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Abstract

In [A. Turull, J. Algebra 235 (2001), 275-314], we calculated the Schur index of each
of the irreducible characters of the finite special linear groups. In the present paper, we
calculate the Schur index of all the irreducible characters of some overgroups of the
special linear groups. The overgroups in question are the special linear groups extended
by diagonal automorphisms, and the subgroups of the general linear group that contain
the special linear group. To each conjugacy class of irreducible characters of the special
linear group in each overgroup is associated a Clifford class. The Clifford class controls all
the irreducible characters of the overgroup and intermediate subgroups that are related
to the given irreducible by Clifford theory. Knowing only the Clifford class, we can
parametrize all the irreducible characters of the intermediate subgroups, and compute,
for each parametrized irreducible character, its field of character values, as well as its
Schur index over each field. We explicitly compute the Clifford class in each case, and
deduce from it the information on the Schur index of all the irreducible characters of the
overgroups.

0 2002 Elsevier Science (USA). All rights reserved.

Keywords:Brauer group; Schur index; Special linear groups; Representations

E-mail addressturull@math.ufl.edu.
1 Partially supported by a grant from the NSA.

0021-8693/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
PIl: S0021-8693(02)00524-0



A. Turull / Journal of Algebra 257 (2002) 560-587 561

Introduction

Among the many things we learn from the work of John G. Thompson is a
sense of the importance of the study of the finite simple groups. It is through them,
and their closely related quasi-simple, and almost simple groups, that we can
hope to better understand finite groups. The classification of finite simple groups
tells us that many of the covering groups of the finite simple groups are classical
groups. Among these, the special linear groups are an important example. The
present paper is a contribution to our understanding of the representations over
fields in characteristic zero of the finite special linear groups and certain of their
overgroups. It is dedicated to John G. Thompson on the occasion of his 70th
birthday.

Work of Deligne and Lusztig and others has advanced our understanding of
the characters of the finite groups of Lie type, giving us, in particular, a good
parametrization of the irreducible complex characters of many finite groups of
Lie type. Our understanding of the representations of such groups over arbitrary
fields of characteristic zero is less complete. During the last few years, the author
developed tools that allow us to give systematic answers to the question of the
Schur indices for some large families of characters, and hence make the problem
of explicitly describing the Schur index of all the irreducible characters of some
families of groups tractable. The present paper uses these techniques to describe
the Schur index of all the irreducible characters of some classes of overgroups of
the special linear groups.

The complex irreducible characters of the finite general linear groups were
calculated by Green [2]. In [4], Lehrer parametrized the irreducible complex
characters of the finite special linear groups. In [9], we calculated the Schur
indices of all the irreducible characters of the finite special linear groups. In the
present paper, we calculate the Schur indices of all the irreducible characters of
the groups in two families. The first family of groups is that of the subgroups
of the general linear group that contain the special linear group. The second
family is that of any extension of the special linear group by a group of diagonal
automorphisms.

The irreducible characters of the groups in these families are related by Clifford
theory. The standard tools of Clifford theory, namely induction and restriction,
not to mention multiplication by irreducible characters of a quotient group, give
straightforward information on the character values, but the information they give
on the Schur indices is more complicated. However, the types of relationships in
whole families can be classified. Consider a finite gréuand a normal subgroup
J, and an irreducible charactgre Irr(H). Now, if L 2 J is a subgroup ofH,
thenL has a set of irreducible charactergIrr x) related toy by Clifford theory,
see below after the statement of Theorem 1.1.A &k a field characteristic zero,
which, for convenience, we assume contains all the values of the restrictjon of
to J, but we do not assume thatis algebraically closed, or even a splitting field.
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SettingG = H/J, there is a set CliiG, F), whose elements are called Clifford
classes. This set is briefly described at the beginning of Section 1. A Clifford
class[x] € Clif (G, F) is associated naturally witjp. Knowing [x ] alone allows

us to parametrize all I€L, x), and to know what the field of values and the
Schur index of each character is. Hence, the calculation of the Schur indices of all
the irreducible characters of all the subgroudpsan be obtained from the much
simpler calculation of the elemefik] for each irreducible charactgre Irr(H).

This is the approach we take in the present paper. This approach is analogous to
the one taken in [7] for the double covers of the symmetric and alternating groups,
but here, instead of working with a quotient group of order 2, we are working with
a cyclic quotient group.

Supposé&s is a finite cyclic group, and’ is an arbitrary field of characteristic
zero. The elements of Cli7, F), that is the Clifford classes, can be characterized
easily, see Theorem 1.1 below. Given a Clifford cldggd € Clif (G, F), the
irreducible characters of > J any subgroup off, can be parametrized from
[x], see Theorem 1.2 below. Recall that, associated to each irreducible character
¥ e lrr(L), is an elemenfy] the Brauer group B# (v)) of F(y), as follows.

Let M be any module oveF (v) affording as character a multiple @f. Then,
Endr () (M) is a central simple algebra ovel(y/), and its equivalence class in
Br(F(y))is[v].If J C L C H,andy e lrr(L, x), then Theorem 5.3 in [8] gives
an explicit formula foffy/] in terms of the Clifford clas§y], and the parameters
that describa/. As is well known, oncéy ] is known, the Schur index af over
every field can be calculated.

The main results in the present paper are Theorem 3.3, which calciydtes
for all characters whei/ = GL (n, ¢), and Theorem 4.6, which calculatfs]
for all characters of any extension 8E (n, ¢) by its diagonal automorphisms.

As consequences, we have Corollaries 3.8 and 4.9, which calg¢ylafer their
corresponding subgroups.

For the convenience of the reader, we have tried to limit the amount of
prerequisites for this paper. The required general facts aboWGCIHf) whenG
is cyclic are taken from [8], with the most important facts described in Section 1.
The technique to calculafe ] relies on results of [10]. The parametrization used
for the irreducible characters & (, ¢) is that of [9], which is very close to the
standard one, and is described in Section 2. A few results from [9] are also used.
However, the present calculation pf] does not require the prior calculation
of the [] for ¢ € Irr(SL(n, ¢)). In fact, one can use our present calculations
to obtain[y] for eachyr € Irr(SL(n, q)), thus recovering some results of [9].
Conversely, Corollaries 3.8 and 4.9 show how one can use the valugs] of
for ¢ € Irr(SL(n, ¢)) to obtain[¢] for all ¢ € Irr(L). For the most part, the
computation of the Schur indices is only implicitly given in the present paper.
The process to obtain the Schur indicesjobver every field containing’ from
[¢] € Br(F(¢)) is standard, and number theoretical in nature. The type of element
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[¢] that arises in the present paper is closely related to the type studied in [9], so
we do not repeat these algorithms here.

Our maps are consistently composed from right to left, so that, in particular, we
may compose characters with other functions, such as Galois automorphisms. In
the present paper, if is a positive integer, we denote by the 2-part ofz, that is
the largest power of 2 dividing. Furthermore, iz andm are integers, not both 0,
we denote by(n, m) their greatest common divisor. We assume throughout that
g > 1is a power of a prime.

1. Clifford theory for cyclic quotient groups

Let F be a field of characteristic zero, |€tbe its algebraic closure and lét
be a finite group. For the action of an elemegnt G on an element € A, A a
G-algebra, we use reverse exponential notati@nWe now review some of the
notation, terminology, and results from [8,10].

The set ClifG, F) is a generalization of the Brauer group(B). Its elements
are equivalence classes of central simg@lalgebras oveF . First we define what
is meant by acentral simpleG-algebraA. Simplemeans, of course, that it has
exactly twoG-invariant two sided ideal€entralhere means tha;4)(G) = F.
We then define which, among the central simglealgebras, ardrivial G-
algebras. These are tlig-algebrast which are just the fullF-endomorphism
algebra of a non-zeré G-module, with the natural action af on E. We say
that two central simplé5-algebrasA and B are equivalentif there exist trivial
G-algebrast andE’ such that

AQE~BQ®E,

as G-algebras, where the tensor products are aveiThis is an equivalence
relation [10] and the set of equivalence classes is denoted b§GCHf). In the
case wher& = 1, this is just the set of elements of the Brauer group of

From [10], we furthermore have the following. L&t be a finite group and
be a normal subgroup @& suchthatd/J = G. Let x be an irreducible character
of H. Let F be a field containing all the values gf on elements of/. Then,
there exist non-zero moduled for H over F affording a charactety such
that Re§'(1/f) is a rational multiple of R#(X). Any such moduleVf is called
x -quasi-homogeneous. For eaghquasi-homogeneous modulé¢, Endg ; (M)
is naturally a central simplé&;-algebra overF, and its equivalence class in
Clif (G, F) depends ory but does not depend on the chogé¢nThe equivalence
class of Engt; (M) is denoted x ]. Furthermore, givefix] € Clif (G, F), we can
calculate the Clifford theory of with respect ta/, including the Schur indices
of all the characters involved.
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A description of the elements of Clifs, F) is particularly simple in the case
when G is cyclic. The following theorem appears in [8] as Theorem A, and is
mentioned in [10] as Theorem 1.3.

