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Abstract

We classify up to equivalence all finite-dimensional irreducible representations of PSL2(Z) whose re-
striction to the commutator subgroup is diagonalizable.
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1. Introduction

In this paper, we study finite-dimensional representations of the projective modular group
PSL2(Z). This group is of fundamental importance in many fields including number theory, hy-
perbolic geometry, topological quantum field theory, and knot theory. Our main result completely
classifies up to equivalence all finite-dimensional irreducible representations of PSL2(Z) whose
restrictions to the commutator subgroup are diagonalizable. These representations are of dimen-
sion 1, 2, 3, and 6.

Recall that PSL2(Z) has the presentation 〈x, y | x2 = y3 = 1〉. Its commutator subgroup has
index 6 and is generated by the elements xyxy2, xy2xy; see [3]. Since the index is 6, it fol-
lows from standard Clifford Theory that the dimensions of the irreducible representations we
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are studying divide 6; see, for example, [2, 2.7] for further explanation. This fact is used in our
analysis.

A complete classification of the finite-dimensional irreducible representations of PSL2(Z)

with dimension � 5 follows from the work of Tuba and Wenzl [4] on representations of B3. Let
B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 be Artin’s braid group. Let Z = 〈(σ1σ2)

3〉 denote the center
of B3. For appropriate choices of A,B ∈ GLn(k), σ1 �→ A and σ2 �→ B define a representation
of B3. If (AB)3 = I , then this also defines a representation of B3/Z � PSL2(Z). From the main
theorem of Tuba and Wenzl [4], it follows that for d � 5, any d-dimensional irreducible repre-
sentation of B3 is uniquely determined by the eigenvalues of A and the scalar by which (AB)3

acts. Note that for any representation of B3 induced from a representation of PSL2(Z), this scalar
is 1. For each of the representations of B3 induced by our 1-dimensional irreducible representa-
tions of PSL2(Z), the eigenvalue of A is a sixth root of unity. If the characteristic of k is not 3,
then each of our 2-dimensional irreducible representations is described by the eigenvalues λ,−λ

where λ3 = 1. If the characteristic of k is not 2, then the two 3-dimensional irreducible repre-
sentations we found are characterized by having eigenvalues λ1, λ2, λ3 or η1, η2, η3 where λi

are the roots of x3 − 1 = 0 and ηi are the roots of x3 + 1 = 0. Since each of our 6-dimensional
irreducible representations of PSL2(Z) induce a representation of B3 where the resulting matrix
A has eigenvalues λi where λi are the roots of x6 − 1 = 0, we conclude that the 6-dimensional
irreducible representations of B3 are not uniquely determined by the eigenvalues of A and the
scalar by which (AB)3 acts.

Adriaenssens and Le Bruyn [1] have recently analyzed specific families of representations of
PSL2(Z) from the point of view of noncommutative algebraic geometry. In Proposition 5 of their
paper, Adriaenssens and Le Bruyn describe a family of irreducible representations of B3 which
contains any sufficiently general irreducible representation of B3. Indeed, included in this family
are the representations of B3 induced by the 1-dimensional, 2-dimensional, and 3-dimensional
representations of PSL2(Z) that are characterized in this paper. Determining whether the rep-
resentations of B3 induced by our 6-dimensional representations are in this general family is
computationally intensive and unknown. Subsequently constructed in [1] are two subfamilies of
the general family of representations of B3 described above. These are induced by representa-
tions of particular quotients of the path algebra of the quiver Q associated with the formally
smooth algebra CPSL2(Z). The representations of B3 induced by the 1-dimensional and 3-
dimensional representations (but not by the 2-dimensional representations) of PSL2(Z) detailed
in this paper are included in the first subfamily. None of the representations of B3 induced by the
1-dimensional, 2-dimensional, or 3-dimensional representations of PSL2(Z) studied in our paper
are in the second subfamily. Again, determining whether the 6-dimensional representations of
B3 induced by our 6-dimensional representations are in these subfamilies requires further work.

The inspiration of this paper comes from the theory of highest weight modules. The finite-
dimensional irreducible representations of a complex semisimple Lie algebra are diagonalizable
over its Cartan subalgebra. In our study below, we view the commutator of PSL2(Z) as playing
a role analogous to that of the Cartan subalgebra.

Another way to view our work is as follows: Set G′ as the commutator subgroup of G and
G′′ as the second commutator subgroup of G. It is well known (see [3]) that G′ is a free group
in the two generators xyxy2 and xy2xy, so G′/G′′ is a free abelian group on two generators. In
particular, the irreducible representations of G′/G′′ are all one-dimensional. Therefore, by Clif-
ford Theory, the restrictions to G′/G′′ of the irreducible finite-dimensional representations of
G/G′′ must be diagonalizable. Conversely, every finite-dimensional irreducible representation
of G/G′′ lifts to a representation of G whose restriction to G′ naturally factors through G/G′′.
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We see that our results amount to a complete classification, up to equivalence, of the irreducible
finite-dimensional representations of G/G′′. Moreover, since G/G′′ is abelian-by-finite, the ir-
reducible representations are all finite-dimensional.

Our approach is mostly elementary, relying on basic linear algebraic computations and case-
by-case analysis. Toward the end of the paper, extensive Maple calculations are used to determine
the 6-dimensional representations; an appendix of the Maple code used is included.

Our main results are stated in Section 4. Sections 5 and 6 are devoted to the proofs. Preliminary
results and notation are given in Sections 2 and 3.

2. Definitions and notation

We begin with some relevant definitions. Let k denote an algebraically closed field and Mn(k)

denote the set of all n × n matrices with entries in k. Let GLn(k) denote the set of all invertible
elements of Mn(k).

Definition 2.1. We will say the ordered m-tuple (A1,A2, . . . ,Am), Ai ∈ Mn(k) for i =
1,2, . . . ,m, is irreducible if every element of Mn(k) can be written as a k-linear combination
of products in the Ai ’s, i = 1,2, . . . ,m.

Also, if Xi,X
′
i ∈ Mn(k) for i = 1,2, . . . ,m, then (X′

1,X
′
2, . . . ,X

′
m) is equivalent to (X1,X2,

. . . ,Xm), denoted (X′
1,X

′
2, . . . ,X

′
m) ≈ (X1,X2, . . . ,Xm), if there exists Q ∈ GLn(k) such that

X′
i = QXiQ

−1 for all i = 1,2, . . . ,m.

Notation 2.2. The following notation will remain in effect for the entire paper: Let G = PSL2(Z),
which we identify with 〈x, y | x2 = y3 = 1〉. Let ρ :G → GLn(k) be an irreducible representation
of G. Set X = ρ(x), Y = ρ(y), Λ = XYXY 2, and Γ = XY 2XY . It then follows that X2 =
Y 3 = I , and (X,Y ) is irreducible. Denote the entry in the ith row and j th column of a matrix X

by Xi,j . We will use 〈f1, . . . , ft 〉 to denote the ideal (in a given ring) generated by f1, f2, . . . , ft .

3. Preliminary results

Remark 3.1. Since k is algebraically closed, all irreducible solutions to XY = YX in Mn(k) are
one-dimensional.

Lemma 3.2. All irreducible representations of PSL2(Z) with Λ = Γ , or Λ or Γ a scalar matrix
are one-dimensional.

Proof. If Λ = Γ , then XY = Y 2XΛY 2 = Y 2XΓ Y 2 = YX. For an arbitrary constant c, compu-
tation with Λ = cI yields

XY = (
Y 2X

)2
(XY)ΛY 2 = (

Y 2X
)2

Λ(XY)Y 2 = YX.

Similarly, computation with Γ = cI yields

XY = (
Y 2X

)
(XY)Γ

(
Y 2XY 2) = (

Y 2X
)
Γ (XY)

(
Y 2XY 2) = YX.

Remark 3.1 thus concludes this proof. �
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Remark 3.3. Assume Λ and Γ are n × n diagonal matrices, where Λi,i =: λi and Γi,i =: γi for
i = 1,2, . . . , n. We observe the following properties of Λ and Γ :

• ΛXΛ = X, Γ XΓ = X, ΛYΓ = Y , Γ Y 2Λ = Y 2.
• ΛΓ = Γ Λ, so (XY)6 = (YX)6 = I .
• Since Y has at least one nonzero entry per row, Λ and Γ are conjugate, and ΛYΓ = Y ,

then 1
λi

= γj = λk for each i = 1,2, . . . , n, and some j , k ∈ {1,2, . . . , n}. Note that Λ,
Γ ∈ GLn(k), so λi, γi �= 0 for each i = 1,2, . . . , n.

The proof of the following lemma is routine and omitted.

Lemma 3.4. Consider the following properties:

(1) X,Y ∈ GLn(k) have exactly one nonzero entry per row and column.
(2) (X,Y ) is irreducible.
(3) X2 = Y 3 = I .
(4) Λ, Γ are diagonal matrices.

Then (X,Y ) satisfies the above properties if and only if (PXP −1,PYP −1) satisfies the above
properties, where P is a nonsingular weighted permutation matrix (i.e. P has exactly one
nonzero entry per row and column).

4. Main results

Let ρ be an irreducible representation of PSL2(Z) which maps the commutator subgroup of
PSL2(Z) to diagonal matrices in GLn(k). Since the index of the commutator subgroup is 6, it
follows from standard Clifford Theory (see, e.g., [2, 2.7]) that the dimension of ρ divides 6. We
thus analyze the cases when n = 1,2,3, and 6.

Theorem 4.1. Let k be an algebraically closed field, and let ζ be a primitive cube root of unity
if k is not of characteristic 3. Let ρ : PSL2(Z) → GLn(k) be an irreducible representation of
PSL2(Z) = 〈x, y | x2 = y3 = 1〉 which maps the commutator subgroup of PSL2(Z) to diagonal
matrices in GLn(k).

