherp = 2, orn is odd, orn2> (p−1)2, then, by Lemma 4.5 and
Theorem 3.3, we haveb = 1 ∈ Br(F ). Furthermore, our notation gives us that,
in this case,µ1 = 1, andm = 0, so that the theorem holds in this case. Hence,
assume that 2� n2 � (p − 1)2. By Lemma 4.5 and Theorem 3.3, we have that
b = br(F (η)/F,α(p−1)/s), whereα = µ(1−q)/dα̃(q−1)/d , ands = 2(p − 1)2/n2.
Sincen2 � (p− 1)2, we haved2 = n2. Set

m0 = q − 1

d2′(p− 1)2
whered2′ is the odd part ofd, and

µ2 = µe wheree= (1− q)(p− 1)n2

2d(p− 1)2
.

Then, we have

b= br
(
F(η)/F,µ2(̃α

m0)(p−1)/2).
Clearly,m0 is an integer, and it is even or odd according to whether or notq is
a square. Hence,m0 ≡ m (mod 2). Since br(F (η)/F,a) = 1 whenevera is the
(p− 1)-th power of some element ofF×, it follows that

b= br
(
F(η)/F,µ2

(̃
αm

)(p−1)/2)
.

Set ρ = µ(1−q)/d , and f = ((p− 1)n2)/(2(p− 1)2), so thatµ2 = ρf . By
Lemma 4.4,ρ ∈ F×, andρ is ad-th root of 1. Writeρ = ρ1ρ2, where bothρ1 and
ρ2 are powers ofρ, andρ1 has multiplicative odd order inF×, andρ2 has order a
power of 2. By Lemma 4.4, the order ofρ2 is d2 = n2 if the central involution is
not in the kernel ofχ , and(q − 1)2 divides the multiplicative order ofφ2, and the
order ofρ2 dividesn2/2 otherwise. Hence, in all cases, we haveρn2/2

2 = ρf2 = µ1.

Now ρf1 is the(p − 1)-th power of some element ofF×. Hence,µ1 andµ2 are
equal up to(q − 1)-th powers inF×, and, in particular, we may replace one by
the other in the formula forb. This completes the proof of the theorem.

Remark 4.7. From our calculation in Theorem 4.6 of the Clifford classes for
the characters of the groups̃H = SL(n, q)D, we can describe all the characters
of every subgroup of̃H that containsSL(n, q), including their fields of values,
and the element of the Brauer group associated with them. We can furthermore
calculate their Schur indices, including their local Schur indices. The method to
do this is completely analogous to the one for the case ofGL(n, q), as described
in Remark 3.5.

We now describe some general results on Schur indices and elements of the
Brauer group associated with irreducible characters of subgroups ofH̃ .

Corollary 4.8. Let L ⊇ SL(n, q) be a subgroup of̃H , and letψ ∈ Irr(L). Then
the Schur index ofψ at most2.
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Proof. This can be proved, mutatis mutandis, the way Corollary 3.6 was. Our
corollary also follows easily from the next one.

Corollary 4.9. Let H̃ be as in Proposition4.1. LetL ⊇ SL(n, q) be a subgroup
of H̃ , and letψ ∈ Irr(L), and letF be a field of characteristic zero. Then, the
element[ψ] ∈ Br(F (ψ)) can be calculated as follows. We letψλ ∈ Irr(SL(n, q))
be an irreducible character contained in the restriction ofψ to SL(n, q), and
we letη be a primitivep-th root of1. Furthermore, we setµ1 = −1 if q is odd,
(q − 1)2 divides the order ofφ2, and the central involution of̃H is not in the
kernel ofψ ; and we setµ1 = 1 otherwise.

(1) If either p = 2, or n is odd, orn2 > (p − 1)2, then[ψ] = 1, and the Schur
index ofψ is 1.

(2) Suppose2 � n2 � (p− 1)2, and[L : SL(n, q)] is even. Then

[ψ] = br
(
F(ψ,η)/F (ψ),µ1

) ∈ Br
(
F(ψ)

)
.

(3) Suppose2 � n2 � (p − 1)2, and [L : SL(n, q)] is odd. Then,F(ψλ) ⊆
F(ψ), and[ψ] ∈ Br(F (ψ)) is simply the image of[ψλ] ∈ Br(F (ψλ)) under
extension of scalars.

Proof. Let χ̃ ∈ Irr(H̃ ) be such that its restriction toL containsψ . Let λ ∈ Fn be
such that it parametrizes an irreducible characterψλ contained in the restriction of
ψ to J = SL(n, q). Then, ResHJ (χλ)= Res̃HJ (χ̃). If the corollary holds over some
field contained inQ(ψ), then it follows that it holds over any field of characteristic
zero by simple extension of scalars. Notice that ResH̃

J (χ̃) is a sum of conjugates

of ResLJ (ψ), and it follows thatQ(Res̃HJ (χ̃))⊆ Q(ψ). We set, without loss,

F = Q
(
Res̃HJ (χ̃)

) = Q
(
ResHJ (χλ)

)
.

Then, by Proposition 3.1,F = Galr(λ)′. Assume first thatp = 2, or n is odd,
or n2 > (p − 1)2. By Theorem 4.6,❏χ̃❑ = [Z̃, α̃,1] ∈ Clif (D,F ), whereZ̃ is a
direct sum of copies ofF . Hence, by Corollary 1.4,[ψ] = 1, and the Schur index
of ψ is 1, as desired. We assume henceforth that 2� n2 � (p − 1)2. Now, by
Theorem 4.6, and in its notation,❏χ̃❑ = [Z̃, α̃, b̃], with

b̃= br
(
F(η)/F,µ1

(̃
αm

)(p−1)/2)
.