Theorem 1.1. Let F be a field of characteristic zero and lét be a finite cyclic
group, with preferred generatogg. Given any triple[Z, «, b], where Z is a
central simple commutativ@-algebra,« € F* andb € Br(F), we may construct
a central simpleG-algebra which we denotgZ, «, b]. Then, for every central
simpleG-algebraA over F, there exists some, «, b] which is equivalent tat.
In addition, twoG-algebras[Z, «, b] and[Zo, ag, bo] are equivalent if and only
if both of the following hold

(1) Z~ ZgasG-algebras.
(2) Settingl = C6(Z) = Cs(Zo) andm = ||, we have thatay™ = g™ for
someps € F* such thath =bobr(G/I, Z, B).

Here, BI(F) is the Brauer group of the field, br(G/I, Z, 8) € Br(F) and
bobr(G/1I, Z, B) represents the product in the Brauer group/Bt The element
br(G/1, Z, B) is constructed by a slight generalization of the usual crossed
product, see [8]. The equivalence class of the crossed product defines an element
of the Brauer group which we denote by

br(G/I, Z, B) € Br(F).

The subgroug = C¢(Z) of G depends only on the Clifford class (as can be seen
from Theorem 1.1 in the case whénis cyclic), and is called thmertia groupof
the Clifford class ofA. The central simpl&-algebrd Z, «, b] of Theorem 1.1 is
an uncomplicated representative of its class in(GlifF). We will use[Z, «, b]
to denote both th&-algebra and its equivalence class in Qlif F).

Assume now that{/J = G is cyclic with preferred generatqp, that x €
Irr(H), and that we are giventhpt ] = [Z, «, b]. If  is any irreducible character
of J contained in the restriction gf to J, then the usual Clifford theoretical
inertia group ofyy moduloJ is I = Cg(Z), the inertia group ofZ, «, b].

In [8], there is an explicit description the characters associatgditpClifford
theory. For each subgroup, with J < L < H, the set of relevant irreducible
characters is

Irr(L, x) = {¢ elrr(L) | (Reg; (¥). Res/ (x)) , #0}.

The commutatives-algebraz allows for a parametrization of all the irreducible
characters of each subgroupmfthat containg and are related tg via Clifford
theory. The elementg and« allow us to give to each parametrized irreducible
character its field of values. Finallg, « andb allow us to assign to each of the
parametrized characters an element of the Brauer group of its field of values, and
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hence its Schur index. We proceed to briefly describe this parametrization and
results.

Associated with the Clifford clas§x] € Clif (G, F) is its centroid A =
A([x]), which is defined up to isomorphismt is an I-gradedG-algebra. In
our caseA is easy to describe. Consider the riRg= Z[ X] of polynomials with
coefficients inZ. Then,R is aN-graded infinite dimensionaF-algebra overF.
We can also considet to be graded by, where the grading oX is the smallest
powerig of go which is in/ (that isig is the preferred generator 6f, and powers
of X are graded by the corresponding powerggolet J be the principal ideal
of R generated b/l — . Then,J is al-gradedG-invariant ideal ofR. Hence,
R/J is aG-algebra over, which is graded by. We haveA ~ R/J asI-graded
G-algebras. In particular,

A=Z®F FIX]/(X'" —a)

asG-algebras.

Using the centroid, we can parametrize, frdm] alone, the irreducible
characters in the Clifford theory gf. For each subgroup, with / < L < H,
the set of relevant irreducible characters igllrry). The elements ofrr (L, x)
can be parametrized, usiagonly, as follows. We get the field of character values
of each irreducible character in (ft, x) at the same time.

Theorem 1.2. Let J < L < H and setL = L/J < G. SetS to be the sum of\,
force LNIandZ; =Cs(L). Then

Z1 ~Cz(L) ®F 1""[)(]/(}(”@| —a).

Here Z; is a G-algebra overF, graded byL N I, and F[X] denotes thef'-
algebra of polynomials in one variable, ag#l!’ "l — &) the ideal in it generated
by the given polynomial. The algebfg{X /(X! — «) is graded byL N I,
assigning to the class ok as grading the smallest power @f in L N I.
Furthermore,lIrr(L, x) is in one-to-one correspondence with the paiese),
where ¢ is a primitive idempotent ofZ;, and ¢:eZ; — F is an F-mono-
morphism. We denote hyy, ¢) the character corresponding (@, ¢). The field of
values ofy(, 4 Is sSimply the image (eZ; ).

Proof. See Theorem 4.1 in [8].

For a parametrized charactér € Irr(L, x), Theorem 5.3 in [8] describes
explicitly [v] € Br(F (y)), and hence describes the Schur indexoff he reader
can use this result, in conjunction with the calculation of the Clifford classes
below, to obtain the exact value ¢§] in terms of these parameters, for each
¥ elrr(L, x), for L any subgroup oL (n, ¢) that containsSL (n, ¢), or for L
any subgroup of any extension 8E (n, ¢) by its diagonal automorphisms. Our
next theorem is a direct consequence of Theorem 5.3 in [8]. It calcUlatess
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far as possible without relying on the details of the parametrization. This will be
sufficient for us in this paper.

Theorem 1.3. Let H be a finite group and le be a normal subgroup off.
Assume thatH/J = G is cyclic and letgo be a fixed generator folG. Let

x €lrr(H) and letF be a field of characteristic zero that contains all the values
of Re§(x). Let [x] € Clif(G, F) be the Clifford class associated wigh. By
Theoreml.1, [x] is represented byZ, «, b], for an appropriate triple. Letk

be the field of values over of any irreducible character itResj’(X), and let

I = Cg(Z) be the inertia group. LeL be any subgroup betweehand H, and
lety € Irr(L, x). Then, there exists songes F (1/)* such thatg is an|/|-th root
ofa (with 7 = (L/J) N I), and

(w1 =br(K)/F), B 1)b e Br(F(y)),

where the product is in the Brauer groBus(F (1)) andb is the image ob under
the extension of scalars m&v(F) — Br(F (y)).

Furthermore, ifs is any linear character of7, then theg’ associated with the
irreducible charactelRe§ My elrr(L, x) can be taken to be

B’ = r(i0)B
whereig is the smallest power @b in 1.

Proof. See Theorem B in [8].

In the situations of the present paper, the field of values Bvadran irreducible
character in R#(X) is always a very small extension &f itself. Our next two
corollaries describe what happens in the cases relevant for this paper.

Coroallary 1.4. Assume the hypotheses of TheofeB1Assume, furthermore, that
the field of values oveF of any irreducible character irResf(X) is F, or,
equivalently, assume tha is a direct summand of. Then,Z is isomorphic
to the direct product offG : I] copies of F permuted transitively byG/I.
Furthermore, there exists sorfies F(y)* such thatg is an|/|-th root of« (with
I=(L/J)ynI),andF(y) = F(B). In addition,[v/] = b € Br(F (v)), whereb is
the image ob under the extension of scalars mBp(F) — Br(F (y)).

Proof. The structure ofZ is calculated for example in Theorem 1.4 in [10]. In
particular, the direct summands df are the fields of values of the irreducible
characters in Ré,é(x), and the structure of is as stated. It follows that, by

Theorem 1.27; is isomorphic to a direct sum of copies 1X]/(X!| — a).
It then follows from Theorem 1.2 that, sindeé(y) is a homomorphic image
of Z;, there exists som@ € F(y¥)* such thatg is an |I|-th root of «, and
F(y) = F(B). Since K(y) = F(¥) in this case, for eveng’ € F(y)*, we
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have b(K (v)/F (), B/) = 1. Hence, the value ¢f/] follows immediately from
Theorem 1.3. This completes the proof of the corollary.

Coroallary 1.5. Assume the hypotheses of TheofeBhAssume, furthermore, that
the field of values oveF of any irreducible character irResf(X) is a quadratic
extensionK of F, or, equivalently, assume that contains a direct summand
K which is a quadratic extension @&f. Setr =[G : I]. Then,r is even, andZ is
isomorphic to the direct product ef 2 copies ofK permuted transitively b /1,
where the subgroup of ord&of G/I acts as the Galois automorphism &/ F
on each copy oK. The remaining information depends on whether ormdthe
2-part of r) divides[G : L]. As before, we sdt= (L/J)N 1.

(1) Suppose; divides[G : L]. Then, there exists sonfec F () * such thats is
an |I|-th root of «, and F(y) = K(B). In addition, [y/] = b € Br(F(y)),
where b is the image ofb under the extension of scalars m&p(F) —
Br(F(y)).

(2) Suppose> does not divid¢G : L]. Then, there exists sonfec F(y)* such
that 8 is an |I|-th root of, F(¥) = F(B). Furthermore, there exists some
Bo € F(¥)* such thatBg is an|I|2-th root of«, and

[v]=br(K@)/FW), By )b € Br(F(y)),

where the product is in the Brauer grols(F (v)), andb is the image ob
under the extension of scalars mBp(F) — Br(F(y)).

