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Abstract

We present a Las Vegas algorithm which, for a given matrix group known to be isomorphic
ulo scalars to a finite alternating or symmetric group acting on the fully deleted permutation m
produces an explicit isomorphism with the standard permutation representation of the grou
algorithm exploits information available from the matrix representation and thereby is faste
existing ‘black-box’ recognition algorithms applied to these groups. In particular, it uses th
that certain types of elements in these groups can be identified and constructed from the s
of their characteristic polynomials. The algorithm forms part of a large-scale program for co
ing with groups of matrices over finite fields. When combined with existing ‘black-box’ recogn
algorithms, the results of this paper prove that anyd-dimensional absolutely irreducible matrix re
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resentation of a finite alternating or symmetric group, over a finite field, can be recognise
O(d1/2) random group elements andO(d1/2) matrix multiplications, up to some logarithmic fa
tors.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we present an algorithm designed to recognise finite alternating an
metric groups acting naturally as matrix groups in their smallest dimensional, fai
absolutely irreducible representations over a finite field of characteristicp. The reason fo
focusing on the special case of these representations ofAn andSn is that they arise in a spe
cial way as maximal subgroups (modulo scalars) of finite classical groups. The alg
given in this paper requiresO(nα) random selections andO(nα log2 n) matrix multiplica-
tions, whereα = 1/3 if p �= 3 andα = 1/2 for p = 3, and is asymptotically faster than
implementation for these groups of the fastest known ‘black-box’ algorithm to reco
finite alternating and symmetric groups. Moreover, the algorithm given in this paper,
bined with the ‘black-box’ algorithm in [5], provides a uniform complexity ofO(d1/2)

random selections andO(d1/2) matrix multiplications (up to some logarithmic factors)
recognise anyd-dimensional absolutely irreducible representation of a finite alternatin
symmetric group over a finite field, see Section 2.1 for details.

Aschbacher [1] described eight families of maximal subgroups of the finite clas
groups of dimensiond over a fieldF of orderq (whereq = pa for some primep). He
proved that any maximal subgroupG not lying in one of these eight families must
nearly simple, that isG/(G ∩ Z) has a simple socleS whereZ denotes the subgroup
non-zero scalar matrices. Moreover, for these nearly simple groups, the pre-imageS in
G is absolutely irreducible on the underlying vector spaceV , is not realisable over a prop
subfield, and is not a classical group in its natural representation. Every abstract fini
ple group can occur in this way as the simple groupS. In Section 2 we briefly describe ho
Aschbacher’s result has been used as the underpinning framework for a matrix reco
project for matrix group computation, and how the algorithm of this paper fits into
framework.

Moreover, it was shown by Liebeck [22] that, for sufficiently high dimensions,
largest among the nearly simple maximal subgroups mentioned above are the
Z ×Sn acting on the fully deleted permutation module overF corresponding to the natur
transitive permutation action ofSn of degreen. This module will be described in detail
Section 3.1. Its dimension isn − 1 if the characteristicp does not dividen, and isn − 2 if
p does dividen.

Our main result is Theorem 1.1. It involves several parameters, namelyω,ρF andξ .
The parameterξ is an upper bound on the cost of producing one random elementG;
ρF is an upper bound on the cost of performing one operation (addition, multiplic
or finding an inverse) in the finite fieldF of orderq; andω is a real number for which
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there exists an algorithm for multiplying twon × n matrices over a field withO(nω) field
operations. There are algorithms known for whichω < 2.376, see [11].

Theorem 1.1. There is a Las Vegas algorithm with the following specifications. It takes as
input a positive real number ε such that 0 < ε < 1 and a subset X of GL(n − δ, q), where
n � 5, q is a power of a prime p, δ = 1 or 2 according as p does not or does divide n,
and if G = 〈X〉 then G′ ∼= An. The output is a monomorphism λ from G to Zq−1 ×Sn. The
algorithm succeeds with probability at least 1− ε, and the cost is

O
(
log

(
ε−1)nα

(
ξ + ρF log2 n

(
nω + n lognq log logn

)) + |X|ρF nω
)
,

where α = 1/3 if p �= 3 and 1/2 if p = 3. The cost of evaluating λ on a given element
of G is O(nωρF ), and similarly the cost of evaluating λ−1 on a given element of λ(G) is
O(nωρF ).

Thus, for small fields, and small generating sets, the cost of constructing the mon
phism is

O
(
log

(
ε−1)(nαξ + ρF nω+1/2 log2 n

))
with α as above. The assumption thatn � 5 covers all parameter values for this fam
of nearly simple matrix groups. Clearly to prove the theorem we may ignore small v
of n, and in fact for one part of the algorithm presented in the paper we assume thatn � 13.
Our approach is to find a new basis for the underlying vector space, and if the groG

were replaced by a conjugate under the corresponding change of basis matrix, th
procedures given in Section 10 evaluateλ andλ−1 on given group elements at a cost
O(n2ρF ) per element.

After the commentary in Section 2 on the matrix group project we describe, in
tion 3, the context of the algorithm and in particular we define the fully deleted permu
module. We explain there the various components of the algorithm, and the proof o
orem 1.1.

A complete implementation of the algorithm has been made by Stephen Howe, a
by Maska Law, in the computer languageGAP4 [12]. The authors wish to thank Stephen
his care in reading and implementing the various procedures in the paper, and in pa
for locating several mistakes and misprints. The authors also acknowledge the advic
an anonymous referee that led to an improved exposition and layout of the paper.

2. Commentary on matrix group recognition

From the practical point of view the algorithm presented in this paper forms pa
one of the matrix recognition projects. The objective of such projects (see [2,16,1
is to produce a computer software system that accepts as input a subsetX of GL(d, q)

for somed > 0 and prime powerq, and determines, among other things, a compos
series (or composition tree) for the groupG = 〈X〉. The project described in [19,20]
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heavily dependent on the theorem of Aschbacher mentioned in the introduction,
can be interpreted as stating that ifG does not contain the special linear group, and is
almost simple modulo scalars, thenG preserves a geometrical structure on the underl
vector spaceV . Making this theorem constructive reduces matrix recognition to de
with groups that are almost simple groups modulo scalars.

If G is found to preserve a geometrical structure onV , then the geometric structure th
is preserved byG is determined explicitly. This usually involves finding a basis for
underlying vector spaceV that exhibits the structure. For example, if aG-invariant direct
sum decomposition ofV is discovered, a basis is found that is the union of bases fo
direct summands. If aG-invariant tensor decomposition is discovered, a change of
is performed so that the elements ofG are exhibited as Kronecker products of sma
matrices, etc. This change of basis has various useful consequences. Firstly, in term
new basis, the elements ofG can be written in a more compact form: in the first of
above examples, as an element of a wreath product of a general linear group of
dimension by a symmetric group, and in the second example as a Kronecker produ
produces a saving in the time taken to multiply two group elements, which may be
dramatic, as well as a useful saving in space. Secondly, given any element of GL(d, q),
with respect to this basis one can see at once whether it preserves the given struct
if so, write it in the appropriate form. Thus, recognising the fact thatG preserves som
geometric structure reduces further problems of processingG to easier ones.

On the other hand, ifG is found not to preserve such a structure, then in general no
reduction is possible, and usually we have to deal withG as it stands, as an almost simp
group modulo scalars, using black-box recognition techniques. In addition, ifG is almost
simple modulo scalars, and is realisable over a proper subfield, it is sometimes de
to recognise it as given, rather than first re-writing the group over the smaller field.
case of finite alternating and symmetric groups, these algorithms construct an isomo
with the natural permutation representation of the group.

If G acts on the fully deleted permutation moduleV asAn or Sn, the situation of interes
here, thenG is such a group, but in this case we can do better than implementing the
box group algorithms. In this special case the structure ofG is made explicit by a suitabl
change of basis forV , and so our approach is very similar to the approach above fo
earlier Aschbacher categories.

2.1. The complexity of recognising An and Sn

The asymptotically most efficient black-box recognition algorithm known forAn and
Sn is in [5], and requiresO(n) random selections andO(n logn) group multiplications.
Applying this algorithm in the matrix group setting: ifAn or Sn, or one of their covering
groups, were given as an irreducible subgroup in GL(d, q), and if n wereO(d1/2), then
the time complexity of this algorithm would beO(d1/2ξ + ρF dω+1/2) (up to logarithmic
factors).

Now it follows from results of James [14, Theorem 7] and Wagner [29] that, forn � 15,
any faithful irreducible representation ofAn or Sn or one of their covering groups, apa
from the representation on their deleted permutation modules, must have dimensid �
n(n − 5)/4, and hencen = O(d1/2). Hence the algorithm presented in this paper ens
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that alld-dimensional irreducible representations ofAn andSn, or their covering groups
can be constructively recognised inO(dω+1/2) time up to some logarithmic factors.

The principal tool at our disposal that makes use of the fact that we are wo
with matrices rather than with a black-box group is the computation of the charact
polynomial of group elements. For example, a crucial step in all ‘black-box’ recognitio
gorithms for alternating and symmetric groups is to find an element that is a transpo
a 3-cycle, or a double transposition in the natural representation. The algorithm pre
here includes a faster method of finding such an element than the method of findin
cycle given in [4,5,7]. In addition, the present algorithm does not require the constru
of ann-cycle or(n − 1)-cycle, instead making use of certain elements with order divis
by a prime greater than 3n/5.

There are several reasons why we are able to make use of these faster metho
example, we are able to recognise from their characteristic polynomials certain m
from which we can construct a 3-cycle or double transposition (see Section 6), and
identifying such matrices we are then able to extract the associated elements effi
because we have available a fast method for determining the orders of these matric
their characteristic polynomials (see Section 5). In addition, having constructed the
dard basis for the fully deleted permutation module we obtain a positive identificati
An andSn. This obviates the need to confirm the supposed isomorphism type ofG, which
would otherwise have to be done by finding for the group a new generating set that s
a standard presentation.

Finally, we point out that the isomorphismλ in Theorem 1.1 evaluates images of
ements ofZV × H as pairs(b, g) ∈ Zq−1 × Sn, whereb is a non-zero scalar andg is a
permutation. Similarlyλ−1 computes the pre-image of such a pair as a matrix.

For applications of this algorithm in the matrix group recognition project, we w
need also to construct straight-line programs from{λ(x) | x ∈ X} to (b, g), and [5] con-
tains an algorithm that does this, producing straight-line programs of lengthO(n logn),
in O(n2 logn) time. However, the evaluation inZV × H of such a straight-line program
would costO(ρF nω+1 logn) which is more expensive than the running time of our rec
nition algorithm. In order to construct (and evaluate withinZV ×H ) straight-line programs
at no greater cost than the rest of the algorithm, the underlying open problem that
to be solved is to find an algorithm that, for the natural permutation representationSn,
computes a straight-line program of lengthO(n1/3 log2 n) from the standard generating s
{(12), (12. . . n)} to an arbitrary permutation inSn.

2.2. Other complexity issues

Another delicate issue arises from the construction of random elements. The com
analysis is given in terms that involve the time required to construct a random eleme
the algorithm loses its advantage in practice if this has a cost significantly worse th
cost of making a bounded number of group multiplications. Provided that the size
given generating set is bounded the product replacement algorithm [9] will run in pr
within these cost constraints; but despite very interesting theoretical progress, the as
that the product replacement algorithm performs this well remains a well supported
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jecture, and is not a theorem. This is one reason for including the cost of producing ra
elements as a parameter in the cost estimate for our algorithm.

In practice it seems unlikely that useful implementations of the algorithm in this p
will match its o(d3) complexity estimate. For example, Strassen’s algorithm for m
plying two d × d matrices, which is useful in practice, has complexityO(dk) where
k = log2 7 > 2.8, and using this would produce an algorithm that is slower thanO(d3)

(but still faster than an application of the ‘black-box’ algorithm from [5]). In additi
keeping the theoretical complexity belowO(d3) meant, for example, that we could n
calculate the minimum polynomial of a matrix, as we know of no algorithm for this
has complexity better than Las VegasO(d3) field operations. This, in turn, is the reas
for introducing the new algorithm in Section 5 for computing the order of an eleme
ZV × H0 using only the characteristic polynomial, rather than the minimal polynomia

There would have been some advantage in our algorithm, especially in Sectio
pass fromG to its derived subgroupG′ = An. This would, in particular, have simplified th
procedures in Section 6 for determining the scalar associated with a given group el
There is an easy algorithm [3] to pass from a generating set ofG to a generating se
for G′, but its time requirement is asymptotically greater than the time requirement o
algorithm. Also, had we used such an algorithm, we would have needed to make r
selections from two different groups, namely the input group and its derived subg
However, as algorithms for making random selections require a certain amount o
processing, it is not unreasonable from a practical as well as a theoretical point of v
abstain from doing this.

3. Context of the algorithm

In this section we define the deleted permutation module and its standard bas
specify the algorithmic set-up, and we outline the principal steps in the algorithm
scribing where these are presented and analysed in the paper. We shall use the
introduced in this section throughout the paper.

3.1. Permutation modules and standard bases

Consider the group GL(n, q) acting naturally on the vector spaceU = Fn of n-
dimensional row vectors, whereF is a field of orderq = pa (p a prime), and le
E0 := (e1, . . . , en) denote the standard (ordered) basis, whereei is the row vector which
hasith entry 1 and all other entries 0.

Let H0 denote the subgroup of GL(n, q) consisting of all the permutation matrice
ThenH0 ∼= Sn andH0 permutes the standard basis vectors and leaves invariant the
vectore = (1, . . . ,1) = ∑

ei . SetE := 〈e〉. Also H0 leaves invariant the co-dimension
subspaceW := {(x1, . . . , xn) | ∑xi = 0} of U . Following [17, pp. 185–186], the subspa
V := W/(W ∩ E) is called thefully deleted permutation module. Now e ∈ W if and only
if p dividesn, and hence

dimV = n − δ, whereδ =
{

1 if p does not dividen,

2 if p dividesn.
(1)
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If n � 5, thenH ′
0

∼= An acts irreducibly onV , while if n � 10 then by [27–29] and [14
Theorem 6], or see [17, 5.3.7], every faithful irreducibleFH ′

0-module has dimension a
leastn − 2, andV is the only such module of dimension at mostn.

We shall need to compute with the actions ofH0 on bothU andV , and sinceH0 acts
faithfully on V , we shall often regardH0 as a subgroup of GL(V ) as well as working with
it (as defined) as a subgroup of GL(U). The normaliser ofH ′

0 in GL(U) is ZU ×H0, where
ZU is the subgroup of non-singular scalar matrices in GL(U). Similarly the normaliser o
H ′

0 in GL(V ) is ZV × H0, whereZV is the subgroup of non-singular scalar matrices
GL(V ). We shall sometimes writeZ × H0 without specifying whether the action is onU
or onV when it helps the flow of the discussion, and the meaning is clear from the co

We shall work with the characteristic polynomials of elements ofZ × H0 (whereZ =
ZU or ZV ). Forg ∈ H0 we often identifyg with the permutation ofSn corresponding to it
and we say thatg hastype 1c12c2 . . . ncn = ∏

i i
ci , where

∑
ici = n, if g hasci cycles of

lengthi for eachi = 1, . . . , n. Our notation for the characteristic polynomials onU andV

of elements inZ × H0 is given in Notation 4.1.
The standard basis forV we shall use as a reference basis in the algorithm isB0 :=

(v1, . . . , vn−δ), where

vi = ei − ei+1 + (W ∩ E) for 1� i � n − δ (2)

and theei form the standard basisE0 := (e1, . . . , en) for U as defined above. The importa
property ofB0 is that each vector has an expression involving exactly two of theei and
every ei (apart frome1, en and, if δ = 2 alsoen−1) occurs exactly twice, with differen
signs, and in consecutive vectors ofB0.

3.2. The algorithmic set-up

In the practical algorithmic application we shall be given an absolutely irreducible
groupG of GL(d, q) = GL(V ), whered = n − δ with δ as in (1), such thatG is conjugate
to a subgroup ofZV × H0 containingH ′

0. The problem is the following.

Algorithmic Problem. Given a subgroup G = 〈X〉 of GL(V ) = GL(d, q) satisfying
H ′ � G � ZV × H , where H is conjugate to H0 in GL(d, q), construct a monomorphism
λ :G → Zq−1 × Sn.

