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Abstract

We present a Las Vegas algorithm which, for a given matrix group known to be isomorphic mod-
ulo scalars to a finite alternating or symmetric group acting on the fully deleted permutation module,
produces an explicit isomorphism with the standard permutation representation of the group. This
algorithm exploits information available from the matrix representation and thereby is faster than
existing ‘black-box’ recognition algorithms applied to these groups. In particular, it uses the fact
that certain types of elements in these groups can be identified and constructed from the structure
of their characteristic polynomials. The algorithm forms part of a large-scale program for comput-
ing with groups of matrices over finite fields. When combined with existing ‘black-box’ recognition
algorithms, the results of this paper prove that dmyimensional absolutely irreducible matrix rep-
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resentation of a finite alternating or symmetric group, over a finite field, can be recognised with
0(dY?) random group elements ar@i(d1/2) matrix multiplications, up to some logarithmic fac-
tors.

0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we present an algorithm designed to recognise finite alternating and sym-
metric groups acting naturally as matrix groups in their smallest dimensional, faithful,
absolutely irreducible representations over a finite field of charactepisfibe reason for
focusing on the special case of these representatiofis ahds,, is that they arise in a spe-
cial way as maximal subgroups (modulo scalars) of finite classical groups. The algorithm
given in this paper require® (n%) random selections and (n* log? n) matrix multiplica-
tions, wherex = 1/3 if p # 3 anda = 1/2 for p = 3, and is asymptotically faster than an
implementation for these groups of the fastest known ‘black-box’ algorithm to recognise
finite alternating and symmetric groups. Moreover, the algorithm given in this paper, com-
bined with the ‘black-box’ algorithm in [5], provides a uniform complexity @{d%/?)
random selections andl (d¢/2) matrix multiplications (up to some logarithmic factors) to
recognise any-dimensional absolutely irreducible representation of a finite alternating or
symmetric group over a finite field, see Section 2.1 for details.

Aschbacher [1] described eight families of maximal subgroups of the finite classical
groups of dimensior over a fieldF of orderq (whereq = p* for some primep). He
proved that any maximal subgroup not lying in one of these eight families must be
nearly simple, that i€7 /(G N Z) has a simple socl& whereZ denotes the subgroup of
non-zero scalar matrices. Moreover, for these nearly simple groups, the pre-image of
G is absolutely irreducible on the underlying vector specés not realisable over a proper
subfield, and is not a classical group in its natural representation. Every abstract finite sim-
ple group can occur in this way as the simple gréupn Section 2 we briefly describe how
Aschbacher’s result has been used as the underpinning framework for a matrix recognition
project for matrix group computation, and how the algorithm of this paper fits into this
framework.

Moreover, it was shown by Liebeck [22] that, for sufficiently high dimensions, the
largest among the nearly simple maximal subgroups mentioned above are the groups
Z x S, acting on the fully deleted permutation module o¥ezorresponding to the natural
transitive permutation action &, of degreen. This module will be described in detail in
Section 3.1. Its dimension is— 1 if the characteristip does not divide:, and isn — 2 if
p does dividen.

Our main result is Theorem 1.1. It involves several parameters, namely andé.

The parametet is an upper bound on the cost of producing one random eleme(it of
oF is an upper bound on the cost of performing one operation (addition, multiplication
or finding an inverse) in the finite field of orderq; andw is a real number for which
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there exists an algorithm for multiplying twox n matrices over a field wittD (»n*) field
operations. There are algorithms known for which: 2.376, see [11].

Theorem 1.1. Thereis a Las iegas algorithm with the following specifications. It takes as
input a positive real number ¢ suchthat 0 < ¢ < 1 and a subset X of GL(n — 8, ¢), where
n > 5, g isapower of a prime p, § =1 or 2 according as p does not or does divide n,
andif G = (X) then G’ = A,,. The output isa monomorphism fromG to Z,_1 x S,. The
algorithm succeeds with probability at least 1 — ¢, and the cost is

0(|Og(871)na (E+poF |Og2n(n“’ + nlogng loglogn)) + |X|ppn®),

where o = 1/3if p £ 3 and 1/2 if p = 3. The cost of evaluating A on a given element
of G is O(n®pr), and similarly the cost of evaluating 2~ on a given element of A(G) is
O(n”pr).

Thus, for small fields, and small generating sets, the cost of constructing the monomor-
phism is

0 (Iog(s_l) (n“& + prn®t12log? n))

with o as above. The assumption that: 5 covers all parameter values for this family

of nearly simple matrix groups. Clearly to prove the theorem we may ignore small values
of n, and in fact for one part of the algorithm presented in the paper we assumetta.

Our approach is to find a new basis for the underlying vector space, and if the Group
were replaced by a conjugate under the corresponding change of basis matrix, then our
procedures given in Section 10 evaluatand A~ on given group elements at a cost of

O (npr) per element.

After the commentary in Section 2 on the matrix group project we describe, in Sec-
tion 3, the context of the algorithm and in particular we define the fully deleted permutation
module. We explain there the various components of the algorithm, and the proof of The-
orem 1.1.

A complete implementation of the algorithm has been made by Stephen Howe, assisted
by Maska Law, in the computer langua@aP4 [12]. The authors wish to thank Stephen for
his care in reading and implementing the various procedures in the paper, and in particular
for locating several mistakes and misprints. The authors also acknowledge the advice from
an anonymous referee that led to an improved exposition and layout of the paper.

2. Commentary on matrix group recognition

From the practical point of view the algorithm presented in this paper forms part of
one of the matrix recognition projects. The objective of such projects (see [2,16,19,20])
is to produce a computer software system that accepts as input a sulo$ebL(d, q)
for somed > 0 and prime powey, and determines, among other things, a composition
series (or composition tree) for the grogp= (X). The project described in [19,20] is
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heavily dependent on the theorem of Aschbacher mentioned in the introduction, which
can be interpreted as stating thatGifdoes not contain the special linear group, and is not
almost simple modulo scalars, théhpreserves a geometrical structure on the underlying
vector spacé/. Making this theorem constructive reduces matrix recognition to dealing
with groups that are almost simple groups modulo scalars.

If G isfound to preserve a geometrical structurélgrihen the geometric structure that
is preserved byG is determined explicitly. This usually involves finding a basis for the
underlying vector spac¥ that exhibits the structure. For example, ifzainvariant direct
sum decomposition o¥ is discovered, a basis is found that is the union of bases for the
direct summands. If &-invariant tensor decomposition is discovered, a change of basis
is performed so that the elements @Gfare exhibited as Kronecker products of smaller
matrices, etc. This change of basis has various useful consequences. Firstly, in terms of the
new basis, the elements 6f can be written in a more compact form: in the first of the
above examples, as an element of a wreath product of a general linear group of smaller
dimension by a symmetric group, and in the second example as a Kronecker product. This
produces a saving in the time taken to multiply two group elements, which may be very
dramatic, as well as a useful saving in space. Secondly, given any elemeni{@fqGL
with respect to this basis one can see at once whether it preserves the given structure, and
if so, write it in the appropriate form. Thus, recognising the fact thigtreserves some
geometric structure reduces further problems of processitgeasier ones.

On the other hand, if7 is found not to preserve such a structure, then in general no such
reduction is possible, and usually we have to deal @iths it stands, as an almost simple
group modulo scalars, using black-box recognition techniques. In additiGhisifalmost
simple modulo scalars, and is realisable over a proper subfield, it is sometimes desirable
to recognise it as given, rather than first re-writing the group over the smaller field. In the
case of finite alternating and symmetric groups, these algorithms construct an isomorphism
with the natural permutation representation of the group.

If G acts on the fully deleted permutation mod¥#esA, or S, the situation of interest
here, therG is such a group, but in this case we can do better than implementing the black-
box group algorithms. In this special case the structur@ &f made explicit by a suitable
change of basis foV, and so our approach is very similar to the approach above for the
earlier Aschbacher categories.

2.1. The complexity of recognising A, and S,

The asymptotically most efficient black-box recognition algorithm knownAgprand
S, is in [5], and requireD (n) random selections an@ (nlogn) group multiplications.
Applying this algorithm in the matrix group setting: 4, or S,,, or one of their covering
groups, were given as an irreducible subgroup indsl), and ifn were 0 (d%/?), then
the time complexity of this algorithm would b@ (dY/?¢ + prd“*+%?) (up to logarithmic
factors).

Now it follows from results of James [14, Theorem 7] and Wagner [29] thay, forl5,
any faithful irreducible representation df, or S, or one of their covering groups, apart
from the representation on their deleted permutation modules, must have dim&nsion
n(n —5)/4, and henca = 0(d%/?). Hence the algorithm presented in this paper ensures
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that alld-dimensional irreducible representationsAyf and S, or their covering groups,
can be constructively recogniseddnd®*+1/2) time up to some logarithmic factors.

The principal tool at our disposal that makes use of the fact that we are working
with matrices rather than with a black-box group is the computation of the characteristic
polynomial of group elements. For example, a crucial step in all ‘black-box’ recognition al-
gorithms for alternating and symmetric groups is to find an element that is a transposition,
a 3-cycle, or a double transposition in the natural representation. The algorithm presented
here includes a faster method of finding such an element than the method of finding a 3-
cycle given in [4,5,7]. In addition, the present algorithm does not require the construction
of ann-cycle or(n — 1)-cycle, instead making use of certain elements with order divisible
by a prime greater tham35.

There are several reasons why we are able to make use of these faster methods. For
example, we are able to recognise from their characteristic polynomials certain matrices
from which we can construct a 3-cycle or double transposition (see Section 6), and upon
identifying such matrices we are then able to extract the associated elements efficiently
because we have available a fast method for determining the orders of these matrices from
their characteristic polynomials (see Section 5). In addition, having constructed the stan-
dard basis for the fully deleted permutation module we obtain a positive identification of
A, ands,. This obviates the need to confirm the supposed isomorphism ty@ewhich
would otherwise have to be done by finding for the group a new generating set that satisfies
a standard presentation.

Finally, we point out that the isomorphismin Theorem 1.1 evaluates images of el-
ements ofZy x H as pairs(b, g) € Z,_1 x S,, whereb is a non-zero scalar anglis a
permutation. Similarly.~1 computes the pre-image of such a pair as a matrix.

For applications of this algorithm in the matrix group recognition project, we would
need also to construct straight-line programs frprx) | x € X} to (b, g), and [5] con-
tains an algorithm that does this, producing straight-line programs of lengitiogn),
in O(n?logn) time. However, the evaluation ily x H of such a straight-line program
would costO (prn®ttlogn) which is more expensive than the running time of our recog-
nition algorithm. In order to construct (and evaluate within x H) straight-line programs
at no greater cost than the rest of the algorithm, the underlying open problem that needs
to be solved is to find an algorithm that, for the natural permutation representatiyn of
computes a straight-line program of lengn /3 log? n) from the standard generating set
{(12), (12...n)} to an arbitrary permutation i, .

2.2. Other complexity issues

Another delicate issue arises from the construction of random elements. The complexity
analysis is given in terms that involve the time required to construct a random element, but
the algorithm loses its advantage in practice if this has a cost significantly worse than the
cost of making a bounded number of group multiplications. Provided that the size of the
given generating set is bounded the product replacement algorithm [9] will run in practice
within these cost constraints; but despite very interesting theoretical progress, the assertion
that the product replacement algorithm performs this well remains a well supported con-
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jecture, and is not a theorem. This is one reason for including the cost of producing random
elements as a parameter in the cost estimate for our algorithm.

In practice it seems unlikely that useful implementations of the algorithm in this paper
will match its o(d®) complexity estimate. For example, Strassen’s algorithm for multi-
plying two d x d matrices, which is useful in practice, has complexityd*) where
k =log,7 > 2.8, and using this would produce an algorithm that is slower Q&)

(but still faster than an application of the ‘black-box’ algorithm from [5]). In addition,
keeping the theoretical complexity belo@(d®) meant, for example, that we could not
calculate the minimum polynomial of a matrix, as we know of no algorithm for this that
has complexity better than Las Vegagd®) field operations. This, in turn, is the reason
for introducing the new algorithm in Section 5 for computing the order of an element of
Zy x Hp using only the characteristic polynomial, rather than the minimal polynomial.

There would have been some advantage in our algorithm, especially in Section 6, to
pass fromG to its derived subgrou’ = A,,. This would, in particular, have simplified the
procedures in Section 6 for determining the scalar associated with a given group element.
There is an easy algorithm [3] to pass from a generating se€t ad a generating set
for G’, but its time requirement is asymptotically greater than the time requirement of our
algorithm. Also, had we used such an algorithm, we would have needed to make random
selections from two different groups, namely the input group and its derived subgroup.
However, as algorithms for making random selections require a certain amount of pre-
processing, it is not unreasonable from a practical as well as a theoretical point of view to
abstain from doing this.

3. Context of the algorithm

In this section we define the deleted permutation module and its standard basis, we
specify the algorithmic set-up, and we outline the principal steps in the algorithm, de-
scribing where these are presented and analysed in the paper. We shall use the notation
introduced in this section throughout the paper.

3.1. Permutation modules and standard bases

Consider the group Gz, g) acting naturally on the vector spadé = F" of n-
dimensional row vectors, wherg is a field of orderq = p* (p a prime), and let
& := (e1, ..., e,) denote the standard (ordered) basis, wheris the row vector which
hasith entry 1 and all other entries 0.

Let Hy denote the subgroup of Gk, g) consisting of all the permutation matrices.
Then Hy = S, and Hp permutes the standard basis vectors and leaves invariant the all-1
vectore =(1,...,1) =Y ¢;. SetE := (e). Also Hyp leaves invariant the co-dimension 1
subspacéV := {(x1,...,x,) | Y_x; =0} of U. Following [17, pp. 185-186], the subspace
V:=W/(WNE)is called thefully deleted permutation module. Now e € W if and only
if p dividesn, and hence

1 if p does not divider,

dimV =n—34, wheres= { 2 if p dividesn. @
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If n>5, thenHy = A, acts irreducibly onV, while if » > 10 then by [27-29] and [14,
Theorem 6], or see [17, 5.3.7], every faithful irreduciii&;-module has dimension at
leastn — 2, andV is the only such module of dimension at mast
We shall need to compute with the actionsHy on bothU andV, and sinceHy acts
faithfully on V, we shall often regard/y as a subgroup of GIV) as well as working with
it (as defined) as a subgroup of @GL). The normaliser ot in GL(U) is Zy x Ho, where
Zy is the subgroup of non-singular scalar matrices in&JL Similarly the normaliser of
Hy in GL(V) is Zy x Hop, whereZy is the subgroup of non-singular scalar matrices in
GL(V). We shall sometimes writ& x Hp without specifying whether the action is @n
or onV when it helps the flow of the discussion, and the meaning is clear from the context.
We shall work with the characteristic polynomials of elementZ of Hyp (whereZ =
Zy or Zy). For g € Hg we often identifyg with the permutation of,, corresponding to it,
and we say thag hastype 1°12°2. . .n = [].i%, where) ic; =n, if g hasc; cycles of
lengthi for eachi =1, ..., n. Our notation for the characteristic polynomials@rand vV
of elements inZ x Hp is given in Notation 4.1.
The standard basis fdr we shall use as a reference basis in the algorithifipis=
(v1, ..., va_s), Where

vi=e—er1+(WNE) forl<i<n—3§ (2)

and thee; form the standard bas& := (e1, ..., ¢,) for U as defined above. The important
property ofBg is that each vector has an expression involving exactly two ot trend
everye; (apart fromeq, e, and, if § = 2 alsoe,_1) occurs exactly twice, with different
signs, and in consecutive vectors/gy.