Proof. Again, the structure of is calculated for example in Theorem 1.4 in [10].
In particular, the direct summands @fare the fields of values of the irreducible
characters in Ré‘s(x), and the structure of is as stated. Suppose first that
divides[G : L]. It follows that, by Theorem 1.2Z; is isomorphic to a direct
sum of copies ok [X]/(X!l — «). Hence, from Theorem 1.2, we obtain that,
since F () is a homomorphic image df;, there exists somg € F(y)* such
that 8 is an|I|-th root ofa, and F (v) = K (B). Now sinceK C F(y), we have
F(y) = K (¢), and it follows from Theorem 1.3 thé/] = b € Br(F (¥)), where

b is the image ob under the extension of scalars map By — Br(F(y)), as
desired.

Suppose now thap does not dividdG : L]. It follows that, by Theorem 1.2,
71 is isomorphic to a direct sum of copies #1X]/(X!'! — «). Hence, from
Theorem 1.2, we obtain that, siné&vy/) is a homomorphic image dof; , there
exists some € F(y)* such that8 is an|7|-th root ofa, and F () = F(B). By
Theorem 1.3, there exists soriee F(y)* such thatgy is an|I|-th root of «,
and

[¥]=br(K)/F), By )b € Br(F()),
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where the product is in the Brauer groupB(y)) andb is the image ob under
the extension of scalars map @Y — Br(F(y)). The degree of the extension
K@)/ F(y) is at most 2, so that, for example, by Proposition a in [6, p. 260],
the order of b¢K (v)/ F (), ,851) as an element of the Brauer group is at most 2.
Furthermore, sinc& is cyclic andrp does not dividgG : L], we must have
[I]2 = |I]2. Letd be the odd part off|. Then, settingso = B¢, we have thapo

is a|l|o-th root of o, and btk (¥)/F (), 1) = br(K (¥)/F(¥), B ). The
result follows.

2. Parametrizingthe charactersof SL (n, ¢) and GL (n, q)

The irreducible characters &fL (n, ¢) have been described by J.A. Green [2].
We will use the notation of [9], which was suggested by the results of Lehrer [4]
and Karkar and Green [3], to parameterize the characte®&.af, q). We now
describe this parametrization.

We let p be a prime number and we lgtbe a power ofp. We have the finite
field F,, with exactly p elements. We fix an algebraic closurefof, which we
denoteF,. We think of each finite field in characteristicas a subfield of .

In parﬂcular F, is a subfield oﬂ: For each positive integef, we denote by
Fq= d the multiplicative group of the fiel& .. We denote by, the character

group ode, that is F is the group of group homomorphisnty — C*. We
defineo, : F,— Fy by o, (0) =014.

Definition 2.1.

(1) Two characterg and¢ in Fy areconjugatdf ag (0) = ¢ for some integek.
This yields an equivalence relation.

(2) A d-simplexs is a conjugacy class of sizein Fy. If 6 is some element of,
we writes = (0).

(3) Thedegreeof ad-simplexs isd(s) =

(4) We denote byG, the union of all thed-simplexes, and by the union
Udz19a-

(5) LetP be the set of all partitions. For eacke P, we denote, as usual, byy|
the sum of its parts.

(6) We let 7 be the set of all functiona:G — P, which assign the empty
partition to almost all elements @f and have the property that, for every
0 € G, we haver (o, (9)) = A(0).

(7) For each. € F, we define itsdlegreeto be

deg(h) =) |1 ).

0eg



A. Turull / Journal of Algebra 257 (2002) 560-587 569

(8) We denote byF, the set of all elements of of degreen.
(9) For eachh € F,,, we denote by, the irreducible charactet - - (9)*@ .. .),
where we takéd)*@ once for each simplex. Hencg, € Irr(GL (n, 9)).

Theorem 2.2. The map\ +— y; is a bijectionF,, — Irr(GL (n, ¢)).
Proof. See Theorem 2.4 in[9].

Two types of action on the set of irreducible charactetGbfn, ¢) play a key
role in this paper. They are the Galois action, and the multiplication of irreducible
characters by linear characters. Both these actions correspond to easily described
actions on the parameter set. We now proceed to describe them in turn.

Definition 2.3.

(1) Foreach. € F, we denote byQ (1) the fieldQ extended by the values of all
thed in the support of. Hence Q(A) is Q extended by a primitive:-th root
of 1, wherem is the least common multiple of all the(F,)| for 6 € G; such
that1(9) is not the empty partition.

(2) Let A € F,, and leto € Gal(Q(Ar)/Q). Then, we definerA:G — P, by,
for 6 € G, settingoA(8) = A(c~19) if 6 is such thatQ(¥) € Q(»), and
o A(0) is the empty partition otherwise. Naturally, herel6 denotes function
composition. We have that\ € F,.

(3) Letx € F,,. We set

Galgh) = {o € GallQ(1)/Q): oA =A}.
(4) For any subgroupl of Gal(Q(1)/Q), we denote by’ the fixed field ofH.

Lemma 2.4. Let A € F,. ThenQ(x,) € Q(1) and, for eacho € GallQ(1)/Q),
we have that the composition of the character with the Galois automorphism is
simplyo x, = xo2, See Definitior2.3.

Proof. See Lemma 2.7 in [9].

The second type of action that plays a major role in this paper is the action
on Irr(GL (n, ¢)) by linear characters dBL (1, ¢), that is by linear characters
of GL(n, q)/SL(n, g). It too corresponds to some easily described action of the
parameter set which we now proceed to describe. This action was first described
in [3].

We letn be a positive integer. TheR,» can be viewed as a vector space
overF, of dimensiorm. We setGL (n, ¢) to be the group of all invertible linear
transformations of the vector spakg: overF, onto itself. Each element af,
acts on the vector spaég- by left multiplication, so we think of, as a subgroup
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of GL(n, g). There is the determinant functiatet which provides a surjective
homomorphism

det:GL(n, q) — Fi,

whose kernel is denotesl (n, ), and which provides a fixed isomorphism from
GL (n, g)/SL(n, g) onto F1. Hence, the determinant functidet provides a fixed
isomorphism fronGL (n, ¢)/SL (n, g) onto Fy. If « € Fi1, thena det is a linear
character of5L (n, ¢). Building on some results of Lehrer [4], Karkar and Green
[3] described the multiplication action of this character oG (r, ¢)). We now
recall the notation introduced in [9] to describe their result, and to study certain
aspects of the multiplication action, and its interaction with the Galois action
introduced earlier.

Definition 2.5. Let« € ﬁ. Then, we wish to define the actions@fon various
objects.

(1) By abuse of notation, we may also viewas a linear character @GL (1, q)
(strictly speaking as the compositiardet), or as a linear character @,
for any positive integerl (strictly speaking as the compositianNorm,
where Norm is the norm homomorphism Norﬁj;;, — F7). The context
will determine which version ok needs to be used.

(2) If x €lrr(GL(n, q)), thena y is simply the product of the two characters of
GL(n, q).

(3) Ifoe Fy, for some positive integef, thena is simply the product of the
two elements of,.

(4) If A € F, then we definr:G — P by ar(8) = A(a~10). It is easy to see
thata) € F anddeg(ar) = deg(n).

(5) If A € F, then we define the following subgroup Bbf:

Z() = \{ker@): a € F1 andai = 1}.
(6) Letxr € F,. We set

Galr(») = {0 € Gal(Q(1)/Q): for somex € Fy we haveo i = a}.
Theorem 2.6. For eacha € F] and each € F,, ax, is an irreducible character
of GL (n, ¢), and in fact

AXx = Xar-
Proof. See Theorem 3.4in [9].

Finally, we set up notation for the irreducible charactersSbin, ¢). The
characters ofL (n, g) were originally parameterized by Lehrer [4]. We now set
up notation for them as in [9].
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Definition 2.7. Let A € F,, then we denote by), any irreducible character
contained in

GL (n,
Regy ol ().

Remark. The charactet, is only defined up to conjugation by some element of
GL(n,q).

Proposition 2.8. Each irreducible character oL (n, ¢) is GL (n, g) conjugate
to somey; , for somex € F,,. Furthermore, ifx, A’ € F,,, then theGL (n, ¢)-orbit
of characters conjugate t¢, is the same as that of characters conjugate/fo
if and only if there exists somee Fy such that' = a.

Proof. See Proposition 4.2 in [9].

3. Clifford classesfor the general linear group

In this section, we calculate the Clifford cla§g,] € Clif (G, F) for each
irreducible characteg, of GL(n, q) in terms of its parametex. From this, we
easily obtain, for each irreducible characterof some subgroup o6L (n, g)
that containsSL (n, ¢), its field of valuesF (v), its element in the Brauer group
[¥] € Br(F(y)), and its Schur index. Here we take= GL (n, ¢), J = SL (n, q),
andG = H/J. The determinant provides a standard isomorphism betwesmd
F7. G is cyclic of orderg — 1, and we may apply the results of Section 1. We will
take F to be any field containing all the values of the restrictiorypfto J. The
field Q(Resj’(xx)) is contained in the field of values of each of the irreducible
characters involved. Hence, the requirement thatontain all the values of;
on J does not affect the later calculation of fields of values and Schur indices
of the characters related o by Clifford theory. For completeness, we begin by
calculating the fiel(Red/ (x,)) itself.