The monomorphismλ is constructed via a matrix that conjugatesX into ZV × H0.
Equivalently, the key outcome of the algorithm is a basis forV on which〈X〉 acts in the
same way thatH0 acts on the standard basisB0 defined in (2). Given this basis inver
isomorphisms between〈X〉 and the corresponding subgroup ofZV × H0 can be read of
very quickly; much faster than the corresponding isomorphisms whenG is recognised a
a black-box group.

We shall call a sequence of vectors(w1, . . . ,wr) from V a linked sequence relative to
H0 if there exist distinct positive integersj1, j2, . . . , jr+1 and a field elementb ∈ F# such
that

wj = b(ej − ej ) + (W ∩ E) for 1� i � r.

i i+1
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A linked sequence relative toH0 of lengthr = n − δ is a basis ofV and we call it alinked
basis relative to H0. For example, the reference basisB0 defined in (2) is a linked bas
relative toH0. In our algorithm the given groupG will involve a conjugateH of H0. We
will construct a linked basis relative toH (defined below) that will enable us to conjuga
G to a subgroup ofZV × H0.

Each linked basis relative toH0 is an image ofB0 under an element ofZV × H0. Set
L0 := {B0A | A ∈ ZV ×H0}, the set of all linked bases forV relative toH0. LetS ∈ GL(V )

be such thatS−1H0S = H .

Lemma 3.1. The set L of images under S of all the linked bases relative to H0 is indepen-
dent of the choice of S.

Proof. The set of images underS of the linked bases relative toH0 is the set of all se
quences of the formB0AS, for someA ∈ ZV ×H0. Let T be another conjugating elemen
that is,T −1H0T = H . ThenST −1 normalisesH0 and hence lies inZV × H0. There-
fore (ZV × H0)S = (ZV × H0)T , and soL := {B0AS | A ∈ ZV × H0} = {B0AT | A ∈
ZV × H0}, proving the lemma. �

Thus the setL = L0S of images underS of all the linked bases relative toH0 forms
a family of bases forV that is invariant underZV × H , and we call bases in this fami
linked bases relative to H .

3.3. Outline of the algorithm

The heart of our solution of the Algorithmic Problem is the construction of a linked b
B for V relative toH so that, by Lemma 3.1,B = B0S for someS such thatH = S−1H0S.
Once such a basisB is found, we use it to construct an isomorphismλ :ZV × H →
Zq−1 × Sn such that, for eachb ∈ F# andA ∈ H , λ(bA) = bλ(A) andλ(A) is the per-
mutation corresponding to the action ofA on B, or equivalently ofSAS−1 ∈ H0 on B0.
We now give a summary of the main steps of the algorithm, and explain where the
presented and analysed in the paper.

Step 1. Constructing a 3-cycle or double transposition. Since we will use one of thes
elements to construct the first of the basis vectors, the initial step is to construct a mg
in H conjugate to a (matrix ofH0 representing a) 3-cycle or double-transposition. Suc
element can be obtained as a power of a (matrix inH representing a) pre-3-cycle or pr
double-transposition respectively (see Section 6 for definitions) and, based on some
about polynomials in Section 4, we show that scalar multiples of pre-3-cycles an
double-transpositions can be recognised from their characteristic polynomials, pr
the characteristicp is not 3 or 2, respectively. In Section 6 we give algorithms to cons
a matrix inH conjugate to a pre-3-cycle ifp �= 3, or a pre-double-transposition ifp = 3.

To extract a matrixg corresponding to a 3-cycle or double transposition, we nee
determine the orders of these elements. A new algorithm for computing the orde
matrix in H , based on knowing its characteristic polynomial, is given in Section 5,
used to construct a suitable elementg in Section 6.
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Step 2. Constructing the first basis vector. In Section 7, we show first how to construc
conjugateg′ of the elementg such that the permutations corresponding tog andg′ have
exactly one moved point in common. We then construct, usingg andg′, a vectorv that lies
in some linked basis relative toH .

Step 3. Constructing a linked basis relative to H . Extendingv to a linked basis relative t
H is done in two-stages. For the first stage, see Section 8, the vectorv and elementg are
used to construct an elementx of H whose corresponding permutation involves a cycle
prime lengthr > 3n/5, andv, x are then used to construct a linked sequence of ve
of length r − 1. Then, in Section 9, this linked sequence is extended to a linked
relative toH . The reason for employing this two-stage process is that overall it req
asymptotically fewer random selections and matrix operations than the seemingly s
alternative of finding ann-cycle or(n − 1)-cycle for this purpose.

Step 4. Constructing and evaluating the isomorphism. A procedure is given in Section 1
that constructsλ and evaluatesλ on elements ofZV × H . Evaluatingλ−1 on elements o
Zq−1 × Sn is discussed in Section 10.1.

The various procedures are drawn together in Section 10.1 to complete the pr
Theorem 1.1.

4. Characteristic polynomials

In this section we give some information about the characteristic polynomials onU and
V of elements ofZ × H0. We use the following notation throughout the paper.

Notation 4.1. Let g ∈ H0 be fixed, and suppose that the permutation correspondingg

has cycle lengthsm1, . . . ,ml , wherel � 1 and
∑

i mi = n. For eachi, write mi = pai ri ,
whereai � 0 andri is coprime top, and set

m :=
∑

i

pai , R := lcm{r1, . . . , rl}, a := max{a1, . . . , al}.

Then|g| = Rpa . Let b ∈ F#. Let c(b)
U (t), c

(b)
V (t) denote the characteristic polynomials f

the actions ofbg on U, V respectively, and setcU (t) = c
(1)
U (t) andcV (t) = c

(1)
V (t). For a

monic irreducible polynomialf (t) let mult(b)(f ) denote the multiplicity off in c
(b)
V (t).

If f (t) is an irreducible polynomial overF (our field of orderq = pa), thenf (t) divides
te − 1 for some positive integere, and we let

e(f ) denote the leaste such thatf (t) divideste − 1.
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Note that iff (t) divides te1 − 1 and te2 − 1, thenf (t) also divideste − 1 wheree =
gcd(e1, e2). We usually deal withmonic polynomials, that is, polynomialsf (t) for which
the coefficient of the highest power oft occurring is 1.

Forb ∈ F# let f (b)(t) = bdf (tb−1) whered = degf ; thenf (b)(t) is monic if and only
if f (t) is monic, andf (b)(t) is irreducible if and only iff (t) is irreducible. Basic fact
about polynomials over finite fields can be found in [21, Section 2.4] and we record
that we shall need in the next lemma.

Lemma 4.2. Let r, s be positive integers with r coprime to p, let i � 0, and let b ∈ F#.

(a) Then tp
ir − 1 = (tr − 1)p

i
, and the polynomial t r − 1 is a product of distinct irre-

ducible polynomials over F. Moreover, there exists an irreducible f (t) over F such
that e(f ) = r .

(b) If f (t) is a monic irreducible polynomial over F, then

f (t) | t s − 1 ⇐⇒ f (b)(t) | t s − bs ⇐⇒ e(f ) | s.

We use this information to examine the characteristic polynomials of elemen
Z × H0. Recall that the order of a group elementg is denoted by|g|; we also denote
the multiplicative order of a non-zero elementb ∈ F by |b|.

Lemma 4.3. Suppose that Notation 4.1holds. Then

(a) cU (t) = ∏l
i=1(t

mi − 1) = ∏l
i=1(t

ri − 1)p
ai , and cV (t) = cU (t)/(t − 1)δ .

(b) The characteristic polynomials for bg on U and V are c
(b)
U (t) = bncU (t/b) and

c
(b)
V (t) = bn−δcV (t/b), respectively.

(c) Let f (t) be a monic irreducible polynomial over F. Then

mult(1)(f ) = mult(b)
(
f (b)

) =
{∑

{i: e(f ) | ri } p
ai if f (t) �= t − 1,

m − δ if f (t) = t − 1.

In particular, if f (t) �= t − 1, then mult(1)(f ) = 1 if and only if there exists a unique
integer i such that ri is divisible by e(f ), and for this i we have ai = 0.

(d) If g′ ∈ GL(V ) is any element with characteristic polynomial equal to cV (t), then |g′| =
Rpa′

for some a′ � 0.

Proof. The characteristic polynomialcU (t) is equal to
∏l

i=1(t
mi − 1), and the second ex

pression for it given in (a) follows from Lemma 4.2. Sinceg acts trivially on bothE and
U/W , it follows thatcV (t) is as asserted. It is straightforward to check that the chara
istic polynomials forbg onU andV are as in (b).

Let f (t) be an irreducible polynomial overF and letr be a positive integer coprim
to p. By Lemma 4.2,f (t) dividest r −1 if and only iff (b)(t) dividest r − br if and only if
e(f ) dividesr , and in this case its multiplicity int r −1 is 1. The values of the multiplicitie
follow from these observations.
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Finally suppose thatg′ ∈ GL(V ) has characteristic polynomialcV (t). Let F′ be the
splitting field of cV (t), so thatcV (t) = ∏n−δ

i=1 (t − ζi) for someζi ∈ F′. We may regard
g′ as an element of GL(n − δ,F′), and in this groupg′ is conjugate to an upper triangul
matrixg′′ with diagonal entriesζ1, . . . , ζn−δ . Hence|g′| = |g′′| = lcm{|ζ1|, . . . , |ζn−δ|}pa′

,
for somea′ � 0. In particular,R′ := lcm{|ζ1|, . . . , |ζn−δ|} is determined bycV (t). For the
special choice ofg′ = g we see from Notation 4.1 thatR′ = R, and part (d) follows. �

The next lemma gives important information regarding the problem of finding the s
b from the characteristic polynomialc

(b)
U (t) of bg. Note that the polynomialt2 + t + 1 is

irreducible if and only ifq ≡ 2 (mod 3).

Lemma 4.4. Suppose that Notation 4.1 holds, let r be an integer coprime to p and let
c ∈ F#.

(a) Then t − c divides t r − br if and only if |cb−1| divides r , so

mult(b)(t − c) =
{∑

{i: |cb−1| dividesri } p
ai if c �= b,

m − δ if c = b.

(b) For q ≡ 2 (mod 3), t2 + ct + c2 (is irreducible and) divides t r − br if and only if
3|cb−1| divides r , so

mult(b)
(
t2 + ct + c2) =

∑
{i: 3|cb−1| dividesri }

pai .

Proof. Now t − c dividest r − br if and only if cr = br , that is to say,|cb−1| dividesr . By
Lemma 4.2 the multiplicity oft − c in t r − br is at most 1. It follows from Lemma 4.3 tha
the value of mult(b)(t − c) is as claimed. Thus part (a) is proved.

Now suppose thatq ≡ 2 (mod 3) and letf (t) = t2 + t + 1. Thenf (t) is irreducible
and therefore alsof (c)(t) = t2 + ct + c2 is irreducible. Setd := c−1b and note that|d| =
|cb−1|. Dividing t r − dr by t3 − 1 gives a remainderg(t) = t2 − dr, t − dr or 1− dr

according asr ≡ 2,1,0 (mod 3) respectively. We claim thatf (t) divides t r − dr if and
only if 3|d| dividesr . Sincef (t) dividest3 − 1, it follows thatf (t) dividest r − dr if and
only if f (t) dividesg(t), and this holds if and only ifg(t) = 0, which is true if and only if
r ≡ 0 (mod 3) anddr = 1. Since|d| dividesq − 1 �≡ 0 (mod 3), the latter conditions ar
equivalent to 3|d| dividesr , and the claim follows. Finally settingt = c−1s it follows that
s2 + cs + c2 dividessr − crdr = sr − br if and only if 3|d| = 3|cb−1| dividesr .

The value for mult(b)(t2 + ct + c2) now follows from the fact thatt r −br is multiplicity
free (see Lemma 4.2).�

We conclude this section by stating some results about the costs of finding the c
teristic polynomial of a matrix overF, and the cost of finding all the distinct irreducib
factors of small degree of a polynomial overF.
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Lemma 4.5 [8, p. 349]. There is a deterministic algorithm that computes the characteristic
polynomial of an n × n matrix over F at a cost of O(nω lognρF ).

There are several methods for factorising polynomials over finite fields, and r
discussions are given in [15] and [26, Chapter 14]. The most efficient methods ar
deterministic, and we use one of these described in [26, Chapter 14] for our comp
estimations.

Lemma 4.6. Let f (t), g(t) be polynomials of degree at most n with coefficients in a field
F of order q , and with degg � degf .

(a) Then the product f (t)g(t), and also the remainder on dividing f (t) by g(t) can be
found at a cost of O(ρF n logn log logn).

(b) There is a Las Vegas algorithm that will find, for a given ε � 1/2, all the distinct
linear factors of f (t), or all distinct irreducible degree 2 factors of f (t), at a cost of
O(log(ε−1)ρF n log2 n log(nq) log logn), and with probability of failure at most ε.

Proof. Part (a) is proved by the results [26, Theorems 8.23 and 9.6] that multiplicati
division of polynomials of degree at mostn can be performed inO(n logn log logn) field
operations.

We use a careful application of the algorithm presented in [26, Algorithm 14
for finding the distinct linear factors off (t). The heart of this algorithm is [26, A
gorithm 14.10] that factorises a square-free monic polynomial of degree at mostn for
which all irreducible factors have the same degree. As explained in the proof o
latter algorithm in [26, Theorem 14.11], the workings of [26, Algorithm 14.10] can
illustrated by a labelled tree, and the probability that it requires at leastk levels before
succeeding is at mostn22−k . Thus if [26, Algorithm 14.10] is allowed to run for up t
k = 4 logn log(ε−1) > log(n2ε−1) levels of the labelled tree, then the probability tha
fails is at mostn22−k < ε. With this value ofk, the cost of [26, Algorithm 14.19] i
O(log(ε−1)n log2 n log(nq) log logn) field operations inF. For completeness of our proo
we note that the component [26, Algorithm 14.10] of [26, Algorithm 14.19] is only v
for fields of odd order. Ifq is even then an alternative algorithm is sketched in [26, E
cise 14.16(iii) on p. 399]; this algorithm also can be run the appropriate number of
to give a probability of failure at mostc1n

−c2, and its running time is asymptotically th
same as that given for the case of oddq.

Finally, to find the distinct irreducible degree 2 factors off , we use the above algorith
to find the linear factors off (t) over F, and use it again to find its linear factors ove
quadratic extension field ofF. �

5. Finding orders

If Notation 4.1 holds forbg, theng has orderRpa whereR = lcm{r1, . . . , rl}, a =
max{a1, . . . , al}, and|bg| = Rpa|bRpa |. In this section we present an algorithm for findi
|g| from c

(b)
(t), under the assumption thatb is known.
V
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We write M(n) for the cost of multiplying two matrices in GL(V ), and note that M(n) =
O(nω). Throughout we denote log2 x by logx and loge x by lnx.

Proposition 5.1. Let g ∈ GL(V ) be such that g is conjugate to an element of H0, and
|g| = Rpa where p does not divide R and a � 0. Also let b ∈ F# and let c(t) be the
characteristic polynomial of bg on V . Then there exists a deterministic algorithm that,
given b and c(t),

(a) computes R with 4n2 field operations;
(b) determines whether R < n18 logn, and if so computes a, using at most 36M(n) log2 n =

O(nω(logn)2) field operations.

Proof. Without loss of generality we may assume thatg ∈ H0 and that Notation 4.1 holds
Thusc(t) = c

(b)
V (t) and|g| = Rpa with R = lcm{r1, . . . , rl}, a = max{a1, . . . , al}. Sinceb

is known, we also knowc(b)
U (t) = c

(b)
V (t)(t − b)δ . Consider the following procedure:

1. For each primes � n, s �= p, find the largest non-negative integeru such thatt s
u − bsu

dividesc
(b)
U (t), and denote this integer byu(s). DefineR′ := ∏

s su(s).
2. If R′ � n18 logn, then returnR′ and the assertion thatR � n18 logn; else go to Step 3.