(i) If k is not of characteristic 2 or 3, then (ρ(x), ρ(y)) is equivalent to one of the following:

(1) (1,1), (−1,1), (1, ζ ), (−1, ζ ),
(
1, ζ 2), (−1, ζ 2),

(2)

((
0 1
1 0

)
,

(
1 0
0 ζ

))
,

((
0 1
1 0

)
,

(
1 0
0 ζ 2

))
,

((
0 1
1 0

)
,

(
ζ 0
0 ζ 2

))
,

(3)

(
±

(1 0 0
0 −1 0
0 0 −1

)
,

(0 1 0
0 0 1
1 0 0

))
,

(4)

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,
0 0 0 0 1 0 0 0 0 1 0 0
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for c1, c2 ∈ k, c1, c2 �= 0, (c1, c2) �= (1,1), (−1,1), (1,−1), (−1,−1), (ζ, ζ ),(
ζ 2, ζ 2).

(ii) If k is of characteristic 2, then (ρ(x), ρ(y)) is equivalent to one of the following:

(1) (1,1), (1, ζ ),
(
1, ζ 2),

(2)

((
0 1
1 0

)
,

(
1 0
0 ζ

))
,

((
0 1
1 0

)
,

(
1 0
0 ζ 2

))
,

((
0 1
1 0

)
,

(
ζ 0
0 ζ 2

))
,

(3)

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

for c1, c2 ∈ k, c1, c2 �= 0, (c1, c2) �= (1,1), (ζ, ζ ),
(
ζ 2, ζ 2).

(iii) If k is of characteristic 3, then (ρ(x), ρ(y)) is equivalent to one of the following:

(1) (1,1), (−1,1),

(2)

(
±

(1 0 0
0 −1 0
0 0 −1

)
,

(0 1 0
0 0 1
1 0 0

))
,

(3)

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

for c1, c2 ∈ k, c1, c2 �= 0, (c1, c2) �= (1,1), (−1,1), (1,−1), (−1,−1).

Furthermore, for n < 6, the equivalence classes in each of the cases (i)–(iii) are distinct. For
n = 6 and c1, c2 satisfying the above criteria, the following correspond to the same equivalence
class: (c1, c2), ( 1

c1
, 1
c2

), (c2,
1

c1c2
), ( 1

c2
, c1c2), ( 1

c1c2
, c1), and (c1c2,

1
c1

). If (c′
1, c

′
2) does not equal

any of the preceding pairs, then (c′
1, c

′
2) represents an equivalence class distinct from (c1, c2).

The remainder of the paper is devoted to the proof of this theorem.

Remark 4.2. Since the commutator subgroup of G is generated by xyxy2 and xy2xy, ρ maps
the commutator subgroup of G to diagonal matrices in GLn(k) if and only if Λ and Γ are
diagonal matrices. Thus the problem reduces to finding distinct equivalence classes of (X,Y )

where X := ρ(x), Y := ρ(y), X2 = I = Y 3, Λ = XYXY 2 is a diagonal matrix, Γ = XY 2XY is
a diagonal matrix, and (X,Y ) is irreducible.
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5. Cases when n = 1, n = 2, and n = 3

In this section, we prove (i)–(iii) of Theorem 4.1, considering separately the cases when n =
1,2, and 3.

5.1. n = 1

For n = 1, Λ and Γ are trivially diagonal. We only require that (X,Y ) = (a, b) where a2 =
1 = b3.

Distinct (X,Y ) create distinct equivalence classes since (X′, Y ′) ≈ (X,Y ) requires that
(X′, Y ′) = (QXQ−1,QYQ−1) = (X,Y ). In fields of characteristic 2, the only solution to
X2 = 1 is X = 1. In fields of characteristic other than 2, X2 = 1 has the 2 distinct solutions
X = ±1. In fields of characteristic 3, the only solution to Y 3 = 1 is Y = 1. In fields of charac-
teristic other than 3, Y 3 = 1 has the 3 distinct solutions Y = 1, ζ, ζ 2. We therefore arrive at the
desired result.

5.2. n = 2

Let Λ = ( λ1
λ2

)
. First assume λ1 = λ2. Then Λ = λ1I , which is a contradiction by

Lemma 3.2. Thus assume λ1 �= λ2. By explicitly solving ΛXΛ = X, we find that for any
i, j ∈ {1,2}, λiλj = 1 if Xi,j �= 0. If X has more than one nonzero entry per row or column,
it follows that λ1 = λ2, which is a contradiction to our assumption. Therefore since X is nonsin-
gular, X has exactly one nonzero entry per row and column.

Since Λ and Γ are conjugate, we find Γ has diagonal entries γ1, γ2 where γ1 �= γ2. Solving
ΛYΓ = Y , we find that for any i, j ∈ {1,2}, λiγj = 1 if Yi,j �= 0. If Y has more than one nonzero
entry per row or column, then either λ1 = λ2 or γ1 = γ2, both of which are contradictions.
Therefore since Y is nonsingular, Y has exactly one nonzero entry per row and column. Hence X

and Y are of the form
( ∗ 0

0 ∗
)

or
( 0 ∗

∗ 0

)
. If Y is of the latter type, then Y 3 �= I , so Y must be diagonal.

Clearly X is of the latter form by the irreducibility of (X,Y ). Using X2 = I , we see that X =( 0 x1
1
x1

0

)
for some nonzero x1 ∈ k. Conjugating X and Y by the weighted permutation matrix P =( 1 0

0 x1

)
, we see by Lemma 3.4 that (X,Y ) ≈ (X1, Y1) := (( 0 1

1 0

)
,
(

a 0
0 b

))
, where (X1, Y1) satisfies

the hypotheses of Lemma 3.4. By Remark 3.1, a �= b. Also, if a �= b,

1

a − b
(X1Y1 − bX1) =

(
0 0
1 0

)
,

1

a − b

(
aX2

1 − Y1
) =

(
0 0
0 1

)
,

1

a − b
(aX1 − X1Y1) =

(
0 1
0 0

)
,

1

a − b

(
Y1 − bX2

1

) =
(

1 0
0 0

)
.

Thus (X1, Y1) is irreducible if and only if a �= b.
Finally, a3 = b3 = 1 by Y 3

1 = I . In fields of characteristic 3, a = b = 1 since a3 = b3 = 1,
which is a contradiction. Thus there are no irreducible representations from PSL2(Z) to GL2(k)

if k has characteristic 3. In fields not of characteristic 3, we have

(a, b) = (1, ζ ),
(
1, ζ 2), (ζ, ζ 2), (ζ,1),

(
ζ 2,1

)
, or

(
ζ 2, ζ

)
.
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Conjugating X1 and Y1 by permutation matrix X1 yields (X1, Y1) ≈ (
X1,

(
b 0
0 a

))
. Thus we may

assume the following cases: (a, b) = (1, ζ ), (1, ζ 2), or (ζ, ζ 2). Since tr(Y1) is distinct for each of
the listed cases, each yields a separate equivalence class. This gives the desired result.

5.3. n = 3

Let

Λ =
(

λ1
λ2

λ3

)
and Γ =

(
γ1

γ2
γ3

)
.

By Lemma 3.4, we may assume that either λ1 = λ2 = λ3, λ1 = λ2 �= λ3, or that λ1, λ2, and
λ3 are distinct.

In the first case Λ = λ1I , which is a contradiction by Lemma 3.2.
We will now solve the third case. By solving ΛXΛ = X, we conclude for any i, j ∈ {1,2,3}

that λiλj = 1 if Xi,j �= 0. If X has more than one nonzero entry per row or column, we find that
λi = λj for some i �= j , which is a contradiction to our assumption that λ1, λ2, λ3 are distinct.
Therefore since X is nonsingular, X has exactly one nonzero entry per row and column. Solving
ΛYΓ = Y , we find that for any i, j ∈ {1,2,3}, λiγj = 1 if Yi,j �= 0. If Y has more than one
nonzero entry per row or column, then either λi = λj or γi = γj for some i �= j , both of which
are contradictions. Therefore since Y is nonsingular, Y has exactly one nonzero entry per row and
column. Note, λk = 1

λi
for some i = 1,2,3 and each k, by Remark 3.3. Since there are at most

two distinct solutions to x = 1
x

, then λi �= 1
λi

for some i. Conjugating X and Y by a permutation

matrix if necessary, we may assume that λ2 = 1
λ1

. Thus λ3 = 1
λ3

. Therefore, we find λ3λ1 �= 1
and λ3λ2 �= 1. Hence X3,1 = X3,2 = 0. This forces X3,3 �= 0. Expanding Γ XΓ = X, we see
from X3,3 �= 0 that γ3 = 1

γ3
. Because Λ and Γ are conjugate, γ3 = λ3 = 1

λ3
. Since γ3 = 1

λ3
and

γ1, γ2, γ3 are distinct, we find λ3γ2 �= 1 and λ3γ1 �= 1. Thus Y3,1 = Y3,2 = 0. This forces Y3,3 �= 0.
But since X and Y have exactly one nonzero entry per row and column and X3,3 and Y3,3 are
nonzero, we find that (X,Y ) is reducible, which is a contradiction.

In case 2, we assume λ1 = λ2 �= λ3. First assuming λ1 �= 1
λ1

and using Remark 3.3, we see

λ3 = 1
λ1

. Again solving ΛXΛ = X, we conclude for any i, j ∈ {1,2,3} that λiλj = 1 if Xi,j �= 0.

From λ3 = 1
λ1

and λ1 = λ2 �= λ3, we see that λ2
1 = λ1λ2 = λ2λ1 = λ2

2 �= λ1λ3 = 1. Then X1,1 =
X1,2 = X2,1 = X2,2 = 0. But this implies that X is singular, which is a contradiction. Hence
λ1 = 1

λ1
and λ3 = 1

λ3
.

In fields of characteristic 2, there is only one distinct solution to x = 1
x

. This is a contradiction
since λ1 �= λ3. Hence if k has characteristic 2, there are no irreducible representations from
PSL2(Z) to GL3(k).

We now consider fields k which are not of characteristic 2. Since λi = 1
λi

for i = 1,2,3, then

Λ = ±
(1

1
−1

)
.

Because Λ and Γ are conjugate and Λ �= Γ , we have 4 possibilities for (Λ,Γ ). Substituting each
of the possibilities for (Λ,Γ ) in ΛXΛ = X = Γ XΓ , we solve the resulting system of equations
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to find that in each possibility, X is diagonal. Again substituting each of the possibilities for
(Λ,Γ ) in the equation ΛYΓ = Y and using Y 3 = I , we solve the resulting system of equations.
In each possibility, Y has exactly one nonzero entry per row and column.