Proposition 3.1. SetH = GL(n,q), J =SL(n,q), and G = H/J. Let x €
Irr(H) be such thay = x;,, wherei € F,,, see Theorerd.2 Then, we have

Q(Reg/ (x)) = Galr(n)’
whereGalr()) is defined in Definitior2.5, and the prime in Definitio2.3.

Proof. By Lemma 2.4, we know tha(x) € Q(1). SinceQ(A»)/Q is a Galois
extension, our result will follow once we prove that, fare GallQ(»)/Q),
we haveo Red/ (x) = Red/(x) if and only if o € Galr(1). By Theorem 2.4,
O X = Xou. The restriction Reﬁ(x) is the sum of a singl&L (n, g)-conjugacy
class of irreducible characters #f Hence, our result follows immediately from
Proposition 2.8.
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Two irreducible characters @&L (n, g) have the same Clifford theory if and
only if one of them is the other times some charactgébirn, ¢)/SL (n, g).

Proposition 3.2. SetH =GL (n,q), J =SL(n,q),andG = H/J. Letx;, xu €
Irr(GL (1, q)). Then the following are equivalent

(1) There exists a linear character e Irr(GL (n, ¢)/SL (1, ¢)) such thatux, =
X R

(2) There exists some e Fj such thatwd = p.

(3) The restriction ofy, and x, to SL(n, ¢) are equal, i.e.,

GL (n,9) _ GL (n,9)
Re%L(n,q) () = Re%L(n,q) (X,u)'

Proof. That (1) and (2) are equivalent follows immediately from Theorem 2.6,
sinceF; is identified with In(GL (n, q)/SL(n, ¢)). Itisimmediate that (1) implies
(3). The converse follows from standard Clifford theory, using the fact that,
sinceGL (n,q)/SL(n, q) is cyclic, the restriction of any irreducible character
of GL(n, g) to SL (n, ¢) will be the sum of some irreducible character and its
GL (n, ¢) conjugates, each with multiplicity one.

Hence, it would be enough to calculdtg,] only for a set of representatives
of the classes of irreducible characterdGif (n, g) under the equivalence of the
proposition. However, we simply calculdlg, | for all » € F,,, and notice that, as
expected, our results are unchanged whénreplaced byrA. Our next theorem
describes the Clifford classes for the general linear group.

Theorem 3.3. We setH = GL(n,q), J =SL(n,q), andG = H/J. Let x €
Irr(H) be such thaly = x,, wherex € F,, see Theorerd.2 We letF be a field
containing the values af on J. We fix a generatogg of the cyclic groupG.
Then,[x] € Clif (G, F), and, by Theorert.1, [x] = [Z, «, b], for appropriateZ,
«, andb, which are as follows.

We taken to be a primitivep-th root of unity. If2 < n> < (p — 1)2, we set
s =2(p — 1)2/n2, otherwise we set= 1. Letr be the size of the stabilizer of the
action of 71 on . Setig = go» and to be the subgroup ofs generated byp.
There necessarily exists sonige ig such thaty (jo) # 0. We setrg = x (jo)!!,
for any one suchp. If p is odd,q is nota square2 < n> < (p — 1)2, and, for any
elements € Fi of orderny, we havegi = A, then we seK = F(,/ep), where
e e€{l,—1}andp =¢ (mod 4. Otherwise, we set = F. With this notation, we
have

(1) Z is isomorphic to the direct sum of/[K : F] copies ofK, which are
permuted transitively byG/I, and where the subgroup &/l of order
[K : F] acts on each copy &f as the Galois group oK/ F.
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(2) o can be taken to be the product@f € F* times the||-th power of any
element ofF .
(3) b=br(F(n)/F,aP~D/%).

In addition, we always havk? = 1. Furthermore, if eitherp = 2, or n is odd, or
n2 > (p — 12, thenb =1 e Br(F).

Remark 3.4. There are, of course, formulas to calculate the valug @b).
Alternatively, we note that the value o¢f(jo) up to multiplication by some
element of F* is determined by the action of Gé&ln. Indeed, ifo € Galr()),
then, by Definition 2.5, there exists somg € Fi such thatod = ayi. By
Theorem 2.6, it follows that (x (jo))/x (jo) = a4 (ip). Even thoughe, may
not be uniquely determined hy, this equation implies that, (ig) is uniquely
determined byr. Hence, the map — o, (io) is uniquely defined from the action
of Galr(,). Furthermore, it determines(jp) up to multiplication byF > in the
following sense. Supposec Q(A)* is such that, for each € Galr(»), we have
o(y)/y = aq(io). Then, it follows thaty (jo)/y € Q(Res] (x))* € F*.

Proof of Theorem 3.3. v, is an irreducible character dfcontained in Re,’%(x).
By Proposition 4.2 of [9], the ordinary Clifford inertia group¢f in H is the set
of all elements off whose determinantis iA(1). Hence, by Definition 2.5, itis
the subgroup off that contains/ and has index in H. Hence,l is the image
in G of the inertia group inH of ¥,. As explained at the beginning of Section 1,
the image inG of the ordinary Clifford theoretic inertia group of any irreducible
summand of Re;é(x) is the inertia group of the Clifford cladl]. Hence,l is
the inertia group of/x]. In addition, it follows from Theorem 4.8 in [9] that in
every casek = F ().

Theorem 1.4 in [10] now tells us thag exists, thatg = x (jo)!!! € F*, and
thatZ andx are as given. We tak@ e F* to be any element such thalf oo = «.

Suppose the theorem holds over some figyd Then, the invariants over a
larger field F such thatFp C F are obtained simply by extending the scalars
appropriately. Hence, by, for example, Corollary c in page 278 of [6], the theorem
also holds overF. Hence, we assume, without loss, that= Q(Resﬁ ) =
Galr(»)’, the smallest possible field given by Proposition 3.1. In particular, we
have[F(n): F1=p — 1.

Let U be the Sylowp-subgroup ofGL (n, ¢) of unipotent upper triangular
matrices. Then, by Zelevinsky’s theorem, see Theorem 4.5 in [9], there exists a
linear characte# = 6, of U such that

(Reg " (10,0, = 1.

with some further special properties. In particukas= 1 if and only if x is a
character whose kernel contairis Let v € F1 be an element of ordep — 1,
and letx € GL (1, ¢) be the diagonal matrix whose entries afe®, v =2, ..., 1.
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Then, by Lemma 4.6 in [9]Q(0) is contained in the field op-th roots of 1, the
elementx normalizesU, its determinant iglet(x) = v(2), and6* = w0, where
70 IS a generator of the group G&I(#)/Q). This implies that the hypotheses of
Theorem 4.3 in [10] are satisfied. Accordingly, we pick sgmia the algebraic
closure of F such thaty” = Bx(jo). Notice that since-|I| = |G|, we have
o= pllag=ylGle Fx,

Let¢:Gal(F(0)/F) — H be the group homomorphism that assignsg¢the
elementx € H. Let L be a finite Galois extension d@f such thatF'(9) € L and
y € L.Let¢':Gal(L/F) — H beg preceded by restriction to G&l (9)/F). For
each elemenkt € H sete(h) to be the smallest non-negative integer such that
he gg(h). Then, by Theorem 4.3 in [10], the elemént Br(F) is represented as
an element olH2(Gal(L/F), L*) by the 2-cocyclef defined as follows:

f:Gal(L/F) x GalL/F) — L*
is such that

3 M)S(W(’C))
f (o, r)—( > .

Consider the functiod : Gal(L/F) — L* defined byd(t) = y¢@' @) |t shows
that the function

firGallL/F) x Gal(L/F) — L*
defined by
fi(o, 1) = yE@@)=e@©@D) 5 (1)@ (D)

is a coboundary. Now settingy = ff1 we see thaj> also represents the element
b e Br(F), and

Foo,7) = yE@ @@ @)+ (),

Since ¢’ followed by the projection taG is a group homomorphism, we have
that, for eachr, T € Gal(L/F), the integer—e(¢’(o 7)) + £(¢' (o)) + £(¢' (1))

is divisible by |G|. Sincey!®l € F*, f, has values inF*. Since the value of
f2(0, ) depends only on the restriction @fandt to GakF (6)/ F), by inflation,
bis also represented as an elementié{Gal(F (9)/F), F(6)*) by the 2-cocycle
f3 such that

Fa(o, 7) =y F@EDHGE) @),

Now Gal F(9)/F) is cyclic, and sob = br(F(0)/F, ), for some appropriate
8 € F(0)*. The § can easily be calculated fronfz, see, for example, the
argument of Corollary 5.4 in [10], and we obtadn= ™! CaF@)/F)l \yhere
m = ¢e(¢(70)) = e(x). .