Suppose now that̃Z is the direct sum of copies ofF . By Corollary 1.4,
F = F(ψλ), [ψλ] = b̃ ∈ Br(F ), and there exists someβ ∈ F(ψ)× such thatβ
is an|Ī |-th root ofα (with Ī = (L/J )∩ Ĩ ), andF(ψ)= F(β). In addition,[ψ] =
b̄ ∈ Br(F (ψ)), where b̄ is the image ofb̃ under the extension of scalars map
Br(F )→ Br(F (ψ)). It follows that if [L : SL(n, q)] is odd, the corollary holds.
Hence, we assume for the remainder of this paragraph that[L : SL(n, q)] is even.
If q is a square, by Theorem 4.6,m= 0, which implies that̃b= br(F (η)/F,µ1),
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and the corollary follows immediately in this case. Hence, we assume thatq is not
a square. Since we are assuming thatZ̃ is the direct sum of copies ofF , it follows
from Theorem 4.6 that, for some elementβ ∈ F̂1 of ordern2, we haveβλ 
= λ.
By Definition 2.5 and Theorem 3.3, this implies thatn2 does not divide[G : I ].
Sinceq is odd, and not a square, we have(q− 1)2 = (p− 1)2. Using Lemma 4.3,
this implies that|Ĩ |2 = (|I |2d2)/(q − 1)2 does not divided2/n2. It follows that
|Ĩ | is even. Hence,|Ī | is even, and̃α is a square inF(ψ). The result follows also
in this case.

Finally, suppose that̃Z is not a direct sum of copies ofF . By Theorem 4.6,
q is not a square and, for any elementβ ∈ F̂1 of ordern2, we haveβλ = λ.
Furthermore, we setK = F(

√
εp ), whereε ∈ {1,−1} andp ≡ ε (mod 4), and

Z̃ is isomorphic to the direct sum ofr/2 copies ofK, which are permuted
transitively byD/Ĩ , and where the subgroup ofD/Ĩ of order 2 acts on each
copy ofK as the Galois group ofK/F . Furthermore, we have thatK = F(ψλ).
Since for any elementβ ∈ F̂1 of ordern2, we haveβλ = λ, by Definition 2.5
and Theorem 3.3, we have thatn2 divides [G : I ]. Sinceq is odd, and not a
square, we further have(q − 1)2 = (p− 1)2. Using Lemma 4.3, this implies that
|Ĩ | = (|I |d)/(q − 1) dividesd/n2. Sinced = (q − 1, n), we have thatd/n2 is
odd, and it follows that|Ĩ | is odd. SettingĪ = (L/J )∩ Ĩ , we have that|Ī | is odd
as well.

Assume that[L : J ] is even. Then,r2 does not divide[D :L] and we are in the
second case of Corollary 1.5. Hence, there exists someβ ∈ F(ψ)× such thatβ is
an |Ī |-th root of α̃, F(ψ) = F(β). Furthermore, there exists someβ0 ∈ F(ψ)×
such thatβ0 is an|Ĩ |2-th root of α̃, and, we have

[ψ] = br
(
K(ψ)/F(ψ),β−1

0

)
b̄ ∈ Br

(
F(ψ)

)
,

where the product is in the Brauer group Br(F (ψ)), and b̄ is the image ofb
under the extension of scalars map Br(F )→ Br(F (ψ)). SinceĨ has odd order,
β0 = α̃. From Theorem 4.6, we know that̃α0 = µχ(j0)|Ĩ |, and that̃α is α̃0 times
the |Ĩ |-th power of some element ofF×. Since|Ī | divides |Ĩ |, χ(j0)|Ĩ | is the
|Ī | power of some element ofF(χ). Since the values ofχ are contained inF
extended byp′-th roots of unity,µ is a (q − 1)-th root of 1, andp does not
divide |Ī |, it follows thatβ is in the field ofp′-th roots of unity. It follows that
F(ψ) is contained in the field ofp′-th roots of unity. Hence,K(ψ) ⊆ F(η,ψ)

and[F(η,ψ) :K(ψ)] = (p − 1)/2. By, for example, Corollary b in page 277 of
[6], we have

br
(
K(ψ)/F(ψ),β−1

0

) = br
(
F(η,ψ)/F (ψ), α̃−(p−1)/2).

Hence, since in our casem= 1,

[ψ] = br
(
F(η,ψ)/F (ψ), α̃−(p−1)/2)br

(
F(η,ψ)/F (ψ),µ1α̃

(p−1)/2)
= br

(
F(η,ψ)/F (ψ),µ1

) ∈ Br
(
F(ψ)

)
.

Therefore, the corollary holds if[L : J ] is even.
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Hence, we assume that[L : J ] is odd. By Corollary 1.5(1) applied toχλ,
with L = J , we have that[ψλ] = b̄, whereb̄ is the extension of scalars ofb̃ to
b̄ ∈ Br(F (ψλ)). We setĪ = (L/J ) ∩ Ĩ . Notice thatr2 divides[H̃ : L]. It follows
that F(ψ) and [ψ] are given by Corollary 1.5(1). We have thatK ⊆ F(ψ),
and[ψ] is the extension of scalars of the elementb̃ ∈ Br(F ). Hence,[ψ] is the
extension of scalars of[ψλ], as desired. The proof of the corollary is complete.

Remark 4.10. We refer the reader to [9], where[ψλ] is calculated explicitly for
eachλ, and its local Schur indices analyzed. We note, furthermore, that using
results in, for example, [5], it follows that the local Schur m#(ψ) of any character
ψ in the situation of Corollary 4.9(2) is 1 for all rational prime#, except, possibly,
#= p or #= ∞.
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