Since Y has exactly one nonzero entry per row and column, Y 3 = I , X is diagonal, and (X,Y )

is irreducible, we conclude

Y =
( 0 y1 0

0 0 y2
y3 0 0

)
or

( 0 0 y1
y2 0 0
0 y3 0

)
,

where y1y2y3 = 1. Conjugate (X,Y ) with

P =
(1 0 0

0 y1 0
0 0 y1y2

)

in case 1, or with

P =
(1 0 0

0 0 y1
0 y1y3 0

)

in case 2, so that (X,Y ) ≈ (PXP −1,PYP −1) =: (X1, Y1), where X1 is diagonal and

Y1 =
(0 1 0

0 0 1
1 0 0

)
.

Since X2
1 = I , all of the diagonal entries must be ±1. Because X1 �= ±I , there are 6 possibilities

for X1. Conjugating by various permutation matrices, we can see that

(X,Y ) ≈ (±X2, Y1), where X2 =
(−1 0 0

0 1 0
0 0 1

)
.

Thus (X,Y ) satisfies the hypotheses of Lemma 3.4 if and only if (±X2, Y1) satisfies the hy-
potheses of Lemma 3.4. Since (X2, Y1) satisfies X2

2 = I = Y 3
1 and X2Y1X2Y

2
1 and X2Y

2
1 X2Y1

are diagonal, we need only check irreducibility.
If (X2, Y1) is irreducible, then (−X2, Y1) is irreducible. Hence it is sufficient to check ir-

reducibility for (X2, Y1). However, we note that the standard basis matrices can be composed
as:

Y1 − Y1X2

2
,

Y1(Y1 − Y1X2)

2
,

Y 2
1 (Y1 − Y1X2)

2
,

(Y1 − Y1X2)Y1

2
,

Y1(Y1 − Y1X2)Y1

2
,

Y 2
1 (Y1 − Y1X2)Y1

2
,

(Y1 − Y1X2)Y
2
1

2
,

Y1(Y1 − Y1X2)Y
2
1

2
, and

Y 2
1 (Y1 − Y1X2)Y

2
1

2
.

Note that (X2, Y1) and (−X2, Y1) yield separate equivalence classes since the trace of the matri-
ces are preserved in each equivalence class and tr(X2) �= tr(−X2). We have therefore achieved
the desired result.
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6. Case when n = 6

In this section, we prove (i)–(iii) of Theorem 4.1 in the case when n = 6.

Lemma 6.1. Suppose X,Y ∈ GLn(k) where X2 = Y 3 = I , (X,Y ) is irreducible, and Λ =
XYXY 2 and Γ = XY 2XY are diagonal matrices. Then X and Y must have exactly one nonzero
entry per row and column.

Proof. Assume X and Y satisfy the hypothesis of the lemma. Let Λ and Γ be diagonal matrices
with diagonal entries Λi,i =: λi , Γi,i =: γi . Note that (X,Y ) satisfies the hypothesis if and only
if (PXP −1,PYP −1) satisfies the hypothesis where P is a permutation matrix. Thus we may
assume the diagonal entries of Λ are in one of the following cases, where entries in distinct
ordered tuples are not equal and entries in the same ordered tuple are equal:

(1) (λ1, λ2, λ3, λ4, λ5, λ6),
(2) (λ1, λ2, λ3, λ4, λ5), (λ6),
(3) (λ1, λ2, λ3, λ4), (λ5, λ6),
(4) (λ1, λ2, λ3), (λ4, λ5, λ6),
(5) (λ1, λ2, λ3, λ4), (λ5), (λ6),
(6) (λ1, λ2, λ3), (λ4, λ5), (λ6),
(7) (λ1, λ2), (λ3, λ4), (λ5, λ6),
(8) (λ1, λ2, λ3), (λ4), (λ5), (λ6),
(9) (λ1, λ2), (λ3, λ4), (λ5), (λ6),

(10) (λ1, λ2), (λ3), (λ4), (λ5), (λ6),
(11) (λ1), (λ2), (λ3), (λ4), (λ5), (λ6).

Case 1. In this case Λ = λ1I , which by Lemma 3.2 is a contradiction to the irreducibility of
(X,Y ).

Cases 2 and 3. First assume λ1 �= 1
λ1

. Expanding ΛXΛ = X we get a system of equations where

for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. Since λ1 �= 1
λ1

, we find X must be singular, which

is a contradiction. Thus assume λ1 = 1
λ1

. We conclude from Remark 3.3 that λ6 = 1
λ6

and hence

Λ2 = I . Because ΛΓ = Γ Λ, we see that (XY)6 = (YX)6 = I . Also, (XY)3 = (YX)3 since
Λ2 = I .

Let A = XY and B = YX. Since A3 = B3, ABA = BAB , and A6 = B6 = I , we can count
possible monomials in A and B to find that (A,B) span at most a 24-dimensional space and thus
cannot be irreducible. Note (A,B) is irreducible if and only if (X,Y ) is irreducible, since we can
generate X and Y from A and B and vice versa. Therefore (X,Y ) is not irreducible.

Case 4. By Remark 3.3, if λ1 = 1
λ1

, then λ6 = 1
λ6

and Λ2 = I . As in Cases 2 and 3, this leads to

a contradiction. Hence λ6 = 1
λ1

. Observe that since Λ and Γ are conjugate,

Λ + Λ−1 =
(

λ1 + 1
)

I = Γ + Γ −1. (6.1)

λ1
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Then it follows that

Y
(
Λ + Λ−1) = Y

(
Γ + Γ −1) = (

Γ + Γ −1)Y. (6.2)

Substituting Λ = XYXY 2 and Γ = XY 2XY into Eq. (6.2) and using (YX)6 = I yields

(YX)
(
(YX)2 − (XY)2)(XY − YX) = 0. (6.3)

Since XY = YXΓ , we find that (YX)((YX)2 − (XY)2)(YX)(Γ − I ) = 0. Given that Λ and
Γ are conjugate and λ1 and λ6 are not equal to 1, (Γ − I ) is invertible. Also by invertibility
of (YX), we deduce (YX)2 = (XY)2. Thus A2 = B2, A6 = B6 = I , and ABA = BAB , where
A = XY and B = YX. Again by counting monomials in A and B , we find A and B span at most
an 18-dimensional space and thus (A,B) cannot be irreducible. Since (A,B) is irreducible if
and only if (X,Y ) is irreducible, (X,Y ) cannot be irreducible.

Case 5. First assume λ1 �= 1
λ1

. Then by Remark 3.3, λ5 or λ6 must equal 1
λ1

. We expand ΛXΛ =
X to get a system of equations where for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If either
λ5 = 1

λ1
or λ6 = 1

λ1
, then X must be singular, which is a contradiction. Thus λ1 = 1

λ1
. If λ5 = 1

λ5

then by Remark 3.3, λ6 = 1
λ6

. This is a contradiction since there are at most two distinct solutions

to x = 1
x

. Hence λ5 = 1
λ6

. Since Λ and Γ are conjugate, there are
( 6

4,1,1

)
permutations of the λi ’s.

Thus there are 30 possible matrices for Γ with nonzero entries determined by the λi ’s. By case-
by-case checking, we see that the restrictions Γ XΓ = X = ΛXΛ and X is nonsingular leave 14
possible matrices for Γ (see Appendix A). Note that XY = YX if Λ = Γ and (XY)2 = (YX)2 if
ΛΓ = I . In both cases, we find (X,Y ) is not irreducible as shown earlier. This leaves 12 possible
matrices for Γ .

Let P be a permutation matrix. Note that (X,Y ) satisfies the hypothesis of Lemma 6.1 if and
only if (PXP −1,PYP −1) does. Also, X and Y have one nonzero entry per row and column
if and only if PXP −1 and PYP −1 do. Thus for any permutation matrix P , we may replace
(X,Y ) with (PXP −1,PYP −1). Further case-by-case checking gives us that for each of the 12
possible values of Γ , we are able to replace (X,Y ) with (PXP −1,PYP −1) for an appropriate
permutation matrix P , so that Λ is preserved, γ1 = γ2 = γ5 = γ6 = λ1, γ3 = λ5, and γ4 = λ6
(see Appendix A). Substituting Λ and Γ into ΛYΓ = Y and Γ Y 2Λ = Y 2, using Y 3 = I , and
solving for Y , we find that

Y =
( 0 0 Y1

Y2 0 0
0 Y3 0

)
,

where Y1, Y2, and Y3 are 2 × 2 block matrices. Similarly, by substituting Λ and Γ into ΛXΛ =
X = Γ XΓ and solving for X, we find that

X =
(

X1 0 0
0 X2 0
0 0 X3

)
,

where X1, X2, and X3 are 2 × 2 block matrices.
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Due to the fact that Y 3 = I , we find Y3 = Y−1
1 Y−1

2 . Computation with XY = ΛYX yields

X1Y1 = λ1Y1X3, X2Y2 = λ1Y2X1, X3Y3 =
(

λ5 0
0 1

λ5

)
Y3X2.

But then:

X3Y3 = 1

λ1

(
Y−1

1 X1Y1
)
Y3 = 1

λ1

(
Y−1

1

)(
X1Y

−1
2

) = 1

λ1

(
Y−1

1

)( 1

λ1

)(
Y−1

2 X2
) =

(
1

λ2
1

)
Y3X2.

This is a contradiction to X3Y3 = ( λ5 0

0 1
λ5

)
Y3X2.

Case 6. Suppose λ6 �= 1
λ6

. Then either λ1 = 1
λ6

or λ4 = 1
λ6

. We expand ΛXΛ = X to get a system

of equations where for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If either λ1 = 1
λ6

or λ4 = 1
λ6

,

then X must be singular, which is a contradiction. Thus λ6 = 1
λ6

. Suppose next that λ4 �= 1
λ4

.

Then λ1 = 1
λ4

. Since λiλj = 1 if Xi,j �= 0 and since λ1 = 1
λ4

, we find that X is singular, which

is a contradiction. Thus assume λ4 = 1
λ4

. Because λ4 �= 1
λ1

and λ6 �= 1
λ1

, it follows that λ1 = 1
λ1

.

This is a contradiction since there are at most 2 distinct solutions to x = 1
x

, while λ1, λ4, and λ6
are distinct.