Since the determinant af is det(x) = v(z), the order of the image of in G
is (p—1)/(p—1,(3)). Itfollows that the order off' is (p — 1)/(p — 1, (3)).
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Suppose thal = 1. Then, by the abové,= 1. Furthermore, the restriction of
x to SL(n, q) is the trivial charactery is a linear character o/, and only one
element ofG is assigned a non-empty partition undein this case/ = G, and
B'2 + A for eachp’ € Fi. Sincexg = x (j0)!! =1, p!!l = «, and, agp — 1 divides
|I], ands divides p — 1, it follows thata?—D/s is the (p — 1)-th power of some
element ofF*. Hence, 1= br(F(n)/F,a?~D/5) as[F(n) : F1= p — 1. Hence,
the theorem holds in this case. We assume henceforti9ti#al. Hencep has
orderp, F(0) = F(n),and[F () : F]=p — 1.

By the argument of Remark 3.4, we see that,ift € GL (n, ¢) have the same
determinant and, (z) # 0, thenx (y)/x(z) € F. Hence, whenevey < ig then
x(/y" € F.Setk =|GL(n, q)|/| CoLx.¢)(jo)| to be the number of conjugates
of jo. Then,x (jo)k/x (1) is the value of the central character associated with
on the conjugacy class sufof jo. It follows that, for each positive integer
x (Jo)°k¢/ x (1)¢ is the value of the central character §h Since all summands of
S¢ are ingy’, it follows that for eachy € g5, we havey (y)/x (jo)* € F, which
implies thaty (y)/y"¢ € F. If cis notdivisible by, theny (y) = 0 for eachy € g;
sincey ¢ I. It follows that, for each positive integer we havey (x)/y ¢ € F for
eachx € gg.

Suppose that eithes = 2, orn is odd, orny > (p — 1)2. Then,s =1, and
it suffices to show thab = 1. Let y be the central matrix ifGL (n, g) whose
diagonal entries are all Thendet(y) = v" has multiplicative ordetp — 1) /(p —
1,n). By the above, the determinantgff has ordetp —1)/(p — 1, (3)). Hence,
there is some powey“ of y that has the same determinantgfs. The value
of x on y% is an F* multiple of a (p — 1)-th root of unity. By the previous
paragraphy™ is also anF* multiple of a (p — 1)-th root of unity. Hence,
§ = ymGalFm/F) — ,,m(p=1) j5 the(p — 1)-th power of some element &f*. It
then follows that

b=br(F(n)/F,8) =br(F(y)/F,1) =1,

and the theorem holds in this case.

We assume, henceforth, that@ns < (p — 1)2. Hence, we also have =
2(p — 1)2/n2. We seti; € G to be the 2-part ogy'. Then,iy is an element of
orders. Let y be again the central matrix iBL (n, ¢) whose diagonal entries are
v. The order ofdet(y) =v" is (p — 1)/(p — 1,n). Since(p — 1)/(p — 1,n)
is a multiple of the order oﬁet(gé’"), for some positive integer we have
det(y¢) = det(g3™). Hence, we have thatet(y¢) = det(g3"), and this implies
thaty2” is a(p — 1)-th root of unity up to multiplication by some element®¥.
Therefore,

b2 =Dbr(F()/F,y?"?~) =1.

Since 2< s, ands is the 2-part of the order qofy', we havenz = (g — 1)2/s.
Let o be the odd part of:. Now we have



576 A. Turull / Journal of Algebra 257 (2002) 560-587

b = br(F(n)/F,y™?™ D)
— br(F(r;)/F, y(q—l)z(P—l)/S)" — br(F(n)/F, y(q—l)(p—l)/s)"’

the last equation because, sidée= 1, any odd power of is equal tah. However,
we havex = 971, so we get

b=br(F(n)/F,aP /)",

Since the order of bF (n)/F, «?~D/5) dividess, it must be a power of 2, and,
sinceo is odd, it follows that the order of bF (n)/F, «?~D/%) is actually 2, and
b=br(F(n)/F,a?=D/5), This concludes the proof of the theorem.

Remark 3.5. In effect, Theorem 3.3 describes all the characters of all the
subgroups ofGL (n, ¢) that containSL (r, ¢), including their fields of values,

and the element of the Brauer group associated with each of them. Indeed, for
eachy € Irr(GL(n, q)), we are giveriZ, a, b], and then Theorem 1.2 describes

a parametrization for all the characters in(drr ), which yields in particular

their field of values, and Theorem 5.3 in [8] then describes the element of the
Brauer group associated with each character. Once the element of the Brauer
group corresponding to each character is known, it is straight forward to calculate
the Schur index, and the local Schur indices. In fact, the techniques used in [9]
apply directly to elements of the Brauer group as given in the forms that they arise
here.

We close this section with some general results on the Schur indices and the
element of the Brauer group associated with the irreducible characters of any
subgroup ofGL (n, ¢) that contain$SL (n, ).

Corollary 3.6. Let L 2 SL (n, ¢q) be a subgroup oGL (n, ¢), and letyr € Irr(L).
Then the Schur index gf at most2.

Proof. Let x, € Irr(GL(n, g)) be such that it containg in its restriction toL.

We setF = Galr(1)’ to be the smallest base field, as given in Proposition 3.1.
We will work, without loss, overF as our base field. Then Theorem 3.3 gives
usx.] =I[Z,«, b] € Clif (G, F) explicitly. We have thab? = 1. Furthermore, in
the notation of Theorem 3.3, we have the fi&d and, eitherk = F or K is a
guadratic extension of . Hence, by the structure &f given in Theorem 3.3, the
element of the Brauer grouw’] € Br(F(y)) associated with) is given either

by Corollary 1.4 or by Corollary 1.5. We have that eitfi¢r] = b < Br(F(v/)),
whereb is the image ob under the extension of scalars mag By — Br(F(y)),

or there exists somgp € F(y)> such that

[v]=br(K W) /F), By *)b € Br(F(y)),
where the product is in the Brauer group(Bcvy)). Since[K : F] < 2, by, for
example, Proposition a in page 260 of [6], we have th&Klyy )/ F (), ,351)
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has order 1 or 2 in BF (v)). It then follows thafvy ] has likewise order 1 or 2 in
Br(F (y)), which implies that the Schur index ¢f is at most 2, as desired.

Corollary 3.7. Let L D SL(n, q) be a subgroup oL (n, ¢), and letyr € Irr(L).
If 2<no < (p —1)2, we sets = 2(p — 1)2/n2, otherwise we set= 1. Assume
thats divides[L : SL (n, ¢)]. Then the Schur index gf is 1.

Proof. ¢ will be contained in the restriction of some irreducible charagter

x5 € Irr(GL (1, q)). We setF = Galr(»)’ to be the smallest base field, as given
in Proposition 3.1. We will work, without loss, ovét as our base field. Then
Theorem 3.3 gives ufx,.]| = [Z, «, b] € Clif (G, F) explicitly, and we use the
notation of this theorem. We sét= (L/J) N I, wherel is the inertia group of
[x]-

Suppose first that divides |I|. Then, sr dividesg — 1. Suppose, in this
case, thap is odd,q is not a square, ¥ n2 < (p — 1)2, and, for any element
B e F, of orderns, we havegi = A. Thens = 2(p — 1)2/n2, andn divides
r, and (g — 1)2 = (p — 1)2. This implies that 2p — 1)2 divides (p — 1)2, a
contradiction. Hence, our second assumption does not hold, and it follows from
Theorem 3.3 thak = F. This implies thatZ is a direct sum of copies af. By
Corollary 1.4, there exists sonfee F()* such thatg is an|/|-th root of «,
and F(y) = F(B). In addition,[y] = b € Br(F(y)), whereb is the image of
b under the extension of scalars map By — Br(F(y)). By Theorem 3.3, we
haveb = br(F(n)/F, «?=1/5). By, for example, Corollary ¢ in page 278 in [6],
we have that

b=br(F(y,n)/F),a P17,

Sinces divides[L : SL(n, ¢)], ands divides ||, we also have that divides
|I| = |(L/J) N I|. Hencew is thes-th power of some element d&f (), which
implies thata?~1/s is the (p — 1)-th power of some element df (/). This
implies thatb = 1, as desired.