3.2. Thealgorithmic set-up

In the practical algorithmic application we shall be given an absolutely irreducible sub-
groupG of GL(d, ¢g) = GL(V), whered = n — § with § as in (1), such that is conjugate
to a subgroup oZy x Hp containingH). The problem is the following.

Algorithmic Problem. Given a subgroup G = (X) of GL(V) = GL(d, ¢q) satisfying
H' <G < Zy x H,where H isconjugateto Hp in GL(d, ¢g), construct a monomorphism
AG—> Zy1 xSy,

The monomorphisnl. is constructed via a matrix that conjugat€sinto Zy x Hy.
Equivalently, the key outcome of the algorithm is a basisfoon which (X) acts in the
same way thafy acts on the standard bads defined in (2). Given this basis inverse
isomorphisms betwee{X) and the corresponding subgroup®f x Hp can be read off
very quickly; much faster than the corresponding isomorphisms whéenrecognised as
a black-box group.

We shall call a sequence of vectdisy, ..., w,) from V alinked sequence relative to
Hy if there exist distinct positive integers, jo, ..., j-+1 and a field elemert € F# such
that

wj=blej, —ej )+ WNE) forl<i<r.
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A linked sequence relative tdy of lengthr =n — § is a basis oV and we call it dinked
basis relative to Hp. For example, the reference ba#is defined in (2) is a linked basis
relative to Hp. In our algorithm the given grou@ will involve a conjugateH of Hp. We
will construct a linked basis relative t (defined below) that will enable us to conjugate
G to a subgroup ofy x Ho.

Each linked basis relative tHp is an image of3p under an element afy x Hp. Set
Lo:={BoA | A € Zy x Hp}, the set of all linked bases faf relative toHy. Let S € GL(V)
be such thas—1HyS = H.

Lemma 3.1. The set £ of imagesunder S of all the linked bases relative to Hy is indepen-
dent of the choice of S.

Proof. The set of images unde¥ of the linked bases relative tHy is the set of all se-
guences of the for8pA S, for someA € Zy x Hp. Let T be another conjugating element,
that is, T"1HoT = H. Then ST~ normalisesHy and hence lies irZy x Hp. There-
fore (Zy x Ho)S = (Zy x Ho)T, and soL := {BoAS | A € Zy x Ho} = {BoAT | A €
Zy x Hp}, proving the lemma. O

Thus the setll = LoS of images undes of all the linked bases relative tHp forms
a family of bases foV that is invariant undeZy x H, and we call bases in this family
linked basesrelativeto H .

3.3. Outline of the algorithm

The heart of our solution of the Algorithmic Problem is the construction of a linked basis
BB for V relative toH so that, by Lemma 3.1 = BoS for someS such thatd = S~1HpS.
Once such a basiB is found, we use it to construct an isomorphigmZy x H —
Z,-1 x S, such that, for each e F#* andA € H, AM(bA) = bA(A) andA(A) is the per-
mutation corresponding to the action 4fon B, or equivalently ofSAS~ € Hy on Bo.
We now give a summary of the main steps of the algorithm, and explain where these are
presented and analysed in the paper.

Step 1. Constructing a 3-cycle or double transposition. Since we will use one of these
elements to construct the first of the basis vectors, the initial step is to construct a gnatrix

in H conjugate to a (matrix offy representing a) 3-cycle or double-transposition. Such an
element can be obtained as a power of a (matrikinepresenting a) pre-3-cycle or pre-
double-transposition respectively (see Section 6 for definitions) and, based on some results
about polynomials in Section 4, we show that scalar multiples of pre-3-cycles and pre-
double-transpositions can be recognised from their characteristic polynomials, provided
the characteristip is not 3 or 2, respectively. In Section 6 we give algorithms to construct

a matrix in H conjugate to a pre-3-cycle jf +# 3, or a pre-double-transpositiongf= 3.

To extract a matrixg corresponding to a 3-cycle or double transposition, we need to
determine the orders of these elements. A new algorithm for computing the order of a
matrix in H, based on knowing its characteristic polynomial, is given in Section 5, and
used to construct a suitable elemerih Section 6.



12 R. Bealset al. / Journal of Algebra 292 (2005) 4-46

Step 2. Constructing the first basis vector. In Section 7, we show first how to construct a
conjugateg’ of the elemeng such that the permutations corresponding tand g’ have
exactly one moved point in common. We then construct, ugiagdg’, a vector that lies

in some linked basis relative tH.

Step 3. Constructing a linked basis relative to H. Extendingv to a linked basis relative to

H is done in two-stages. For the first stage, see Section 8, the veatat elemeng are

used to construct an elemenbf H whose corresponding permutation involves a cycle of
prime lengthr > 3r/5, andv, x are then used to construct a linked sequence of vectors
of lengthr — 1. Then, in Section 9, this linked sequence is extended to a linked basis
relative to H. The reason for employing this two-stage process is that overall it requires
asymptotically fewer random selections and matrix operations than the seemingly simpler
alternative of finding am-cycle or(n — 1)-cycle for this purpose.

Step 4. Constructing and evaluating the isomorphism. A procedure is given in Section 10
that constructs. and evaluates on elements oy x H. Evaluatingh~! on elements of
Z,_1x S, is discussed in Section 10.1.

The various procedures are drawn together in Section 10.1 to complete the proof of
Theorem 1.1.

4. Characteristic polynomials

In this section we give some information about the characteristic polynomidisand
V of elements oZ x Hp. We use the following notation throughout the paper.

Notation 4.1. Let g € Hyp be fixed, and suppose that the permutation correspondigg to

has cycle lengths:y, ..., m;, wherel > 1 and)_, m; = n. For eachi, write m; = p“r;,
wherea; > 0 andr; is coprime top, and set

m::Zp“", R :=lcm{ry, ..., r}, a:=maxXazs,...,q}.
i

Then|g| = Rp®. Letb e F¥. Let cg’) o), c$’> (1) denote the characteristic polynomials for
the actions obg on U, V respectively, and set; (t) = cgjl) () andcy (¢) = ci,l) (). Fora
monic irreducible polynomiaf (r) let mult?) ( £) denote the multiplicity off in cif” (0).

If £(¢)isanirreducible polynomial ovéf (our field of ordely = p¢), thenf (¢) divides
t¢ — 1 for some positive integer, and we let

e(f) denote the leasgtsuch thatf (¢) dividess® — 1.
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Note that if f(z) dividest®t — 1 andr¢2 — 1, then f(¢) also dividest¢ — 1 wheree =
gcd(e1, e2). We usually deal withmonic polynomials, that is, polynomialg(z) for which
the coefficient of the highest power obccurring is 1.

Forb e F# let f®) (1) = b? f(tb~1) whered = degf; then f®)(¢) is monic if and only
if £(r) is monic, andf® (¢) is irreducible if and only iff(r) is irreducible. Basic facts
about polynomials over finite fields can be found in [21, Section 2.4] and we record some
that we shall need in the next lemma.

Lemma 4.2. Let r, s be positive integers with » coprimeto p, leti > 0, and let b € F*.

(@) Then 7" — 1= (" — 1), and the polynomial " — 1 is a product of distinct irre-
ducible polynomials over . Moreover, there exists an irreducible f(¢+) over F such
thate(f) =r.

(b) If f(¢) isamonicirreducible polynomial over F, then

fO1f -1 < OO0 =bp < e(f)]s.

We use this information to examine the characteristic polynomials of elements of
Z x Hp. Recall that the order of a group elemenis denoted byig|; we also denote
the multiplicative order of a non-zero elemérg F by |b|.

Lemma 4.3. Suppose that Notation 4.1 holds. Then

@) cu () =T (" — 1) =T}y (" — D", and ey (1) = cy (1) /(t = DP.

(b) The characteristic polynomials for bg on U and V are cg’)(t) = b"cy(t/b) and
c$) (1) =b" B¢y (t/b), respectively.

(c) Let f(z) beamonicirreducible polynomial over IF. Then

D¢y — muli® (O — | iz ey P @O F1 -1
MUl (f) = mult™ () {m—S it F()=1— 1.
In particular, if f(r) #t — 1, then mult®d ( £) = 1 if and only if there exists a unique
integer i such that r; isdivisible by e(f), and for thisi we have a; = 0.
(d) If g’ € GL(V) isany element with characteristic polynomial equal to cy (¢), then |g'| =
Rp® for somed’ > 0.

Proof. The characteristic polynomial (¢) is equal to]'[ﬁzl(t”’f — 1), and the second ex-
pression for it given in (a) follows from Lemma 4.2. Singects trivially on bothE and
U/ W, it follows thatcy (¢) is as asserted. It is straightforward to check that the character-
istic polynomials forbg on U andV are as in (b).

Let f(¢) be an irreducible polynomial ovét and letr be a positive integer coprime
to p. By Lemma 4.2 f(r) divides:” — 1 if and only if £®)(¢) divides:” — " if and only if
e(f) dividesr, and in this case its multiplicity if — 1 is 1. The values of the multiplicities
follow from these observations.
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Finally suppose thag’ € GL(V) has characteristic polynomial (). Let F’ be the
splitting field of cy (¢), so thatcy (r) = I—[;:f(t — ¢;) for some¢; € F'. We may regard
g’ as an element of Glz — §, F"), and in this groug’ is conjugate to an upper triangular
matrix g” with diagonal entriega, ..., ¢,—s. Hencelg'| = |¢g”| = lem{|¢1], ..., 1Cn_s}p?
for somea’ > 0. In particular,R’ :=lcm({|¢1], ..., |¢,—s|} is determined by (7). For the
special choice of’ = g we see from Notation 4.1 th& = R, and part (d) follows. O

The next lemma gives important information regarding the problem of finding the scalar
b from the characteristic polynomiag’) (1) of bg. Note that the polynomial + ¢ + 1 is
irreducible if and only ifg = 2 (mod 3.

Lemma 4.4. Suppose that Notation 4.1 holds, let » be an integer coprime to p and let
c e F*,

(@) Thent — ¢ divides:” — b if and only if |ch~1| divides r, so

b)) — Z{i: |cb*1|divideSr,-}pai ifc#D,
mult™( — ) {m—& ifc=b.

(b) For g =2 (mod 3, t2 + ct + ¢? (isirreducible and) divides " — »” if and only if
3|chb 1| divides r, so

mult® (¢ + ct + ¢?) = > P
{i: 3lcb—1]| dividesr;}

Proof. Now 7 — ¢ divides:” — b if and only if ¢ = b, that is to sayjcb 1| dividesr. By
Lemma 4.2 the multiplicity of — c in t" — b" is at most 1. It follows from Lemma 4.3 that
the value of mulf’(r — ¢) is as claimed. Thus part (a) is proved.

Now suppose thaj =2 (mod 3 and letf(r) = t2 + ¢ + 1. Then £ (¢) is irreducible
and therefore alsg©) (1) = 12 + ct + 2 is irreducible. Setl := ¢~1b and note thajd| =
lcb~1|. Dividing 1" — d” by 13 — 1 gives a remaindeg(r) =12 —d",t —d" or 1—d"
according ag =2,1,0 (mod 3 respectively. We claim thaf (¢+) dividest” — 4" if and
only if 3|d| dividesr. Since (r) dividesr® — 1, it follows that f () dividest” — d” if and
only if f(¢) dividesg(z), and this holds if and only i§ () = 0, which is true if and only if
r=0(mod 3 andd” = 1. Since|d| dividesq — 10 (mod 3, the latter conditions are
equivalent to &| dividesr, and the claim follows. Finally setting= ¢~Ls it follows that
52+ cs + c? dividess” — ¢’d” = s — b” if and only if 3)d| = 3|cb 1| dividesr.

The value for mul® (t2 + ct + ¢?) now follows from the fact that” — »" is multiplicity
free (see Lemma 4.2).0

We conclude this section by stating some results about the costs of finding the charac-
teristic polynomial of a matrix oveF, and the cost of finding all the distinct irreducible
factors of small degree of a polynomial ovér
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Lemma4.5[8, p. 349] Thereisa deterministic algorithm that computes the characteristic
polynomial of ann x n matrix over I at a cost of O (n® lognpr).

There are several methods for factorising polynomials over finite fields, and recent
discussions are given in [15] and [26, Chapter 14]. The most efficient methods are non-
deterministic, and we use one of these described in [26, Chapter 14] for our complexity
estimations.

Lemma4.6. Let f(¢), g(¢) be polynomials of degree at most n with coefficients in a field
IF of order ¢, and with degg < degf.

(a) Then the product f(¢)g(¢), and also the remainder on dividing f(¢) by g(¢) can be
found at a cost of O(prnlognloglogn).

(b) There is a Las Vegas algorithm that will find, for a given ¢ < 1/2, all the distinct
linear factors of f(¢), or all distinct irreducible degree 2 factors of f(¢), at a cost of
0(log(e 1) prnlog? nlog(ng) loglogn), and with probability of failure at most «.

Proof. Part (a) is proved by the results [26, Theorems 8.23 and 9.6] that multiplication or
division of polynomials of degree at mostcan be performed i® (n logn log lognr) field
operations.

We use a careful application of the algorithm presented in [26, Algorithm 14.19]
for finding the distinct linear factors of (r). The heart of this algorithm is [26, Al-
gorithm 14.10] that factorises a square-free monic polynomial of degree atmfost
which all irreducible factors have the same degree. As explained in the proof of this
latter algorithm in [26, Theorem 14.11], the workings of [26, Algorithm 14.10] can be
illustrated by a labelled tree, and the probability that it requires at ledestels before
succeeding is at most’2~*%. Thus if [26, Algorithm 14.10] is allowed to run for up to
k = 4lognlog(e~1) > log(n?c~1) levels of the labelled tree, then the probability that it
fails is at mostn?2=% < ¢. With this value ofk, the cost of [26, Algorithm 14.19] is
0 (log(s~Y)nlog? nlog(nq) loglogn) field operations iff. For completeness of our proof,
we note that the component [26, Algorithm 14.10] of [26, Algorithm 14.19] is only valid
for fields of odd order. Iy is even then an alternative algorithm is sketched in [26, Exer-
cise 14.16(iii) on p. 399]; this algorithm also can be run the appropriate number of times
to give a probability of failure at mostin—¢2, and its running time is asymptotically the
same as that given for the case of edd

Finally, to find the distinct irreducible degree 2 factorsfofve use the above algorithm
to find the linear factors of () overF, and use it again to find its linear factors over a
guadratic extension field &. O

5. Finding orders

If Notation 4.1 holds forbg, theng has orderRp® where R = lcm({ry,...,r;}, a =

maxay, ..., a;}, and|bg| = Rp®|bRP"|. In this section we present an algorithm for finding

|g| from cg’) (1), under the assumption thiais known.
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Wewrite M (n) for the cost of multiplying two matricesin GL(V), and notethat M (n) =
O (n®). Throughout we denote log, x by logx and log, x by Inx.