3. Computeh := (bg)R
′
, and find the least non-negative integera′ such thathpa′

is a
scalar matrix. ReturnR′ anda′.

First we show that thep′-part of |g| is equal to the valueR′ returned by this procedure
and that, ifa′ is returned, thena′ = a, and hence|g| = R′pa′

. Let s be a prime divid-
ing R and letsu be the highest power ofs dividing R. Thensu divides someri , and so
t s

u − bsu
dividest ri − bri , which dividesc(b)

U (t). Henceu � u(s) and it follows thatR di-
videsR′. Conversely by Lemma 4.2 there exists a monic irreducible polynomialf (t) such
that e(f ) = u(s), sof (b)(t) is irreducible and dividest s

u − bsu
. Sincet s

u − bsu
divides

c
(b)
U (t), it follows that f (b)(t) divides c

(b)
U (t), so there existsi such thatf (b)(t) divides

t ri − bri . Again by Lemma 4.2,e(f ) = su(s) dividesri . It follows thatR′ dividesR, and
henceR′ = R. ThusgR is ap-element and|gR| is equal to the order ofh modulo scalars
that is topa′

, soa′ = a and|g| = R′pa′
.

Now we need to determine the number of field operations required by the various
of the procedure. The cost of findingR may be computed as follows. By the Prime Nu
ber Theorem there areO(n/ logn) primes s to be considered in Step 1. In fact, usi
Chebyshev’s estimates (see [23, Corollary 8.6]) the number of primess is strictly less than
1.171n/ lnn = (1.171 loge)n/ logn. For eachs, sincesu(s) � n, the number of integer
u for which we must test whethert s

u − bsu
dividesc

(b)
U (t) is at most logn/ logs. Each

of these divisions requires at most 2n field operations. Thus findingu(s) requires at mos
2n logn/ logs field operations, and so determiningR requires fewer thancn2 field opera-
tions, wherec = 1.171× loge × 2< 4.

If h is computed, its computation requires at most 2 logR matrix multiplications and
hence requires at most 2M(n) logR field operations. For eachi we need at most 2 logp
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, and hence determininga requires at
most M(n)(2 logR + 2a logp) = 2M(n) log(Rpa) field operations. SinceR � n18 logn,
computinga requires at most 36M(n) log2 n field operations. �
Remark 5.2. For all k > 0, and for all sufficiently largen, most elements ofSn have order
less thannk logn. Indeed by [4, Theorem 4.1], the probability that a random permutatio
Sn has order greater thann18 logn is less thann−7. Thus the algorithm of the propositio
will compute the order ofg in almost all cases. For anyg ∈ Sn, thep′-partR of |g| sat-
isfies logR = (1+ o(1))(n logn)1/2 by [18, p. 222], and hence performing Step 3 for a
value ofR would computea in 2(1+ o(1))M(n)(n logn)1/2 = O(nω+1/2(logn)1/2) field
operations.

6. 3-cycles and double-transpositions

Here we discuss the problem of finding elementsbg ∈ GL(V ) such thatb ∈ F# andg is
conjugate to a 3-cycle (an element of type 1n−331) or a double transposition (an eleme
of type 1n−422) in H0. The proportions of 3-cycles and double-transpositions inSn or An

are so small that we cannot easily find such elements by random selection fromSn or An.
Instead we search for elementsbg with g conjugate to an element of a larger subse
Sn such that certain powers give us 3-cycles or double-transpositions. These eleme
defined as follows.

Definition 6.1. A pre-3-cycle is an elementσ ∈ Sn of order 3f , wheref is not divisible
by 3, such thatσf is a 3-cycle. Apre-double-transposition in Sn is an elementσ ∈ Sn of
order 2f with f odd such thatσf is a double transposition.

It turns out that, for almost all values ofn andq, wheneverbg ∈ GL(V ) with b ∈ F# and
g conjugate to a pre-3-cycle or pre-double-transposition, we can prove that the ele
are of this form by examining their characteristic polynomials. We verify this asse
and then give a Las Vegas algorithm for constructing such elements. Suppose thg is
conjugate to an element ofH0, and letb ∈ F#. First we show that knowledge of bothb and
the characteristic polynomialc(b)

V (t) of bg on V allows us to detect whether or notg is
conjugate to a pre-3-cycle or pre-double-transposition. Since conjugate matrices h
same characteristic polynomials it is sufficient to prove this property forg ∈ H0.

Proposition 6.2. Let g ∈ H0, b ∈ F#, as in Notation 4.1.

(1) If p �= 3, then g is a pre-3-cycle if and only if
(a) mult(b)(f ) = 1 for each irreducible divisor f (t) of t2 + bt + b2; and
(b) for all primes r � n/3, r �= p, c

(b)
V (t) is not divisible by t2r + br tr + b2r .

(2) If p = 3, then g is a pre-double-transposition if and only if
(a) mult(b)(t + b) = 2; and
(b) for all primes r such that r = 2, or 5� r < n/2, c

(b)
V (t) is not divisible by t r + br .



18 R. Beals et al. / Journal of Algebra 292 (2005) 4–46

of

ment
Con-

le-
l

n

Proof. Suppose thatp �= 3. Thent − b does not dividet2 + bt + b2 or t2r + br tr + b2r for
any primer �= p. Suppose first thatg is a pre-3-cycle. We may assume thatm1 = r1 = 3
andri is coprime to 3 fori > 1. Then by Lemma 4.3(c), mult(b)(f ) = 1 for each irreducible
divisor f (t) of t2 + bt + b2 (sincef (t) �= t − b). Suppose that, for some primer � n/3,
r �= p, c(b)

V (t) is divisible byt2r +br tr +b2r = (t3r −b3r )/(tr −br). By Lemma 4.2, there
exists a monic irreduciblef (t) such thate(f ) = 3r . For such anf (t), f (b)(t) divides
(t3r − b3r )/(tr − br), and hence dividesc(b)

V (t). Thereforef (b)(t) divides t ri − bri for
somei > 1, and hencee(f ) = 3r dividesri , which is a contradiction. Thus (a) and (b)
part 1 hold.

Conversely suppose that conditions (a) and (b) of part (1) hold. Iff (t) is an irreducible
factor of t2 + bt + b2, thenf (t) = h(b)(t) wheree(h) = 3, and sincef (t) dividesc

(b)
V (t),

f (t) = h(b)(t) divides t ri − bri for somei. By Lemma 4.2,e(h) = 3 dividesri . Since
mult(b)(f ) = 1, it follows from Lemma 4.3 thatai = 0 and for allj �= i, rj is coprime

to 3. If ri > 3 thenri/3 is divisible by some primer �= p, and hencec(b)
V (t) is divisible

by t2r + br tr + b2r = (t3r − b3r )/(tr − br), contradicting (b). Henceri = 3, and sog is a
pre-3-cycle.

Now suppose thatp = 3. If g is a pre-double-transposition, then an analogous argu
to the first paragraph of the proof shows that conditions (a) and (b) in part (2) hold.
versely suppose that conditions (a) and (b) of part (2) hold forc

(b)
V (t). Sincef (t) := t + b

has multiplicity 2 inc
(b)
V (t) and sincee(f ) = 2, we may assume thatf dividest ri − bri ,

with ai = 0 andri even, fori = 1,2, and thatri is odd fori > 2. If ri > 2, for i = 1 or 2,
thenri/2 is divisible by a primer �= 3 with 2r � ri � n − 2, and sor < n/2 andc

(b)
V (t) is

divisible by (t2r − b2r )/(t − b), which contradicts condition (b). Hencer1 = r2 = 2, and
sog is a pre-double-transposition.�
6.1. Finding the scalar: theory

For almost all values ofn andq, it turns out that, for all pre-3-cycles and pre-doub
transpositionsg, we can determine the scalarb ∈ F# from the characteristic polynomia
c
(b)
V (t) of bg on V . First we deal with pre-3-cycles. In this case, the scalarb can be iden-

tified for all n � 5 except the case(n,p) = (5,5), q ≡ 1 (mod 3), in which case we ca
only findb3.

Proposition 6.3. Let g ∈ H0 with cycle lengths mi = rip
ai (1 � i � l), b ∈ F#, and c

(b)
V (t)

be as Notation 4.1. Suppose that p �= 3, n � 5, and g is a pre-3-cycle with m1 = 3.

(1) If q ≡ 2 (mod 3), and C is the set of all c ∈ F# such that t3 − c3 divides c
(b)
V (t), then

mult(b)(t2 + bt + b2) = 1 and either
(a) C = {b}; or
(b) C = ∅, δ = 2, n �≡ 0 (mod 3),

c
(b)

(t) = (
t2 + bt + b2)(tn−4 + btn−5 + · · · + bn−4)
V
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and if p is odd, then the coefficient of tn−3 in c
(b)
V (t) is 2b, while if p = 2, then the

coefficient of tn−4 in c
(b)
V (t) is b2 (which determines b uniquely).

(2) If q ≡ 1 (mod 3), and C is the set of all c ∈ F# such that t − cyi divides c
(b)
V (t) for

i = 0 and for at least one of i = 1 and i = 2 (where y ∈ F#, |y| = 3), then precisely
one of (a)–(c)holds:
(a) C = {by, by2}, mult(b)(t − by) = mult(b)(t − by2) = 1, and mult(b)(t − b) = 0; or
(b) C = {b, by, by2}, mult(b)(t − by) = mult(b)(t − by2) = 1, and mult(b)(t − b) > 1;
(c) C = {b, by, by2}, mult(b)(t − byi) = 1 for each i. In this case, p � 5 if δ = 2.

Moreover, exactly one of (i)–(iii) holds:
(i) l = δ + 1, n �≡ δ − 1 (mod 3), and b is the coefficient of tn−δ−1 in c

(b)
V (t) =

(t2 + bt + b2)(tn−δ−2 − bn−δ−2), which equals

tn−δ + btn−δ−1 + b2tn−δ−2 − bn−δ−2t2 − bn−δ−1t − bn−δ;
(ii) δ = 2, l = 3, n = p = 5, and c

(b)
V (t) = t3 − b3 (yielding only b3); or

(iii) δ = 2, l = 3, each mi = ri � 2, and c
(b)
V (t) is

(
t2 + bt + b2)(t r2−1 + btr2−2 + · · · + br2−1)(t r3 − br3

)
,

so that 2b is the coefficient of tn−3 (yielding b since p � 5), the constant term
is −bn−2 and the coefficient of t is −2bn−3.

Proof. Sinceg is a pre-3-cycle,m � l � 2 and 3 does not divideri for any i > 1. First
we show thatC ⊆ {b} if q ≡ 2 (mod 3), andC ⊆ {b, by, by2} if q ≡ 1 (mod 3). Suppose
that this is not the case. ThenC contains an elementc such that(cb−1)3 �= 1. This implies
that t − c dividest ri − bri for somei � 2. By Lemma 4.4,|cb−1| dividesri and hence 3
does not divide|cb−1|. If q ≡ 2 (mod 3), thenf (t) = t2 + ct + c2 is irreducible and it
follows from Lemma 4.4 that mult(b)(f ) = 0, contradicting the fact thatc ∈ C. Similarly if
q ≡ 1 (mod 3), then, again using Lemma 4.4, we deduce that mult(b)(t −cy) = mult(b)(t −
cy2) = 0 since|cyb−1| = |cy2b−1| = 3|cb−1| does not divideri for any i. Hencec /∈ C,
which is a contradiction.

Suppose thatq ≡ 2 (mod 3). Then by Proposition 6.2, mult(b)(t2 + bt + b2) = 1 and so
part 1(a) holds ift − b dividesc

(b)
V (t). So assume that mult(b)(t − b) = m − δ = 0. Then

C = ∅, m = δ = 2 = l, and hencen = 3 + r2 �≡ 0 (mod 3) andc
(b)
V (t) is as in part 1(b)

Thus

c
(b)
V (t) = (t3 − b3)(tr2 − br2)

(t − b)2

= tn−2 + 2btn−3 + 3b2tn−4 + · · · + 3bn−4t2 + 2bn−3t + bn−2

and 1(b) holds. Note that ifp = 2, thenn � 6 sinceδ = 2 implies thatp dividesn, and
thus the coefficient oftn−4 is b2.

Now suppose thatq ≡ 1 (mod 3). By Proposition 6.2, mult(b)(t − by) = mult(b)(t −
by2) = 1 soby, by2 ∈ C. Also, since mult(b)(t − b) = m − δ, it follows thatb ∈ C if and
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only if m > δ. Thus either 2(a) or 2(b) holds, orC = {b, by, by2} and mult(b)(t − byi) =
1= m−δ for eachi. Assume the latter. Ifδ = 1, thenm = l = 2 son = 3+r2 �≡ 0 (mod 3),
and part 2(c)(i) holds. Now assume thatδ = 2. Thenm = 3 and sol is 2 or 3. Suppose tha
l = 2. Thenm = pa1 + pa2 = 1 + pa2 sop = 2 anda2 = 1. In particular,m2 = n − 3 =
r2p

a2 is even. However, sinceδ = 2, p = 2 dividesn and hencen − 3 is odd, which is a
contradiction. Hencel = 3 = m so eachai = 0. If p = 2, this means that eachmi is odd
and hencen = m1 + m2 + m3 is odd; butδ = 2, sop = 2 dividesn, a contradiction. Thus
p is odd and asp �= 3, it follows thatp � 5. The cycle lengths ofg are 3, r2, r3 where
1 � r2 � r3, and becauseg is a pre-3-cycle, we have that 3 does not divider2 or r3. In
particular,

c
(b)
V (t) = (t3 − b3)(tr2 − br2)(tr3 − br3)

(t − b)2
.

If n = 5, thenr2 = r3 = 1 and, sincep dividesn, p must be 5, so part 2(c)(ii) holds.
n � 6 andr2 = 1, thenn = 4 + r3 �≡ 1 (mod 3) and hence part 2(c)(i) holds. Finally,
r2 > 1, then part 2(c)(iii) holds. �

Now we deal with pre-double-transpositions. In this case the scalarb can be identified
if n � 5 unlessn = 4+ δ, where sometimes we can only identify{b,−b}.

Proposition 6.4. Suppose that p = 3, n � 5, and that g ∈ H0 with cycle lengths mi = rip
ai

(1� i � l), b ∈ F#, and c
(b)
V (t) are as Notation 4.1. Suppose further that g is a pre-double-

transposition with m1 = m2 = 2. Let C be the set of all c ∈ F# such that t2 − c2 divides
c
(b)
V (t). Then C = {b,−b}, mult(b)(t + b) = 2, and one of the following holds:

(a) mult(b)(t − b) �= 2; or
(b) mult(b)(t − b) = 2, δ = 1, n ≡ 5 (mod 6),

c
(b)
V (t) = (t − b)(t + b)2(tn−4 − bn−4),

and if n > 5, then b is the coefficient of tn−2 in c
(b)
V (t); or

(c) mult(b)(t − b) = 2, δ = 2, n ≡ 0 (mod 6), m = l = 4, and one of (i)–(iii) holds:
(i) n = 6, c

(b)
V (t) = t4 + b2t2 + b4;

(ii) n > 6 and b,−b2,−b3 are the coefficients of tn−3, tn−4, tn−5 respectively in

c
(b)
V (t) = (t − b)(t + b)2(tn−5 − bn−5);

(iii) n > 6 and −b, b2,0 are the coefficients of tn−3, tn−4, tn−5 respectively in

c
(b)
V (t) = (t + b)2(t r3 − br3

)(
t r4 − br4

)
,

where r3, r4 are odd and at least 5.
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Proof. Sinceg is a pre-double-transposition andn � 5, we havem � l � 3 andri is odd
for all i > 2. Thus mult(b)(t − b) = m− δ > 0. By Proposition 6.2, mult(b)(t + b) = 2, and
hence bothb and−b lie in C. Suppose thatc �= ±b andc ∈ C. Then at least one ofcb−1

and−cb−1 has order 2s for somes > 1. It follows from Lemma 4.4 that 2s dividesri for
somei � 3 which is a contradiction. ThusC = {b,−b}.