Case 7. It is easy to show using Remark 3.3 that there must be an even number of ordered tuples
with entries λi such that λi �= 1

λi
. Since there are 3 tuples in this case, there must be 1 or 3 tuples

with entries λi where λi = 1
λi

. Because there are at most two distinct solutions to x = 1
x

, there

is only one tuple with entries λi where λi = 1
λi

. Without loss of generality, assume that λ1 = 1
λ1

.

Therefore λ3 = 1
λ5

. Since Λ and Γ are conjugate, there are
( 6

2,2,2

) = 90 possible matrices for Γ

in terms of the λi ’s. From Γ XΓ = X = ΛXΛ, exactly 22 matrices for Γ leave X nonsingular.
For each of these values of Γ , we find the corresponding form for X (see Appendix A). Similarly,
we substitute Λ and each possible Γ into ΛYΓ = Y and solve the resulting system of equations.
For each of the 22 remaining values of Γ , Y must be of a certain corresponding form (see
Appendix A). Further case-by-case analysis yields exactly 16 choices of Γ which do not force
(X,Y ) to be reducible (see Appendix A). In each of these 16 cases, the restriction that XYXY 2

is diagonal forces both X and Y to have exactly one nonzero entry per row and column.

Case 8. Suppose λ1 �= 1
λ1

. Then λ4, λ5, or λ6 must equal 1
λ1

. We expand ΛXΛ = X to get a

system of equations where for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If either λ1 = 1
λ4

,

λ1 = 1
λ5

, or λ1 = 1
λ6

, then we find X must be singular, which is a contradiction. Thus λ1 = 1
λ1

.

As in Case 7, it is easy to show that there must be 0, 2, or 4 tuples with entries λi where λi = 1
λi

for each i in that tuple. Since λ1 = 1
λ1

and since there are at most 2 distinct solutions to x = 1
x

,

there must be two such tuples. Without loss of generality, assume that λ4 = 1
λ4

. (Note that if

instead λ5 = 1
λ5

or λ6 = 1
λ6

, we may conjugate X and Y by an appropriate permutation matrix P.)

Since λ5 �= 1
λ5

, then λ6 = 1
λ5

. Because Λ and Γ are conjugate, there are
( 6

3,1,1,1

) = 120 possible
matrices for Γ in terms of the λi ’s. By case-by-case analysis, we see from Γ XΓ = X = ΛXΛ
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that exactly 20 choices of Γ leave X nonsingular. For each of the 20 possible values of Γ , we
find the corresponding form of X (see Appendix A). Then we substitute Λ and each possible
Γ into ΛYΓ = Y and solve the resulting system of equations. For each possible Γ , Y must
be of a certain corresponding form (see Appendix A). Among these 20 choices of Γ , further
case-by-case analysis yields exactly 6 choices of Γ which do not force (X,Y ) to be reducible
(see Appendix A). In each of the 6 remaining values of Γ , we find that XYXY 2 is not diagonal,
which is a contradiction.

Case 9. Suppose that λ1 = 1
λ1

. Expand ΛXΛ = X to yield a system of equations where for any

i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If λ3 �= 1
λ3

, then either λ5 = 1
λ3

or λ6 = 1
λ3

. In either

case, X must be singular, which is a contradiction. Thus λ3 = 1
λ3

. Since there are at most two

distinct solutions to x = 1
x

, we find λ6 = 1
λ5

. There are
( 6

2,2,1,1

) = 180 possible matrices for Γ

defined in terms of the λi ’s. Substitute Λ and each possible Γ into Γ XΓ = X = ΛXΛ and
solve the resulting system of equations. By case-by-case analysis, we see that exactly 20 choices
of Γ leave X nonsingular. For each of these 20 possible values of Γ , we find the corresponding
form of X (see Appendix A). Similarly, substitute Λ and each possible Γ into ΛYΓ = Y and
solve the resulting system of equations. For each of the 20 remaining possible values of Γ , we
find the corresponding form for Y (see Appendix A). Among these values of Γ , further case-
by-case analysis yields exactly 4 choices of Γ which do not force (X,Y ) to be reducible (see
Appendix A). In each of these cases, the corresponding forms of X and Y are

X =
(

X1 0 0
0 X2 0
0 0 X3

)

and

Y =
( 0 0 Y1

Y2 0 0
0 Y3 0

)
or

( 0 Y1 0
0 0 Y2
Y3 0 0

)
,

where Xi and Yi are 2 × 2 block matrices. Using a similar argument to that in Case 5, we reach
a contradiction with both forms of (X,Y ).

Hence λ1 �= 1
λ1

. We then see that λ3, λ5, or λ6 equals 1
λ1

. Expand ΛXΛ = X to get a system

of equations where for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If either λ5 = 1
λ1

or λ6 = 1
λ1

,

it follows that X is singular, which is a contradiction. Thus λ3 = 1
λ1

. Suppose λ5 = 1
λ5

. Then

λ6 = 1
λ6

. From ΛXΛ = X, one sees that X5,5 and X6,6 are nonzero elements. Note γ 2
5 = γ 2

6 = 1
since Γ XΓ = X. Because Λ and Γ are conjugate, either γ5 = λ5 and γ6 = λ6, or γ5 = λ6
and γ6 = λ5. In both cases, (X,Y ) is not irreducible by ΛYΓ = Y , which is a contradiction.
Therefore λ3 = 1

λ1
and λ6 = 1

λ5
. There are

( 6
2,2,1,1

) = 180 possible matrices for Γ . By case-by-
case analysis, we see from Γ XΓ = X = ΛXΛ that exactly 44 choices of Γ leave X nonsingular.
For each of the 44 possible values of Γ , we find the corresponding form of X (see Appendix A).
Substitute Λ and each of the possible values of Γ into ΛYΓ = Y and solve the resulting system
of equations. For each of the 44 possible values of Γ , we find the corresponding form of Y (see
Appendix A). Among these possible values of Γ , further case-by-case analysis yields exactly 32
choices of Γ which do not force (X,Y ) to be reducible (see Appendix A). For each of the 32
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remaining choices of Γ , the fact that XYXY 2 is diagonal either eliminates the choice of Γ , or
forces both X and Y to have exactly one nonzero entry per row and column.

Case 10. Assume that λ1 �= 1
λ1

. Then either λ3, λ4, λ5, or λ6 must equal 1
λ1

. We expand ΛXΛ =
X to get a system of equations where for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0. If either
λ1 = 1

λ3
, λ1 = 1

λ4
, λ1 = 1

λ5
, or λ1 = 1

λ6
, then X must be singular, which is a contradiction. Thus

λ1 = 1
λ1

. As in cases 7 and 8, it is easy to show that there must be 1, 3, or 5 tuples with entries

λi in which λi = 1
λi

. Since there are at most 2 distinct solutions to x = 1
x

, there must be only

one such tuple. Without loss of generality, we may assume that λ4 = 1
λ3

and thus λ6 = 1
λ5

. Since

Λ and Γ are conjugate, there are
( 6

2,1,1,1,1

) = 360 possible matrices for Γ in terms of the λi ’s.
By case-by-case analysis, we see that the restrictions Γ XΓ = X = ΛXΛ and X is nonsingular
leave exactly 24 choices for Γ . For each of the 24 possible values of Γ , we find the corresponding
form of X (see Appendix A). Substitute Λ and each of the possible values of Γ into ΛYΓ = Y

and solve the resulting system of equations. For each of the 24 possible values of Γ , we find
the corresponding form of Y (see Appendix A). Among these 24 choices of Γ , further case-
by-case analysis yields exactly 8 choices of Γ which do not force (X,Y ) to be reducible (see
Appendix A). In each of these 8 cases, the restriction that XYXY 2 is diagonal forces both X and
Y to have exactly one nonzero entry per row and column.

Case 11. By solving ΛXΛ = X, we find that for any i, j ∈ {1, . . . ,6}, λiλj = 1 if Xi,j �= 0.
If X has more than one nonzero entry per row or column, then λi = λj for some i �= j , which
is a contradiction to our assumption that all λi are distinct. Therefore since X is nonsingular,
X has exactly one nonzero entry per row and column. Solving ΛYΓ = Y , we find that for any
i, j ∈ {1, . . . ,6}, λiγj = 1 if Yi,j �= 0. If Y has more than one nonzero entry per row or column,
then either λi = λj or γi = γj for some i �= j , both of which are contradictions. Therefore since
Y is nonsingular, Y has exactly one nonzero entry per row and column. �
Lemma 6.2. If (X,Y ) satisfies the properties in Lemma 3.4 where n = 6, then

(X,Y ) ≈

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

where c1, c2 ∈ k, c1, c2 �= 0, and

(1) (c1, c2) �= (1,1), (−1,−1), (−1,1), (1,−1), (ζ, ζ ), (ζ 2, ζ 2), if k does not have characteris-
tic 2 or 3, where ζ is a primitive cube root of unity.

(2) (c1, c2) �= (1,1), (ζ, ζ ), (ζ 2, ζ 2), if k has characteristic 2, where ζ is a primitive cube root
of unity.

(3) (c1, c2) �= (1,1), (−1,−1), (−1,1), (1,−1), if k has characteristic 3.

Furthermore, for c1, c2 satisfying the above criteria, the following correspond to the same equiv-
alence class: (c1, c2), ( 1 , 1 ), (c2,

1 ), ( 1 , c1c2), ( 1 , c1), and (c1c2,
1 ). If (c′ , c′ ) does
c1 c2 c1c2 c2 c1c2 c1 1 2
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not equal any of the preceding tuples, then (c′
1, c

′
2) represents an equivalence class distinct from

(c1, c2).

Proof. Assume (X,Y ) satisfies the properties in Lemma 3.4. Let H be the group of 6 × 6 matri-
ces with exactly one nonzero entry per row and column and with the group operation of matrix
multiplication. Let M be the group of all equivalence classes of H where A ∈ H is equivalent to
B ∈ H when

Ai,j = 0 ⇔ Bi,j = 0.