Proposition 5.1. Let ¢ € GL(V) be such that g is conjugate to an element of Hp, and
lg| = Rp® where p does not divide R and a > 0. Also let b € F# and let ¢(r) be the
characteristic polynomial of bg on V. Then there exists a deterministic algorithm that,
given b and c(t),

(a) computes R with 4n? field operations;
(b) determineswhether R < n181°9" and if so computes a, using at most 36M () log? n =
0 (n®(logn)?) field operations.

Proof. Without loss of generality we may assume that Ho and that Notation 4.1 holds.
Thusc(r) = c(b)(t) and|g| = Rp® with R =lcm{r1, ..., r},a =maxXay, ..., q}. Sinceb
is known, we also know(b) ) = ng) (1)(t — b)®. Consider the following procedure:

1. For each prime < n, s # p, find the largest non-negative integesuch that*" — »*"
diVideSC(b)(I) and denote this integer bi(s). DefineR’ := [, s**).
2. IfR' > n18 1097 then returnk’ and the assertion th& > n18'°9": else go to Step 3.

3. Computeh := (bg)R', and find the least non-negative integérsuch thathf’”, is a
scalar matrix. Retur®’ anda’.

First we show that the’-part of |g| is equal to the valu®’ returned by this procedure,
and that, ifa’ is returned, them’ = a, and henceg| = R'p“. Let s be a prime divid-
ing R and lets* be the highest power of dividing R. Thens” divides some;, and so

— b dividess"i — b"i, which dIVIdeSc(b) (1). Henceu < u(s) and it follows thatrR di-
vrdesR’ Conversely by Lemma 4.2 there exists a monic |rredUC|bIe polynoﬁ(ralsuch
thate(f) = u(s), so f®(¢) is irreducible and divides** — »*". Sincer* — b*" divides

(b)(t) it follows that f® (¢) divides c(b)(t) so there exrst$ such thatf“’) () divides
i — b, Again by Lemma 4.2¢(f) = s“@ dividesr;. It follows that R’ divides R, and
henceR’ = R. ThUSgR is a p-element andg®| is equal to the order of modulo scalars,
that is top? , soa’ =a and|g| = R’ p®

Now we need to determine the number of field operations required by the various steps
of the procedure. The cost of findilymay be computed as follows. By the Prime Num-
ber Theorem there ar® (n/logn) primess to be considered in Step 1. In fact, using
Chebyshev’s estimates (see [23, Corollary 8.6]) the number of prinsestrictly less than
1.17In/Inn = (1.171loge)n/logn. For eachs, sinces*® < n, the number of integers
u for which we must test whethet” — b* dividesc!” (¢) is at most log:/logs. Each
of these divisions requires at most field operations Thus finding(s) requires at most
2nlogn/logs field operations, and so determiniigrequires fewer thann? field opera-
tions, wheree =1.171 x loge x 2 < 4.

If & is computed, its computation requires at most 2Rognatrix multiplications and
hence requires at mosiv2(n) log R field operations. For eachwe need at most 2log
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matrix multiplications to computé/’i from 17", and hence determining requires at
most M (n)(210gR + 2alog p) = 2M (n) log(Rp®) field operations. Sinc& < n1809"
computinga requires at most 38 (n) log® » field operations. O

Remark 5.2. For allk > 0, and for all sufficiently larga, most elements af,, have order
less tham¥'°9”  Indeed by [4, Theorem 4.1], the probability that a random permutation in
S, has order greater thart8'°9" is less tham~". Thus the algorithm of the proposition
will compute the order of in almost all cases. For anye S, the p’-part R of |g| sat-
isfies logR = (1 + o(1))(nlogn)¥/2 by [18, p. 222], and hence performing Step 3 for any
value of R would computez in 2(1+ o(1))M (n)(nlogn)¥? = 0 (n®+t2(logn)1/?) field
operations.

6. 3-cyclesand double-transpositions

Here we discuss the problem of finding eleménts GL(V) such thab € F# andg is
conjugate to a 3-cycle (an element of tyged3!) or a double transposition (an element
of type ¥'=422) in Hy. The proportions of 3-cycles and double-transpositions;ior A,
are so small that we cannot easily find such elements by random selectiof,froma,,.
Instead we search for elemeritg with ¢ conjugate to an element of a larger subset of
S, such that certain powers give us 3-cycles or double-transpositions. These elements are
defined as follows.

Definition 6.1. A pre-3-cycle is an element € S, of order 3f, where f is not divisible
by 3, such that/ is a 3-cycle. Apre-double-transposition in S, is an element € S, of
order 2f with f odd such that/ is a double transposition.

It turns out that, for almost all values efandg, whenevebg € GL(V) with b € F# and
g conjugate to a pre-3-cycle or pre-double-transposition, we can prove that the elements
are of this form by examining their characteristic polynomials. We verify this assertion
and then give a Las Vegas algorithm for constructing such elements. Suppogeishat
conjugate to an element &fy, and letb € F¥. First we show that knowledge of babrand
the characteristic polynomialﬁf)(t) of bg on V allows us to detect whether or ngtis
conjugate to a pre-3-cycle or pre-double-transposition. Since conjugate matrices have the
same characteristic polynomials it is sufficient to prove this property toiHy.

Proposition 6.2. Let g € Ho, b € F#, asin Notation 4.1.

(1) If p # 3, then g isa pre-3-cycleif and only if
(@) mult? (f) =1 for eachirreducibledivisor f(¢) of 12 + bt + b?; and
(b) for all primesr <n/3,r # p, ¢’ (1) isnot divisible by 12 + b'1" + b?".
(2) If p =3, then g isa pre-double-transposition if and only if
(@) mult? (r +b)=2; and
(b) for all primesr suchthatr =2,0r 5<r <n/2, cif)(t) isnot divisibleby " + b".
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Proof. Suppose thap # 3. Thent — b does not divide?2 + bt + b2 or 12 + b" 1" + b% for
any primer # p. Suppose first thag is a pre-3-cycle. We may assume that=r; =3
andr; is coprime to 3 for > 1. Then by Lemma 4.3(c), m{fit( /) = 1 for each irreducible
divisor f(r) of 2 + bt + b? (since f () # t — b). Suppose that, for some prime< n/3,
r# p, 2 (1) is divisible byr? +b1" +b% = (3 —b%) /(1" —b"). By Lemma 4.2, there
exists a monic irreduciblef (r) such thate( f) = 3r. For such anf(r), f® () divides
(t¥ —b¥)/(t" — b"), and hence dividesg’) (1). Therefore f®(¢) dividest"i — b'i for
somei > 1, and hence(f) = 3r dividesr;, which is a contradiction. Thus (a) and (b) of
part 1 hold.

Conversely suppose that conditions (a) and (b) of part (1) holgi¢Ifis an irreducible
factor of 2 + bt + b2, then £ (t) = h® (r) wheree(h) = 3, and sincef () divide3c§f’) (1),
f(t) =h® ) dividest' — b for somei. By Lemma 4.2,¢(h) = 3 dividesr;. Since
mult® (f) = 1, it follows from Lemma 4.3 that; = 0 and for allj # i, r; is coprime
to 3. If r; > 3 thenr; /3 is divisible by some prime # p, and hence:g’) (1) is divisible
by 12 +b't" +b% = (¥ — b¥)/(t" — b"), contradicting (b). Hence = 3, and s is a
pre-3-cycle.

Now suppose thgt = 3. If g is a pre-double-transposition, then an analogous argument
to the first paragraph of the proof shows that conditions (a) and (b) in part (2) hold. Con-
versely suppose that conditions (a) and (b) of part (2) hold%(t). Sincef(t):=t+b
has multiplicity 2 incg’) (r) and sincee(f) = 2, we may assume that dividest’i — b'i,
with a; = 0 andr; even, fori = 1, 2, and that; is odd fori > 2. If r;, > 2, fori =1 or 2,
thenr; /2 is divisible by a prime- # 3 with 2r <r; <n — 2, and so- <n/2 andcg’)(t) is
divisible by (t2 — b%)/(t — b), which contradicts condition (b). Henege = r» = 2, and
S0g is a pre-double-transposition.O

6.1. Finding the scalar: theory

For almost all values aof andg, it turns out that, for all pre-3-cycles and pre-double-
transpositiong;, we can determine the scalare F# from the characteristic polynomial
cg’)(t) of bg on V. First we deal with pre-3-cycles. In this case, the schlean be iden-
tified for all n > 5 except the case, p) = (5,5), ¢ =1 (mod 3, in which case we can
only find 5°.

Proposition 6.3. Let g € Ho with cyclelengths m; = r; p% (1<i <I),b € F¥, and ¢\’ (1)
be as Notation 4.1. Qupposethat p # 3, n > 5, and g isa pre-3-cyclewith m1 = 3.

(1) If g =2 (mod 3, and C isthe set of all ¢ € F* such that 13 — ¢3 divides ¢”’ (1), then
mult® (¢2 + bt + b?) = 1 and either
(@ C={b};or
(b) C=0,5=2,n%£0(mod 3,

D0y = (R4 bt + b)) (" b 4 b1
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and if p isodd, then the coefficient of 73 in cg’)(t) is2b, whileif p = 2, thenthe
coefficient of "~#in ¢\’ (r) is b? (which determines b uniquely)

(2) If g =1 (mod 3, and C is the set of all ¢ € F* such that r — ¢y’ divides c(b)(t) for
i =0 and for at least one of i = 1 and i = 2 (where y € F¥, |y| = 3), then premsely
one of (a)—(c)holds:

(@) C = {by, by?}, mult? (r — by) = mult? (r — by?) = 1, and mult? (r — b) = 0; or
(b) C = {b,by.by?}, mult? (z — by) = mult? (r — by?) = 1, and mult” (¢ — b) > 1;
(c) C = {b, by, by?}, mult® (+ — by’) = 1 for each i. In thiscase, p > 5if § = 2.
Moreover, exactly one of (i)—(iii) holds:
() I=8+1,n=8—1(mod 3, and b is the coefficient of 1"~%~1 in cif’)(t) =
(12 + bt + b (1" =2 — p"~0-2) which equals

t/1—8+btn—§—l+b2tn—8 2 —p 8— 2 2 — 5— l bn—S.

(i) 5=2,1=3,n=p=5andc\” (1) =13 — b3 (yielding only b3); or
(i) s=2,1=3,eachm; =r;, >2,and ¢ (1) is

(t2+bt+b2)( ro— l+bt12 2+ +b)2 1)( br3)

sothat 2b isthe coefficient of 13 (yieldi ng b since p > 5), the constant term
—b"~2 and the coefficient of ¢ is —2p" 3

Proof. Sinceg is a pre-3-cyclem > 1 > 2 and 3 does not divide for anyi > 1. First
we show that C {b} if ¢ =2 (mod 3, andC C {b, by, by?} if ¢ =1 (mod 3. Suppose
that this is not the case. Théncontains an elementsuch thatch—1)3 # 1. This implies
thats — ¢ dividesr’i — b’i for somei > 2. By Lemma 4.4|cb~1| dividesr; and hence 3
does not dividgch~ 1. If g =2 (mod 3, then f (1) = 12 + ¢t + 2 is irreducible and it
follows from Lemma 4.4 that mufY ( /) = 0, contradicting the fact thate C. Similarly if
g =1 (mod 3, then, again using Lemma 4.4, we deduce that gt cy) = mult® (r —
cy?) = 0 since|cyb™ 1| = |ey?h~1| = 3|cb~1| does not divide; for anyi. Hencec ¢ C,
which is a contradiction.

Suppose thaj = 2 (mod 3. Then by Proposition 6.2, m{fit (12 + bt + b2) =1landso
part 1(a) holds it — b dividech’)(t). So assume that mifit( — b) =m — 8§ = 0. Then
C=0,m=8=2=1I,and hences =3+ r,#0 (mod 3 andc(b)(t) is as in part 1(b).
Thus

(t3 _ b3)(tr2 _ brz)
(t — b)?
="2 26" 2 B2 A B M2 26" 3 4 b2

b
c%,)(t) =

and 1(b) holds. Note that if = 2, thenn > 6 sinced = 2 implies thatp dividesn, and
thus the coefficient of*~* is b2.

Now suppose thag = 1 (mod 3. By Proposition 6.2, muft) (r — by) = mult® (r —
by?) = 1 soby, by? € C. Also, since mul)(r — b) = m — &, it follows thatb € C if and
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only if m > 8. Thus either 2(a) or 2(b) holds, 6r= {b, by, by?} and mult? (r — by') =
1=m—§ for eachi. Assume the latter. f =1, thervn =1 =2 son = 3+r2 £ 0 (mod 3,
and part 2(c)(i) holds. Now assume tldat 2. Thenm = 3 and sd is 2 or 3. Suppose that
[ =2. Thenm = p™ + p®2 =14 p“2 so p =2 andap = 1. In particularmy; =n — 3=
rop®2 is even. However, sincé= 2, p = 2 dividesn and hence: — 3 is odd, which is a
contradiction. Hencé = 3 = m so eachy; = 0. If p = 2, this means that each; is odd
and hence: = m1 + m2 + m3 is odd; buts = 2, sop = 2 dividesn, a contradiction. Thus
p is odd and ag # 3, it follows thatp > 5. The cycle lengths of are 3r2, r3 where
1 < rp < r3, and becauseg is a pre-3-cycle, we have that 3 does not divideor r3. In
particular,

(2 = 6%t = b"2) (173 — b3)

ng) (t) = (t _ b)2

If n =5, thenrp =r3 =1 and, sincep dividesn, p must be 5, so part 2(c)(ii) holds. If
n>6 andrp =1, thenn =4+ r3# 1 (mod 3 and hence part 2(c)(i) holds. Finally, if
rp > 1, then part 2(c)(iii) holds. O

Now we deal with pre-double-transpositions. In this case the sbalan be identified
if n > 5 unless: =4+ §, where sometimes we can only ident{ly, —b}.

Proposition 6.4. Supposethat p = 3, n > 5, and that g € Hp with cyclelengthsm; = r; p%
(1<i<l),beF and c$) (t) areas Notation 4.1. Suppose further that ¢ isa pre-double-

transposition with m1 = mo = 2. Let C be the set of all ¢ € F# such that 12 — ¢2 divides
¢ (1). Then C = {b, —b}, mult® (1 ++ b) = 2, and one of the following holds:

(@) mult?(t —b) #£2;0r
(b) mult? (s —p)=2,6=1,n=5(mod 6,

() = (t = b)(t + b2 ("4 — ",
and if n > 5, then b is the coefficient of 72 in c§f’)(t); or
(c) multY(t —b)=2,8=2,n=0(mod 6, m =1 =4, and one of (i)—(iii) holds:

(i) n=6,c7 (1) =%+ b2 + b

(i) n>6andb, —b2, —b3 arethe coefficients of /"3, 1"~4, 1"~ respectively in
Pty =t = byt +b)2(t" 5 — "),

(i) n > 6and —b, b2, 0 are the coefficients of 13, "—4, 1"~5 respectively in
A (0) = (1 +b)?(1"3 — b'3) (1 — b'),

where r3, r4 are odd and at least 5.
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Proof. Sinceg is a pre-double-transposition and> 5, we haven > > 3 andr; is odd
foralli > 2. Thus mult”(t — b) = m — § > 0. By Proposition 6.2, muft'(r + b) = 2, and
hence bottb and—b lie in C. Suppose that # +b andc € C. Then at least one afp~1
and—cb~1 has order 2 for somes > 1. It follows from Lemma 4.4 thats2dividesr; for
somei > 3 which is a contradiction. Thus= {b, —b}.