Suppose now that mult(b)(t − b) = 2, that is,m = δ + 2. If δ = 1, thenm = l = 3 so
n = 4 + r3 is odd anda3 = 0; thusn andn − 4 are coprime to 6, and it follows thatn ≡
5 (mod 6), andc

(b)
V (t), b are as in (b). Ifδ = 2, thenm = l = 4,a3 = a4 = 0, son = 4+r3+

r4 is even and hencen ≡ 0 (mod 6). Let us suppose thatr3 � r4. If n = 6, thenc
(b)
V (t) =

(t − b)2(t + b)2 as in (c)(i), so assume thatn > 6. If r3 = 1, thenc
(b)
V (t) = (t − b)(t +

b)2(tn−5 − bn−5) andb,−b2,−b3 are the coefficients oftn−3, tn−4, tn−5, respectively, as
in (c)(ii). If r3 > 1, then sincer3, r4 are coprime to 6, they are both at least 5, andc

(b)
V (t) is

as in (c)(iii). �
6.2. Proportions

In our algorithms we will construct a 3-cycle or double transposition from a pre-3-c
or pre-double-transposition respectively that has reasonably small order, namely o
mostn18 logn. We give here estimates for the proportions of such elements inAn andSn.

Definition 6.5. Let psmallA
pre3 (n), psmallS

pre3 (n) denote the proportions of pre-3-cycles inAn

andSn, respectively, that have order less thann18 logn. Let pS
pre22(n),pA

pre22(n) denote the

proportions of pre-double-transpositions inSn andAn, respectively, and letpsmallA
pre22 (n) and

psmallS
pre22 (n) denote the proportions of such elements that have order less thann18 logn.

Lemma 6.6.

(a) [4, Theorem 5.2]For n � 5, psmallA
pre3 (n) > 0.140n−1/3 and psmallS

pre3 (n) > 0.282n−1/3.

(b) pS
pre22(n) = 1√

32πn
+ O(n−3/2) and pA

pre22(n) = 2pS
pre22(n).

(c) For n � 5, psmallA
pre22 (n) > 0.0997n−1/2 and psmallS

pre22 (n) > 0.0498n−1/2.

Proof. (b) A pre-double-transpositiong ∈ Sn is of the form g = (i, j)(k, l)h, where
i, j, k, l are distinct points fixed byh, and|h| is odd. There are 3

(
n
4

)
possibilities for choos

ing a double transposition(i, j)(k, l), and for a given choice there are(n − 4)!s¬2(n − 4)

elementsh of odd order on the remaining points, wheres¬2(n) denotes the proportio
of elements ofSn of odd order. HencepS

pre22(n) = s¬2(n − 4)/8, and so by [4, Theo

rem 2.3(c)],pS
pre22(n) = c(2)(n−4)−1/2/8+O(n−3/2) = c(2)n−1/2/8+O(n−3/2), where

c(2) = (π/2)−1/2 ∼= 0.798, as claimed. Since all pre-double-transpositions are even pe
tations it follows thatpA

pre22(n) = 2pS
pre22(n).

(c) By [4, Theorem 4.1], the proportionpsmall(n) of elements ofSn of order greater tha
n18 logn is less thann−7. Also by [4, Theorem 2.3(a) and (b)],pS

pre22(n) = s¬2(n − 4)/8�
s¬2(n)/8� c(2)n−1/2(1− n−1)/8, for all n � 5. Thus
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psmallS
pre22 (n) � pS

pre22(n) − psmall(n)

>
c(2)

8n1/2

(
1− 1

n

)
− 1

n7 >
c(2)

16n1/2
> 0.0498n−1/2.

Similarly

psmallA
pre22 (n) � pA

pre22(n) − 2psmall(n)

>
c(2)

4n1/2

(
1− 1

n

)
− 2

n7 >
c(2)

8n1/2
> 0.0997n−1/2. �

6.3. Procedures

In this subsection we give procedures for finding 3-cycles and double-transpos
based on the results above. For polynomialsf (t), c(t) over F with f (t) irreducible, we
denote by multc(t)(f ) the multiplicity of f (t) in c(t). First we find a 3-cycle in the cas
where the characteristic is not 3. Ifp = 3, then this procedure will not work, and in th
case we use the similar Procedure 6.9 to find a double transposition.

Procedure 6.7 (FIND3CYCLE). We are given a positive constant ε, and a subgroup G �
GL(V ) = GL(d, q) (where q is a power of p and p �= 3) such that H ′ � G � ZV × H

where H is conjugate to H0 ∼= Sn and n � 5, (n,p) �= (5,5).

1. Select up to �log(ε−1)n1/3/0.07� random elements x ∈ G, and perform the following
steps for each.

2. Find the characteristic polynomial c(t) of x.
3.1. For q ≡ 2 (mod 3), determine the subset C of elements c ∈ F# such that t3−c3 divides

c(t).
(i) If |C| � 2, then return to Step 1.

(ii) If C = {c}, then if multc(t)(t2 + ct + c2) = 1 let b = c, and otherwise return to
Step 1.

(iii) If C = ∅, then return to Step 1 unless δ = 2 and n �≡ 0 (mod 3). Let c ∈ F be
such that the coefficient of tn−3 is 2c if p is odd, or the coefficient of tn−4 is c2 if
p = 2. If

c(t) = (
t2 + ct + c2)(tn−3 − cn−3)/(t − c),

then set b = c, and otherwise return to Step 1.
3.2. For q ≡ 1 (mod 3), determine the subset C of elements c ∈ F# such that

multc(t)(t − c) > 0, and also multc(t)(t − cyi) > 0 for at least one i ∈ {1,2}, where
|y| = 3.

(i) If |C| /∈ {2,3}, then return to Step 1.
(ii) If C = {c1, c2}, then if |c1c

−1
2 | = 3, and multc(t)(t − ci) = 1 for i = 1,2, set

b = c2c−1, and otherwise return to Step 1.
1 2
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(iii) If |C| = 3, then return to Step 1 unless yC = C, and C = {c1, c2, c3} with
multc(t)(t − c1) = multc(t)(t − c2) = 1� multc(t)(t − c3).
For the case multc(t)(t − c3) > 1: set b = c3.
For the case multc(t)(t − c3) = 1 and δ = 1: if n �≡ 0 (mod 3), the coefficient c

of tn−2 in c(t) lies in C, and

c(t) = (
t2 + ct + c2)(tn−3 − cn−3),

then set b = c, and otherwise return to Step 1.
For the case multc(t)(t − c3) = 1 and δ = 2: return to Step 1 unless p � 5. Let
c ∈ F be the coefficient of tn−3 in c(t). If n �≡ 1 (mod 3), c ∈ C, and

c(t) = (
t2 + ct + c2)(tn−4 − cn−4),

then set b = c. Otherwise if a ∈ F# is such that c = 2a, and we have a ∈ C, the
constant term in c(t) is −an−2 and the coefficient of t is −2an−3, then set b = a

and otherwise return to Step 1.
4. If there exists a prime r such that r � n/3, r �= p, and t2r + br tr + b2r divides c(t),

then return to Step 1.
5. Set g = b−1x; by the procedure in Proposition 5.1, determine whether the p′-part of

|g| is at most n18 logn and if so find |g| = Rpv . If either |g| > n18 logn, or |g| � n18 logn

and 3 does not divide R, then return to Step 1. Otherwise compute gRpv/3 and return
this element.

6. If no element is returned at Step 5 for any of the random elements x, then report
FAILURE.

We prove that this procedure is valid and estimate its complexity. Recall thatξ is an
upper bound for the cost of constructing a random element,O(ρF nω) is taken as the cos
of multiplying two n × n matrices overF, andρF is an upper bound on the cost of a fie
operation inF.

Lemma 6.8. Suppose that n � 5 and (n,p) �= (5,5). Then, with probability at least 1− ε,
Procedure 6.7 (FIND3CYCLE) returns an element of H conjugate to a 3-cycle in H0. It
is a Las Vegas algorithm and runs at a cost of O((logε−1)(ξn1/3 + ρF n1/3 log2 n(nω +
n log(nq) log logn))). This is O((logε−1)(ξn1/3 + ρF nω+1/3 log2 n logq)).

Proof. It follows from Lemma 6.6 that the proportion of elementsbg ∈ G such thatb ∈ F#

and the permutation corresponding tog is a pre-3-cycle of order at mostn18 logn is greater
than 0.14n−1/3. For each random element we apply the Las Vegas algorithm in Lemm
with probability of failure at most 0.07n−1/3 to find the distinct linear factors of its chara
teristic polynomial. Thus, for each random element, the probability that it is a pre-3-
of order at mostn18 logn, and that in addition we succeed in finding its distinct lin
factors, is at least 0.07n−1/3. It follows that the probability of failing to find such an e
ement, and its linear factors, afterN independent random selections fromG is less than
(1 − 0.07n−1/3)N and this quantity is less thanε provided thatN � log(ε−1)n1/3/0.07.
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Thus by takingN = �log(ε−1)n1/3/0.07�, the procedure will find such an element, and
linear factors, with probability greater than 1− ε.

Moreover, if bg is selected, whereb ∈ F# and g is a pre-3-cycle of order at mo
n18 logn, then it follows from Proposition 6.3 thatb is identified correctly in Step 3, an
from Propositions 6.2 and 5.1 that Steps 4 and 5 respectively are completed succe
The procedure therefore returns a 3-cycle in〈g〉 in this case. Thus we have proved th
the probability the procedure reports FAILURE is less thanε. To complete the proof tha
this is a Las Vegas algorithm we need to prove that whenever an answer is return
correct, that is to say, we must prove that any element returned by the procedure is
a 3-cycle.

Suppose that an element is returned after testingx ∈ G, wherex = dg with d ∈ F# and
g ∈ H . Suppose first that Step 3 correctly identifies the scalarb = d . In each case, from th
definition ofb it follows that condition (a) of Proposition 6.2 holds. Also condition (b)
Proposition 6.2 follows from Step 4. Henceg is a pre-3-cycle, and in this case we saw
the previous paragraph that the element returned is a 3-cycle.

It remains to prove that, whenever an elementx = dg is returned, then Step 3 correct
definesb asd . What we prove is that, if in processing an elementx = dg a scalarb is
defined at Step 3, then eitherb = d , or, if not, then the element fails the tests in Step
Suppose then that in Step 3 the scalarb is defined andb �= d . Set z = bd−1 and s =
|z| > 1, let the cycle lengths ofg be mi = rip

ai , for 1 � i � l, andm = ∑
i p

ai , as in
Notation 4.1.

Suppose first thatq ≡ 2 (mod 3). Then whetherb is defined in Step 3.1(ii) o
Step 3.1(iii), the irreducible polynomialt2 + bt + b2 dividesc(t). Thus, by Lemma 4.4(b)
3s divides ri for somei. Now 3|(bz)d−1| = 3|z2| divides 3|z| = 3s which in turn di-
videsri . Hence by Lemma 4.4(b), multc(t)(t

2 + (bz)t + (bz)2) > 0. Also by Lemma 4.4(a)
multc(t)(t − bz) > 0 either if bz �= d , or if bz = d and m > δ. However, if the latter
multiplicity is positive, thenbz ∈ C, which is a contradiction (whetherb was defined in
Step 3.1(ii) or (iii)). Thusm = δ, andbz = d which implies thatz = b−1d = z−1. Hence
z2 = 1 and sincez �= 1, we conclude thatz = −1 andp is odd,s = 2, andb = −d . This
means that 3s = 6 dividesri , and soc(t) is divisible by(t6−d6)/(t2−d2) = t4+d2t2+d4

(see Lemma 4.4(b) again). Also,n � ri � 6. Thus the primer = 2 satisfiesr � n/3, r �= p,
and so this element would not pass the test of Step 4, and hence such an elementx is never
returned.

Thereforeq ≡ 1 (mod 3). For each of the possibilities in this case we haveby, by2 ∈
C ⊆ {b, by, by2} and multc(t)(t −by) = multc(t)(t −by2) = 1. Therefore by Lemma 4.4(a
each of|zy| and |zy2| dividesri for somei. Therefore, the orders of(byz)d−1 = (zy2)2

and (by2z)d−1 = (zy)2 also divideri , and so forj = 1,2, by Lemma 4.4, multc(t)(t −
byj z) > 0 either ifbyj z �= d or if byj z = d andm − δ > 0.

Claim. d = by or by2, so that d ∈ C, and s = 3 divides ri for some i.

If multc(t)(t − byj z) > 0 for bothj = 1 andj = 2, thenbzy, bzy2 ∈ C. Sincez �= 1,
this implies thatz = y or y2, and sos = |z| = 3 andd = by or by2. In particulard ∈ C,
ands = 3 dividesri for somei. Thus the claim is proved in this case. On the other ha
if for j = 1 or 2 we have multc(t)(t − byj z) = 0, then (by the observation at the end
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the previous paragraph)m = δ andbyj z = d . Then sincez = bd−1, this implies thatyj =
b−1dz−1 = z−2, and sod = byj z = bz−1 ands = |z| = 3 or 6. If s = 3 thenz = z−2 = yj

and sod = by2j and as in the previous case,d ∈ C and the claim is proved. Suppose th
that s = |z| = 6, so that in particularp is odd. Then|zyj | = |z−1| = 6, and we showed in
the previous paragraph that this dividesri for somei. Thusn � ri � 6, andc(t) is divisible
by

t6 − d6

t − d
= (t − dz)

(
t − dz2)(t − dz3)(t − dz4)(t − dz5).

However, in this case all five of the elementsdz�, with 1 � � � 5, satisfy the condition
for membership of the setC, and in such a case, the element would have failed the te
Step 3.2(i), and the scalarb would not have been defined. Thus the claim is proved in
cases.

Since we are assuming thatx is returned, we have now thatd = by or by2, thatd ∈ C,
and that 3 dividesri for somei. The last condition implies thatt2 + dt + d2 = (t − dy) ×
(t − dy2) dividesc(t), and sot − b dividesc(t). Henceb ∈ C. ThusC = {b, by, by2} =
{b, c, d}, where t2 + dt + d2 = (t − b)(t − c). By Lemma 4.4, multc(t)(t − b) =
multc(t)(t − c) = ∑

3|ri p
ai , and it follows from Step 3.2 that this multiplicity must be 1

Also by Step 3.2, and sinced �= b, it follows that multc(t)(t − d) = 1 and so by
Lemma 4.4,m − δ = 1. If δ = 1, thenm = 2, a1 = a2 = 0, and soc(t) = (tr1 − dr1) ×
(tr2 − dr2)/(t − d), and the coefficient oftn−2 is 0 if min{r1, r2} = 1, andd otherwise.
However, by the definition ofb in Step 3.2(iii), the coefficient oftn−2 is b, which is a
contradiction. Thusδ = 2, m = 3, and all theai = 0. By Step 3.2(iii),p � 5 and sincep
dividesn, alson � 5. At this stage we have

c(t) = (
t r1 − dr1

)(
t r2 − dr2

)(
t r3 − dr3

)
/(t − d)2,

and 3 dividesr1, say, and 1� r2 � r3. Also by Step 3.2, the coefficient oftn−3 is b or
2b (and in particular is non-zero). The coefficient oftn−3 in c(t) above is 2d (if r2 > 1),
d (if r2 = 1 < r3), or 0 (if r2 = r3 = 1). Sinceb �= d and the coefficient oftn−3 is b or
2b, it follows that r3 > 1, and eitherr2 > 1 andb = 2d , or r2 = 1 and 2b = d . However
d = by or by2, and henceb3 = d3. This implies thatp = 7, and hencen � 7 (sinceδ = 2).
Suppose thatr2 = 1 and 2b = d , so that

c(t) = (
t r1 − dr1

)(
t r3−1 + dtr3−2 + · · · + dr3−1).

By Step 3.2, the constant term is−bn−2 and the coefficient oft is −2bn−3. Comparing the
constant term and coefficient oft in c(t) above we get that−dn−2 = −bn−2 and−dn−3 =
−2bn−3, respectively. Substitutingd = 2b in these equations, we find that 7 divides b
2n−2 − 1 and 2n−4 − 1 which is impossible. Thusr2 > 1, b = 2d , and

c(t) = (
t r1 − dr1

)(
t r2−1 + dtr2−2 + · · · + dr2−1)(t r3−1 + dtr3−2 + · · · + dr3−1).