Denote [A] ∈ M as the equivalence class of A ∈ H and denote [1]M as the identity element in M .
Now consider [X] ∈ M . Since X2 = I , [X] has order 1 or 2. We see that M is isomorphic to S6.
The conjugacy classes of S6 with elements that have order 1 or 2 are represented by (1), (1 2),
(1 2)(3 4), and (1 2)(3 4)(5 6). Thus there must be a permutation matrix, P , such that PXP −1

is diagonal or one of

X0 =

⎛
⎜⎜⎜⎜⎜⎝

0 x1 0 0 0 0
x2 0 0 0 0 0
0 0 x3 0 0 0
0 0 0 x4 0 0
0 0 0 0 x5 0
0 0 0 0 0 x6

⎞
⎟⎟⎟⎟⎟⎠ , X1 =

⎛
⎜⎜⎜⎜⎜⎝

0 x1 0 0 0 0
x2 0 0 0 0 0
0 0 0 x3 0 0
0 0 x4 0 0 0
0 0 0 0 x5 0
0 0 0 0 0 x6

⎞
⎟⎟⎟⎟⎟⎠ , or

X2 =

⎛
⎜⎜⎜⎜⎜⎝

0 x1 0 0 0 0
x2 0 0 0 0 0
0 0 0 x3 0 0
0 0 x4 0 0 0
0 0 0 0 0 x5
0 0 0 0 x6 0

⎞
⎟⎟⎟⎟⎟⎠ ,

for suitable choices of x1, . . . , x6.
Similarly, since Y 3 = I , there must be a permutation matrix, Q, such that QYQ−1 is diagonal

or is equal to

Y1 =

⎛
⎜⎜⎜⎜⎜⎝

0 y1 0 0 0 0
0 0 y2 0 0 0
y3 0 0 0 0 0
0 0 0 y4 0 0
0 0 0 0 y5 0
0 0 0 0 0 y6

⎞
⎟⎟⎟⎟⎟⎠ or Y2 =

⎛
⎜⎜⎜⎜⎜⎝

0 y1 0 0 0 0
0 0 y2 0 0 0
y3 0 0 0 0 0
0 0 0 0 y4 0
0 0 0 0 0 y5
0 0 0 y6 0 0

⎞
⎟⎟⎟⎟⎟⎠

for suitable choices of y1, . . . , y6.
Assume PXP −1 is diagonal. Since P ∈ H , we find [1]M = [PXP −1] = [P ][X][P −1]. Thus

[X] = [1]M , i.e. X is a diagonal matrix. Now take an arbitrary monomial in X and Y . Since
X2 = I = Y 3, this monomial can be expressed in the form Ya1XYa2X . . . Y an where ai = 0,1,
or 2 for i = 1, . . . , n. Because X is diagonal and Y 3 = I ,

[
Ya1XYa2X . . . Y an

] = [
Ya1

][X][Ya2
][X] . . . [Yan

] = [
Ya1

][1]M
[
Ya2

][1]M . . .
[
Yan

]
= [

Ya1
][

Ya2
]
. . .

[
Yan

] = [
Ya1+a2+···+an

] = [1]M, [Y ], or
[
Y 2].
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Since Y ∈ H and Y 2 ∈ H , we find that Y and Y 2 have exactly one nonzero entry per row and
column. Thus (X,Y ) can span at most an 18-dimensional space, which is a contradiction to
(X,Y ) being irreducible.

Now assume QYQ−1 is diagonal for some permutation matrix Q. By a similar argument
to that above, we see that Y is a diagonal matrix. Now take an arbitrary monomial in X and
Y . Again, this monomial can be expressed as Ya1XYa2X . . . Y an where ai = 0,1, or 2 for i =
1, . . . , n. Then since Y is diagonal and X2 = I ,

[
Ya1XYa2X . . . Y an

] = [
Ya1

][X][Ya2
][X] . . . [Yan

] = [1]M [X][1]M [X] . . . [1]M
= [X][X] . . . [X] = [

Xn−1] = [1]M or [X].

Since X ∈ H , we find X has one nonzero entry per row and column. Therefore (X,Y ) can span
at most a 12-dimensional space, which is a contradiction to (X,Y ) being irreducible. Hence
PXP −1 = X0,X1, or X2 and QYQ−1 = Y1 or Y2, for some permutation matrix Q. We define
Y0 to be PYP −1. Then for each (X,Y ) which satisfies the properties in Lemma 3.4, we find that
(X,Y ) must be equivalent to (X0, Y0), (X1, Y0), or (X2, Y0) where Y0 is conjugate to Y1 or Y2 by
a permutation matrix. Note that if P is a weighted permutation matrix, then (X,Y ) satisfies the
properties in Lemma 3.4 if and only if (PXP −1,PYP −1) satisfies the properties in Lemma 3.4.
Thus (Xi, Y0) satisfies the properties in Lemma 3.4.

After examining all possible pairs (Xi, Y0) by using the restrictions that (Xi, Y0) is irreducible
and XiY0XiY

2
0 is diagonal, we find (X,Y ) ≈ (X2, Y0), where X2 is of the form above and Y0

equals:

⎛
⎜⎜⎜⎜⎜⎝

0 0 y1 0 0 0
0 0 0 y2 0 0
0 0 0 0 y3 0
0 0 0 0 0 y4
y5 0 0 0 0 0
0 y6 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 y1 0 0 0
0 0 0 y2 0 0
0 0 0 0 0 y3
0 0 0 0 y4 0
0 y5 0 0 0 0
y6 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 y1 0 0
0 0 y2 0 0 0
0 0 0 0 y3 0
0 0 0 0 0 y4
0 y5 0 0 0 0
y6 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 y1 0 0
0 0 y2 0 0 0
0 0 0 0 0 y3
0 0 0 0 y4 0
y5 0 0 0 0 0
0 y6 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 y1
0 0 0 0 y2 0
y3 0 0 0 0 0
0 y4 0 0 0 0
0 0 0 y5 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 y1 0
0 0 0 0 0 y2
y3 0 0 0 0 0
0 y4 0 0 0 0
0 0 y5 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,
0 0 y6 0 0 0 0 0 0 y6 0 0
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⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 y1 0
0 0 0 0 0 y2
0 y3 0 0 0 0
y4 0 0 0 0 0
0 0 0 y5 0 0
0 0 y6 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , or

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 y1
0 0 0 0 y2 0
0 y3 0 0 0 0
y4 0 0 0 0 0
0 0 y5 0 0 0
0 0 0 y6 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

for suitable choices of y1, . . . , y6. From computation with X2 = Y 3 = I and conjugation by
various weighted permutation matrices, one sees that

(X,Y ) ≈ (X′, Y ′) :=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

for some nonzero c1, c2 ∈ k.
We note X′2 = I = Y ′3, X′Y ′X′Y ′2 is diagonal, and X′Y ′2X′Y ′ is diagonal. Thus it remains

to determine which values of c1 and c2 lead to an irreducible (X′, Y ′) and to find the equivalence
classes for (X′, Y ′). We first determine the equivalence classes for solutions (X′, Y ′).

Let

Y ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 c′
1 0

0 0 0 0 0 1
c′

2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c′
1c

′
2

0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then (X′, Y ∗) ≈ (X′, Y ′) if and only if there exists an invertible matrix Q such that QX′ = X′Q
and QY ′ = Y ∗Q.

Let

Q =
(

A B C

D E F

G H J

)

where A through J are 2 × 2 block matrices. Then by QX′ = X′Q, we find that A = ( a1 a2
a2 a1

)
,

B = ( b1 b2
b2 b1

)
, etc.

From QY ′ = Y ∗Q, we see that:

A = 0 ⇔ E = 0 ⇔ J = 0,

B = 0 ⇔ F = 0 ⇔ G = 0,

C = 0 ⇔ D = 0 ⇔ H = 0.
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From this result and again using QY ′ = Y ∗Q, we find (c′
1, c

′
2) = (c1, c2) or ( 1

c1
, 1

c2
) if A �= 0.

Likewise, (c′
1, c

′
2) = (c2,

1
c1c2

) or ( 1
c2

, c1c2) if B �= 0, and (c′
1, c

′
2) = ( 1

c1c2
, c1) or (c1c2,

1
c1

) if
C �= 0.

Note that using:

Q1 = I, Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

0 1
c2

1
c2

0
0 c1
c1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Q3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 1

1 0
0 1

1 0
0 1

⎞
⎟⎟⎟⎟⎟⎠ , Q4 =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0

0 c1c2
c1c2 0

0 c2
c2 0

⎞
⎟⎟⎟⎟⎟⎠ ,

Q5 =

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 1

1 0
0 1

1 0
0 1

⎞
⎟⎟⎟⎟⎟⎠ , Q6 =

⎛
⎜⎜⎜⎜⎜⎝

0 c1c2
c1c2 0

0 c2
c2 0

0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

we find QiX
′Q−1

i = X′ and QiY
′Q−1

i = Y ∗ for i = 1, . . . ,6, and (c′
1, c

′
2) as above. Since Q is

invertible, A, B , C cannot all be 0. Thus Y ∗ must have

(
c′

1, c
′
2

) = (c1, c2),

(
1

c1
,

1

c2

)
,

(
c2,

1

c1c2

)
,

(
1

c2
, c1c2

)
,

(
1

c1c2
, c1

)
, or

(
c1c2,

1

c1

)
.

It remains to check irreducibility of (X′, Y ′).
Note that conjugating by

P =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠
0 0 0 1 0 0
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yields (X′, Y ′) ≈ (X′′, Y ′) where

X′′ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Thus (X′, Y ′) is irreducible if and only if (X′′, Y ′) is irreducible.
Let

L =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ and U =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Since (L,U) is irreducible, it is sufficient to generate L and U as k-linear combinations of
products in X′′, Y ′. Note that this is a necessary and sufficient condition for (X′′, Y ′) to be
irreducible.