Suppose now that mifit (r — b) =2, thatis;n =8 + 2. If § = 1, thenm =1 =3 so
n =4+ r3is odd anduz = 0; thusn andn — 4 are coprime to 6, and it follows that=
5(mod 6), andcg’)(t), bareasin(b). 16 =2,thermn =1=4,a3=a4=0,son =4+r3+
ra is even and hence= 0 (mod 6. Let us suppose thag < rs. If n =6, thencg’) )=
(t — b)2(t + b)? as in (c)(i), so assume that> 6. If r3 =1, thencg’)(t) =@ —b)(r+
b)2(1"=% — b"~°) andb, —b?, —b® are the coefficients af'—3, 1"~ 1"~> respectively, as
in (c)(ii). If r3 > 1, then sinces, r4 are coprime to 6, they are both at least 5, aiﬁ?j(t) is
asin (c)(ii). O

6.2. Proportions

In our algorithms we will construct a 3-cycle or double transposition from a pre-3-cycle
or pre-double-transposition respectively that has reasonably small order, namely order at
mostn18/°9" We give here estimates for the proportions of such elements Bnds, .

Definition 6.5. Let pSi3' (n), p3a'(n) denote the proportions of pre-3-cycles dn

ands,, respectively, that have order less thelfi'°9". Let p5 .,,(n), ppieon) denote the

proportions of pre-double-transpositionssipandA,,, respectively, and |qﬁg;gg'g* (n) and

pgp;ggs(n) denote the proportions of such elements that have order lesaFg#r.
Lemma 6.6.

() [4, Theorem 5.2For n > 5, p3ial4 (n) > 0.140: Y3 and p37a!S (n) > 0.282 /3.

(b) pgrezz(n) = \/ﬁ + 0032 and pgrezz(n) = 2pgre22(”)'

(c) For n>5, p5iait(n) > 0.099% 2 and psridl (n) > 0.0498: /2.

Proof. (b) A pre-double-transpositiog € S, is of the formg = (i, j)(k, )k, where
i, j, k,l are distinct points fixed by, and|4| is odd. There are(fj) possibilities for choos-
ing a double transpositiofi, j)(k, ), and for a given choice there ate — 4)!s—>(n — 4)
elements: of odd order on the remaining points, where(n) denotes the proportion
of elements ofS,, of odd order. HenCQD,frezz(n) =s_2(n —4)/8, and so by [4, Theo-
rem 2.3(C)],ppredn) = c()(n —4)~Y2/84 0(n%%) = c(2)n~2/8+ 0 (n~3/?), where
c(2) = (r/2)~12=0.798, as claimed. Since all pre-double-transpositions are even permu-
tations it follows thatp/eo /1) = 2Py eodn).-

(c) By [4, Theorem 4.1], the proportighsman(n) of elements of5,, of order greater than
n18100" js less tham 7. Also by [4, Theorem 2.3(a) and (b)}grezz(n) =s_o(n—4)/8>

s—2(n)/8>c(2n~Y?(1—n=1)/8, foralln > 5. Thus
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pz:gggs (n) = Pgrezz(”) — psmall(n)

Similarly

nggy (n) = Pérezz(n) — 2psmali(n)

6.3. Procedures

In this subsection we give procedures for finding 3-cycles and double-transpositions
based on the results above. For polynomigls), c(z) over F with f(¢) irreducible, we
denote by mul,)(f) the multiplicity of f(¢) in c(¢). First we find a 3-cycle in the case
where the characteristic is not 3. jf= 3, then this procedure will not work, and in this
case we use the similar Procedure 6.9 to find a double transposition.

Procedure 6.7 (FIND3CYCLE). We are given a positive constant ¢, and a subgroup G <
GL(V) =GL(d, q) (where g isa power of pand p #3)suchthat H' <G < Zy x H
where H isconjugateto Ho = S, andn > 5, (n, p) # (5,5).

1. Select up to [log(e ~1)n1/3/0.07] random elements x € G, and perform the following
steps for each.
2. Find the characteristic polynomial ¢(¢) of x.
3.1. For ¢ = 2 (mod 3, determinethe subset C of elements ¢ € F* such that 13 — ¢ divides
c(1).
(i) If|C| = 2, thenreturnto Step 1.
(i) If C ={c}, then if mult. (124 ct + ¢?) = 1let b = ¢, and otherwise return to
Sep 1.
(i) IfC=¢,thenreturnto Sep L unless§ =2 and n = 0 (mod 3. Let ¢ € F be
such that the coefficient of 1"~2 is 2¢ if p isodd, or the coefficient of 1" ~% is ¢? if
p=21f

c(t)= (2 +et+A) ("2 =" 3) /(t - o),

then set b = ¢, and otherwise return to Step 1.
3.2.For ¢ =1 (mod 3, determine the subset C of elements ¢ € F# such that
multe)(t — ¢) > 0, and also mult.((r — cy’) > 0 for at least one i € {1, 2}, where
lyl=3.
(i) 1f|C] ¢ {2, 3}, thenreturn to Sep 1.
(i) If C = fc1,c2), then if Jercy Y| = 3, and multy (r — ¢;) = 1 for i = 1,2, set
b=c2c;*, and otherwise return to Sep 1.
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(i) If |C] = 3, then return to Sep 1 unless yC = C, and C = {c1, c2, c3} with
multe) (r — c1) = multey (t — c2) = 1< multe) (7 — ¢3).
For the case mult.((t — ¢3) > 1:set b = ca.
For the case mult,)(t — c3) =1 and § = 1:if n #£ 0 (mod 3, the coefficient ¢
of "2 inc(r) liesin C, and

c(t) = (t2 +ct+ cz) (t"_S - cn_3),

then set b = ¢, and otherwise return to Sep 1.
For the case mult.(t — c3) =1 and § = 2: return to Step 1 unless p > 5. Let
¢ € F bethe coefficient of "3 inc(t). Ifn 1 (mod 3, c € C, and

c(t) = (z‘2 +ct+ cz) (t"_4 - c”_4),

then set b = c. Otherwise if a € F* is such that ¢ = 2, and we have a € C, the
constant termin ¢(¢) is —a" 2 and the coefficient of 7 is —24" 3, then set b = a
and otherwise return to Sep 1.

4. If there exists a prime r such that r < n/3,r # p, and 12 + b't" + b2 divides ¢ (1),
then returnto Sep 1.

5. Set g = b~ 1x; by the procedure in Proposition 5.1, determine whether the p’-part of
|g| isat most n18199" and if so find |g| = RpV. If either |g| > n18109" or |g| < n18l09
and 3 does not divide R, then return to Step 1. Otherwise compute g®7*/3 and return
this element.

6. If no element is returned at Step 5 for any of the random elements x, then report
FAILURE.

We prove that this procedure is valid and estimate its complexity. Recalk tleaain
upper bound for the cost of constructing a random elem@f,sn®) is taken as the cost
of multiplying twon x n matrices oveff, andpr is an upper bound on the cost of a field
operation inF.

Lemma 6.8. Supposethat n > 5 and (n, p) # (5, 5). Then, with probability at least 1 — ¢,
Procedure 6.7 (HND3CYCLE) returns an element of H conjugate to a 3-cycle in Hp. It
is a Las Vegas algorithm and runs at a cost of O((loge™1)(&n1/3 + prn?/3log?n(n® +
nlog(ng)loglogn))). Thisis O ((loge 1) (n1/3 + ppn®t1/3log?nlogq)).

Proof. It follows from Lemma 6.6 that the proportion of elemehgse G such thab e F#

and the permutation correspondinggtis a pre-3-cycle of order at most8'°9 is greater

than Q14n—1/3. For each random element we apply the Las Vegas algorithm in Lemma 4.6
with probability of failure at most @72 ~1/2 to find the distinct linear factors of its charac-
teristic polynomial. Thus, for each random element, the probability that it is a pre-3-cycle
of order at most18'99" and that in addition we succeed in finding its distinct linear
factors, is at least.07:~/3. It follows that the probability of failing to find such an el-
ement, and its linear factors, aftar independent random selections frais less than

(1 —0.072~1/3)N and this quantity is less thanprovided thatN > log(s~1)n1/3/0.07.
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Thus by takingV = [log(¢ ~1)»n1/3/0.07], the procedure will find such an element, and its
linear factors, with probability greater than-le.

Moreover, if bg is selected, wheré € F# and g is a pre-3-cycle of order at most
n18100" then it follows from Proposition 6.3 thatis identified correctly in Step 3, and
from Propositions 6.2 and 5.1 that Steps 4 and 5 respectively are completed successfully.
The procedure therefore returns a 3-cyclggh in this case. Thus we have proved that
the probability the procedure reportalEURE is less thare. To complete the proof that
this is a Las Vegas algorithm we need to prove that whenever an answer is returned it is
correct, that is to say, we must prove that any element returned by the procedure is indeed
a 3-cycle.

Suppose that an element is returned after testings, wherex = dg with d € F# and
g € H. Suppose first that Step 3 correctly identifies the sdatai. In each case, from the
definition of b it follows that condition (a) of Proposition 6.2 holds. Also condition (b) of
Proposition 6.2 follows from Step 4. Hengds a pre-3-cycle, and in this case we saw in
the previous paragraph that the element returned is a 3-cycle.

It remains to prove that, whenever an elemest dg is returned, then Step 3 correctly
definesb asd. What we prove is that, if in processing an element dg a scalarb is
defined at Step 3, then either=d, or, if not, then the element fails the tests in Step 4.
Suppose then that in Step 3 the scadlais defined and # d. Setz = bd~! ands =
lz| > 1, let the cycle lengths of bem; =r;p%, for 1<i <[, andm =)_; p“, as in
Notation 4.1.

Suppose first thay = 2 (mod 3. Then whetherb is defined in Step 3.1(ii) or
Step 3.1(iii), the irreducible polynomiaf + bt + b2 dividesc(r). Thus, by Lemma 4.4(b),
3s divides r; for somei. Now 3/(bz)d 1| = 3|z2| divides 3z| = 3s which in turn di-
videsr;. Hence by Lemma 4.4(b), mult, (t2 4 (bz)t + (bz)?) > 0. Also by Lemma 4.4(a),
mult.)(r — bz) > O either if bz # d, or if bz =d andm > §. However, if the latter
multiplicity is positive, thenbz € C, which is a contradiction (whethér was defined in
Step 3.1(ii) or (iii)). Thusn = §, andbz = d which implies that; = b~1d = z~1. Hence
72 =1 and since # 1, we conclude that = —1 andp is odd,s = 2, andb = —d. This
means that8= 6 dividesr;, and sa:(¢) is divisible by (8 — d%) /(12 — d?) = t*+d?2 + d*
(see Lemma 4.4(b) again). Alse> r; > 6. Thus the prime = 2 satisfies <n/3,r # p,
and so this element would not pass the test of Step 4, and hence such an el&smaver
returned.

Thereforeg = 1 (mod 3. For each of the possibilities in this case we hayeby? e
C C {b, by, by?} and mult,(t — by) = mult.( (¢ — by?) = 1. Therefore by Lemma 4.4(a),
each of|zy| and |zy?| dividesr; for somei. Therefore, the orders @byz)d 1 = (zy?)?
and (by%z)d ! = (zy)? also divider;, and so forj = 1,2, by Lemma 4.4, mult,(r —
bylz) > 0 either ifby/z £ d orif by/z =d andm — & > 0.

Claim. d = by or by?, sothat d € C, and s = 3 divides r; for somei.

If mult.,(t — by/z) > 0 for both j = 1 andj = 2, thenbzy, bzy? € C. Sincez # 1,
this implies that; = y or y2, and sos = |z| = 3 andd = by or by?. In particulard € C,
ands = 3 dividesr; for somei. Thus the claim is proved in this case. On the other hand,
if for j =1 or 2 we have mult;,(t — by/z) = 0, then (by the observation at the end of
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the previous paragraph) = § andby’z = d. Then since; = bd 1, this implies thaty/ =

b~ ldz1=z72 and sad =by/z =bz Lands =|z| =3 0r 6. If s =3 thenz =z 2 =/
and sod = by?/ and as in the previous casée C and the claim is proved. Suppose then
thats = |z| = 6, so that in particulap is odd. Thenzy/| = |z~1| = 6, and we showed in
the previous paragraph that this dividg$or somei. Thusn > r; > 6, andc(¢) is divisible

by

15— db

t—d

=(t—dz)(r — dzz) (t— dzs) (t— dz4) (r— dzs).

However, in this case all five of the elements’, with 1 < ¢ < 5, satisfy the condition
for membership of the sét, and in such a case, the element would have failed the test at
Step 3.2(i), and the scalérwould not have been defined. Thus the claim is proved in all
cases.
Since we are assuming thaiis returned, we have now thdt= by or by?, thatd € C,
and that 3 divides; for somei. The last condition implies that + dr + d? = (t —dy) x
(t — dy?) dividesc(r), and sor — b dividesc(t). Henceb € C. ThusC = {b, by, by?} =
{b,c,d}, wherer? + dt 4+ d?> = (t — b)(t — ¢). By Lemma 4.4, muly,(r — b) =
mult.(t —¢c) = 23‘” p%, and it follows from Step 3.2 that this multiplicity must be 1.
Also by Step 3.2, and sincé # b, it follows that mult,(r — d) =1 and so by
Lemmad4.4m —-5=1.1f5§=1,thenm=2,a1 =a>=0, and soc(¢) = (t'* — d") x
(t"2 — d"2)/(t — d), and the coefficient of"=2 is 0 if min{ry, 2} = 1, andd otherwise.
However, by the definition o in Step 3.2(iii), the coefficient of*2 is b, which is a
contradiction. Thug = 2, m = 3, and all thez; = 0. By Step 3.2(iii),p > 5 and sincep
dividesn, alson > 5. At this stage we have

c(t) = (1" — d") ("2 — d"?) (¢"* — d"®) /(t — d)?,

and 3 divides1, say, and XK r» < r3. Also by Step 3.2, the coefficient of 2 is b or
2b (and in particular is non-zero). The coefficient6f3 in c(r) above is Z (if r» > 1),
d (if r»=1<r3), or O (if o =r3 =1). Sinceb # d and the coefficient of"~3 is b or
2b, it follows thatrz > 1, and either, > 1 andb = 24, orro =1 and @ = d. However
d = by or by?, and hencé? = ¢3. This implies thatp = 7, and hence > 7 (sinces = 2).
Suppose thato =1 and 2 = d, so that

c(t) = (trl _ drl)(trs—l +dtr3_2 4. +dr3_1)_

By Step 3.2, the constant term-is" ~2 and the coefficient of is —2b" 3. Comparing the
constant term and coefficient ofn ¢(¢) above we get thatd” 2 = —p"~? and—d" 3 =
—2b"—3, respectively. Substituting = 2b in these equations, we find that 7 divides both
2"=2 _ 1 and 2~% — 1 which is impossible. Thug > 1, b = 24, and

() = (" —d) (T b dr 2 d Y (0 A2 a7,

By Step 3.2(iii),c(t) = (t2 + bt + b (t"~* — b"~*). Comparing the constant term and
coefficient of 7 in these two expressions faf(r), we get that—d"—2 = —p"~2 and
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—2d"—3 = —p"—3, respectively. Substituting = 24 in these equations, we find that 7
divides both 2-2 — 1 and 2—* — 1 which is impossible.