By Step 3.2(iii),c(t) = (t2 + bt + b2)(tn−4 − bn−4). Comparing the constant term a
coefficient of t in these two expressions forc(t), we get that−dn−2 = −bn−2 and
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−2dn−3 = −bn−3, respectively. Substitutingb = 2d in these equations, we find that
divides both 2n−2 − 1 and 2n−4 − 1 which is impossible.

Thus the procedure correctly identifiesb = d and we have completed the proof that ea
element returned is a 3-cycle.

Finally we determine the cost. The cost of processing each of up to log(ε−1)n1/3/0.07
random elementsx is as follows. First we computec(t) at a cost ofO(ρF nω logn), see
Lemma 4.5. Next we determine the setC: first we compute the set of distinct linear facto
of c(t) at a cost ofO(ρF n log2 n log(nq) log logn), see Lemma 4.6. Ifq ≡ 2 (mod 3),
then we either compute the set of quadratic irreducible factors ofc(t), and from this deter
mineC, or we determine by division the factorst3 − c3 of c(t), for which t − c is a linear
factor. If q ≡ 1 (mod 3), then we can easily determineC from the set of linear factors. I
either case the cost is less thanO(ρF nω). (Note that the factorisation algorithm employ
is Las Vegas and may fail, as discussed in the first paragraph of the proof.)

If we have been successful in determiningC, then determiningb costs at mostO(n)

field operations (as we may need to multiply two polynomials, one of degree 2 an
other of degree at mostn − 3). To perform Step 4, for each of theO(n/ logn) primes
r � n/3, r �= p, we requireO(logr) field operations to determinet2r + br tr + b2r , and
thenO(n) field operations to check whether it dividesc(t), a total ofO(n2/ logn) field
operations. Determiningg costsO(n2) field operations, and deciding whetherg has order
less thann18 logn, and if so finding|g| costsO(nω log2 n) field operations by Propos
tion 5.1. Finally extracting the 3-cycle costs anotherO(nω log2 n) field operations. �

It is unfortunate that the procedure above fails whenp = 3. In this case we have a
analogous method based on pre-double-transpositions to construct a double-transp
This method only fails whenp = 2 , but for simplicity we present it only forp = 3. It is
based on Propositions 6.2 and 6.4.

Procedure 6.9 (FINDDOUBLETRANSPOSITION). We are given a positive constant ε, and
a subgroup G � GL(V ) = GL(d, q) (where p = 3) such that H ′ � G � ZV ×H where H

is conjugate to H0 ∼= Sn and n � 7.

1. Select up to �log(ε−1)n1/2/0.0249� random elements x ∈ G, and perform the follow-
ing steps for each.

2. Find the characteristic polynomial c(t) of x, and the set C of elements c ∈ F# such that
t2 − c2 divides c(t).

3. If C is not of the form C = {c,−c}, with multc(t)(t + c) = 2, then return to Step 1.
(i) If multc(t)(t − c) �= 2, then let b = c.

(ii) If multc(t)(t − c) = 2 and δ = 1, then if n ≡ 5 (mod 6) and the coefficient d of
tn−2 in c(t) lies in C and c(t) = (t − d)(t + d)2(tn−4 − dn−4), then set b = d ;
otherwise return to Step 1.

(iii) If multc(t)(t − c) = 2 and δ = 2, then return to Step 1 unless n ≡ 0 (mod 6) and
the coefficient d of tn−3 in c(t) lies in C.
If c(t) = (t − d)(t + d)2(tn−5 − dn−5), then set b = d .
If the coefficients of tn−4, tn−5 in c(t) are d2,0 respectively, then set b = −d .
Otherwise return to Step 1.
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4. If there exists a prime r such that r = 2 or 5 � r < n, and t r + br divides c(t), then
return to Step 1.

5. Set g = b−1x; using the procedure in Proposition 5.1, determine whether |g| � n18 logn

and if so find |g| = R3v . If either |g| > n18 logn, or |g| � n18 logn and R is odd, then
return to Step 1. Otherwise compute gR3v/2 and return this element.

6. If no element is returned at Step 5 for any of the random elements x then report FAIL -
URE.

We prove that this procedure is valid and estimate its complexity.

Lemma 6.10. Suppose that n � 7. Then, with probability at least 1 − ε, Proce-
dure 6.9 (FINDDOUBLETRANSPOSITION) returns an element of H conjugate to a
double-transposition in H0. It is a Las Vegas algorithm and runs at a cost of at
most O((logε−1)(ξn1/2 + ρF n1/2 log2 n(nω + n log(nq) log logn))). This is at most
O((logε−1)(ξn1/2 + ρF nω+1/2 log2 n logq)).

Proof. It follows from Lemma 6.6 that the proportion of elementsbg ∈ G such thatb ∈ F#

and the permutation corresponding tog is a pre-double-transposition of order at m
n18 logn is greater than 0.0498n−1/2. As in the first paragraph of the proof of Lemma 6
we find the characteristic polynomialc(t) of each random element and use a Las Ve
algorithm to find the distinct linear factors ofc(t) with probability of failure less than
0.0249n−1/2; then by analysing up toN = �log(ε−1)n1/2/0.0249� random elements, th
procedure will find an elementbg with g a pre-double-transposition of order less th
n18 logn, and will succeed in finding the linear factors of its characteristic polynomial,
probability greater than 1− ε. Moreover, for such an elementbg, it follows from Propo-
sition 6.4 thatb is identified correctly in Step 3, and from Propositions 6.2 and 5.1
Steps 4 and 5 respectively are completed successfully. The procedure therefore ret
double-transposition in〈g〉 in this case. Thus the probability the procedure reports FAIL -
URE is less thanε. The next step is to prove that any element returned by the proced
indeed a double-transposition.

Suppose that an element is returned after testingx ∈ G, wherex = cg with c ∈ F# and
g ∈ H . Suppose first that in Step 3 the scalarb is defined asb = c. Then conditions (a) an
(b) of Proposition 6.2.2 follow from the tests in Steps 3 and 4, respectively, and sog is a
pre-double-transposition. Thus the element returned by Step 5 is a double transpos

It remains to prove that, whenever an elementx = cg is returned, then Step 3 correct
definesb asc. What we prove is that, if while processing an elementx = cg a scalarb is
defined in Step 3, then eitherb = c, or, if not, then the element fails the tests in Step
Suppose then that in Step 3 the scalarb is defined andb �= c. Setz = bc−1 ands = |z| > 1,
let the cycle lengths ofg bemi = rip

ai , for 1� i � l, andm = ∑
i p

ai , as in Notation 4.1
Note that if s is odd, then|−z| = 2s. By Step 3 and the definition ofC, we haveC =
{b,−b}, multc(t)(t +b) = 2, and multc(t)(t −b) > 0. Then by Lemma 4.4(a),s = |z| divides
ri for somei, and if s is odd, then also 2s = |−z| dividesri for somei. Without loss of
generality we may assume that lcm{2, s} dividesr1. Suppose first thats = |z| > 2, which
means thatbz �= c. Now (bz)c−1 = z2, so |(bz)c−1| dividesr1 and hence, by Lemma 4.
multc(t)(t − bz) > 0 (sincebz �= c). If s is odd, then|−z2| = 2|z| = 2s which dividesr1;
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also if s is even and greater than 4, then−bz �= c and 1�= (−bz)c−1 = −z2 ∈ 〈z〉, and so
|−z2| dividesr1. Thus in either of these cases|(−bz)c−1| > 1 and dividesr1, and−bz �= c,
and hence, by Lemma 4.4, multc(t)(t + bz) > 0. It follows thatbz,−bz ∈ C, which is a
contradiction. Thuss = 4, and soc = bz−1 = −bz and b4 = c4. Since 4 dividesri , it
follows thatt4 − c4 = t4 − b4 dividest r1 − cr1 and hencet2 + b2 dividesc(t), and so, if
s > 2 then the elementx = cg fails the test in Step 4.

Assume now thats = 2. Thenr1 is even, andb = −c. Since multc(t)(t + b) = 2, it
follows from Lemma 4.4 thatm − δ = 2, som = ∑

i 3ai = 2 + δ � 4. We claim that all
theai = 0. If this is not so then a uniqueai = 1; if δ = 1 then the number of cyclesl = 1
and so 3 dividesr1 = n contradictingδ = 1; similarly if δ = 2 thenl = 2, and exactly one
of the two cycle lengths is divisible by 3, contradictingδ = 2. Thus all theai = 0 and so
l = 2+ δ. Suppose that the element passes the tests at Step 4. Thenc(t) is not divisible by
t2 + b2 = t2 + c2, or by t r + br = t r − cr for any odd primer satisfying 5� r < n. Thus
the only possible cycle lengths are 1 and 2, and hencen � 2l = 4 + 2δ. Sincen � 7 this
is a contradiction. Thus our claim is proved, and the proof is complete that every el
returned by the procedure is a double-transposition.

Finally we determine the cost. The cost of processing each of up to�log(ε−1)n1/2/

0.0249� random elementsx is as follows. First we computec(t) at a cost ofO(nω logn)

field operations (see Lemma 4.5), and determine the setC at a cost ofO(ρF n log2 n ×
log(nq) log logn) (see Lemma 4.6). Step 3 requires a constant number of field oper
to compute a polynomial for comparison withc(t). To perform Step 4, for each of th
O(n/ logn) primesr such thatr = 2 or 5� r < n/2, we requireO(n) field operations to
check whethert r + br dividesc(t), a total ofO(n2/ logn) field operations. Determinin
g costsO(n2) field operations, and deciding thatg has order less thann18 logn, and if so
finding |g| costsO(nω log2 n) field operations by Proposition 5.1. Finally extracting
double transposition costs anotherO(nω log2 n) field operations. �

7. Constructing the first vector of B

In order to identifyG as conjugate to a subgroup ofZV × H0, we need to find a linked
basisB for V relative toH , as defined in Section 3.2. We construct a vector of this b
using a 3-cycle or double-transpositiong constructed in the previous section. We need
find a conjugateg′ of g such that[g,g′] = g−1g′−1

gg′ �= 1. In [6, Lemma 5.4], a Monte
Carlo algorithm called DOUBLEANDSHRINK is given for achieving this for a larger cla
of elementsg. In our situation, whereg is a 3-cycle or a double transposition, the algorit
can be modified to give a Las Vegas algorithm (by checking that|gg′| = 5 if g is a 3-cycle,
or |gg′| = 6 if g is a double transposition, see Table 1).

Lemma 7.1 (DOUBLEANDSHRINK). Given an element g ∈ GL(V ) that is conjugate to a
3-cycle or a double-transposition in H0, there is a Las Vegas algorithm that, with proba-
bility greater than 1/10, constructs a conjugate g′ of g such that there is exactly one point
moved by both g and g′ (and in particular [g,g′] �= 1); the cost is O(logn(ξ + ρF nω)).
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Table 1
Pairs of double-transpositions

z g′ gg′ |gg′| [g,g′] |[g,g′]|
1 (15)(67) (125)(34)(67) 6 (152) 3
2 (15)(26) (1625)(34) 4 (12)(56) 2
2 (13)(56) (1234)(56) 4 (13)(24) 2
2 (15)(36) (125)(346) 3 (152)(364) 3
3 (12)(35) (345) 3 (354) 3
3 (13)(25) (15234) 5 (12453) 5

The next two lemmas deal separately with the casesp �= 3 andp = 3, and show how
such elementsg,g′ can be used to identify a vector of the formb(ei − ej ) + (W ∩ E) for
somei �= j ; by relabeling theei and re-scaling if necessary, we may assume that su
vector lies inB. Without loss of generality we may assume thatg,g′ ∈ H0 and we identify
these elements with their corresponding permutations.

Lemma 7.2. Suppose that p �= 3 and that g,g′ ∈ H0 correspond to g = (123) and g′ =
(145).

(a) The fixed point subspace FV (g) of g in V is

FV (g) = 〈v1 + 2v2 + 3v3, v4, . . . , vn−δ〉,
V = FV (g) ⊕ V (g) where V (g) = 〈v1, v2〉, and both FV (g) and V (g) are 〈g〉-
invariant.

(b) For any v ∈ V , v + vg + vg2 ∈ FV (g) and 2v − vg − vg2 ∈ V (g), and in particular
v ∈ V (g) if and only if v + vg + vg2 = 0.

(c) Similarly V = FV ([g,g′]) ⊕ V ([g,g′]), where FV ([g,g′]) is the fixed point subspace
of [g,g′] = (142) and V ([g,g′]) = 〈v1, v2 + v3〉. Moreover V (g) ∩ V ([g,g′]) = 〈v1〉
is the span of an element of B.

Proof. The fixed point space ofg in U is FU(g) = 〈e1 + e2 + e3, e4, . . . , en〉. SinceE ⊆
FU(g) � W , it follows that dimFV (g) = dimFU(g) − δ = n − 2− δ. Now FU(g) ∩ W =
〈(e1−e2)+2(e2−e3)+3(e3−e4), e4−e5, . . . , en−1−en〉, andFV (g) is the image of this
subspace under the quotient mapW → W/(W ∩ E). ThusFV (g) is as claimed. Clearly
V = FV (g) ⊕ V (g) and bothFV (g) andV (g) are〈g〉-invariant.

Let v ∈ V . Thenv = x + av1 + bv2 for somea, b ∈ F andx ∈ FV (g). We compute
v + vg + vg2

as

(x + av1 + bv2) + (
x + av2 − b(v1 + v2)

) + (
x − a(v1 + v2) + bv1

)
,

which equals 3x ∈ FV (g). Thus,v + vg + vg2 ∈ FV (g), and 2v − vg − vg2 = 3(v − x) =
3av1 + 3bv2 ∈ V (g). In particularv ∈ V (g) if and only if v + vg + vg2 = 0.

Now gg′ = (12345) and[g,g′] = (142). Thusg(324) = [g,g′] and thereforeV ([g,g′])
is the subspace spanned byv

(324) andv
(324). Now v1 = e1 − e2 + (W ∩ E) is mapped by
1 2
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(324) to e1 − e4 + (W ∩ E) = v1 + v2 + v3, andv2 = e2 − e3 + (W ∩ E) is mapped by
(324) to e4 − e2 + (W ∩E) = −(v2 + v3). HenceV ([g,g′]) = 〈v1 + v2 + v3,−v2 − v3〉 =
〈v1, v2 + v3〉 as claimed. FinallyV (g) ∩ V ([g,g′]) = 〈v1〉. �
Lemma 7.3. Suppose that p = 3 and that g,g′ ∈ H0 correspond to g = (12)(34) and
g′ = (15)(67).

(a) The fixed point subspace FV (g) of g in V is

FV (g) = 〈v1 + 2v2 + v3, v3 + 2v4, v5, . . . , vn−δ〉,

V = FV (g) ⊕ V (g) where V (g) = 〈v1, v3〉, and both FV (g) and V (g) are 〈g〉-
invariant.

(b) For any v ∈ V , v + vg ∈ FV (g) and 2v + vg ∈ V (g). In particular v ∈ V (g) if and
only if v + vg = 0.

(c) Similarly V = FV (gg′
) ⊕ V (gg′

), where FV (gg′
) is the fixed point subspace of gg′ =

(25)(34) and V (gg′
) = 〈v2 +v3 +v4, v3〉. Moreover, V (g)∩V (gg′

) = 〈v3〉 is the span
of an element of B.

Proof. The fixed point space ofg in U is FU(g) = 〈e1 + e2, e3 + e4, e5, . . . , en〉. By
a similar argument to the proof of Lemma 7.2, we haveFU(g) ∩ W = 〈(e1 − e2) +
2(e2 −e3)+ (e3 −e4), (e3 −e4)+2(e4 −e5), e5 −e6, . . . , en−1 −en〉, andFV (g) is the im-
age of this subspace under the quotient mapW → W/(W ∩E). ThusFV (g) is as claimed
ClearlyV = FV (g) ⊕ V (g) and bothFV (g) andV (g) are〈g〉-invariant.