We now find conditions that let us generate L and U from X′′ and Y ′. Let Λ′′ = X′′Y ′X′′Y ′2
and Γ ′′ = X′′Y ′2X′′Y ′. Since Y ′X′′, Λ′′Y ′X′′, Λ′′Γ ′′Y ′X′′, Γ ′′Y ′X′′, Λ′′2Y ′X′′, and Γ ′′2Y ′X′′
are matrices of the form

⎛
⎜⎜⎜⎜⎜⎝

0 ∗ 0 0 0 0
0 0 ∗ 0 0 0
0 0 0 ∗ 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗
∗ 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

we attempt to form U and L as a k-linear combination of those matrices. For ai ∈ k,

a1Y
′X′′ + a2Λ

′′Y ′X′′ + a3Λ
′′Γ ′′Y ′X′′ + a4Γ

′′Y ′X′′ + a5Λ
′′2Y ′X′′ + a6Γ

′′2Y ′X′′ = U

if and only if

A1

⎛
⎜⎜⎜⎜⎜⎝

a1
a2
a3
a4
a5

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎠
a6 1
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where

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c2 c1c
2
2 c1c2 c2

2 c2
1c

2
2

c1 1 c2 c1c2
1
c1

c1c
2
2

1 1
c1c2

1
c2

1c2

1
c1

1
c2

1c2
2

1
c2

1

c2 1 1
c1c2

1
c1

1
c2

1
c2

1c2

1 c1
c1
c2

1
c2

c2
1

1
c2

2
1

c1c2
1 c1

1
c2

c1c2
c1
c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, for bi ∈ k,

b1Y
′X′′ + b2Λ

′′Y ′X′′ + b3Λ
′′Γ ′′Y ′X′′ + b4Γ

′′Y ′X′′ + b5Λ
′′2Y ′X′′ + b6Γ

′′2Y ′X′′ = L

if and only if

A1

⎛
⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ .

Thus U and L can be generated as above if det(A1) = R1/(c
6
1c

6
2) �= 0, where R1 is a polynomial

in c1 and c2. Likewise, we attempt to generate U and L using matrices Y ′X′′, Y ′X′′Λ′′, Λ′′Y ′X′′,
Γ ′′Y ′X′′, Λ′′Γ ′′Y ′X′′, and Λ′′2Y ′X′′. Using the method above, we obtain a matrix

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
c1

c2 c1c2 c1c
2
2 c2

2

c1
1
c2

1 c1c2 c2
1
c1

1 1
c2

1
c1c2

1
c1

1
c2

1c2

1
c2

1c2
2

c2 c1c2 1 1
c1

1
c1c2

1
c2

1 c1c2 c1
1
c2

c1
c2

c2
1

1
c1c2

1
c1

1 1
c2

c1 c1c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We are able to generate L and U from the monomials above if det(B1) = R2/(c
5
1c

5
2) �= 0, where

R2 is a polynomial in c1 and c2. Thus, if we are not able to generate L and U in either way,
R1 = R2 = 0.

Earlier, we concluded that (X′, Y ′) is irreducible if and only if (X′′, Y ′) is irreducible. Also,
(X′′, Y ′) is irreducible if and only if L and U can be generated from X′′ and Y ′. From this, we
are able to conclude that if (X′, Y ′) is not irreducible, then R1 = R2 = 0.

We now solve R1 = R2 = 0. By factoring R2 we find

R2 = (1 − c1)(c2 − 1)(c1c2 − 1)F1F2F3
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where F1, F2, F3 are irreducible polynomials in c1, c2. Our explicit choices of F1, F2, and F3
can be found in Appendix B. Then R1 = R2 = 0 if and only if R1 = 0 and at least one of the
following conditions hold: c1 = 1, c2 = 1, c1c2 = 1, F1 = 0, F2 = 0, or F3 = 0.

• If R1 = 0 and c1 = 1 then (c2 − 1)6(c2
2 − 1)3 = 0.

• If R1 = 0 and c2 = 1 then (c1 − 1)6(c2
1 − 1)3 = 0.

• If R1 = 0 and c1c2 = 1 then (c2 − 1)6(c2
2 − 1)3 = 0.

Thus if R1 = 0 and either c1 = 1, c2 = 1, or c1c2 = 1, then (c1, c2) = (1,1), (1,−1), (−1,1), or
(−1,−1) in fields not of characteristic 2 and (c1, c2) = (1,1) in fields of characteristic 2.

We next repeatedly use the command sprem in Maple to find a univariate polynomial in c1 or
c2 which is contained in the ideal 〈R1,Fi〉 of k[c1, c2] for each i = 1,2,3. See Appendix B for the
detailed Maple commands used in this section of the paper. Specifically, sprem inputs a variable
x, and multivariate polynomials in x, say a and b. It computes multivariate polynomials in x with
integer coefficients, say m and q , where ma = bq + r , and the degree of x in r is strictly less than
the degree of x in b. The output of sprem is the multivariate function r . m is always of the form
xn for some n. Temporarily regard c1 and c2 as indeterminates, and temporarily replace R1 and
F1 with their natural preimages in Z[c1, c2]. Using the function sprem to recursively reduce the
degree of c2 when starting with initial polynomials R1 and F1, we see that c34

1 (c1 − 1)24(c2
1 +

c1 + 1)6 is in the ideal 〈R1,F1〉 of Z[c1, c2]. Now let c1, c2, R1, and F1 again be elements
of k. It follows that c34

1 (c1 − 1)24(c2
1 + c1 + 1)6 is in the ideal 〈R1,F1〉 of k[c1, c2]. Hence if

R1 = F1 = 0, either c1 = 0, c1 = 1, or c2
1 + c1 + 1 = 0.

Similarly, we temporarily regard c1 and c2 as indeterminates, and temporarily replace R1 and
F2 with their natural preimages in Z[c1, c2]. We use the Maple command sprem to recursively
reduce the degree of c2 when starting with initial polynomials R1 and F2. Our computation
yields that (c1 − 1)24(c2

1 + c1 + 1)6(c2
1 − c1 + 1)11 is in the ideal 〈R1,F2〉 of Z[c1, c2]. Returning

c1, c2,R1, and F2 to their original form, we conclude that (c1 −1)24(c2
1 +c1 +1)6(c2

1 −c1 +1)11

is in the ideal 〈R1,F2〉 of k[c1, c2]. Hence if R1 = F2 = 0, either c1 = 1, c2
1 + c1 + 1 = 0, or

c2
1 − c1 + 1 = 0.

Again, temporarily regard c1 and c2 as indeterminates, and temporarily replace R1 and F3
with their natural preimages in Z[c1, c2]. We now solve R1 = F3 = 0 in two different ways.
First, we recursively reduce the degree of c2 by using the Maple command sprem with initial
polynomials R1 and F3. We find

c186
1 (c1 + 1)36(c1 − 1)56(c2

1 + c1 + 1
)57

T 4
1 T 2

2

is in the ideal 〈R1,F3〉 ⊂ Z[c1, c2] where T1 is an irreducible polynomial in c1 of degree 28 and
where T2 is an irreducible polynomial in c1 of degree 40. Alternatively, factor R1 into (c2 −
c1)(c

2
1c2 − 1)(c1c

2
2 − 1)R3, where R3 is a nonhomogeneous polynomial in c1 and c2 of total

degree 14. Now we use the Maple command sprem to recursively reduce the degree of c2 using
initial polynomials F3 and each of the polynomials (c2 − c1), (c2

1c2 − 1), (c1c
2
2 − 1), and R3. In

respective order, we find that the following polynomials are in 〈R1,F3〉 ⊂ Z[c1, c2]:

• (c1 + 1)2(c1 − 1)2(c2
1 + c1 + 1)2,

• c2
1(c1 + 1)2(c1 − 1)2(c2

1 + c1 + 1)2,
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• c5
1(c1 − 1)4(c2

1 + c1 + 1)2,

• c110
1 (c1 + 1)16(c1 − 1)44(c2

1 + c1 + 1)31T 4
3 T 2

4

where T3 is an irreducible polynomial of degree 16 and T4 is an irreducible polynomial of de-
gree 26. Now remove the temporary replacements of c1, c2, R1, and F3. By comparing solutions
obtained in the two different ways, we conclude that if R1 = F3 = 0, then c1 = 0, c1 − 1 = 0,
c1 + 1 = 0, or c2

1 + c1 + 1 = 0.
Thus if R1 = 0 and either F1, F2, or F3 = 0, then c1 = 0, c1 = 1, c1 + 1 = 0, c2

1 + c1 + 1 = 0,
or c2

1 − c1 + 1 = 0. We reject the case that c1 = 0 since this forces Y 3 �= I . The case where
c1 = 1 was solved above. If k is not of characteristic 2, solving c1 + 1 = 0 gives c1 = −1. If
c1 = −1 and R1 = R2 = 0, then c2 = 1 or c2 = −1. These solutions are both listed above. If k

is of characteristic 2 and c1 + 1 = 0 or k is of characteristic 3 and c2
1 + c1 + 1 = 0 then c1 = 1,

which was solved above. Also, if k is of characteristic 3 and c2
1 − c1 +1 = 0 then c1 = −1, which

was solved above. It remains to consider fields not of characteristic 3 where c2
1 + c1 + 1 = 0 or

c2
1 − c1 + 1 = 0.

Thus assume k is not of characteristic 3, c2
1 + c1 + 1 = 0, and R1 = R2 = 0. Temporarily

replace c1, c2, R1, and R2 with their natural preimages in Z[c1, c2]. We use the Maple command
sprem to recursively reduce the degree of c1 with initial polynomials R1 and c2

1 + c1 + 1, and
R2 and c2

1 + c1 + 1. We find that:

(
c2

2 − c2 + 1
)(

c6
2 − 5c5

2 + 23c4
2 − 8c3

2 − c2
2 − 2c2 + 1

)(
c2

2 + c2 + 1
)5(

c6
2 − 2c5

2 − c4
2

− 8c3
2 + 23c2

2 − 5c2 + 1
) ∈ 〈

R1, c
2
1 + c1 + 1

〉
, and

27c2
2

(
c2

2 − 2c2 + 4
)(

4c2
2 − 2c2 + 1

)
(c2 − 1)2(c2

2 + c2 + 1
)5 ∈ 〈

R2, c
2
1 + c1 + 1

〉
.

Note that if R1 = R2 = 0 and c2
1 +c1 +1 = 0, then c2

2 +c2 +1 = 0. Now remove the temporary
replacements of c1, c2, R1, and R2. Thus c1 = ζ or ζ 2 and c2 = ζ or ζ 2, where ζ 3 = 1. Since
R1 �= 0 when (c1, c2) = (ζ, ζ 2), (ζ 2, ζ ), we find that (c1, c2) = (ζ, ζ ) or (ζ 2, ζ 2).