Thus the procedure correctly identifies- 4 and we have completed the proof that each
element returned is a 3-cycle.

Finally we determine the cost. The cost of processing each of up te16p:1/3/0.07
random elements is as follows. First we compute(z) at a cost ofO (prn® logn), see
Lemma 4.5. Next we determine the geffirst we compute the set of distinct linear factors
of ¢(¢) at a cost ofO(prn |ngn log(ng)loglogn), see Lemma 4.6. 1§ = 2 (mod 3,
then we either compute the set of quadratic irreducible factar& pfand from this deter-
mineC, or we determine by division the factar$— ¢2 of ¢(¢), for whichz — ¢ is a linear
factor. If g =1 (mod 3, then we can easily determigefrom the set of linear factors. In
either case the cost is less th@riprn®). (Note that the factorisation algorithm employed
is Las Vegas and may fail, as discussed in the first paragraph of the proof.)

If we have been successful in determinifigthen determining costs at mosO (n)
field operations (as we may need to multiply two polynomials, one of degree 2 and the
other of degree at most — 3). To perform Step 4, for each of th@(n/logn) primes
r <n/3,r # p, we requireO(logr) field operations to determin&’ + »"t" + b%, and
then O (n) field operations to check whether it divideg), a total of O (n2/logn) field
operations. Determining costsO (n?) field operations, and deciding whethehas order
less thann18199"  and if so finding|g| costs O (n® log?n) field operations by Proposi-
tion 5.1. Finally extracting the 3-cycle costs anotbign® log? n) field operations. O

It is unfortunate that the procedure above fails wheg 3. In this case we have an
analogous method based on pre-double-transpositions to construct a double-transposition.
This method only fails whem = 2 , but for simplicity we present it only fop = 3. It is
based on Propositions 6.2 and 6.4.

Procedure 6.9 (FINDDOUBLETRANSPOSITION. e are given a positive constant ¢, and
asubgroup G < GL(V) = GL(d, ¢) (where p =3) suchthat H' < G < Zy x H where H
isconjugateto Ho= S, andn > 7.

1. Select up to [log(e~1)n1/2/0.0249 random elements x € G, and perform the follow-
ing steps for each.

2. Find the characteristic polynomial ¢(¢) of x, and the set C of elements ¢ € F# such that
12 — c2 divides ¢(¢).

3. If Cisnot of theform C = {c, —c}, with mult, (t 4 ¢) = 2, then return to Step 1.

(i) fmultey(t —c) #2, thenletb =c.

(i) If mult.;,(r —c)=2and § =1, thenif n =5 (mod © and the coefficient d of
"2inc() liesinC and c(t) = (t — d)(t + d)?(t"* — d"~%), then set b = d;
otherwise return to Step 1.

(iii) If mult,y(t — ¢) =2 and § = 2, then return to Step 1 unlessn =0 (mod 6 and
the coefficient d of t* 3 in ¢(¢) liesin C.

If c(t) = (t — d)(t + d)2(1" 5 — d" ), then set b = d.
If the coefficients of /"=, 1"~ in ¢(¢) are d?, O respectively, then set b = —d.
Otherwise return to Step 1.
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4. If there existsa primer suchthat r =2 or 5<r <n, and t" 4+ b" divides c¢(t), then
returnto Step 1.

5. Set ¢ = b~ Lx; using the procedurein Proposition 5.1, determine whether |g| < n18'09”
and if o find |g| = R3V. If either |g| > n18!°9" or |g| < n18199" and R is odd, then
return to Step 1. Otherwise compute g®3°/2 and return this element.

6. If no element isreturned at Sep 5 for any of the random elements x then report FAIL -
URE.

We prove that this procedure is valid and estimate its complexity.

Lemma 6.10. Suppose that » > 7. Then, with probability at least 1 — ¢, Proce-
dure 6.9 (ANDDOUBLETRANSPOSITION returns an element of H conjugate to a
double-transposition in Hp. It is a Las Vegas algorithm and runs at a cost of at
most O((loge~1)(en'2 + ppnt/2log?n(n® + nlog(ng)loglogn))). This is at most
O((loge™Y)(En'/? + prn®*1/2log?nlogq)).

Proof. It follows from Lemma 6.6 that the proportion of elemebgse G such thab € F*
and the permutation corresponding gais a pre-double-transposition of order at most
n18lo9 is greater than 0498:~1/2. As in the first paragraph of the proof of Lemma 6.8,
we find the characteristic polynomia(z) of each random element and use a Las Vegas
algorithm to find the distinct linear factors oft) with probability of failure less than
0.0249:~/2; then by analysing up t&/ = [log(s~1)n/2/0.0249] random elements, the
procedure will find an elemeritg with g a pre-double-transposition of order less than
n18109" and will succeed in finding the linear factors of its characteristic polynomial, with
probability greater than + ¢. Moreover, for such an elemebg, it follows from Propo-
sition 6.4 thatb is identified correctly in Step 3, and from Propositions 6.2 and 5.1 that
Steps 4 and 5 respectively are completed successfully. The procedure therefore returns the
double-transposition ifg) in this case. Thus the probability the procedure reposis
URE s less thare. The next step is to prove that any element returned by the procedure is
indeed a double-transposition.
Suppose that an element is returned after testiags, wherex = cg with ¢ € F# and
g € H. Suppose first that in Step 3 the scdlas defined a$ = ¢. Then conditions (a) and
(b) of Proposition 6.2.2 follow from the tests in Steps 3 and 4, respectively, apdssa
pre-double-transposition. Thus the element returned by Step 5 is a double transposition.
It remains to prove that, whenever an elemest cg is returned, then Step 3 correctly
definesb asc. What we prove is that, if while processing an element cg a scalaw is
defined in Step 3, then eithér= ¢, or, if not, then the element fails the tests in Step 4.
Suppose then that in Step 3 the scalis defined and # c. Setz = be~ 1 ands = |z| > 1,
let the cycle lengths of bem; =r; p%,for 1<i <I,andm =), p%, as in Notation 4.1.
Note that ifs is odd, then|—z| = 2s. By Step 3 and the definition af, we haveC =
{b, —b}, mult,)(r+b) = 2, and mult (r —b) > 0. Then by Lemma 4.4(ay,= |z| divides
r; for somei, and if s is odd, then also 2= |—z| dividesr; for somei. Without loss of
generality we may assume that I2ns} dividesr;. Suppose first that = |z| > 2, which
means thabz # c¢. Now (bz)e 1 = z2, so|(bz)c 1| dividesr; and hence, by Lemma 4.4,
mult.)(t — bz) > 0 (sincebz # c). If s is odd, then—z2| = 2|z| = 25 which dividesry;
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also if s is even and greater than 4, thez # ¢ and 1# (—bz)c 1 = —z2 € (z), and so

|—z2| dividesr1. Thus in either of these casgs-bz)c 1| > 1 and divides, and—bz # ¢,
and hence, by Lemma 4.4, myl{(+ 4+ bz) > 0. It follows thatbz, —bz € C, which is a
contradiction. Thus = 4, and soc = bz~! = —bz and b* = ¢*. Since 4 divides;, it
follows thatr* — ¢* = 1* — b* dividest"t — ¢"* and hence? + b? dividesc(r), and so, if
s > 2 then the element = cg fails the test in Step 4.

Assume now that = 2. Thenry is even, andb = —c. Since muli,(t + b) = 2, it
follows from Lemma 4.4 that — § = 2, som =), 3% =2+ § < 4. We claim that all
thea; = 0. If this is not so then a unique = 1; if § = 1 then the number of cyclds=1
and so 3 divides; = n contradictings = 1; similarly if § = 2 then/ = 2, and exactly one
of the two cycle lengths is divisible by 3, contradictifig= 2. Thus all thez; = 0 and so
[ =2+ 4. Suppose that the element passes the tests at Step 4c{Fhénnot divisible by
1> +b? =124 c? orbyt” +b" =1" — ¢ for any odd prime- satisfying 5< r < n. Thus
the only possible cycle lengths are 1 and 2, and henge2/ = 4 + 25. Sincen > 7 this
is a contradiction. Thus our claim is proved, and the proof is complete that every element
returned by the procedure is a double-transposition.

Finally we determine the cost. The cost of processing each of yptgs ~1)nl/?/
0.0249 random elements is as follows. First we compute(r) at a cost ofO (n® logn)
field operations (see Lemma 4.5), and determine the s#ta cost ofO (ppnlog?n x
log(ng) loglogn) (see Lemma 4.6). Step 3 requires a constant number of field operations
to compute a polynomial for comparison witlir). To perform Step 4, for each of the
O(n/logn) primesr such that- = 2 or 5< r < n/2, we requireO (n) field operations to
check whether” + b dividesc(r), a total of O (n?/logn) field operations. Determining
g costsO (n?) field operations, and deciding thathas order less tham8'°9" and if so
finding |g| costsO (n log?n) field operations by Proposition 5.1. Finally extracting the
double transposition costs anoth@(n log? n) field operations. O

7. Constructing thefirst vector of B

In order to identifyG as conjugate to a subgroup 8 x Hp, we need to find a linked
basisB for V relative toH, as defined in Section 3.2. We construct a vector of this basis
using a 3-cycle or double-transpositigrconstructed in the previous section. We need to
find a conjugatey’ of g such thatlg, g'] = g 1¢’ ‘gg’ # 1. In [6, Lemma 5.4], a Monte
Carlo algorithm called DUBLEANDSHRINK is given for achieving this for a larger class
of elements. In our situation, wherg is a 3-cycle or a double transposition, the algorithm
can be modified to give a Las Vegas algorithm (by checking|ghgt =5 if g is a 3-cycle,
or |gg'| =6 if g is a double transposition, see Table 1).

Lemma 7.1 (DOUBLEANDSHRINK). Given an element ¢ € GL(V) that is conjugate to a
3-cycle or a double-transposition in Hp, there is a Las Vegas algorithm that, with proba-
bility greater than 1/10, constructs a conjugate g’ of g such that there is exactly one point
moved by both ¢ and g’ (and in particular [g, g’] # 1); the cost is O (logn (& + prn®)).
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Table 1

Pairs of double-transpositions

z g gg’ lgg’| lg.&'] Ilg, &Nl
1 (15(67) (125)(34)(67) 6 (152 3

2 (15)(26) (1625(34) 4 (12)(56) 2

2 (13)(56) (1234 (56) 4 (13)(29) 2

2 (15)(36) (125)(346) 3 (152)(364) 3

3 12)(35 (345 3 (359 3

3 (13)(25 (15234 5 (12453 5

The next two lemmas deal separately with the cases3 andp = 3, and show how
such elementg, ¢’ can be used to identify a vector of the fotrte; — e;) + (W N E) for
somei # j; by relabeling the;; and re-scaling if necessary, we may assume that such a
vector lies inB3. Without loss of generality we may assume that’ € Hp and we identify
these elements with their corresponding permutations.

Lemma 7.2. Suppose that p # 3 and that g, g’ € Hp correspond to g = (123) and g’ =
(145).

(a) Thefixed point subspace Fy (g) of ginV is
Fy(g) = (v1+2v2+3v3,v4, ..., Un—5),

V = Fy(g) & V(g) where V(g) = (v1,v2), and both Fy(g) and V(g) are (g)-
invariant. ) ,

(b) Foranyv eV, v+ v8 +v8 € Fy(g) and 2v — v8 —v8 € V(g), and in particular
v e V(g) ifand onlyif v + v& + v& = 0.

(c) Smilarly V= Fy([g,g']) ® V([g, g']), where Fy([g, g’']) isthe fixed point subspace
of [g, g'l = (142 and V ([g, g']) = (v1, v2 + v3). Moreover V(g) N V([g, g']) = (v1)
isthe span of an element of 5.

Proof. The fixed point space of in U is Fy(g) = (e1 +e2+e3,e4,...,¢,). SINCEE C
Fy(g) ¢ W, it follows that dimFy (g) =dim Fy(g) —§=n—2—68. Now Fy(g) "W =
((e1—e2) +2(e2—e3)+3(e3—e4),ea—es, ..., en—1—ey), andFy (g) is the image of this
subspace under the quotient mép— W /(W N E). ThusFy(g) is as claimed. Clearly
V =Fy(g) ® V(g) and bothFy (g) andV (g) are(g)-invariant.

Letv € V. Thenv = x + av1 + bvp for somea, b € F andx € Fy(g). We compute
v+v8+ vg2 as

(x +avy + bvy) + (x +avy — b(v1 + v2)) + (x —a(v1+ v2) +bv1),

which equals 3 € Fy(g). Thus,v + v8 + w8’ € Fy(g),and 2 — v8 — 8 = 3v—x)=
3avi + 3bvz € V(g). In particularv € V(g) ifand only if v + v8 + w8 =0,

Now gg’ = (12345 and[g, g'] = (142). Thusg®? = [, ¢’] and therefore/ ([g, g'])
is the subspace spanned iz{f?z“) andv§324). Now v1 =e1 —e2 + (W N E) is mapped by
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(328 toey —ea+ (WNE)=v1+ v2+ v3, andvy = e2 — ez + (W N E) is mapped by
(324 toeg—e2+ (WNE) = —(v2+v3). HenceV ([g, g']) = (v1 +v2 + v3, —v2 —v3) =
(v1, v2 + v3) as claimed. Finally (g) NV ([g,¢']) = (v1). O

Lemma 7.3. Suppose that p = 3 and that g, g’ € Hp correspond to g = (12)(34) and
g = (15)(67).

(a) Thefixed point subspace Fy(g) of ginV is
Fy(g) = (v1+ 2v2 + v3,v3+ 2v4, Vs, ..., Vy—s5),

V = Fy(g) ® V(g) where V(g) = (v1,v3), and both Fy(g) and V(g) are (g)-
invariant.

(b) Foranyv e V,v+v8 € Fy(g) and 2v 4+ v8 € V(g). In particular v € V(g) if and
onlyif v+ v8 =0.

(c) Similarly V = Fy(g®) @ V(g®), where Fy (g®) is the fixed point subspace of g&' =
(25)(34) and V (g8') = (v2+ v3+ va, v3). Moreover, V(g) NV (g8') = (v3) isthespan
of an element of 5.