Let v ∈ V . Then v = x + av1 + bv3 for somea, b ∈ F and x ∈ FV (g). We com-
pute v + vg as (x + av1 + bv3) + (x − av1 − bv3) = 2x ∈ FV (g), and so 2v + vg =
v + 2x = av1 + bv3 ∈ V (g). In particularv ∈ V (g) if and only if v + vg = 0. Clearly
V (g) ∩ V (gg′

) = 〈v3〉.
For part (c), seth = gg′

. ThenV (h) = V (g)g
′

is the subspace spanned byv
g′
1 andv

g′
3 .

Now v
g′
1 = e5 − e2 + (W ∩ E) = −v2 − v3 − v4, andv

g′
3 = v3. ThusV (h) is as claimed

andV (g) ∩ V (h) = 〈v3〉. �
We formalise our procedure to construct the first basis element ofB in the following

procedure. Whenp �= 3 we construct a conjugateg′ of a 3-cycleg such thatg,g′ move
exactly one common point. We can recognise that a conjugateg′ has this property by
checking that|gg′| = 5. For the casep = 3 we work with a double transpositiong. There
are sixAn-conjugacy classes of pairs(g, g′) such thatg′ is a conjugate ofg and[g,g′] �= 1.
Takingg = (12)(34), we list in Table 1 a representative forg′ from each of these conjugac
classes, and record the numberz of points moved by bothg and g′, the elementsgg′,
[g,g′], and their orders. We may recognise a conjugateg′ of g that moves exactly one o
the points moved byg by checking that|gg′| = 6.

Procedure 7.4 (FINDBASISELEMENT). We are given a positive constant ε, a subgroup
G � GL(V ) = GL(d, q) such that H ′ � G � ZV × H where H is conjugate to H0, n � 7,
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and an element g ∈ H ′ that is conjugate to a 3-cycle if p �= 3 or a double transposition if
p = 3.

1. Run the procedure DOUBLEANDSHRINK on g up to log(ε−1)/ log(10/9) times until
a conjugate g′ of g is found such that |gg′| = 5 (if p �= 3) or |gg′| = 6 (if p = 3); if no
such element is obtained then return FAILURE. Otherwise set h := [g,g′] (if p �= 3) or
g′gg′ (if p = 3) and perform the following steps.

2. Compute FV (g) and FV (h).
3. Compute V (g) as follows: choose y ∈ V \FV (g) and set u := 2y −yg −yg2

(if p �= 3)

or 2y + yg (if p = 3); choose y′ ∈ V \ 〈FV (g),u〉 and set u′ := 2y′ − y′g − y′g2
(if

p �= 3) or 2y′ + y′g (if p = 3); set V (g) = 〈u,u′〉.
4. Similarly compute V (h) and return a non-zero vector v ∈ V (g) ∩ V (h).

We prove that this procedure is valid and estimate its complexity. The complexi
volves the quantitiesρF ,ω defined before Theorem 1.1.

Lemma 7.5. With probability at least 1−ε, Procedure 7.4 (FINDBASISELEMENT) returns
a vector bv with v ∈ B involving two of the points moved by g and in the same g-cycle, for
some b ∈ F#. It is a Las Vegas algorithm and runs at a cost of at most O((logε−1)(ξ logn+
ρF nω logn)).

Proof. Since the procedure DOUBLEANDSHRINK returns a suitableg′ with probabil-
ity greater than 1/10 on a single run, the probability that it fails to find such ag′
after N = �log(ε−1)/ log(10/9)� runs is less thant = (9/10)N and since log(t−1) =
N log(10/9) � log(ε−1) we havet � ε. Thus the procedure reports FAILURE with prob-
ability less thanε. By our comments in the paragraph preceding Procedure 7.4, the
tests in Step 1 correctly recognise thatg′ andg move exactly one common point. Also b
Lemmas 7.2 and 7.3, the elementh is such thatV (g) ∩ V (h) is a 1-dimensional subspa
generated by an element of the required form. Also from these lemmas it follows that
correctly computes the subspacesV (g) andV (h), and hence the returned vector is of t
form claimed, that is to say, the returned vector is a scalar multiple ofei − ej + (W ∩ E),
for some distincti, j lying in the sameg-cycle.

It remains to determine the cost. As remarked in the first paragraph of this sectio
cost of findingg′ is O(log(ε−1)(logn(ξ + ρF nω))), andh is computed with a further cos
of O(ρF nω).

Computing a basis forFV (g) andFV (h) can be done at a cost ofO(ρF nω) as follows:
for X = g − I or h − I , by [13, Theorem 2.2] there is a deterministic algorithm that c
putes(n − δ) × (n − δ) matricesL,Q,U,P at a cost ofO(ρF nω) such thatX = LQUP ,
whereL is a lower triangular matrix with 1’s on the diagonal,Q,P are permutation matri
ces, and

U =
[

U1
0

]
,
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whereU1 is ans × (n − δ) upper triangular matrix with non-zero diagonal entries, wh
s � n − δ ands = rank(X). Consider the case whereX = g − I . (The caseX = h − I is
similar.) A vectorv ∈ FV (g) if and only if vX = 0, and this holds if and only ifvLQU = 0,
sinceP is non-singular. NowvLQU = 0 holds if and only if the firsts entries ofvLQ are
zero. LetI ′ denote the(n− δ − s)× (n− δ) matrix formed by removing the firsts rows of
the identity matrixI . ThenvLQU = 0 holds if and only ifvLQ lies in the row space o
I ′, or equivalently (sinceQ,L are non-singular), if and only ifv lies in the row space o
I ′Q−1L−1. ThusFV (g) is the row space ofI ′Q−1L−1 and the matrixI ′Q−1L−1 can be
computed as the lastn − δ − s rows ofQ−1L−1 at a further cost ofO(ρF nω). Note that
n − δ − s = rank(I ′Q−1L−1) = dim(FV (g)) = n − δ − 2 sos = 2.

For the vectory ∈ V \ FV (g), we can choose the first row ofQ−1L−1. Thusu can be
found at a cost ofO(ρF n2), given Q−1L−1. Next we echeloniseu againstI ′Q−1L−1,
at a cost ofO(ρF nω), to find a basis for〈FV (g),u〉, and then choose a vectory′ ∈ V \
〈FV (g),u〉. Thus the cost of computingu′, givenu, is O(ρF nω), and the basisu,u′ for
V (g) has been found at a cost ofO(ρF nω). The cost of finding a basisw,w′ for V (h) is
the same. Finally to computev we find a non-trivial solution forau + a′u′ = bw + b′w′
for a, a′, b, b′ ∈ F at a cost ofO(ρF n). �

8. More vectors of B: avoiding n-cycles

The algorithm presented in [5] to recogniseAn andSn requires ann-cycle, which is
found by random search, and requires the examination ofO(n) group elements. Findin
an n-cycle by random search is more expensive than the algorithms presented ab
finding the 3-cycle or double-transpositiong. In this section we discuss a method th
avoidsn-cycles for constructing a linked basisB. It uses an elementbh ∈ G such thath
is conjugate to an element ofH0 involving a cycleC of prime lengthr greater than 3n/5
with an additional property. Ifp �= 3, then we require that the cycleC contain exactly two
of the points moved by the 3-cycleg, while if p = 3, then we require thatC contain both
points from a specified transposition involved in the double-transpositiong, and neither
of the points from the other transposition. To ensure that we have sufficiently many
elements, we must be able to utilise elements of this type where the primer is significantly
smaller thann.

Lemma 8.1. Let n � 13, let g ∈ An be a 3-cycle or a double transposition, and in the latter
case let (i, j) be one of the g-cycles. Then the proportion of elements h of either Sn or An

such that

(a) h has a cycle C of length r for some prime r satisfying 0.6n+0.4< r < 0.95n−0.85,
and

(b) C contains exactly two of the points moved by g, and if g is a double transposition
then these points are i and j ,

is greater than 0.03/ logn if g is a 3-cycle, or 0.5× 10−3/ logn if g is a double transposi-
tion.
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Proof. Let c(n) denote the number of primesr satisfying 0.6n + 0.4< r < 0.95n − 0.85.
We claim thatc(n) > 0.23n/ logn for all n � 13 exceptn = 31, and that ifn = 31 then
c(n) > 0.15n/ logn. This claim can be checked by direct computation forn < 1,000. Sup-
pose then thatn � 1,000. By [24, Theorem 1], forx � 1,000, the number of primesπ(x)

less thanx satisfies

x

lnx
< π(x) <

x

lnx

(
1+ 3

2 lnx

)

and hence, since(1+ 3/(2 ln(1,000))) < 1.218, we have

c(n) >
0.95n − 0.85

ln(0.95n − 0.85)
− 1.218

0.6n + 0.4

ln(0.6n + 0.4)
.

Then, using the facts thatcx (for c > 0) and(ln(0.6x))/ lnx are increasing functions fo
x � 1,000, we obtain the following:

0.95n − 0.85� 0.949915n, 0.6n + 0.4� 0.6004n,

ln(0.95n − 0.85) < lnn, ln(0.6n + 0.4) >
ln(600)

ln(1,000)
lnn,

and hence

c(n) >
0.949915× n

lnn
− 1.218× 0.6004× n × ln(1,000)

ln(600) × lnn

> 0.16
n

lnn
> 0.23

n

logn
.

Thus the claim is proved.
The proportion of elements ofSn having a cycleC of lengthr , for a given primer as

above, such thatC contains exactly two points of a given 3-cycle is

3
(
n−3
r−2

)
(r − 1)!(n − r)!

n! = 3

n

r − 1

n − 1

n − r

n − 2
. (3)

For fixed n, the right-hand side of (3) is a monotone decreasing function ofr , for r

satisfying 0.6n + 0.4 < r < 0.95n − 0.85. Thus the proportion is greater than the va
of the right-hand side of (3) atr0 := 0.95n − 0.85. Now (r0 − 1)/(n − 1) � 0.875 and
(n − r0)/(n − 2) > 0.05 for all n � 13, and so this proportion is greater than 0.13125/n.
For n �= 31, we showed above that there are more than 0.23n/ logn such primesr , and
hence the proportion of elements inSn of the required type is greater than 0.03/ logn.
If n = 31, then the only prime in the interval isr = 23, so the right-hand side of (3)
3×22×8
n×30×29 > 0.6/n. Sincec(31) > 0.15n/ logn, the proportion of elements in this case is
least 0.09/ logn. For alln, since exactly half of such elements are even permutations
proportion inAn is the same as the proportion inSn.
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Similarly the proportion of elements ofSn, or of An, having a cycleC of lengthr , for
a given primer as above, such thatC contains the two pointsi, j and neither of the othe
two points moved by the double transpositiong, is

(
n−4
r−2

)
(r − 1)!(n − r)!

n! = 1

n

r − 1

n − 1

n − r

n − 2

n − r − 1

n − 3
.

The right-hand side of this equality is(n − r − 1)/3(n − 3) > 0.05/3 times the right-hand
side of (3). It follows that the proportion of elements ofSn of the required type is at lea
0.03× (0.05/3)/ logn = 0.5× 10−3/ logn. �

In the previous section we showed how to construct a vectorv of a linked basisB using
either a (conjugate of a) 3-cycle or double-transpositiong. Moreover, in the former case
v involved two of the points moved byg, while in the latter case,v involved two points
forming one of the transpositions ofg (see Lemma 7.5). Now we show how to usev to
construct an elementbh ∈ G, whereb ∈ F# andh ∈ H , such thath satisfies Lemma 8.1(a
and (b). We simultaneously construct a linked sequence of vectors of length great
0.6n. First we handle the case wherep �= 3.

Lemma 8.2. Let v = ei − ej + (W ∩E) ∈ B0 for some distinct i, j , let c ∈ F#, h ∈ H0, and
let r be an odd prime such that n/2< r � n. Let r(v, ch) denote the least positive integer k

such that v(ch)k ∈ 〈v〉. Then r(v, ch) = r if and only if h has a (unique) cycle C of length
r and either {i, j} ⊆ C, or |{i, j} ∩ C| = 1 and h fixes {i, j} \ C.

Proof. Setx = ch. Now vhk = es − et + (W ∩ E) wheres = ih
k

andt = jhk
. Thusvxk ∈

〈v〉 if and only if hk fixes {i, j} setwise. Suppose thatr(v, x) = r . Thenh2r fixes i andj

so theh-cycles containingi andj have lengths dividing 2r . By the minimality ofr(v, x),
at least one of these cycles has length a multiple ofr , and sincer > n/2 there must be a
(unique)h-cycleC of lengthr andC must contain at least one ofi andj , sayi ∈ C. If
j /∈ C thenhr fixes{i, j} andi, and hencehr also fixesj . Thus theh-cycleC′ containing
j has length dividingr , and sinceC′ �= C andr > n/2, we have|C′| = 1. Conversely ifh
has a cycleC of lengthr and either{i, j} ⊆ C, or |{i, j} ∩ C| = 1 andh fixes {i, j} \ C,
then clearlyr(v, x) = r . Thus the lemma is proved.�
Procedure 8.3 (MOREBASISVECTORS). We are given a positive constant ε, a subgroup
G � GL(V ) = GL(d, q) such that H ′ � G � ZV × H where H is conjugate to H0 and
n � 13, an element g ∈ H ′ conjugate to a 3-cycle if p �= 3 or a double-transposition if
p = 3, and a vector v ∈ B involving two of the points moved by g and in the same g-cycle.

1. Select up to 1
c

log(ε−1) logn random elements x ∈ G, and perform the following steps
for each, where c = 0.03 if p �= 3 and c = 0.5× 10−3 if p = 3.

2. For i = 0 if p = 3, or i ∈ {0,1,2} if p �= 3, compute the vectors vgi, vgix, . . . , vgixn−1

and check whether ri := r(vgi, x) is a prime r satisfying 0.6n + 0.4 < r < 0.95n −
0.85. If this is not the case for any i, then return to Step 1.
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# If p �= 3, thenri might be such a prime for more than one value ofi. However
in this case the value of the prime is the same for all suchi.

Else if r is the unique such prime occurring then go to Step 3.
3. For each i such that ri = r , compute vgix�g for 0� � � n−1, and find ni := |{� | 1�

� < r , vgix� �= vgix�g}|.
# For anyx ∈ G, the inequalityni � 2 holds for at mosti.

If we find no i such that ni � 2, then return to Step 1; else find � such that 1� � < r/2
and u := vgix� − vgix�g �= 0.
Case p �= 3: if u = dvgi , then compute h0 := −d−1x�; or if u = dvgi+1, then compute
h0 := d−1x�; else return to Step 1.
Case p = 3: if u = dv, then compute h0 := −d−1x�; else return to Step 1.
Compute and return h0, and the vectors (vgi, vgih0, . . . , vg

ih
(r−2)
0 ).

4. If no elements and vectors are returned at Step 3 for any of the random elements then
report FAILURE.

Lemma 8.4. Suppose that n � 13. Then Procedure 8.3 (FINDMOREVECTORS) is a Las
Vegas algorithm that, with probability at least 1− ε, and at a cost of O((logε−1)(ξ logn+
ρF nω log2 n)), returns

(a) an element in H conjugate to an element of H0 involving an r-cycle C, for some prime
r such that 0.6n + 0.4< r < 0.95n − 0.85, and

(b) a linked sequence of r − 1 vectors (v1, . . . , vr−1) relative to H .

Proof. Let q be the proportion of elementsh ∈ H such that the permutation correspond
to h has a cycleC of prime lengthr (where 0.6n + 0.4 < r < 0.95n − 0.85), C contains
exactly two of the points moved byg, and if p = 3 then these points are interchang
by g and are the two points involved in the vectorv. It follows from Lemma 8.1 tha
q > c/ logn. Arguing as in the first paragraph of the proof of Lemma 6.8, we see that,
probability greater than 1− ε, we select at Step 1 at least one elementch with c ∈ F# and
h such an element.