Now suppose that does not dividg/|. This implies that # 1, which yields
that 2< n2 < (p — 12, and thats = 2(p — 1)2/n2. Sinces is a power of 2,
we have that/|, dividess/2 = (p — 1)2/n2. Considering the determinant of 2-
elements of the center &L (n, ¢), we see thatg — 1)2/n2 divides|I|». It follows
thatg is not a square, and |2 = (p — 1)2/n2. Sinces divides[L : SL (n, ¢)],
this further implies that/|> = |I|» = s/2. Furthermore, since|/| = ¢ — 1, this
yields thatr, = ny. By the definition ofr in Theorem 3.3, it follows that, for any
elementg € F; of orderny, we havegi = A. Hence, we haveX = F(\/ep),
wheres € {1, —1} and p = ¢ (mod 4). Sinces divides[L : SL(n, g)], we have
that[G : L]» divides%(q — Dona/(p — 1)2 = n2/2. Hencey» does not divide
[G : L] and we are in the second case of Corollary 1.5. Hence, there exists some
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B € F(y)* such thatg is an|I|-th root of«, and, F (/) = F(B). Furthermore,
there exists somgp € F ()™ such thatfg is ans/2-th root of«, and, we have

[¥]=br(K )/ F), By )b e Br(F(y)),

where the product is in the Brauer group(B(y)) and b is the image ofb

under the extension of scalars map(By — Br(F(y)). By Theorem 3.3p =

br(F(n)/F,a?~D/5). From Theorem 3.3, we know thap = x (jo)!!!, and that
o is ag times the|I|-th power of some element @f*. Since|!| divides|I|, the
values ofy are contained irF extended byp’-th roots of unity, andg does not
divide |1], it follows that F(v) is contained in the field of’-th roots of unity.
Hence,K(y) C F(n,¢) and[F(n,¥) : K(¥)] = (p — 1)/2. By, for example,
Corollary b in page 277 of [6], we have

br(K (¥)/F(¥), By 2) = br(F(n, v)/F(¥), By "~ 7).

Since ﬂ(s)/z =a, ands/2 divides(p — 1)/2, we have,z£<0’(”’l)/2 = (P=D/s,

Hence,

W1 = br(F(n, v)/F), 0~ P~ D) br(F(n, )/ F (), aP~D/5)
= 1eBr(F®)).
Hence[v] =1, and the Schur index af is 1, as desired.

Corollary 3.8. Let L 2 SL (n, gq) be a subgroup oGL (n, q), lety € Irr(L), and
let F be afield of characteristic zero. Thdn;] € Br(F (y)) can be calculated as
follows. If2 < n2 < (p — 1)2, we sets = 2(p — 1)2/n2, otherwise we set = 1.
Then

(1) If s divides[L : SL (n, ¢)], then[y] = 1.
(2) Suppose does not dividéL : SL (n, g)]. LetA € F,, be such that

(Res .y (¥). Re (8 (x)) # 0.
Lety, be any irreducible character &L (1, ¢) contained in the restriction
of x,. Then,F(y,) C F(y¥), and [¥] € Br(F(y)) is simply the image of
[¥.] € Br(F (y;)) under extension of scalars.

Proof. If s divides[L : SL(n, g)], then the result follows immediately from
Corollary 3.7. Hence, we assume thatloes not dividg L : SL (n, ¢)], and we
are in the situation of (2). There is no loss in assuming fhatontains all the
values of the restriction of;, to SL (n, ¢), so we do. Theorem 3.3 gives 1. =
[Z,a, b] € Clif (G, F) explicitly, and we use the notation of this theorem. We set
I =(L/J)N 1, wherel is the inertia group of x]. It follows from Theorem 1.3
that[y; ] = b, whereb is the extension of scalars bfto b € Br(F (), because
we have, in this cas& = F(v;). Notice that the 2 part of the order of the center
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of GL(n, q) is divisible by (p — 1)2/n2, which implies, since does not divide
[L :SL(n,q)], that[L : I] is odd. It follows thatF(y) and[v] are given by
Corollary 1.4 or Corollary 1.5(1). In either case, we have that F(y), and[vy/]
is the extension of scalars of the eleménrt Br(F). Hence[v] is the extension
of scalars ofv, ], as desired.

Remark 3.9. We refer the reader to [9], whefe, ] is calculated explicitly for
eachx, and its local Schur indices analyzed.

4. Clifford classesfor extensions by diagonal automorphisms

The groupJ = SL (n, ¢) has a group of diagonal automorphisfswhich is
cyclic of orderd = (¢ — 1, n), see, for example, [1]. Lell be an extension of
J by D. As we see below, such a group always exists. However, the g"Eoisp
not uniquely determined by this information, and could be any one of a family of
isoclinic groups, see [1]. We construct below each of the possibilities. The Clifford
classes and Schur indices of the characteig ofepend on which isoclinic group
is chosen.

Let ¥ € Irr(H). Our goal is to calculate the Clifford class §f that is the
element[x] e Clif(D, F), where F is any field that contains all the values
of the restriction ofy to J. The argument of Proposition 3.2 shows that the
restriction of ¥ to J is the sum of aGL (n, ¢) conjugacy class of irreducible
characters 08L (1, ¢). Hence, we have R?&{;’Z) = Resj’(xx) for an appropriate
element: € F,, where we keep the notatidé = GL (n, ¢). By Proposition 3.2,

% determines uniquely, up to multiplication by any elemente F1. Our goalis

to calculate]x] € Clif (D, F) as a function o and the particulaﬁ. Of course,
[X] will remain the same if{ is replaced by its product times a linear character
of D, orif A is replaced by A for somewx € Fi.

We begin by constructing the groups in question. Fix a special linear group
J =SL(n,q), and letD be its group of diagonal automorphisms. We wish to
construct an extensial of SL (1, q) by D. We refer the reader to [1] for standard
results onD. In particular, we have thdp is cyclic, D is naturally isomorphic to
GL(n,q)/SL(n,q) Z(GL(n, q)), and the order oD isd := (¢ — 1, n). We keep
the notation = GL (n, ¢), so that we havé ~ H/J Z(H). The group(IF;)d
of d-th powers offF; is a group of ordeg — 1)/d, and it follows that taking
n/d-th powers in it is an automorphism. Hence, there exists some automorphism
¢1:(F)? — (F)¢ such that, for allc € (F))?, we havex¢i(x)"/? = 1. The
automorphismp; can be extended, in various ways, to an endomorphism
of the cyclic groupF; . (The various extensions give rise to different isoclinic

groups, see Proposition 4.1 below.) IRt be the algebraic closure &F,. Let C
be the subgroup of ordelg — 1) of F(j We can viewH = GL (n, q) andF; as
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subgroups oGL (n, IF‘,,), whereIE_?; is identified with the group of scalar matrices.
ThenC N J is the subgroup of ordef of IE_?;. Furthermore, the map’ — F

given by x — x? is a surjective homomorphism with kernéln J. We let
@3 IFqX — C/(CN8SL(n, q)) be the map; followed by the induced isomorphism

IFqX — C/(CNSL(n,q)). Hencegs is an homomorphism, and for alle (]qu)d,

if ¢ € ¢3(x), then we havec" = 1. Finally, setp:GL (n,q) — C/(C N J) to be
det followed by ¢3. Let 7 :C — C/(C N J) be the projection homomorphism.
We define

=|hclheH, ceCandp(h) =n(c)}.

Both H and H are normal subgroups offC, andJ € H N H. We set
G= H/J Furthermore, there is natural surjective group homomorphisi G
given by hJ — h¢(h)J. We setgr € G to be the image ogo, the preferred
generator of; = H/J, under this homomorphisng; is a generator fo6.

Proposition 4.1. H is an extension ofSL (n, g) by D, which is uniquely
determined by a choice gb. Furthermore, the different choices ¢# give rise
to all the different extensions &L (2, ¢) by D up to isomorphism.

Proof. By the above, € H, andH/J = G is a natural homomorphic image
of G = H/J. In particular,G is generated by1, the image of any generatgg
under the homomorphism. Lét € ¢{. Then,hc € GL(n, q), det(h) € (F))“,
and¢ (h) = (c). It follows, by our choice ofp, thatdet(k)c" = 1. This tells us
thatdet(hc) = 1, in other words, thakc € SL(n, ¢). Hence,[H : J] < d. The
cyclic groupD is generated by the action g on J, which is the same as the
action ofg1 on J. Hence [H:J]=d, andH is an extension o$L (n, q) by D.
Given SL (n, ¢), our conditions uniquely determing;. The groupﬁ is
uniquely determined by, which in turn is uniquely determined ks, which
itself is uniquely determined by,. However, ¢, is just any extension aps. If
¢ is any homomorphism frorr; to itself such thav? = 1, then,¢, = 6¢2 is
another extension @f1, and furthermore, all extensionsf have this form. Let
¢, H, andg] be the map, the group and the generator arising fqbgnwhich
correspond tap, H, andgi, respectively. Let € go, and choose, ¢’ € C such
thathc € H andhc’ € H'. Then, by the definition off and H', we have that
(he)® = hl¢py(det(h)), and

(he')! = hph(det(h)) = h po(det(h))0 (det(h)).

Comparing this result with the isoclinisms described, for example, in [1], we see
that the different give rise to all extensions &L (n, g) by D. This completes
the proof of the proposition.

Remark 4.2. Our calculations of the Clifford classes, therefore, involve a
particular choice ofp or ¢2. The reader may note that the relationship among
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the Clifford classes of the various isoclinic groups in our case is exactly the one
predicted in general by the results in [11].