Proof. The fixed point space of in U is Fy(g) = (e1 + e2,e3 + e4,¢5,...,¢,). By
a similar argument to the proof of Lemma 7.2, we hatg(g) N W = ((e1 — e2) +
2(ep—e3)+(e3—e4), (e3—e4)+2(ea—e5),e5—¢6, ..., en—1—ey), andFy (g) is the im-
age of this subspace under the quotient Map> W/(W N E). ThusFy (g) is as claimed.
ClearlyV = Fy(g) ® V(g) and bothFy (g) andV (g) are(g)-invariant.

Let v € V. Thenv = x + avy + bvs for somea,b € F and x € Fy(g). We com-
putev + v8 as (x + avy + bvz) + (x —avi — bv3) = 2x € Fy(g), and so 2 + v8 =
v+ 2x = avy + bvz € V(g). In particularv € V(g) if and only if v + v8 = 0. Clearly
V(g)NV(g®) = (v3). , /

For part (c), set = gé”. ThenV (h) = V(g)g/ is the subspace spanned dzﬁl andv§ .

Now vf/ =e5—e2+ (WNE)=—vy — v3— va, andvj = vz. ThusV (h) is as claimed,
andV(g)NV(h)=(v3). O

We formalise our procedure to construct the first basis elemeftiofthe following
procedure. Wherp # 3 we construct a conjugat€ of a 3-cycleg such thatg, g’ move
exactly one common point. We can recognise that a conjugates this property by
checking thatgg’| = 5. For the case = 3 we work with a double transpositign There
are sixA,-conjugacy classes of paifs, g’) such thag’ is a conjugate of and[g, g'] # 1.
Takingg = (12)(34), we listin Table 1 a representative fgrfrom each of these conjugacy
classes, and record the numheof points moved by botly andg’, the elementgg’,
[g, g'], and their orders. We may recognise a conjugataef g that moves exactly one of
the points moved by by checking thatgg’| = 6.

Procedure 7.4 (FINDBASISELEMENT). We are given a positive constant ¢, a subgroup
G < GL(V)=GL(, q) suchthat H' < G < Zy x H where H isconjugateto Ho, n > 7,
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and an element g € H' that is conjugate to a 3-cycle if p ## 3 or a double transposition if
p=3.

1. Run the procedure DOUBLEANDSHRINK 0on g up to log(s 1)/ 1og(10/9) times until
aconjugate g’ of g isfound such that |gg’| =5 (if p #£3) or |gg’| =6 (if p=3);ifno
such element is obtained then return FAILURE. Otherwiseset h :=[g, g'] (if p #£3) or
g'gg’ (if p = 3) and perform the following steps.

2. Compute Fy (g) and Fy (h).

3. Compute V (g) asfollows: choosey € V\ Fy(g) andsetu := 2y — y8 — yé’2 (if p £3)
or 2y + yé (if p=3);choose y' € V \ (Fy(g),u) and set u’ := 2y’ — y'$ — y’g2 (if
p#3)or 2y +y'* (if p=3);set V(g) = (u, u').

4. Smilarly compute V (k) and return a non-zero vector v € V(g) NV (h).

We prove that this procedure is valid and estimate its complexity. The complexity in-
volves the quantitiepr, w defined before Theorem 1.1.

Lemma 7.5. With probability at least 1 — ¢, Procedure 7.4 (AHNDBASISELEMENT) returns
a vector bv with v € B involving two of the points moved by ¢ and in the same g-cycle, for
someb € F#. Itisa Las Vegasalgorithmand runsat a cost of at most O ((loge 1) (£ logn +
prn®logn)).

Proof. Since the procedure ®JBLEANDSHRINK returns a suitable’ with probabil-
ity greater than 110 on a single run, the probability that it fails to find suchg’a
after N = [log(e~1)/10g(10/9)] runs is less than = (9/10)Y and since log 1) =
Nlog(10/9) > log(e~1) we haver < . Thus the procedure reportaEURE with prob-
ability less thare. By our comments in the paragraph preceding Procedure 7.4, the order
tests in Step 1 correctly recognise tlgandg move exactly one common point. Also by
Lemmas 7.2 and 7.3, the eleménis such thatV (g) N V (k) is a 1-dimensional subspace
generated by an element of the required form. Also from these lemmas it follows that Step 3
correctly computes the subspadé&) andV (h), and hence the returned vector is of the
form claimed, that is to say, the returned vector is a scalar multipte-efe; + (W N E),
for some distinct, j lying in the same;-cycle.

It remains to determine the cost. As remarked in the first paragraph of this section, the
cost of findingg’ is O (log(e 1) (logn (& + prn®))), andh is computed with a further cost
of O(prn®).

Computing a basis foFy (g) and Fy (k) can be done at a cost 6f(prn®) as follows:
for X=g—1orh—1,by[13, Theorem 2.2] there is a deterministic algorithm that com-
putes(n — §) x (n — §) matricesL, Q, U, P at a cost ofO (ppn®) such that = LQU P,
whereL is a lower triangular matrix with 1’s on the diagond, P are permutation matri-
ces, and
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whereU; is ans x (n — §) upper triangular matrix with non-zero diagonal entries, where
s <n—4§ ands =rank(X). Consider the case whede=g — . (ThecaseX =h — [ is
similar.) A vectorv € Fy (g) ifand only ifvX = 0, and this holds ifand only # LQU =0,
sinceP is non-singular. Now L QU = 0 holds if and only if the first entries ofvL Q are
zero. Letl’ denote thén — § — s) x (n — ) matrix formed by removing the firstrows of

the identity matrix/. ThenvL QU = 0 holds if and only ifu L Q lies in the row space of
I’, or equivalently (sinc&, L are non-singular), if and only if lies in the row space of
I'Q71L=1. ThusFy (g) is the row space of’ Q~1L~! and the matrix’Q~1L~1 can be
computed as the lagt— § — s rows of 0~1L~1 at a further cost oD (prn®). Note that
n—38—s=rankl’Q 1LY =dim(Fy(g)) =n — 8§ — 2 sos = 2.

For the vectory € V \ Fy(g), we can choose the first row gi—1L~1. Thusu can be
found at a cost 00 (prn?), given 0~1L~1. Next we echelonise againstl’Q~1L~1,
at a cost ofO (pFn®), to find a basis fofFy (g), u), and then choose a vectpf e V \
(Fy(g),u). Thus the cost of computing/, givenu, is O(prn®), and the basig, u’ for
V (g) has been found at a cost 6f(prn®). The cost of finding a basis, w’ for V (h) is
the same. Finally to computewe find a non-trivial solution fouu + a’'u’ = bw + b'w’
fora,a’,b,b’ € F atacostofO(prn). O

8. Morevectorsof B: avoiding rn-cycles

The algorithm presented in [5] to recognigdg and S,, requires am-cycle, which is
found by random search, and requires the examinatiofi @f group elements. Finding
ann-cycle by random search is more expensive than the algorithms presented above for
finding the 3-cycle or double-transpositign In this section we discuss a method that
avoidsn-cycles for constructing a linked badis It uses an elemerith € G such thath
is conjugate to an element &fy involving a cycleC of prime lengthr greater than i3/5
with an additional property. Ip # 3, then we require that the cyat&contain exactly two
of the points moved by the 3-cyclg while if p = 3, then we require thaf' contain both
points from a specified transposition involved in the double-transpositi@and neither
of the points from the other transposition. To ensure that we have sufficiently many such
elements, we must be able to utilise elements of this type where the pigsignificantly
smaller tham.

Lemma8.1. Letn > 13 let g € A,, bea 3-cycleor a doubletransposition, and in the latter
case let (i, j) be one of the g-cycles. Then the proportion of elements & of either S, or A,
such that

(a) h hasacycle C of length r for some prime r satisfying 0.6n + 0.4 < r < 0.951 — 0.85,
and

(b) C contains exactly two of the points moved by g, and if g is a double transposition
then these pointsare i and j,

is greater than 0.03/ logn if g isa 3-cycle, or 0.5 x 103/ logn if g isa double transposi-
tion.
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Proof. Letc(n) denote the number of primessatisfying 06n + 0.4 < r < 0.952 — 0.85.

We claim thatc(n) > 0.23z/logn for all n > 13 exceptr = 31, and that ifn = 31 then
c(n) > 0.152/logn. This claim can be checked by direct computatiorvfet 1, 000. Sup-
pose then that > 1, 000. By [24, Theorem 1], fox > 1, 000, the number of primes(x)

less thanx satisfies

X ) X 14 3
— <7m(x) < —
Inx * Inx 2Inx

and hence, sincél + 3/(2In(1, 000))) < 1.218, we have

0.95: — 0.85 0.6n+0.4

<) > 1005 —085  n06n104)

Then, using the facts that (for ¢ > 0) and(In(0.6x))/In x are increasing functions for
x > 1,000, we obtain the following:

0.95: — 0.85> 0.94991%,  0.6n + 0.4 < 0.60041,
In(600)

In(0.95: — 0.8 In In(0.6: 04)> ———1In
( 5 <Inn, (0.6n + )>In(1,000) n,

and hence

0.949915x n  1.218x 0.6004x n x In(1, 000)

Inn INn(600) x Inn
n

c(n) >

> 016 > 023
Inn logn

Thus the claim is proved.
The proportion of elements ¢, having a cycleC of lengthr, for a given prime- as
above, such thaf contains exactly two points of a given 3-cycle is

(0N —D—n! 3r—1n—r
n! T nn—-1n-2'

3)

For fixed n, the right-hand side of (3) is a monotone decreasing function, dbr r
satisfying 06n + 0.4 < r < 0.95: — 0.85. Thus the proportion is greater than the value
of the right-hand side of (3) at := 0.952 — 0.85. Now (rop — 1)/(n — 1) > 0.875 and

(n —ro)/(n — 2) > 0.05 for alln > 13, and so this proportion is greater thatIL25n.

For n # 31, we showed above that there are more th&3Q logn such primes-, and
hence the proportion of elements $) of the required type is greater thar08/logn.

If n =31, then the only prime in the interval is= 23, so the right-hand side of (3) is
3228~ 0.6/n. Sincec(31) > 0.152/ logn, the proportion of elements in this case is at
least 009/ logn. For alln, since exactly half of such elements are even permutations, the

proportion inA, is the same as the proportionsp.
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Similarly the proportion of elements ¢f,, or of A4,,, having a cycleC of lengthr, for
a given primer as above, such th&t contains the two points j and neither of the other
two points moved by the double transpositipris

(=D =r! 1r—ln—rn-r-1

n! T an—-1n-2 n-3

The right-hand side of this equality {8 — r — 1)/3(n — 3) > 0.05/3 times the right-hand
side of (3). It follows that the proportion of elements$f of the required type is at least
0.03 x (0.05/3)/logn =0.5x 10~3/logn. O

In the previous section we showed how to construct a vactjra linked basig3 using
either a (conjugate of a) 3-cycle or double-transposigioiMoreover, in the former case,
v involved two of the points moved by, while in the latter case; involved two points
forming one of the transpositions gf(see Lemma 7.5). Now we show how to us¢o
construct an elemeit: € G, whereb € F# andh € H, such that satisfies Lemma 8.1(a)
and (b). We simultaneously construct a linked sequence of vectors of length greater than
0.6n. First we handle the case whepe# 3.

LemmaB8.2.Letv=¢; —e; +(WNE) e By for somedistinct i, j, let c € ¥ h € Ho, and
let » bean odd primesuchthat n/2 < r <n. Letr(v, ch) denotetheleast positive integer k
such that v(ch)* € (v). Then r (v, ch) = r if and only if 1 has a (unique) cycle C of length
r and either {i, j} S C,or |{i, j}NC|=1and h fixes {i, j} \ C.

Proof. Setx = ch. Now vi* = e, — e, + (W N E) wheres = i"* andr = j*. Thusvx* e
(v) if and only if #* fixes {i, j} setwise. Suppose thatv, x) = r. Theni? fixesi and j
so theh-cycles containing and j have lengths dividing:2 By the minimality ofr (v, x),
at least one of these cycles has length a multiple, @nd since > n/2 there must be a
(unique)h-cycle C of lengthr and C must contain at least one ofand j, sayi € C. If

j ¢ C thenh' fixes{i, j} andi, and hencé’" also fixes;j. Thus thei-cycle C’ containing
Jj has length dividing:, and sinceC’ # C andr > n/2, we havgC’| = 1. Conversely if1
has a cycleC of lengthr and eitheri, j} € C, or |{i, j} N C| =1 andh fixes{i, j} \ C,
then clearlyr (v, x) = r. Thus the lemma is proved.

Procedure 8.3 (MOREBASISVECTORS. We are given a positive constant ¢, a subgroup
G < GL(V)=GL(d, g) suchthat H' < G < Zy x H where H is conjugate to Hy and
n > 13, an element g € H' conjugate to a 3-cycle if p # 3 or a double-transposition if
p = 3, and a vector v € B involving two of the points moved by g and in the same g-cycle.

1. Sdectupto % log(¢ 1) logn random elements x € G, and perform the following steps
for each, where c = 0.03if p £3and ¢ =0.5 x 103 if p = 3.

2. Fori =0if p=3,0rie{0,1,2}if p #3, computethevectorsvg’, vg'x, ..., vg’
and check whether r; := r(vg’, x) is a prime r satisfying 0.6n + 0.4 < r < 0.951 —
0.85. If thisis not the case for any i, then return to Step 1.

n—1
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#1If p # 3, thenr; might be such a prime for more than one valué.dflowever
in this case the value of the prime is the same for all such

Elseif r isthe unique such prime occurring then go to Step 3.
3. For eachi suchthat r; = r, compute vg'x‘g for 0< ¢ <n—1,andfindn; := |{€ | 1<
<r,vgixt £vgixtg)l.

# For anyx € G, the inequalitys; < 2 holds for at most.

If we find no i such that n; < 2, thenreturnto Step 1; elsefind ¢ suchthat 1 < ¢ < r/2
and u = vg'xt —vgixtg £0.
Case p # 3:ifu = dvg', then compute ho := —d~1x¢; or if u = dvg'*1, then compute
ho :=d1x!; esereturnto Step 1.
Case p = 3:if u = dv, then compute hq := —d ~1x*; else return to Sep 1.
Compute and return 4o, and the vectors (vg, vg'ho, . . ., vgihér_z)).

4. If no elements and vectors are returned at Sep 3 for any of the random elements then
report FAILURE.

Lemma 8.4. Suppose that » > 13. Then Procedure 8.3 (RNDMOREVECTORS isa Las
Vegas algorithmthat, with probability at least 1 — ¢, and at a cost of O ((loge 1) (€ logn +
prn®log?n)), returns

(a) anelementin H conjugate to an element of Hp involving an r-cycle C, for some prime
r such that 0.6n + 0.4 < r < 0.952 — 0.85, and
(b) alinked sequence of r — 1 vectors (v1, ..., v,_1) relativeto H.