Suppose thatx = ch is such an element. Suppose first thatp = 3. Thenv = ea − eb +
(W ∩ E) wherea andb lie in C and (a, b) is a transposition ofg. In this case Step
will succeed by Lemma 8.2, and findr0 = r . Then Step 3 will findn0 = 2 since there ar
exactly two distinct values of� such that 1� � < r andh� maps eithera to b or b to
a; and hence exactly two� such thatvx� �= vx�g. Exactly one of these two values of�

is less thanr/2, and for this� we haveu := vx� − vgx�g �= 0. Thus in Step 4 we hav
that ah� = b or bh� = a, and in either case we have thatu = −c�v and the procedur
definesh0 as−(−c�)−1x� = h�. We cannot tell whetherh� mapsa to b, or b to a, and so,
relabelling the standard basis vectors so that{a, b} = {1,2} andC = (1,2,3, . . . , r), the
procedure returns eithere1 − e2 + (W ∩E), e2 − e3 + (W ∩E), . . . , er−1 − er + (W ∩E),
or e2 − e1 + (W ∩E), e3 − e2 + (W ∩E), . . . , er − er−1 + (W ∩E), in either case a linke
sequence as required.
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Next suppose thatx = ch, thatC andr are as in the first paragraph, and thatp �= 3, so
g is a 3-cycle. For exactly one value ofi ∈ {0,1,2}, the vectorvgi will involve the two
points ofC moved byg, so we will havevgi = ea − eb + (W ∩ E) wherea andb lie in
C and are moved byg. Thus, for this value ofi, Step 2 will findri = r , by Lemma 8.2.
If there is a second value ofi, say i′, for which ri′ is a prime in the correct range the
by Lemma 8.2, sincea and b are the only points ofC moved byg, ri′ = r (note, the
same value ofr) and the third pointj moved byg is fixed byh. In this caseri′ = r for
all three values ofi′. So whetherri′ = r for a uniquei′ = i, or for all three values ofi′,
we will proceed to Step 3. In Step 3, we obtainni = 2 (wherei is as above); and ifh
fixes the third point moved byg then ni′ � r − 2 > 2 for eachi′ �= i. Thus, as in the
previous paragraph, the procedure will seek (and find) a unique� such that 1� � < r/2
and vgix� �= vgix�g, and will defineu := vgix� − vgix�g �= 0. If ah� = b then bh�

is
fixed by g and sou = c�(vgih� − vgih�g) = c�(eb − ej ) + (W ∩ E) = c�vgi+1 and in

this case the procedure definesh0 as (c�)−1x� = h�. Alternatively if bh� = a thenu =
c�(eb − ea) + (W ∩ E) = −c�v, and the procedure definesh0 as−(−c�)−1x� = h�. Thus
relabelling the standard basis vectors if necessary, we may assume thata = 1, b = 2,
1h0 = 2, andh0 = h� involves ther-cycle (1,2, . . . , r), so that the returned vectors a
e1 − e2 + (W ∩ E), e2 − e3 + (W ∩ E), . . . , er−1 − er + (W ∩ E).

Next, for any primep, we prove that any vectors returned, for a randomx = ch, form
a linked sequence relative toH . Suppose that Step 2 succeeds forx = ch (wherec ∈ F#,
h ∈ H ) with ri = r(vgi, x) = r , and suppose thatvgi = ea −eb + (W ∩E). By Lemma 8.2,
h has a cycleC of lengthr , C contains at least one of the pointsa, b, saya ∈ C, and either
b ∈ C or bh = b. Note that the conditionr > n/2 implies thatr is the only prime in the
correct interval that we can find for anyri′ . Suppose also that in Step 3 we find thatni � 2.
Now vgix� �= vgix�g if and only if g moves at least one ofah�

, bh�
(note here that, i

p = 2, theng does not interchangeah�
andbh�

since in that case|g| = 3). Thus the fac
thatni � 2 implies thatbh �= b and hence that{a, b} ⊂ C.

We claim that the only points ofC moved byg are the pointsa andb. Suppose to the
contrary thatg moves a pointm of C wherem /∈ {a, b}. Then there are positive intege

�, �′, �′′ less thanr such thatah� = b, bh�′ = m, andmh�′′ = a (so� + �′ + �′′ = r), and it
follows that{� | 1 � � < r, vgix� �= vgix�g} contains these three integers, and alsor − �,
r −�′, andr −�′′. However this set must have size at most two. Sincer is prime,� �= r −�,
so each of these six integers is equal to� or r − �. Since�′ + �′′ = r − � it follows therefore
that �′ = �′′ = �. However this implies thatr = 3� contradicting the fact thatr is prime.
Thus the claim is proved. Therefore the elementx = ch is of the type already considere
and for such elements we have proved that the procedure returns a linked sequ
vectors. Thus with probability greater than 1− ε the procedure will succeed and return
element and vectors as claimed.

This analysis has proved the two claims made as comments in Procedure 8.3, n
in the casep �= 3, at Step 2 there is at most one primer found for theri , and at Step 3 ther
is at most one value ofi such thatni � 2.

For each of the (up to)1
c

log(ε−1) logn random elements the cost is as follows. F
consider Step 2 where we compute the sequencevgi, vgix, . . . , vgixn−1, for i = 0 or, if
p = 3, for i = 0,1,2. To do this we computevgi (at a cost ofO(ρF n)) andx2, x22

, . . . , x2k
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where 2k � n < 2k+1 (at a cost ofO(ρF nω logn)); then, for eachj = 0, . . . , k, we multiply
the 2j × (n − δ) matrix with rowsvgi, vgix, . . . , vgix2j −1 by the matrixx2j

to determine
vgix2j

, vgix2j +1, . . . , vgix2j+1−1 (at a cost ofO(ρF nω logn)). Thus the cost of Step 2
O(ρF nω logn). For Step 3, computingvgix�g for 0 � � < n is done with a single matri
multiplication (since we have already computedvgi, vgix, . . . , vgixn−1), and finding� <

r/2 such thatu = vgix� − vgix�g �= 0 costsO(ρF n2). Computingx� requiresO(logn)

matrix multiplications (using thex2j
already computed); and finally computing the vect

that are returned costs, as before,O(ρF nω logn). �

9. Completing B

The next step of our procedure is the most delicate. We have, from Procedu
a linked sequence ofr − 1 vectors that we take to be

v1 = (e1 − e2) + (W ∩ E), . . . , vr−1 = (er−1 − er) + (W ∩ E).

We need to extend this sequence to a linked basisB. We do this by studying the images
thevi under random elements fromG. The following result, which is a modification of th
main result of [10] (see [25, Theorem 4.4.6]), tells us how many random elements w
needed.

For a sequenceHk = (h1, . . . , hk) of elements from a groupG, the cube of Hk

is defined recursively as the subsetC(Hk) = C(Hk−1) ∪ C(Hk−1)hk , where Hk−1 =
(h1, h2, . . . , hk−1), andC(H1) = {1, h1}. Also, for subsetsH ⊆ Sn andR ⊆ {1,2, . . . , n},
we denote the set of all pointsih, for i ∈ R andh ∈ H , by RH .

Lemma 9.1. Let n � 13, let ε be a positive constant, and let R be a subset of {1,2, . . . , n}
such that |R| is at least the smallest prime number r satisfying r > 0.6n + 0.4. If H =
(g1, . . . , gm) is a sequence of uniformly distributed random elements of An or Sn with m �
logn(log(ε−1) + logn), then RC(H) = {1,2, . . . , n} with probability greater than 1− ε.

Proof. For 0.6n + 0.4� x � n, define

f (x) = n −
⌊

(n − x)2

0.54n

⌋

and note thatf (x) > 0.7n. By [25, Lemma 4.4.5], for a uniformly distributed rando
elementg ∈ An or Sn, if S ⊆ {1,2, . . . , n} with |S| > 3n/5, then|S ∪ Sg| � f (|S|) with
probability at least 0.46. Thus if, say,t uniformly distributed random elementsg from An

or Sn are selected, then the probability that|S ∪ Sg| � f (|S|) for at least one of thes
elementsg is at least 1− (0.54)t .
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For a positive integerk, let f {k}(x) denote thekth iterated functionf {k}(x) =
f (f (f . . . (f (x)) . . .)). Define�0 to be the least positive integerk such thatf {k}(x) = n

for all x in the intervalr � x � n. Also definet by

t :=
⌈

log(ε−1)

log(0.54−1)
+ log(�0)

log(0.54−1)

⌉
, (4)

and setm0 := t�0. We claim thatm0 < (logn)(log(ε−1) + logn).
Suppose first thatn > 28/0.54. Then it was shown in the last paragraph of the pr

of [25, Theorem 4.4.6] that, if 0.625n < y � n and k > 0.93 + log log(0.54n), then
f {k}(y) = n. Now, as observed at the beginning of the proof, wheneverr � x � n we have
y = f (x) > 0.7n, and hencef {k}(x) = n wheneverk > 1.93+ log log(0.54n). Thus�0 �
� := �1.93+ log log(0.54n)�. Now (4) implies thatt < 1.13(log(ε−1) + log�0) + 1, and,
for n > 28/0.54, we have� < (logn)/1.13, and hencem0 = t�0 � t� < (logn)(log(ε−1)+
logn), as claimed. For 13� n � 28/0.54, we compute the exact value of�0 and check, for
each of these values ofn, thatm0 < (logn)(log(ε−1) + logn). Thus the claim is true fo
all n � 13.

Let x0 = |R| sox0 > 0.6n + 0.4. Suppose thatH = (g1, . . . , gm) are uniformly distrib-
uted random elements fromAn or Sn, wherem � �(logn)(log(ε−1) + logn)�. Let k1 be
the leasti such that|R ∪ Rgi | � f (x0), if such an integer exists, and setH1 = (gk1), R1 =
R ∪ Rgk1 = RC(H1), andx1 = |R1| so thatx1 � f (x0). Suppose thatHi = (gk1, . . . , gki

),
Ri = RC(Hi), and xi = |Ri | have been defined withk1 < · · · < ki and xi � f {i}(x0).
Let ki+1 be the least integerj > ki such that|Ri ∪ R

gj

i | � f (xi), if such an integer ex
ists, and setHi+1 = (gk1, . . . , gki

, gki+1), Ri+1 = RC(Hi+1), andxi+1 = |Ri+1|. Note that
xi+1 � f (xi) � f {i+1}(x0) sincef is a monotonically increasing function. Continuing
this way, let�′ be the number ofki that we obtain. If�′ � �0, then it follows from the
definition of�0 thatRC(H�′ ) = {1,2, . . . , n}, and hence thatRC(H) = {1,2, . . . , n}.

Thus it is sufficient to prove that�′ � �0 with probability greater than 1− ε. By our
claim proved above,m � m0 = t�0, and hence the probability that�′ � �0 is at least the
probability that we obtain�0 integerski satisfyingki+1 − ki � t , and by the first paragrap
of the proof, this probability is at least(1 − (0.54)t )�0 > 1 − �0(0.54)t , which is at leas
1 − ε. The last inequality holds if and only ifε � �0(0.54)t , which is equivalent tot �

log(ε−1)

log(0.54−1)
+ log(�0)

log(0.54−1)
, and this is true by the definition oft in (4). �

The following observation will be helpful for understanding the procedure for fin
a linked basis forV . Suppose that(v1, . . . , vs) is a linked sequence of vectors withvi =
(ei −ei+1)+ (W ∩E) (1� i � s). Then forh ∈ H , b ∈ F#, andi � s, vi(bh) ∈ 〈v1, . . . , vs〉
if and only if {ih, (i + 1)h} ⊆ {1,2, . . . , s + 1}, and in this case if{ih, (i + 1)h} = {j, k}
with j < k, thenvi(bh) = b′ ∑k−1

�=j v�, whereb′ = b if ih = j and b′ = −b if ih = k.
Since we can identify thatvi(bh) has this form as a linear combination ofv1, . . . , vs , we
can therefore identify the unordered pair{ih, (i + 1)h} and the scalar±b up to a sign.
Further, if we can also identifyih then we can determine the scalarb. Thus we shall look
for vectors of the formb′ ∑k−1

�=j v� = b′(ej − ek + (W ∩ E)) for someb′ ∈ F# and j, k

such that 1� j < k � s; we say that such a vector is aninterval vector in 〈v1, . . . vs〉 with
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basis vectors fromv1, . . . , vs .

Now we give an algorithm to construct a linked basis forV that can be used as th
standard basisB.

Procedure 9.2 (FINDBASIS). We are given a positive constant ε; a subgroup G of GL(V )

such that H ′ � G � ZV × H where H is conjugate to H0, and n � 13; and a linked
sequence of r − 1 vectors v1, . . . , vr−1, where r is a prime satisfying 0.6n + 0.4 < r <

0.95n − 0.85 and r − 1< n − δ.
Initially set s := r − 1, u1 := 0, and compute ui = ∑i−1

j=1 vj for i = 2, . . . , s + 1;

# if eachvi = (ei − ei+1) + (W ∩ E), thenui = (e1 − ei) + (W ∩ E);

For m = 1, . . . , �logn(log(ε−1) + logn)�, do the following:

1. Set V0 := 〈v1, . . . , vs〉 and extend v1, . . . , vs to an ordered basis B = (v1, . . . , vs,ws+1,

. . . ,wn−δ) for V ;
2. select a random element x = bh ∈ G, where h ∈ H and b ∈ F#; re-write x with respect

to the basis B;

# the vectorsvix, for i = 1, . . . , s, written with respect to the basisB, will then
be the firsts rows of the re-written matrixx.

3. Find the scalar b and integers i, j such that i � s and j = ih as follows:
3.1. if there exists an i � s such that vix ∈ V0, then choose such an i; note that vix is then

an interval vector in V0 with (known) support {ih, (i + 1)h};
(i) if i < s then, for � = i + 1, . . . , s or until ih is found, if vix + vi+1x +· · ·+ v�x ∈

V0, then it is an interval vector in V0 with support {ih, (� + 1)h}; hence find ih

and b, and set j = ih;
(ii) if ih is not determined in (i), then in particular i � 2; for � = i − 1, . . . ,1 or until

ih is found, if v�x + · · · + vi−1x + vix ∈ V0, then it is an interval vector in V0

with support {�h, (i + 1)h};
hence find (i + 1)h and therefore also ih and b, and set j = ih;

3.2. if there is no i � s such that vix ∈ V0, then find i < s such that vix + vi+1x ∈ V0; it
will be an interval vector in V0 with support {ih, (i + 2)h};
(i) if i � s − 2, then, for � = i + 2, . . . , s or until ih is found, if vix + vi+1x + · · · +

v�x ∈ V0, then it is an interval vector in V0 with support {ih, (�+1)h}; hence find
ih and b, and set j = ih;

(ii) if ih is not determined in (i), then in particular i � 2; for � = i − 1, . . . ,1 or until
ih is found, if v�x + · · · + vix + vi+1x ∈ V0, then it is an interval vector in V0

with support {�h, (i + 2)h}; hence find (i + 2)h and therefore also ih and b, and
set j = ih.

# Next we find all points of{1, . . . , s}h \{1, . . . , s}, and construct the correspon
ing new basis vectors. We now knowh = b−1x.
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4.1. For each k such that i < k � s,
(i) compute vih + vi+1h + · · · + vkh;

(ii) if vih + vi+1h + · · · + vkh is not an interval vector in V0, then set us+2 := vih +
vi+1h + · · · + vkh + uj , vs+1 := us+2 − us+1, and s := s + 1; if s = n − δ, then
return v1, . . . , vs and u2, . . . , us+1;

4.2. and also for each k such that 1� k < i,
(i) compute vkh + · · · + vi−1h;

(ii) if vkh + · · · + vi−1h is not an interval vector in V0, then set us+2 := −(vkh +
· · · + vi−1h) + uj , vs+1 := us+2 − us+1, and s := s + 1; if s = n − δ, then return
v1, . . . , vs and u2, . . . , us+1.

5. Set m := m + 1.

If no vectors are returned then report FAILURE.

Lemma 9.3. Let n � 13. Procedure 9.2 (FINDBASIS) is a Las Vegas algorithm that, with
probability at least 1−ε, when given a linked sequence relative to H of length greater than
0.6n−0.6 returns a linked basis for V , at a cost of O((logn log(ε−1)+ log2 n)(ξ +ρF nω)).