Lemma 4.3. Let A € F,, let F be a field containing the values g¢f, on
SL(n,q), and let Z be the commutative central simpl&-algebra over F
defined in Theorer.3. Then, the action of; on Z factors through the natural
homomorphisnt; — D. Hence, there is a commutative central simplalgebra
Z whose elements and algebra structure are thosg,adnd whose action from
D is that induced from the action @ on Z and the natural homomorphism.
Furthermore, the inertia group of Z is simply the projection of in D, and has
order|I| = |I|d/(qg — 1).

Proof. We have
G=GL(n,q)/SL(n,q) and D=GL(n,q)/SL(n,q)Z(GL(n,q)).

There is a natural projection homomorphisth —~ D. The projection of
Z(GL(n,q)) in G is the kernel of this projection, and the order of this kernel
is (g — 1)/d. As remarked in the proof of Theorem 3.3, the inertia gréup
the image inG of the inertia grouplp in GL (1, ¢) of ;. Sincez(GL (n, q))

will certainly be contained in the inertia groug, it follows that the projection of
Z(GL(n, g)) in G is contained in/. Since in Theorem 3.3 is acting trivially on

Z, the action ofG on Z does factor through the natural homomorphiSm> D.
Hence,Z is a central simple commutativB-algebra overF. As recalled in
Section 1, the inertia groupis the centralizer of the action @ on Z. Hence, its
preimage inG is simply the inertia group of Z. The result follows.

Lemma 4.4. Let ¢2 be as in Propositior.1 Let A € F,, and sety = x,. The
group G has a preferred generatgs. Set

_ x(¢2(det(go)))
x (D)
where we viewp,(det(go)) as a scalar matrix in the center &L (n, g). Thenu
is a(g — -throot of 1, and =94 € Q(Red! (x)). Furthermore, the-part of
the multiplicative order oft1=?/4 in F* dividesds, and itisd» unlessd is even
and either the central involution off is in the kernel ofy, or the 2-part of the
multiplicative order ofp; is not(g — 1)».

)

Proof. The mapg, is an endomorphisng,:F7 — F, andFy is identified
with the centeiz(GL (n, ¢)). Hencey can be evaluated at any valuedf, and
¢2(det(go)) is an element of order a divisor gf— 1. Furthermore, sinceéet(go)
is a generator foF;, the multiplicative order o is the order ofp>(det(go)).
The restriction ofy to the center is a multiple of some linear character. Hence

_X (¢2(det(go)))
x (D)
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is some(g — 1)-th root of 1. Furthermore, the subgroup of ordeof z(H)

is contained inJ, and since the value of at some appropriate element of
this subgroup is a non-zero rational multiple of\~?/4, we haveu1-9/4 ¢
Q(Red! (x)). The 2-part of the order gi1~9/¢ always dividesi,. Suppose, it
is notds. Then,d is even, and the 2-part of the order fdivides (¢ — 1)2/2,
which implies that either the central involution &f is in the kernel ofy, or the
2-part of the order op2(det(go)) is not(g — 1)2. Hence, the result holds.

Lemma 4.5. Let H be the groupSL (n, g) extended by its group of diagonal
automorphisms, as described in Propositiéri, and use the notation of the
beginning of this section. L€l € Irr(H), and let F be a field containing the
values of the restriction of to J. Leti € 7, be such thaRes/ (x;.) = Red! (%).
Sety = x». Let Z and I be as in Propositiont.3. By Theoren8.3, and in its
notation, there exists sonjg € ig such thaty (jo) #0. Letu be asin Lemm4&.4.
Then ,u)((]o)l” e F*, and we selio = ux (jo)!l € F*. Take anyi¥ € F* such
that, up to|/|-th powers inF*, it is @o. Then, settingr = u~—9/dg@-D/d e
have that[x] = [Z, «, b] € CIif (G, F) for some explicit uniqué € Br(F) (see
Theoren®.3), and furthermore

%] = ,b] e Clif (D, F).

Proof. Both H andH are normal subgroups of the groBfC. Sincey € Irr(H),
andC is cycllc and central, there exists some extensioa Irr(HC) of x to
HC.lLety Re%c(p) Then Re?( )—Res’*(x)_Res”(x) It follows that
X' is irreducible, and it is equal t§ times some linear character of. Hence,
[X']1 = [x] € Clif (D, F). Hence, we assume, without loss, tlat= .

Theorem 3.3 calculatefy], and we adopt its notation. By, for example,
Theorem 1.4 in [10], we see that the first entry[§f] € Clif (D, F) is Z, as
given in Lemma 4.3. In the notation of Theorem 3.3, we have io = g, and
r=[G:11=[G: 1. Letco € ¢(go). Thenjoc, € H, and furthermorgoc}, € gj.
co € C, so that it is in the center aff C, and it follows thato(co)/x (1) is a root
of unity, and we seft’ = p(co)/x (1). Hence,x (jocp) = (/)" x (jo) # 0. Since
r|I| =d, it then follows from Theorem 1.4 in [10] th&b := (1) x (jo)/!! € F*,
and that the second coordinate[§f] is equal todo, up to|/|-th powers inF*.
Howevercd = ¢2(det(go)) by our choice o, so(u')? = w, anddo = px (jo)!!.

Now pick @ = B!ldp, for somep € F*. We takea = g/!lag, anda € F*
is allowable in Theorem 3.3, so that there is a unigue Br(F), such that
[x] =[Z.a.b] € Clif (G, F). Since by Lemma 4.3]| = |I|d /(g — 1), we have
that

o= (IBX(]O))Hl _ ((ﬂx(]o))\i\)(l]—l)/d — M(l—l])/d&’(q—l)/d.
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Choosey to be anr-th root of 8x(jo), so thaty” = Bx(jo). Let L be a
finite Galois extension off which is a splitting field forp, and such that

y € L. Let M be a HC-module overL affording the charactep. Let g € go

be any representative @b, and setA = Endr; (M), and setB = Ca(gy D).

By Lemma 3.1 in [10],B is a central simple algebra representing the element
b € Br(F), where[x] = [Z, «, b]. However,M affords the charactef when
restricted toH . Hence, we may apply again Lemma 3.1 in [10], wdthin place

of G, g1 in place ofgg, gco in place ofg, andu’y in place ofy. Since the action

of co on M is multiplication by, we have that the action @fo('y)~* on M

is the same as that gfy 1, it follows that B = C (gco(u'y) ). Hence,

[X]1=[Z.a.b].
This concludes the proof of the lemma.

Theorem 4.6. Let H be the grousL (n, g) extended by its group of diagonal
automorphisms, as described in Propositidri, and use the notation of the
beginning of this section. In particular, we have= SL (n,q), H = GL(n, ¢),
H/J=D,andH/J =G. Let¥ € Irr(H), and let F be a field containing the
values of the restriction of to J. Leti € 7, be such thaRes/ (x,) = Red/ (X).
Sety = x,.. We fix a generatogo of G, and the corresponding generatgy of the
cyclic groupD. Then,[x] € Clif (D, F), and, by Theorem.1, [x] = (Z,&, D],
for appropriateZ, &, andb, which are as follows.

We taken to be a primitivep-th root of unity. Letu be as in Lemm4.4. Letr
be the size of the stabilizer of the actionfafon i. Setig = go» and/ to be the

subgroup ofG generated byg, and/ to be the subgroup ab generated by’ .

There necessarily exists sonige ig such thaty (jo) # 0. We sefig = wx (jo)!!!,
for any one suchjp. If ¢ is not a square2 < n2 < (p — 1)2, and, for any
elements € Fi of orderny, we havegA = A, then we seK = F(,/ep), where
g€ {l,—1}andp =¢ (mod 4. Otherwise, we sek = F. If 2<na2 < (p — 1),
the central involution of is not in the kernel ofy, and (¢ — 1)2 divides the
multiplicative order of¢,, then we sefu; = —1. Otherwise, we seti; = 1.
Finally, if 2 <n2 < (p — 1)2, andg is not a square, then we set= 1. We set
m = 0, otherwise. With this notation, we have

D Z is isomorphic to the direct sum of/[K : F] copies ofK, which are
permuted transitively byD/I, and where the subgroup db/I of order
[K : F] acts on each copy & as the Galois group oK / F.

(2) @ can be taken to be the product@§ € F* times the|/|-th power of any
element ofF *.

(3) b =br(F(m)/F, pa @™ P~/

In particular, if either p = 2, or n is odd, ornz > (p — 1)z, thenb = 1.
Furthermore, if2 < no < (p — 1)2, andgq is a square, theb =br(F(n)/F, i1).
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Proof. The structure of, and the possible values farfollow immediately from
Lemma4.5. If eithep = 2, orn is odd, omz > (p — 1)2, then, by Lemma 4.5 and
Theorem 3.3, we havk = 1 € Br(F). Furthermore, our notation gives us that,
in this caseu; = 1, andm = 0, so that the theorem holds in this case. Hence,
assume that L nz < (p — 1)2. By Lemma 4.5 and Theorem 3.3, we have that
b =Dbr(F(n)/F,a?~D/5) wherea = n1-9/dga—D/d ands = 2(p — 1)2/no.
Sinceny < (p — 1)2, we haveds = np. Set

__a-1
~dy(p—1)2

u2 =u® wheree =

wheredy is the odd part of/, and

1-g)(p —Dn
2d(p—1)2

mo

Then, we have
b=br(F(n)/F, po@")*~H72).