Proof. Letg be the proportion of elemenkse H such that the permutation corresponding
to h has a cycleC of prime lengthr (where 06n + 0.4 < r < 0.952 — 0.85), C contains
exactly two of the points moved by, and if p = 3 then these points are interchanged
by ¢ and are the two points involved in the vectorlt follows from Lemma 8.1 that
q > c¢/logn. Arguing as in the first paragraph of the proof of Lemma 6.8, we see that, with
probability greater than 4 ¢, we select at Step 1 at least one eleméntvith ¢ € F# and
h such an element.

Suppose that = ¢k is such an element. Suppose first that 3. Thenv =¢, —¢p +
(W N E) wherea andb lie in C and (a, b) is a transposition og. In this case Step 2
will succeed by Lemma 8.2, and fing = r. Then Step 3 will findzg = 2 since there are
exactly two distinct values of such that 1< ¢ < r and ! maps eithew to b or b to
a; and hence exactly twé such thatvx® # vx‘g. Exactly one of these two values 6f
is less tharr/2, and for this¢ we haveu := vx’ — vgx‘g # 0. Thus in Step 4 we have
thata"' = b or b'* = a, and in either case we have that= —c‘v and the procedure
defineshg as—(—ct)~1xt = ht. We cannot tell whether! mapsa to b, orb to a, and so,
relabelling the standard basis vectors so taab} = {1,2} andC = (1,2,3,...,r), the
procedure returns eithef —ex+ (WNE),e2—es+(WNE),...,e,—1—e +(WNE),
orex—e1+(WNE),e3—ex+(WNE),...,e, —e-_1+(WNE),in either case a linked
sequence as required.
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Next suppose that = ch, thatC andr are as in the first paragraph, and thag 3, so
g is a 3-cycle. For exactly one value bk {0, 1, 2}, the vectorvg’ will involve the two
points of C moved byg, so we will havevg’ = e, — e, + (W N E) wherea andb lie in
C and are moved by. Thus, for this value of, Step 2 will findr; = r, by Lemma 8.2.
If there is a second value of sayi’, for which r;; is a prime in the correct range then
by Lemma 8.2, since andb are the only points of® moved byg, r; = r (note, the
same value of) and the third pointi moved byyg is fixed by#h. In this case;, = r for
all three values of’. So whether;» = r for a uniquei’ = i, or for all three values of’,
we will proceed to Step 3. In Step 3, we obtain= 2 (wherei is as above); and if
fixes the third point moved by thenn;; > r — 2 > 2 for eachi’ #i. Thus, as in the
previous paragraph, the procedure will seek (and find) a unicgieeh that 1< £ < r/2
andvg'x? # vgixtg, and will defineu := vg'x® — vgixfg # 0. If a" = b thend" is
fixed by g and sou = c‘(vg'h* — vg'h’g) = c*(ep — ¢j) + (W N E) = ctvg' ™! and in
this case the procedure definkes as (c!)~1x¢ = k. Alternatively if b = a thenu =
ctep —eq) + (W N E) = —ctv, and the procedure defings as—(—ct)~1xt = ht. Thus
relabelling the standard basis vectors if necessary, we may assume=that b = 2,
170 = 2, andhg = ht involves ther-cycle (1,2, ..., r), so that the returned vectors are
e1—e2+(WNE),exg—es+(WNE),...,e,_1—e, +(WNE).

Next, for any primep, we prove that any vectors returned, for a randoma ch, form
a linked sequence relative #. Suppose that Step 2 succeedsxet ch (Wherec € F¥,
h e H)with r; = r(vg', x) = r, and suppose thag’ = e, —e, + (W N E). By Lemma 8.2,
h has a cycleC of lengthr, C contains at least one of the pointsh, saya € C, and either
b e C or b = b. Note that the condition > n/2 implies that is the only prime in the
correct interval that we can find for amy. Suppose also that in Step 3 we find thak 2.
Now vgix¢ # vgix‘g if and only if ¢ moves at least one af*’, b (note here that, if
p = 2, theng does not interchangeh@ andb”" since in that casgg| = 3). Thus the fact
thatn; < 2 implies that" b and hence thdu, b} C C.

We claim that the only points af moved byg are the points: andb. Suppose to the
contrary thatg moves a poinin of C Wherem ¢ {a, b}. Then there are positive integers

¢, ¢, ¢ less than such thaa"’ = b, b"" = m, andm"” =a (sol + ¢ +¢"=r), and it
follows that{¢ | 1< ¢ < r, vg'x® # vg'x’g} contains these three integers, and alsoe
r—{', andr — ¢”. However this set must have size at most two. Sinisgorime, £ # r —
so each of these six integers is equal tw r — £. Sincel’ +¢” = r — £ it follows therefore
that¢’ = ¢” = ¢. However this implies that = 3¢ contradicting the fact that is prime.
Thus the claim is proved. Therefore the elemegt ch is of the type already considered,
and for such elements we have proved that the procedure returns a linked sequence of
vectors. Thus with probability greater than-% the procedure will succeed and return an
element and vectors as claimed.

This analysis has proved the two claims made as comments in Procedure 8.3, namely,
in the casey # 3, at Step 2 there is at most one prim@und for ther;, and at Step 3 there
is at most one value afsuch thai; < 2.

For each of the (up to% log(e~1) logn random elements the cost is as follows. First
consider Step 2 where we compute the sequegtevg'x, ..., vg'x"~1, fori =0 or, if
p=3,fori =0, 1, 2. To do this we computeg’ (ata cost 0f0 (ppn)) andx?, x2, ..., x2
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where 2 <n < 2kt1 (ata cost of0 (pFn® logn)); then, foreach =0, ..., k, we multiply
the 2 x (n — §) matrix with rOWSvgi, vg'x, ..., vg'x? 1 by the matrixx?’ to determine
vg'x? vgix?+1 . vgix? ™1 (ata cost ofO(ppn‘” logn)). Thus the cost of Step 2 is
O(ppn®logn). For Step 3, computinggx‘g for 0 < t<n is done with a single matrix
multiplication (smce We have already computed, vg'x, ..., vg'x"~ l) and findingl <

r/2 such that = vgix? — vgix'g #0 costsO (prn?). Computlngx requiresO (logn)
matrix multiplications (using the?’ already computed); and finally computing the vectors
that are returned costs, as befaPgorn®logn). O

9. Completing B

The next step of our procedure is the most delicate. We have, from Procedure 8.3,
a linked sequence of— 1 vectors that we take to be

vi=(e1—e) +(WNE), ..., vo1=(e-1—¢)+(WNE).

We need to extend this sequence to a linked biasid/e do this by studying the images of
thewv; under random elements froé. The following result, which is a modification of the
main result of [10] (see [25, Theorem 4.4.6]), tells us how many random elements will be
needed.

For a sequenceéd; = (h1,...,h;) of elements from a groups, the cube of Hj
is defined recursively as the subsetH;) = C(Hy_1) U C(Hi_1)hy, where H,_1 =
(h1,ho, ..., hi_1), andC(Hy) = {1, h1}. Also, for subsetd C S,, andR C {1, 2, ...,n},
we denote the set of all point$, fori € R andh € H, by RY.

Lemma9.1. Let n > 13, let ¢ be a positive constant, and let R be a subset of {1, 2, ..., n}
such that |R| is at least the smallest prime number » satisfying » > 0.6n + 0.4. If H =
(g1, - -, gm) isasequence of uniformly distributed random elements of A,, or S,, withm >
logn(log(s~1) 4 logn), then REH) = (1,2, ..., n} with probability greater than 1 — .

Proof. For 0.6n + 0.4 < x < n, define

| m=0)?
f(x)_”_L 0.54n J

and note thatf (x) > 0.7n. By [25, Lemma 4.4.5], for a uniformly distributed random
elementg € A, or S,,, if S C{1,2,...,n} with |S| > 3n/5, then|S U S8| > f(|S|) with
probability at least @6. Thus if, says uniformly distributed random elemengsfrom A,

or S, are selected, then the probability tHatu S¢| > f(|S]) for at least one of these
elements is at least - (0.54)".
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For a positive integer, let f*}(x) denote thekth iterated functionf¥!(x) =
FF(f...(f(x))...). Definetg to be the least positive integérsuch thatf %! (x) = n
for all x in the intervalr < x < n. Also definer by

log(e ™) log(¢o)
ti= , (4)
[ l0g(0.54-1) ' log(0.54-1) —‘
and seing := 1£o. We claim thatng < (logn)(log(e 1) + logn).

Suppose first that > 28/0.54. Then it was shown in the last paragraph of the proof
of [25, Theorem 4.4.6] that, if 825 < y < n and k > 0.93 4 loglog(0.54n), then
f%(y) = n. Now, as observed at the beginning of the proof, whenewerx < n we have
y = f(x) > 0.7n, and hencef ¥} (x) = n wheneverk > 1.93+ loglog(0.54n). Thustg <
¢:=[1.93+ loglog(0.54r)]. Now (4) implies that < 1.13(log(¢~1) + log€o) + 1, and,
for n > 28/0.54, we havel < (logn)/1.13, and henceig = 1o < t£ < (logn)(log(e~1) +
logn), as claimed. For 13 n < 28/0.54, we compute the exact valueffand check, for
each of these values af thatmg < (logn)(log(¢~1) + logn). Thus the claim is true for
alln > 13.

Letxg = |R| SOxg > 0.6n + 0.4. Suppose thatl = (g1, ..., g») are uniformly distrib-
uted random elements from, or S,, wherem > [(logn)(log(s~1) + logn)]. Let k1 be
the least such thaiR U RS7| > f(xp), if such an integer exists, and &t = (g,), R1 =
R U R%1 = RE(HD "andx; = |Ry| so thatxy > f(xo). Suppose thal; = (g, - - -, &),

R; = R andx; = |R;| have been defined with; < --- < k; and x; > f1}(xo).
Let k;11 be the least integej > k; such that|R; U Rf"| > f(x;), if such an integer ex-
ists, and sef; 11 = (gky, - -+ 8k» 8kira)» Rit1 = REHi+D andx; 41 = |R;11]. Note that
xiy1 > f(x) > flitl(xp) since f is a monotonically increasing function. Continuing in
this way, let¢’ be the number of; that we obtain. If¢’ > £g, then it follows from the
definition of ¢ that R€He) = {1, 2, ..., n}, and hence thaR¢ ") = (1,2, ..., n}.

Thus it is sufficient to prove that’ > £ with probability greater than % ¢. By our
claim proved aboveyn > mg = t£g, and hence the probability théat> ¢y is at least the
probability that we obtaitg integersk; satisfyingk; 1 — k; < ¢, and by the first paragraph
of the proof, this probability is at leagl — (0.54)")‘ > 1 — ¢¢(0.54)", which is at least
1 — ¢. The last inequality holds if and only # > £0(0.54)!, which is equivalent ta >

log(e 1) log(¢o) . it
l0g(0.54-T) + 9054 1) and this is true by the definition ofin (4). O

The following observation will be helpful for understanding the procedure for finding
a linked basis fofV. Suppose thatvy, ..., vy) is a linked sequence of vectors with=
(ei —eir))+(WNE) (1<i<s). Thenforh € H,b e F¥, andi < s, v; (bh) € (v1, ..., vy)
if and only if (i", (i + D"} € {1,2,...,s + 1}, and in this case ifi", (i + 1)} = {j, k}
with j < k, thenv; (bh) = b’ Z’;;}. ve, Whereb' = b if i" = j andb’ = —b if i" = k.
Since we can identify that; (bh) has this form as a linear combinationwf, ..., vy, we
can therefore identify the unordered péif, (i + 1)"} and the scalat=b up to a sign.
Further, if we can also identifi/ then we can determine the scatarThus we shall look
for vectors of the formy’ le;} ve =b'(ej — e + (W N E)) for somed’ € F# and j, k
such that I< j < k < s; we say that such a vector is amerval vector in (v1, ... vg) with
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support {j, k}. Interval vectors can be recognised as scalar multiples of sums of consecutive
basis vectors fromy, ..., v;.

Now we give an algorithm to construct a linked basis foithat can be used as the
standard basi8.

Procedure 9.2 (FINDBASIS). We are given a positive constant ¢; a subgroup G of GL(V)
such that H' < G < Zy x H where H is conjugate to Hp, and n > 13; and a linked
sequence of r — 1 vectors vs, ..., v,—1, Where r is a prime satisfying 0.6n + 0.4 < r <
0.95: —0.85andr —1<n—§. ‘

Initially set s :=r — 1, u1 := 0, and compute u; = Z’j‘:ll vifori=2...,s41;

#if eachv; = (¢; —e;11) + (WN E), thenu; = (e1 —¢;) + (WN E);
Form=1,..., logn(log(e~1) +logn)1, do the following:

1. St Vo:=(v1,...,vs)andextend vy, ..., vy toanordered basis B = (vy, .. ., v, Wst1,
.., wy_g) for V;

2. selectarandomelement x = bh € G, whereh € H and b € F#; re-write x with respect
to the basis B;

# the vectorsy;x, fori =1, ..., s, written with respect to the basl$ will then
be the firsts rows of the re-written matrix.

3. Find the scalar b and integers i, j suchthati <s and j = i" asfollows:
3.1. if thereexistsan i < s such that v;x € Vp, then choose such an i; note that v; x isthen
aninterval vector in Vg with (known) support {i’, (i + 1)"};
(i) ifi <sthen,for¢=i+1,...,soruntl " isfound, if vix + vj;1x 4+ +vex €
Vo, then it is an interval vector in Vo with support {i”, (¢ + 1)"}; hence find i"
and b, and set j = i";
(i) ifi" isnot determinedin (i), thenin particular i > 2;for ¢ =i —1,..., 1 or until
i" isfound, if vex + - -+ + vi_1x + vix € Vo, then it is an interval vector in Vo
with support {¢, (i + 1)"};
hencefind (i + 1) and therefore also i and b, and set j = i";
3.2. if thereisnoi < s such that v;x € Vp, then find i < s such that v;x + v;+1x € Vp; it
will be an interval vector in Vg with support {i’, (i +2)"};
(i) ifi <s—2,then,for £ =i 42, ...,s oruntil " isfound, if v;x + v 1x 4+ - +
vex € Vo, thenitisan interval vector in Vo with support {i”, (¢ + 1)"}; hencefind
i" and b, and set j = i";
(i) if i" isnot determinedin (i), thenin particular i > 2;for ¢ =i —1,..., 1 or until
i" isfound, if vex + --- 4+ vix + viy1x € Vo, then it is an interval vector in Vg
with support {¢", (i + 2)"}; hencefind (i + 2)" and therefore also i and b, and
set j =il

# Next we find all points of1, ..., s \{1, ..., s}, and construct the correspond-
ing new basis vectors. We now knawe= b~1x.
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4.1. For each k suchthati <k <s,

(i) compute v;h + vip1h + - -+ vih;

(iiy ifvih +viy1h + -+ vih isnot aninterval vector in Vo, then set w12 := v;h +
Vigrth+ -+ och +uj, vep1 i =ug12 —ugpy, ands :=s 4 1;if s =n — §, then
return vy, ..., vy and up, ..., isy1;

4.2. and also for each k suchthat 1 <k < i,

(i) compute vih + - -+ vi_1h;

(iiy if vgh + --- 4+ v;_1h isnot an interval vector in Vp, then set ug12 := —(vih +
s vi_1h) Fuj, vep1 i=ugp2 —ugq1, and s :=s5 4 1;if s =n — §, thenreturn
V1, ...,0s anduy, ..., ugi1.