Now assume k is not of characteristic 3, c2
1 −c1 +1 = 0, and R1 = R2 = 0. Temporarily regard

c1 and c2 as indeterminates, and temporarily replace R1 and R2 with their natural preimages in
Z[c1, c2]. Using the Maple command sprem, we recursively reduce the degree of c1 with initial
polynomials R1 and c2

1 − c1 + 1, and R2 and c2
1 − c1 + 1. As a result:

(
c2

2 − c2 + 1
)(

c2
2 + c2 + 1

)(
c4

2 − c2
2 + 1

)(
c8

2 − 3c7
2 + 9c5

2 + 4c4
2 − 18c3

2 + 15c2
2

− 6c2 + 1
)(

c8
2 − 6c7

2 + 15c6
2 − 18c5

2 + 4c4
2 + 9c3

2 − 3c2 + 1
) ∈ 〈

R1, c
2
1 − c1 + 1

〉
, and

c2
2

(
3c2

2 − 3c2 + 1
)(

c2
2 − 3c2 + 3

)(
c2

2 − c2 + 1
)
(c2 − 1)2(4c4

2 + 6c3
2 + c2

2 − 3c2 + 1
)(

c4
2 − 3c3

2

+ c2
2 + 6c2 + 4

) ∈ 〈
R2, c

2
1 − c1 + 1

〉
.

Note that if R1 = R2 = 0 and c2
1 −c1 +1 = 0 then c2

2 −c2 +1 = 0. Now remove the temporary
replacements of c1, c2, R1, and R2. Thus if R1 = R2 = 0, then c1 = −ζ or −ζ 2 and c2 = −ζ

or −ζ 2, where ζ 3 = 1. However, if (c1, c2) = (−ζ,−ζ ) or (−ζ 2,−ζ 2), then R2 �= 0, which is a
contradiction. Also, if (c1, c2) = (−ζ 2,−ζ ) or (−ζ,−ζ 2), then R1 �= 0, which is a contradiction.
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We now consider all solutions to R1 = R2 = 0.

• (c1, c2) = (1,1), (ζ, ζ ), (ζ 2, ζ 2) if k is of characteristic 2,
• (c1, c2) = (1,1), (1,−1), (−1,1), (−1,−1), if k is of characteristic 3,
• (c1, c2) = (1,1), (1,−1), (−1,1), (−1,−1), (ζ, ζ ), (ζ 2, ζ 2) if k is not of characteristic 2

or 3.

Thus if (X′, Y ′) is not irreducible, (c1, c2) is among the preceding pairs. The pair of matrices
(X′, Y ′) given when (c1, c2) = (−1,−1), (−1,1), and (1,−1) are all equivalent. Also, the pair
of matrices (X′, Y ′) when (c1, c2) = (ζ, ζ ) and (ζ 2, ζ 2) are equivalent. Thus it is sufficient to
check irreducibility of (X′, Y ′) when (c1, c2) = (1,1), (ζ, ζ ), and (−1,−1).

If c1 = c2 and c3
1 = 1, then (X′Y ′)2 = (Y ′X′)2. Let A = X′Y ′ and B = Y ′X′. Then (X′, Y ′)

is irreducible if and only if (A,B) is irreducible. Note ΛΓ = Γ Λ yields A6 = B6 = I by Re-
mark 3.3. Also, ABA = BAB . From these relations, we can count possible monomials in A and
B to find that (A,B) span at most an 18-dimensional space. Thus (A,B) is not irreducible, and
hence (X′, Y ′) is not irreducible.

If c1 = c2 = −1 and

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
1 −1 0 0 0 0
0 0 0 0 −1 1
0 0 1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

then

(
QX′Q−1,QY ′Q−1) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

1
1

1
−1

−1
−1

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 −1 0 0 0 0
0 0 0 0 0 −1

−1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ .

Since (QX′Q−1,QY ′Q−1) is not irreducible, neither is (X′, Y ′) when c1 = c2 = −1. This gives
the desired result. �
Remark 6.3. In Lemma 6.2, we proved further that if

(X,Y ) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c1 0
0 0 0 0 0 1
c2 0 0 0 0 0
0 1 0 0 0 0
0 0 1

c1c2
0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

where
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(1) (c1, c2) �= (1,1), (−1,−1), (−1,1), (1,−1), (ζ, ζ ), (ζ 2, ζ 2), if k does not have characteris-
tic 2 or 3, where ζ is a primitive cube root of unity;

(2) (c1, c2) �= (1,1), (ζ, ζ ), (ζ 2, ζ 2), if k has characteristic 2, where ζ is a primitive cube root of
unity;

(3) (c1, c2) �= (1,1), (−1,−1), (−1,1), (1,−1), if k has characteristic 3,

then (X,Y ) satisfies the properties in Lemma 3.4.

6.4 If ρ : PSL2(Z) → GLn(k) is an irreducible 6-dimensional representation of PSL2(Z) =
〈x, y | x2 = y3 = 1〉 with X := ρ(x) and Y := ρ(y), it follows from Lemma 6.1 that X and
Y have one nonzero entry per row and column. In particular, ρ : PSL2(Z) → GLn(k) is an
irreducible 6-dimensional representation of PSL2(Z) if and only if (X,Y ) satisfies the prop-
erties in Lemma 3.4. Then by Lemma 6.2 and Remark 6.3, we have classified the irreducible
6-dimensional representations of PSL2(Z) up to equivalence.
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Appendix A

In this appendix, we list the matrices used in the case-by-case analysis proofs in Lemma 6.1.
Again, let γi denote Γi,i , and λi denote Λi,i . Let (a1, a2, a3, a4, a5, a6) denote the unique 6 × 6
permutation matrix which maps ei to eai

, where ei is the standard basis vector of k6.

Case 5. In our proof, we found that λ1 = 1
λ1

and λ5 = 1
λ6

. From Γ XΓ = X, we conclude that if

γiγj �= 1, then Xi,j = 0. From ΛXΛ = X, we conclude that if λiλj �= 1, then Xi,j = 0. For each
of the 30 matrices for Γ in terms of λi , we determine which entries of X must equal 0. Of the
30 possible matrices for Γ , we found that for all but 14 matrices, X is forced to be singular. Two
of these Γ lead to (X,Y ) irreducible. For the 12 remaining matrices for Γ , we replace (X,Y )

with (PXP −1,PYP −1) for an appropriate permutation matrix P , so that Λ is preserved, γ1 =
γ2 = γ5 = γ6 = λ1, γ3 = λ5, and γ4 = λ6. We list each of the 14 possible matrices for Γ , and for
the 12 possible matrices for Γ which do not lead to (X,Y ) irreducible, we list the corresponding
permutation matrix P .

(1) γ1 = γ2 = γ3 = γ4 = λ1, γ5 = λ5, γ6 = λ6; Λ = Γ implies (X,Y ) reducible.
(2) γ1 = γ2 = γ3 = γ4 = λ1, γ5 = λ6, γ6 = λ5; ΛΓ = I implies (X,Y ) reducible.
(3) γ1 = γ2 = γ5 = γ6 = λ1, γ3 = λ5, γ4 = λ6; P is the identity matrix.
(4) γ1 = γ2 = γ5 = γ6 = λ1, γ3 = λ6, γ4 = λ5; P = (1,2,4,3,5,6).
(5) γ1 = γ3 = γ5 = γ6 = λ1, γ2 = λ5, γ4 = λ6; P = (1,3,2,4,5,6).
(6) γ1 = γ4 = γ5 = γ6 = λ1, γ2 = λ5, γ3 = λ6; P = (1,4,2,3,5,6).
(7) γ1 = γ4 = γ5 = γ6 = λ1, γ2 = λ6, γ3 = λ5; P = (1,4,3,2,5,6).
(8) γ1 = γ3 = γ5 = γ6 = λ1, γ2 = λ6, γ4 = λ5; P = (1,3,4,2,5,6).
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(9) γ2 = γ3 = γ5 = γ6 = λ1, γ1 = λ5, γ4 = λ6; P = (2,3,1,4,5,6).
(10) γ2 = γ4 = γ5 = γ6 = λ1, γ1 = λ5, γ3 = λ6; P = (2,4,1,3,5,6).
(11) γ3 = γ4 = γ5 = γ6 = λ1, γ1 = λ5, γ2 = λ6; P = (3,4,1,2,5,6).
(12) γ2 = γ3 = γ5 = γ6 = λ1, γ1 = λ6, γ4 = λ5; P = (2,3,4,1,5,6).
(13) γ2 = γ4 = γ5 = γ6 = λ1, γ1 = λ6, γ3 = λ5; P = (2,4,3,1,5,6).
(14) γ3 = γ4 = γ5 = γ6 = λ1, γ1 = λ6, γ2 = λ5; P = (3,4,2,1,5,6).

Case 7. Here we list the 22 possible values for Γ and the corresponding forms of X and Y . The
forms of X and Y are described by which entries (of X or Y respectively) must equal 0. There
are 5 forms for X and 22 forms for Y .

(γ1, γ2, γ3, γ4, γ5, γ6) =
(1) (λ1, λ1, λ3, λ3, λ5, λ5), (2) (λ1, λ1, λ3, λ5, λ5, λ3), (3) (λ1, λ1, λ3, λ5, λ3, λ5),

(4) (λ1, λ1, λ5, λ3, λ3, λ5), (5) (λ1, λ1, λ5, λ3, λ5, λ3), (6) (λ1, λ1, λ5, λ5, λ3, λ3),

(7) (λ3, λ5, λ3, λ1, λ5, λ1), (8) (λ3, λ5, λ3, λ1, λ1, λ5), (9) (λ3, λ5, λ5, λ1, λ3, λ1),

(10) (λ3, λ5, λ5, λ1, λ1, λ3), (11) (λ3, λ5, λ1, λ3, λ5, λ1), (12) (λ3, λ5, λ1, λ3, λ1, λ5),

(13) (λ3, λ5, λ1, λ5, λ3, λ1), (14) (λ3, λ5, λ1, λ5, λ1, λ3), (15) (λ5, λ3, λ1, λ3, λ1, λ5),

(16) (λ5, λ3, λ1, λ3, λ5, λ1), (17) (λ5, λ3, λ1, λ5, λ1, λ3), (18) (λ5, λ3, λ1, λ5, λ3, λ1),

(19) (λ5, λ3, λ3, λ1, λ1, λ5), (20) (λ5, λ3, λ3, λ1, λ5, λ1), (21) (λ5, λ3, λ5, λ1, λ1, λ3),

(22) (λ5, λ3, λ5, λ1, λ3, λ1).