Clearly,mg is an integer, and it is even or odd according to whether ogrist
a square. Henceyg = m (mod 2). Since WiF (n)/F,a) = 1 wheneveu is the
(p — 1)-th power of some element @f*, it follows that

b=br(F(n)/F, ua(@")* ).

Set p = pu@=D/4 and f = ((p — Dn2)/(2(p — 1)2), so thatuz = p/. By
Lemmad4.4p € F*, andp is ad-th root of 1. Writep = p1 02, where bothp; and
p2 are powers op, andp1 has multiplicative odd order i, andp, has order a
power of 2. By Lemma 4.4, the order p$ is d2 = ny if the central involution is
not in the kernel of¢, and(g — 1) divides the multiplicative order af, and the
order ofp, dividesn,/2 otherwise. Hence, in all cases, we hagéfz = ,o-zf = 1.

Now ,0{ is the (p — 1)-th power of some element df*. Hence,u; andu, are
equal up to(g — 1)-th powers inF*, and, in particular, we may replace one by
the other in the formula fab. This completes the proof of the theorem.

Remark 4.7. From our calculation in Theorem 4.6 of the Clifford classes for
the characters of the grou;ﬁ:: SL (n, g) D, we can describe all the characters

of every subgroup off that containsSL (n, q), including their fields of values,

and the element of the Brauer group associated with them. We can furthermore
calculate their Schur indices, including their local Schur indices. The method to
do this is completely analogous to the one for the cagelofs, ¢), as described

in Remark 3.5.

We now describe some general results on Schur indices and elements of the
Brauer group associated with irreducible characters of subgroufds of

Corollary 4.8. Let L O SL(n, ¢) be a subgroup ofi, and lety € Irr(L). Then
the Schur index ofr at most2.



A. Turull / Journal of Algebra 257 (2002) 560-587 585

Proof. This can be proved, mutatis mutandis, the way Corollary 3.6 was. Our
corollary also follows easily from the next one.

Corollary 4.9. Let H be as in Propositio.1 Let L D SL (n, ¢) be a subgroup
of H, and lety € Irr(L), and let F be a field of characteristic zero. Then, the
elemen{y] € Br(F(y)) can be calculated as follows. We ¢t < Irr(SL (n, ¢))

be an irreducible character contained in the restrictionypfto SL (n, ¢), and
we letn be a primitivep-th root of 1. Furthermore, we set1 = —1if ¢ is odd,

(¢ — 1)2 divides the order ofp2, and the central involution off is not in the
kernel ofyr; and we seu1 = 1 otherwise.

(1) If either p =2, orn is odd, ornz > (p — 1)2, then[y] = 1, and the Schur
index ofyr is 1.
(2) Suppos@ <n2 < (p—1)2,and[L:SL(n,q)]is even. Then

[y1=br(F(, n)/F®), u1) € Br(F(¥)).

(3) Suppose2 < na < (p — 12, and [L : SL(n,q)] is odd. Then,F(y,) €
F(y), and[v¥] € Br(F(y)) is simply the image df/,] € Br(F (y;)) under
extension of scalars.

Proof. Let) € Irr(H) be such that its restriction tb containsy . LetA € F, be
such that it parametrizes an irreducible charagtecontained in the restriction of
Y toJ =SL(n,q). Then, Re§ (x,) = Red/ (). If the corollary holds over some
field contained irQ(y/), then it follows that it holds over any field of characteristic
zero by simple extension of scalars. Notice that’R@s is a sum of conjugates

of Res&(x/f), and it follows thalQ(Reé_;’()T)) C Q(yr). We set, without loss,

F=Q(Red (7)) = Q(Reg (x»)).

Then, by Proposition 3.1F = Galr(2)". Assume first thap = 2, orn is odd,
orny > (p — 1)2. By Theorem 4.6[x] =[Z,a, 1] € Clif (D, F), whereZ is a
direct sum of copies of'. Hence, by Corollary 1.43] = 1, and the Schur index
of ¥ is 1, as desired. We assume henceforth thatrid < (p — 1)2. Now, by
Theorem 4.6, and in its notatiof | = [Z, @, b], with

b=br(Fm)/F. pa (@) "),

Suppose now thaf is the direct sum of copies of. By Corollary 1.4,
F = F(Y), [¥:] = b € Br(F), and there exists somg e F(y)* such thatg
is an||-th root of (with I = (L/J)N 1), andF (y) = F(B). In addition,[y] =
b € Br(F(y)), whereb is the image ofb under the extension of scalars map
Br(F) — Br(F(y)). It follows that if [L : SL (n, ¢)] is odd, the corollary holds.
Hence, we assume for the remainder of this paragraptithe®lL (n, )] is even.
If ¢ is a square, by Theorem 4/6,= 0, which implies thab = br(F (1) /F, 1),
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and the corollary follows immediately in this case. Hence, we assume thabt
a square. Since we are assuming thas the direct sum of copies @, it follows
from Theorem 4.6 that, for some eleméght Fi of orderny, we havega # A.
By Definition 2.5 and Theorem 3.3, this implies thatdoes not dividdG : I].
Sinceg is odd, and not a square, we haye- 1)2 = (p — 1)2. Using Lemma 4.3,
this implies that]1|2 = (|I]2d2) /(g — 1)2 does not dividalz/n2. It follows that
|I] is even. Hence/| is even, and is a square irF (). The result follows also
in this case. ~

Finally, suppose thaZ is not a direct sum of copies df. By Theorem 4.6,
g is not a square and, for any elemght Fy of ordern,, we havegi = A.
Furthermore, we sek = F(,/ep), wheree € {1, -1} andp = ¢ (mod 4, and
Z is isomorphic to the direct sum of/2 copies of K, which are permuted
transitively by D/I, and where the subgroup @¥// of order 2 acts on each
copy of K as the Galois group o /F. Furthermore, we have th&t = F(y,).
Since for any elemeng € F1 of orderny, we havegi = A, by Definition 2.5
and Theorem 3.3, we have that divides[G : I]. Sincegq is odd, and not a
square, we further haug — 1) = (p — 1)2. Using Lemma 4.3, this implies that
\I| = (|1|d)/(g — 1) dividesd/n». Sinced = (¢ — 1, n), we have that//ns is
odd, and it follows thatl| is odd. Setting’ = (L/J) N I, we have that/| is odd
as well.

Assume thafL : J] is even. Ther;, does not dividg¢ D : L] and we are in the
second case of Corollary 1.5. Hence, there exists spmé (y)* such thaig is
an|I|-th root of&@, F(y) = F(B). Furthermore, there exists somige F(y)*
such thatfg is an|1|»-th root of&, and, we have

[¥]=br(K(y)/F(). By )b € Br(F(¥)).
where the product is in the Brauer group(B(y)), andb is the image ofb
under the extension of scalars map By — Br(F(v)). Sincel has odd order,
Bo = &. From Theorem 4.6, we know thag = u x (jo)!!!, and thatx is @ times
the ||-th power of some element af*. Since|I| divides|I|, x (jo)!!! is the
|I| power of some element df (x). Since the values of are contained inF
extended byp’-th roots of unity,. is a (¢ — 1)-th root of 1, andp does not
divide |71, it follows that 8 is in the field of p’-th roots of unity. It follows that
F(y) is contained in the field op’-th roots of unity. HenceK (y) € F(n, ¥)
and[F(n,¥): K(¥)] = (p —1)/2. By, for example, Corollary b in page 277 of
[6], we have

br(K )/ F (). By ) = br(F(n. )/ F (), & P~D/2),
Hence, since in our cage=1,
[W1 = br(F(n, )/ F).@ P~ Y2) br(F(n, )/ F (W), pa@?~>7)
= br(F(n,v)/F(¥), u1) € Br(F(¥)).
Therefore, the corollary holdsif. : /] is even.
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Hence, we assume thét : J] is odd. By Corollary 1.5(1) applied tg;,
with L = J, we have thatx//x] = b, whereb is the extension of scalars é6fto
b e Br(F(¥)). We setl = (L/J) N I. Notice thatr, divides[H : L]. It follows
that F(y) and[y] are given by Corollary 1.5(1). We have th&t C F(y),
and[y] is the extension of scalars of the elemént Br(F). Hence,[y] is the
extension of scalars ¢f/, ], as desired. The proof of the corollary is complete.

Remark 4.10. We refer the reader to [9], whefe&, ] is calculated explicitly for
eacha, and its local Schur indices analyzed. We note, furthermore, that using
results in, for example, [5], it follows that the local Schug(th) of any character

¥ in the situation of Corollary 4.9(2) is 1 for all rational primigexcept, possibly,
{=port=oc0
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