5, &tm:=m+ 1.
If no vectors are returned then report FAILURE.

Lemma 9.3. Let n > 13. Procedure 9.2 (HNDBASIS) is a Las Vegas algorithm that, with
probability at least 1 — ¢, when given a linked sequencerelativeto H of length greater than
0.6n—0.6 returnsalinked basisfor V, at acost of O ((logn log(e 1)+ Ingn)(E + prn®)).

Proof. First we show that any sequence of vectays . ., v,_s returned by Procedure 9.2
is a linked basis. Suppose that at the start of some run of the ‘for loop’ the vegctorsn
a linked sequence and hence, without loss of generality, can be taken as

vi=(e1—e) +(WNE), ..., vs=(e—es1)+(WNE).

This is certainly true at the beginning of the first run of the ‘for loop.” We will show that
under this assumption we also have a linked sequence at the end of this run of the ‘for
loop.

Fori=1,...,s+1,wehavey; = (e1—e¢;))+(WNE).LetS={1,2,...,s+1}. During
this run of the ‘for loop,” suppose that the matrices and vectors are re-written in terms of the
ordered basi = (v1, ..., vy, w41, - .., wy—s). This means, in particular, that the interval
vectorb(e; — ex) + (W N E), whereb € F# and 1< j < k < s + 1, which is equal to
b zg;}. ve, is represented as thie — §)-tuple withith-entry equal ta if j <i <k,and 0
otherwise.

Now [S|=5s+1>r>06+04 LetT =SNS" ={ieS|i"es} and letr =
T N{s,s +1}|. Then|T| > 2|S| —n > 0.2n + 0.8, which is at least 3 fo# > 13. Assume
that, for eacli e T,we have +1¢ T andi +-2 ¢ T. This means in particular that,sfe T,
thens +1¢ T, and sor < 1. Also this assumption implies thaf| > 3(|T| — 1) + ¢ =
3IT|—2t > 3(2|S| —n) — 2, and henceS| < (3n + 2)/5, which is a contradiction. Thus
there exists e T such that eitheti + 1) € S or (i + 2)" € S, or equivalently, such that
vih € Vg or v;h + viy1h € Vp, respectively. Thus the steps in either 3.1 or 3.2 will be
attempted s will be defined. Note that, wheneverdle <d <n — 8, Y- v (bh) =
b(e.n —egn) + (WNE). Since|S N S"71| > 3, it follows that the steps in 3.1 or 3.2 will
succeed in correctly determining the valjie- i".

Next suppose that in Step 4.1(i)) we find th{t:’g:i veh = (e — egynyn) +
(W N E) ¢ Vp. Sincei’ € S, this means thatk + 1) ¢ S. Relabelling(k + 1) ass + 2,
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we see that the new vectors defined in this stepugre = (e1 — es42) + (W N E) and
Vg1 = (e54+1 — es12) + (W N E). Thus the extended sequenge. . ., vs41 is also linked.
Similarly if, in Step 4.2(ii) we find thaE’e;i veh = (epn — e;n) + (WN E) ¢ Vg, then
k" ¢ S, and relabellingk” ass + 2, we again find that;; .o = (e1 — e542) + (W N E),
Vsr1 = (es11 — es12) + (W N E), and sovs, ..., vg11 iS again linked. It follows that any
sequence of vectors returned by the procedure will be a linked basis. fObserve that,
when processing a fixed randomif , k¥’ < s thenk” # (k')", and hence we do not need
to recomputé/y whens increases during a single run of the ‘for loop.’

To see that the procedure succeeds with probability at least,lobserve that, at the
end of Step 4 we have extended the linked sequence of vectess .ta, vy, where, in
the notation used in the previous paragrafh,..,s'} =SUS". If R={1,...,r}, the
initial value for the sefS, and if H = (h1, ..., h;,) is the sequence of random elements
selected, then the value 6fafter m runs of the for-loop will be the imag&¢*) of R
under the cubeC (H) of H, whereC(H) is as defined just before Lemma 9.1.nif=
1,..., [logn(log(e~1) +logn)], then by Lemma 9.1RCH) = {1, ... n} with probability
at least 1- ¢. Thus with probability at least 2 ¢ the procedure returns a linked basis.

Finally consider the cost of the procedure. At the beginning of each run of the for-loop
we form a(n — & + s) x (n — §) matrix with rowsvs, ..., vy followed by the identity
matrix of ordern — §, and find the lexicographically least maximal linearly independent
set of rows at a cost a@ (prn®) (see [13]); this sequence of rows will be our baSid et
P be the matrix with the vectors @& as rows. Then the matrix representing the random
elementy = bh with respect td3 is Px P~1, and this can be found at a cost@f prn®).
All the vectorsv;x, for 1 <i < s can be computed at a cost of one matrix multiplication,
that is O (prn®). An interval vector inVy can be found among thgx, if one exists, by
inspecting these vectors to determine if there is one for which the non-zero entries are all
equal and occur as a consecutive sequence in thes fppesitions; similarly in Step 3.2,
the v;x + viy1x can be found at a cost @b (prn?), and then an interval vector ik
can be identified by inspecting the entries. Completing parts (i) and (ii) of Step 3.1 or
3.2 requires up ta vector additions and inspections, and this can be done at a cost of
O (prn?). Similarly Step 4 require®) (n) vector additions and inspections, at a cost of
O(prn?). Thus the procedure costs((logn log(e 1) + log?n) (¢ + prn®)). O

10. ldentifying scalarsand per mutations

Now that we have constructed a linked baSielative toH , we complete our procedure
by showing, for a giverx € G with b € F# andx € H, how to identify the scalas and find
the permutation ir$,, corresponding ta. We may assume without loss of generality tRat
is the standard basls= (v1, ..., v,—s), wherev; = ¢; —e; 1+ (WNE)for1<i <n—3§.

If § =2 we also set

n—2
Vp—1 :=Zivi =e1+-+e2—(n—2e1+(WNE)
i=1
=ep-1—ep+(WNE)



42 R. Bealset al. / Journal of Algebra 292 (2005) 4-46

noting that)_"_, e; € W N E andne,_1 =0.

First we give a brief informal discussion of the case where the characteriftidoés
not dividen, in order to give an understanding of how we may identify the permutation
corresponding ta. In this caseV has dimensiom — 1. Let g be the matrix representing
bx with respect to the standard ba#is|t is easy to see that the non-zero entries of any
row of g now consist of a consecutive sequence of equal values. We first determine the
permutationx. If the above sequence for thiéh row of ¢ (corresponding to the basis
vectore; — e;11) starts in thejth column and ends in thigh column, then eithet* = j
and(i + 1)* =k ori* =k and(i + 1)* = j. Thus looking at the first two rows gives the
pairs{1*, 2*} and{2*, 3*}. The common value in these two pairs must be the valuée of 2
thus determining also*land 3 as well. So now when analysing thi row of the matrix
we may assume that is already known, so no ambiguity occurs in computihg- 1)*.
Thusx can be computed. Now can be computed by looking at any rowitf < (i + 1)*
thenb is the constant value of the non-zero elements of the row; lelseminus this
value.

This is essentially our approach in determiningndb. However, because of the in-
creased complexities of the case wheréividesn, and because it is a little simpler to
analyse a sparser matrix, for the purposes of this section we will work with the alternative
basisB’ = (u2, ..., u,_s+1) Where

Ui = Z vi=e1—e +(WNE)
1<j<i

for 2<i <n and we seuu; = 0. Thusv; = u; 11 — u; for 1 <i < n — 1. Note that the
u; are constructed in Procedure 9.2.51& 2, we will need an expression faf, as a
linear combination of the vectors . We find this from the definition of,, as follows.
Note that in this case dividesn and sone;1 =0 ande =) _7_;¢; € W N E, and hence
Y qui=ne1—Y i jei+(WNE)=0. Therefore, since; =0,

n—1

Uy = — E uj.
i=2

Lemma 10.1. Let bx € G withh e F# and x € H, and let i € {2,...,n}. Also let w'(i)
denote the number of non-zero coefficients in the expression for (u;)(bx) asalinear com-
bination of the vectorsin B'.

@ Ifs=1o0rifs=2andn ¢ {1*,i*}, then (u;)(bx) = b(u;x — u1x) and w'(i) = 2 if
1¢{1%,i*}, andis 1 otherwise.
(b) If § =2and {1, i*} = {j, n}, where j < n, then

n—1
(ui)(bx)=ib(u,- +Zw>,

=2

andsow/(i)=n—3if j > 1land p=2,andisn — 2 ctherwise.
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(c) Thusif § =1, then either 1* =1 and w'(i) =1for all i, or 1* > 1 and w'(i) =1 if
i* =1andis2 otherwise. If § = 2, then one of the following holds:
() *=1landw'(i) =n —2ifi* =n andis 1 otherwise;
(i) 1 <1* <n,and

n—3 ifi*=nand p=2,

1o Jn—2 ifi*=nandp>2,
WO=12 iz,
1 ifi*=1,

(i) 1*=n,andw'(i) =n—3ifi* >1land p=2,andisn — 2 otherwise.

Proof. Part (a) is easily checked and (c) follows from (a) and (b). To prove (b), assume
thaté =2 and{1*,i*} ={j,n}. Then

+b7Lu;) (bx) = £(e1x — i) + (WNE) =%(e; —e,) + (WNE)
n—1
=+(ej+(e1+ - +e—1))+ (WNE) =i<—uj - ZM@)
(=2

sincene; =0. O

Let bx be as in Lemma 10.1. ’(i) = 2 then from(u;)(bx) = b(u;x — u1x) we can
determinetd and{i*, 1*}. Similarly if w’(i) = 1 then(u;)(bx) = £bu; for some; with
1< j<n—-48+1,andwe can findb and{i*, 1*} = {1, j}. Thus if we find distincty, i»
greater than 1 such théi'(i1), w'(i2)} € {1, 2}, then we can findtb, {if, 17}, {i5, 1*},
and hence also*1iy,i; andb. After this, for any¢ such thatw’(¢) =1 or 2 we can
determinegZ”* since we already know*1 These observations form the basis of our procedure
below.

Procedure 10.2 (FINDPERMUTATION). We are given bx € Zy x H whereb ¢ F# x € H,
and H isconjugateto Hp = S, with n > 6; and the basis 3’ defined above.

1. Compute (u;)(bx) as a linear combination from B, and determine w’(i), for 2 <
i <n.

2. Cased =1
Here {w'(2), w' (3)} C {1, 2}, so we can determine b, 1*, 2*, 3* as above, and then
determine i* from (u;)(bx) for 4 <i <n.

3. Cased =2
If {w’(2), w'(3)} C {1, 2}, thenwe determine b, 1*, 2¥, 3* asabove; next we determine
i* from (u;)(bx) for each i > 3 such that w’(i) < 2; and finally, for the unique i such
that w'(i) > n — 3, wehavei* =n.
If {w'(2),w'3)} ={1l,n—2}or {2,n — 2} inthecase p > 2, or if {w'(2),w'(3)} =
{1,n — 3} or {2,n — 3} inthe case p = 2, then we must have {w’(4), w'(5)} C {1, 2},
and we can determine b, 1*, 4*, 5* as above; next we determine i* from (u;)(bx) for
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each i # 1, 4,5 such that w’(i) < 2; and finally, for the unique i such that w'(i) >
n — 3, wehavei* =n.

Else {w'(2),w'(3)} € {n — 3,n — 2}. In this case 1* = n, and for each i > 3,
) = (u;)(bx) — (u2)(bx) = b(uix — uzx); from ujy and u/, therefore we can deter-
mine b, 2*, 3*, 4, finally we determine i* fromu; for eachi > 4.

Lemma 10.3. Procedure 10.2 (FRNDPERM) is a deterministic algorithm that, given bx €
Zy x H whereb e F#, x € H, and H is conjugate to Ho = S, with n > 6, and given the
basis B’ defined above, determines the scalar » and the permutation corresponding to x at
acost of O(ppn®).

Proof. The correctness of Procedure 10.2 follows from Lemma 10.1 and the discussion
following it. Now we determine the cost. Lét be the matrix with rowso, ..., u,_s+1.
Then the matrix fobx with respect to the basi8’' = (uz, ..., uy—s+1) is P(bx)P~1, and
can be found at a cost @ (ppn®); the rows of this matrix araz(bx), ..., uy—s+1(bx),
written in terms ofBB’. If § = 2 then we note that, = — ZZgignfl u;, and hence that
u,(bx) = — Zzgignflui(bx)' Thus, if 2<i <n —§ + 1, thenw’'(i) is the number of
non-zeros of théth row vector of P(bx)P~1, and if § = 2, thenw’(n) is the number of
non-zero entries in the row vector obtained by adding together all the rowgsaf) P 1.
Thus, givenP (bx)P~1, determining thew’(i) costs at mosO (pFn?). From now on the
computation ob and the permutation correspondingtds achieved at a cost of inspecting
the entries o0 (n) vectors. O

10.1. The proof of Theorem 1.1

Finally we prove Theorem 1.1 by drawing together the procedures we have presented.
Suppose, as in Section 3.2, tHat < G = (X) < Zy x H < GL(V) whereH is conjugate
to Hyp = S,,, and thats is given, with O< ¢ < 1. Leteg =¢/4. Also leta =1/3if p £ 3
anda =1/2if p=3.

Using Procedure 6.7 ip # 3, or Procedure 6.9 ip = 3, we construct with probability
at least 1- ¢g, an elemeng € H' that is conjugate to a 3-cycle or double-transposition in
Ho (that is,g has type 17331 or 1"=422) respectively, at a cost of

O(IOg(sal)n“ (£ + prF Iogzn(nw + nlogng loglogn))).

If this is successful, then we ugein Procedure 7.4 to construct, with probability at least
1 — &0, a vectorbv with v € B involving two points moved by and in the samg-cycle,
andb € F¥, at a cost ofO(Iog(egl) logn (& + ppn®)). If this is successful, then with this
vectorv we apply Procedures 8.3 and 9.2, each with probability at leagp1to construct

a linked basids at a cost of

O((lognlog(egt) +log?n)& + prn®log(egt) log? n).

If B=(v],...,v,_s), then the mag :v; — v; defines an element of GV) that conju-
gatesHp to H. The total cost of these procedures is therefore
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0(log(e~H)n* (& + pr log?n(n” + nlogng loglogn))),

as required. Finally Procedure 10.2 evaluates the sbalad the permutatioi(x) corre-
sponding to a given elemehk € Zy x H (relative to3) at a cost ofO (ppn®). Thus to
evaluate the scaldr, and the permutation corresponding to each of the generatarsX
(and thereby define the homomorphismG — Z,_1 x ;) costs a furtheO (| X|prn®).
Evaluatingh~! on a pair(b, x) € Z,-1 x S, can be done by assembling the mattixep-
resentingr in Hp with respect to the bast8’ = {u», ..., u,—s+1}, and then conjugatinbA
by the appropriate change of basis matrix. This castg® pr). This completes the proof
of Theorem 1.1.
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