Proof. First we show that any sequence of vectorsv1, . . . , vn−δ returned by Procedure 9
is a linked basis. Suppose that at the start of some run of the ‘for loop’ the vectorsvi form
a linked sequence and hence, without loss of generality, can be taken as

v1 = (e1 − e2) + (W ∩ E), . . . , vs = (es − es+1) + (W ∩ E).

This is certainly true at the beginning of the first run of the ‘for loop.’ We will show t
under this assumption we also have a linked sequence at the end of this run of t
loop.’

For i = 1, . . . , s+1, we haveui = (e1−ei)+(W ∩E). LetS = {1,2, . . . , s+1}. During
this run of the ‘for loop,’ suppose that the matrices and vectors are re-written in terms
ordered basisB = (v1, . . . , vs,ws+1, . . . ,wn−δ). This means, in particular, that the interv
vectorb(ej − ek) + (W ∩ E), whereb ∈ F# and 1� j < k � s + 1, which is equal to
b
∑k−1

�=j v�, is represented as the(n − δ)-tuple with ith-entry equal tob if j � i < k, and 0
otherwise.

Now |S| = s + 1 � r > 0.6 + 0.4. Let T = S ∩ Sh−1 = {i ∈ S | ih ∈ S}, and lett =
|T ∩ {s, s + 1}|. Then|T | � 2|S| − n > 0.2n + 0.8, which is at least 3 forn � 13. Assume
that, for eachi ∈ T , we havei+1 /∈ T andi+2 /∈ T . This means in particular that, ifs ∈ T ,
then s + 1 /∈ T , and sot � 1. Also this assumption implies that|S| � 3(|T | − t) + t =
3|T | − 2t � 3(2|S| − n) − 2, and hence|S| � (3n + 2)/5, which is a contradiction. Thu
there existsi ∈ T such that either(i + 1)h ∈ S or (i + 2)h ∈ S, or equivalently, such tha
vih ∈ V0 or vih + vi+1h ∈ V0, respectively. Thus the steps in either 3.1 or 3.2 will
attempted soi will be defined. Note that, whenever 1� c < d � n − δ,

∑d−1
�=c v�(bh) =

b(ech − edh) + (W ∩ E). Since|S ∩ Sh−1| � 3, it follows that the steps in 3.1 or 3.2 w
succeed in correctly determining the valuej = ih.

Next suppose that in Step 4.1(ii) we find that
∑k

�=i v�h = (eih − e(k+1)h) +
(W ∩ E) /∈ V0. Sinceih ∈ S, this means that(k + 1)h /∈ S. Relabelling(k + 1)h ass + 2,
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we see that the new vectors defined in this step areus+2 = (e1 − es+2) + (W ∩ E) and
vs+1 = (es+1 − es+2) + (W ∩ E). Thus the extended sequencev1, . . . , vs+1 is also linked.
Similarly if, in Step 4.2(ii) we find that

∑i−1
�=k v�h = (ekh − eih) + (W ∩ E) /∈ V0, then

kh /∈ S, and relabellingkh as s + 2, we again find thatus+2 = (e1 − es+2) + (W ∩ E),
vs+1 = (es+1 − es+2) + (W ∩ E), and sov1, . . . , vs+1 is again linked. It follows that an
sequence of vectors returned by the procedure will be a linked basis forV . Observe that
when processing a fixed randomh, if k, k′ � s thenkh �= (k′)h, and hence we do not nee
to recomputeV0 whens increases during a single run of the ‘for loop.’

To see that the procedure succeeds with probability at least 1− ε, observe that, at th
end of Step 4 we have extended the linked sequence of vectors tov1, . . . , vs′ where, in
the notation used in the previous paragraph,{1, . . . , s′} = S ∪ Sh. If R = {1, . . . , r}, the
initial value for the setS, and if H = (h1, . . . , hm) is the sequence of random eleme
selected, then the value ofS after m runs of the for-loop will be the imageRC(H) of R

under the cubeC(H) of H , whereC(H) is as defined just before Lemma 9.1. Ifm =
1, . . . , �logn(log(ε−1)+ logn)�, then by Lemma 9.1,RC(H) = {1, . . . , n} with probability
at least 1− ε. Thus with probability at least 1− ε the procedure returns a linked basis.

Finally consider the cost of the procedure. At the beginning of each run of the for
we form a(n − δ + s) × (n − δ) matrix with rowsv1, . . . , vs followed by the identity
matrix of ordern − δ, and find the lexicographically least maximal linearly independ
set of rows at a cost ofO(ρF nω) (see [13]); this sequence of rows will be our basisB. Let
P be the matrix with the vectors ofB as rows. Then the matrix representing the rand
elementx = bh with respect toB is PxP −1, and this can be found at a cost ofO(ρF nω).
All the vectorsvix, for 1� i � s can be computed at a cost of one matrix multiplicati
that isO(ρF nω). An interval vector inV0 can be found among thevix, if one exists, by
inspecting these vectors to determine if there is one for which the non-zero entries
equal and occur as a consecutive sequence in the firsts positions; similarly in Step 3.2
the vix + vi+1x can be found at a cost ofO(ρF n2), and then an interval vector inV0
can be identified by inspecting the entries. Completing parts (i) and (ii) of Step 3
3.2 requires up ton vector additions and inspections, and this can be done at a co
O(ρF n2). Similarly Step 4 requiresO(n) vector additions and inspections, at a cos
O(ρF n2). Thus the procedure costsO((logn log(ε−1) + log2 n)(ξ + ρF nω)). �

10. Identifying scalars and permutations

Now that we have constructed a linked basisB relative toH , we complete our procedur
by showing, for a givenbx ∈ G with b ∈ F# andx ∈ H , how to identify the scalarb and find
the permutation inSn corresponding tox. We may assume without loss of generality thaB
is the standard basisB = (v1, . . . , vn−δ), wherevi = ei −ei+1+ (W ∩E) for 1� i � n−δ.
If δ = 2 we also set

vn−1 :=
n−2∑
i=1

ivi = e1 + · · · + en−2 − (n − 2)en−1 + (W ∩ E)

= en−1 − en + (W ∩ E)
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noting that
∑n

i=1 ei ∈ W ∩ E andnen−1 = 0.
First we give a brief informal discussion of the case where the characteristic ofF does

not dividen, in order to give an understanding of how we may identify the permuta
corresponding tox. In this caseV has dimensionn − 1. Letg be the matrix representin
bx with respect to the standard basisB. It is easy to see that the non-zero entries of
row of g now consist of a consecutive sequence of equal values. We first determi
permutationx. If the above sequence for theith row of g (corresponding to the bas
vectorei − ei+1) starts in thej th column and ends in thekth column, then eitherix = j

and(i + 1)x = k or ix = k and(i + 1)x = j . Thus looking at the first two rows gives th
pairs{1x,2x} and{2x,3x}. The common value in these two pairs must be the value ox ,
thus determining also 1x and 3x as well. So now when analysing theith row of the matrix
we may assume thatix is already known, so no ambiguity occurs in computing(i + 1)x .
Thusx can be computed. Nowb can be computed by looking at any row. Ifix < (i + 1)x

then b is the constant value of the non-zero elements of the row; elseb is minus this
value.

This is essentially our approach in determiningx andb. However, because of the in
creased complexities of the case wherep dividesn, and because it is a little simpler
analyse a sparser matrix, for the purposes of this section we will work with the alter
basisB′ = (u2, . . . , un−δ+1) where

ui =
∑

1�j<i

vj = e1 − ei + (W ∩ E)

for 2 � i � n and we setu1 = 0. Thusvi = ui+1 − ui for 1 � i � n − 1. Note that the
ui are constructed in Procedure 9.2. Ifδ = 2, we will need an expression forun as a
linear combination of the vectors inB′. We find this from the definition ofun as follows.
Note that in this casep dividesn and sone1 = 0 ande = ∑n

i=1 ei ∈ W ∩ E, and hence∑n
i=1 ui = ne1 − ∑n

i=1 ei + (W ∩ E) = 0. Therefore, sinceu1 = 0,

un = −
n−1∑
i=2

ui.

Lemma 10.1. Let bx ∈ G with b ∈ F# and x ∈ H , and let i ∈ {2, . . . , n}. Also let w′(i)
denote the number of non-zero coefficients in the expression for (ui)(bx) as a linear com-
bination of the vectors in B′.

(a) If δ = 1, or if δ = 2 and n /∈ {1x, ix}, then (ui)(bx) = b(uix − u1x ) and w′(i) = 2 if
1 /∈ {1x, ix}, and is 1 otherwise.

(b) If δ = 2 and {1x, ix} = {j,n}, where j < n, then

(ui)(bx) = ±b

(
uj +

n−1∑
�=2

u�

)
,

and so w′(i) = n − 3 if j > 1 and p = 2, and is n − 2 otherwise.
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(c) Thus if δ = 1, then either 1x = 1 and w′(i) = 1 for all i, or 1x > 1 and w′(i) = 1 if
ix = 1 and is 2 otherwise. If δ = 2, then one of the following holds:
(i) 1x = 1 and w′(i) = n − 2 if ix = n and is 1 otherwise;

(ii) 1 < 1x < n, and

w′(i) =




n − 3 if ix = n and p = 2,

n − 2 if ix = n and p > 2,

2 if ix �= n,1,

1 if ix = 1;
(iii) 1x = n, and w′(i) = n − 3 if ix > 1 and p = 2, and is n − 2 otherwise.

Proof. Part (a) is easily checked and (c) follows from (a) and (b). To prove (b), as
thatδ = 2 and{1x, ix} = {j,n}. Then

±b−1(ui)(bx) = ±(e1x − eix ) + (W ∩ E) = ±(ej − en) + (W ∩ E)

= ±(
ej + (e1 + · · · + en−1)

) + (W ∩ E) = ±
(

−uj −
n−1∑
�=2

u�

)
,

sincene1 = 0. �
Let bx be as in Lemma 10.1. Ifw′(i) = 2 then from(ui)(bx) = b(uix − u1x ) we can

determine±b and{ix,1x}. Similarly if w′(i) = 1 then(ui)(bx) = ±buj for somej with
1< j � n − δ + 1, and we can find±b and{ix,1x} = {1, j}. Thus if we find distincti1, i2
greater than 1 such that{w′(i1),w′(i2)} ⊆ {1,2}, then we can find±b, {ix1 ,1x}, {ix2 ,1x},
and hence also 1x, ix1 , ix2 and b. After this, for any� such thatw′(�) = 1 or 2 we can
determine�x since we already know 1x . These observations form the basis of our proced
below.

Procedure 10.2 (FINDPERMUTATION). We are given bx ∈ ZV × H where b ∈ F#, x ∈ H ,
and H is conjugate to H0 ∼= Sn with n � 6; and the basis B′ defined above.

1. Compute (ui)(bx) as a linear combination from B′, and determine w′(i), for 2 �
i � n.

2. Case δ = 1.
Here {w′(2),w′(3)} ⊆ {1,2}, so we can determine b,1x,2x,3x as above, and then
determine ix from (ui)(bx) for 4� i � n.

3. Case δ = 2.
If {w′(2),w′(3)} ⊆ {1,2}, then we determine b,1x,2x,3x as above; next we determine
ix from (ui)(bx) for each i > 3 such that w′(i) � 2; and finally, for the unique i such
that w′(i) � n − 3, we have ix = n.
If {w′(2),w′(3)} = {1, n − 2} or {2, n − 2} in the case p > 2, or if {w′(2),w′(3)} =
{1, n − 3} or {2, n − 3} in the case p = 2, then we must have {w′(4),w′(5)} ⊆ {1,2},
and we can determine b,1x,4x,5x as above; next we determine ix from (ui)(bx) for
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each i �= 1,4,5 such that w′(i) � 2; and finally, for the unique i such that w′(i) �
n − 3, we have ix = n.
Else {w′(2),w′(3)} ⊆ {n − 3, n − 2}. In this case 1x = n, and for each i � 3,
u′

i := (ui)(bx) − (u2)(bx) = b(uix − u2x ); from u′
3 and u′

4 therefore we can deter-
mine b,2x,3x,4x ; finally we determine ix from u′

i for each i > 4.

Lemma 10.3. Procedure 10.2 (FINDPERM) is a deterministic algorithm that, given bx ∈
ZV × H where b ∈ F#, x ∈ H , and H is conjugate to H0 ∼= Sn with n � 6, and given the
basis B′ defined above, determines the scalar b and the permutation corresponding to x at
a cost of O(ρF nω).

Proof. The correctness of Procedure 10.2 follows from Lemma 10.1 and the discu
following it. Now we determine the cost. LetP be the matrix with rowsu2, . . . , un−δ+1.
Then the matrix forbx with respect to the basisB′ = (u2, . . . , un−δ+1) is P(bx)P −1, and
can be found at a cost ofO(ρF nω); the rows of this matrix areu2(bx), . . . , un−δ+1(bx),
written in terms ofB′. If δ = 2 then we note thatun = −∑

2�i�n−1 ui , and hence tha
un(bx) = −∑

2�i�n−1 ui(bx). Thus, if 2� i � n − δ + 1, thenw′(i) is the number of

non-zeros of theith row vector ofP(bx)P −1, and if δ = 2, thenw′(n) is the number of
non-zero entries in the row vector obtained by adding together all the rows ofP(bx)P −1.
Thus, givenP(bx)P −1, determining thew′(i) costs at mostO(ρF n2). From now on the
computation ofb and the permutation corresponding tox, is achieved at a cost of inspectin
the entries ofO(n) vectors. �
10.1. The proof of Theorem 1.1

Finally we prove Theorem 1.1 by drawing together the procedures we have pres
Suppose, as in Section 3.2, thatH ′ � G = 〈X〉 � ZV ×H < GL(V ) whereH is conjugate
to H0 ∼= Sn, and thatε is given, with 0< ε < 1. Let ε0 = ε/4. Also letα = 1/3 if p �= 3
andα = 1/2 if p = 3.

Using Procedure 6.7 ifp �= 3, or Procedure 6.9 ifp = 3, we construct with probability
at least 1− ε0, an elementg ∈ H ′ that is conjugate to a 3-cycle or double-transpositio
H0 (that is,g has type 1n−331 or 1n−422) respectively, at a cost of

O
(
log

(
ε−1

0

)
nα

(
ξ + ρF log2 n

(
nω + n lognq log logn

)))
.

If this is successful, then we useg in Procedure 7.4 to construct, with probability at le
1− ε0, a vectorbv with v ∈ B involving two points moved byg and in the sameg-cycle,
andb ∈ F#, at a cost ofO(log(ε−1

0 ) logn(ξ + ρF nω)). If this is successful, then with thi
vectorv we apply Procedures 8.3 and 9.2, each with probability at least 1−ε0, to construct
a linked basisB at a cost of

O
((

logn log
(
ε−1

0

) + log2 n
)
ξ + ρF nω log

(
ε−1

0

)
log2 n

)
.

If B = (v′
1, . . . , v

′
n−δ), then the mapS :vi �→ v′

i defines an element of GL(V ) that conju-
gatesH0 to H . The total cost of these procedures is therefore
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O
(
log

(
ε−1)nα

(
ξ + ρF log2 n

(
nω + n lognq log logn

)))
,

as required. Finally Procedure 10.2 evaluates the scalarb and the permutationλ(x) corre-
sponding to a given elementbx ∈ ZV × H (relative toB) at a cost ofO(ρF nω). Thus to
evaluate the scalarb, and the permutation corresponding to each of the generatorsbx ∈ X

(and thereby define the homomorphismλ : G → Zq−1 × Sn) costs a furtherO(|X|ρF nω).
Evaluatingλ−1 on a pair(b, x) ∈ Zq−1 × Sn can be done by assembling the matrixA rep-
resentingx in H0 with respect to the basisB′ = {u2, . . . , un−δ+1}, and then conjugatingbA

by the appropriate change of basis matrix. This costsO(nωρF ). This completes the proo
of Theorem 1.1.
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