For Γ in cases 1 and 6, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),

(2,1), (2,2), (3,5), (3,6), (4,5), (4,6), (5,3), (5,4), (6,3), or (6,4).
For Γ in cases 2 and 4, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),

(2,1), (2,2), (3,5), (4,6), (5,3), or (6,4).
For Γ in cases 3 and 5, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),

(2,1), (2,2), (3,6), (4,5), (5,4), or (6,3).
For Γ in cases 7, 9, 12, 14, 15, 17, 20, and 22, X has the following form: if Xi,j �= 0, then

(i, j) = (1,2), (2,1), (3,5), (4,6), (5,3), or (6,4).
For Γ in cases 8, 10, 11, 13, 16, 18, 19, and 21, X has the following form: if Xi,j �= 0, then

(i, j) = (1,2), (2,1), (3,6), (4,5), (5,4), or (6,3).
Fix Γ in one of the above cases. Then Y has the following form: if Yi,j �= 0, then λiγj = 1.

Note that λ1 = 1
λ1

and λ3 = 1
λ5

.
The selection of Γ in the cases 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22

does not force (X,Y ) to be reducible.

Case 8. Below are the 20 possible values for Γ and the corresponding forms of X and Y . The
forms of X and Y are described by which entries (of X or Y respectively) must equal 0. There
are 7 forms for X and 20 forms for Y .

(γ1, γ2, γ3, γ4, γ5, γ6) =
(1) (λ1, λ5, λ6, λ4, λ1, λ1), (2) (λ1, λ6, λ5, λ4, λ1, λ1), (3) (λ5, λ1, λ6, λ4, λ1, λ1),

(4) (λ5, λ6, λ1, λ4, λ1, λ1), (5) (λ6, λ1, λ5, λ4, λ1, λ1), (6) (λ6, λ5, λ1, λ4, λ1, λ1),

(7) (λ4, λ5, λ6, λ1, λ1, λ1), (8) (λ4, λ6, λ5, λ1, λ1, λ1), (9) (λ5, λ4, λ6, λ1, λ1, λ1),
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(10) (λ5, λ6, λ4, λ1, λ1, λ1), (11) (λ6, λ4, λ5, λ1, λ1, λ1), (12) (λ6, λ5, λ4, λ1, λ1, λ1),

(13) (λ1, λ1, λ1, λ4, λ5, λ6), (14) (λ1, λ1, λ4, λ1, λ5, λ6), (15) (λ1, λ4, λ1, λ1, λ5, λ6),

(16) (λ4, λ1, λ1, λ1, λ5, λ6), (17) (λ1, λ1, λ1, λ4, λ6, λ5), (18) (λ1, λ1, λ4, λ1, λ6, λ5),

(19) (λ1, λ4, λ1, λ1, λ6, λ5), (20) (λ4, λ1, λ1, λ1, λ6, λ5).

For Γ in cases 1, 2, 7, and 8, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (2,3),
(3,2), (4,4), (5,6), or (6,5).

For Γ in cases 3, 5, 9, and 11, X has the following form: if Xi,j �= 0, then (i, j) = (1,3),
(2,2), (3,1), (4,4), (5,6), or (6,5).

For Γ in cases 4, 6, 10, and 12, X has the following form: if Xi,j �= 0, then (i, j) = (1,2),
(2,1), (3,3), (4,4), (5,6), or (6,5).

For Γ in cases 13 and 17, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),
(1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4), (5,6), or (6,5).

For Γ in cases 14 and 18, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),
(2,1), (2,2), (3,3), (4,4), (5,6), or (6,5).

For Γ in cases 15 and 19, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,3),

(2,2), (3,1), (3,3), (4,4), (5,6), or (6,5).
For Γ in cases 16 and 20, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (2,2),

(2,3), (3,2), (3,3), (4,4), (5,6), or (6,5).
Fix Γ in one of the above cases. Then Y has the following form: if Yi,j �= 0, then λiγj = 1.

Note that λ1 = 1
λ1

, λ4 = 1
λ4

, and λ5 = 1
λ6

.
The selection of Γ in the cases 7, 8, 9, 10, 11, and 12, does not force (X,Y ) to be reducible.

Case 9. Here, we list the possible values for Γ and the corresponding forms of X and Y for two
values of Λ.

First we assume λ1 = 1
λ1

, λ3 = 1
λ3

, and λ5 = 1
λ6

. There are 20 possible values of Γ . The forms
of X and Y are described by which entries (of X or Y respectively) must equal 0. There are 4
forms for X and 20 forms for Y .

(γ1, γ2, γ3, γ4, γ5, γ6) =
(1) (λ3, λ3, λ5, λ6, λ1, λ1), (2) (λ3, λ3, λ6, λ5, λ1, λ1), (3) (λ5, λ6, λ3, λ3, λ1, λ1),

(4) (λ6, λ5, λ3, λ3, λ1, λ1), (5) (λ1, λ1, λ5, λ6, λ3, λ3), (6) (λ1, λ1, λ6, λ5, λ3, λ3),

(7) (λ5, λ6, λ1, λ1, λ3, λ3), (8) (λ6, λ5, λ1, λ1, λ3, λ3), (9) (λ1, λ1, λ3, λ3, λ5, λ6),

(10) (λ1, λ1, λ3, λ3, λ6, λ5), (11) (λ1, λ3, λ1, λ3, λ5, λ6), (12) (λ1, λ3, λ1, λ3, λ6, λ5),

(13) (λ1, λ3, λ3, λ1, λ5, λ6), (14) (λ1, λ3, λ3, λ1, λ6, λ5), (15) (λ3, λ1, λ1, λ3, λ5, λ6),

(16) (λ3, λ1, λ1, λ3, λ6, λ5), (17) (λ3, λ1, λ3, λ1, λ5, λ6), (18) (λ3, λ1, λ3, λ1, λ6, λ5),

(19) (λ3, λ3, λ1, λ1, λ5, λ6), (20) (λ3, λ3, λ1, λ1, λ6, λ5).

For Γ in cases 3, 4, 7, and 8, X has the following form: if Xi,j �= 0, then (i, j) = (1,2), (2,1),

(3,3), (3,4), (4,3), (4,4), (5,6), or (6,5).
For Γ in cases 1, 2, 5, and 6, X has the following form: if Xi,j �= 0, then (i, j) = (1,1), (1,2),

(2,1), (2,2), (3,4), (4,3), (5,6), or (6,5).
For Γ in cases 9, 10, 19, and 20, X has the following form: if Xi,j �= 0, then (i, j) = (1,1),

(1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,6), or (6,5).
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For Γ in cases 11, 12, 13, 14, 15, 16, 17, and 18, X has the following form: if Xi,j �= 0, then
(i, j) = (1,1), (2,2), (3,3), (4,4), (5,6), or (6,5).

Fix Γ in one of the above cases. Then Y has the following form: if Yi,j �= 0, then λiγj = 1.
Note that the selection of Γ in the cases 1, 2, 7, and 8, does not force (X,Y ) to be reducible.

Now assume λ1 = 1
λ3

and λ5 = 1
λ6

. There are 44 possible values of Γ . The forms of X and Y

are described by which entries (of X or Y respectively) must equal 0. There are 3 forms for X

and 44 forms for Y .

(γ1, γ2, γ3, γ4, γ5, γ6) =
(1) (λ1, λ5, λ3, λ6, λ1, λ3), (2) (λ1, λ5, λ6, λ3, λ1, λ3), (3) (λ1, λ6, λ3, λ5, λ1, λ3)

(4) (λ1, λ6, λ5, λ3, λ1, λ3), (5) (λ3, λ5, λ1, λ6, λ1, λ3), (6) (λ3, λ5, λ6, λ1, λ1, λ3)

(7) (λ3, λ6, λ1, λ5, λ1, λ3), (8) (λ3, λ6, λ5, λ1, λ1, λ3), (9) (λ5, λ1, λ3, λ6, λ1, λ3),

(10) (λ5, λ1, λ6, λ3, λ1, λ3), (11) (λ5, λ3, λ1, λ6, λ1, λ3), (12) (λ5, λ3, λ6, λ1, λ1, λ3),

(13) (λ6, λ1, λ3, λ5, λ1, λ3), (14) (λ6, λ1, λ5, λ3, λ1, λ3), (15) (λ6, λ3, λ1, λ5, λ1, λ3),

(16) (λ6, λ3, λ5, λ1, λ1, λ3), (17) (λ1, λ5, λ3, λ6, λ3, λ1), (18) (λ1, λ5, λ6, λ3, λ3, λ1),

(19) (λ1, λ6, λ3, λ5, λ3, λ1), (20) (λ1, λ6, λ5, λ3, λ3, λ1), (21) (λ3, λ5, λ1, λ6, λ3, λ1),

(22) (λ3, λ5, λ6, λ1, λ3, λ1), (23) (λ3, λ6, λ1, λ5, λ3, λ1), (24) (λ3, λ6, λ5, λ1, λ3, λ1),

(25) (λ5, λ1, λ3, λ6, λ3, λ1), (26) (λ5, λ1, λ6, λ3, λ3, λ1), (27) (λ5, λ3, λ1, λ6, λ3, λ1),

(28) (λ5, λ3, λ6, λ1, λ3, λ1), (29) (λ6, λ1, λ3, λ5, λ3, λ1), (30) (λ6, λ1, λ5, λ3, λ3, λ1),

(31) (λ6, λ3, λ1, λ5, λ3, λ1), (32) (λ6, λ3, λ5, λ1, λ3, λ1), (33) (λ1, λ1, λ3, λ3, λ5, λ6),

(34) (λ1, λ3, λ1, λ3, λ5, λ6), (35) (λ1, λ3, λ3, λ1, λ5, λ6), (36) (λ3, λ1, λ1, λ3, λ5, λ6),

(37) (λ3, λ1, λ3, λ1, λ5, λ6), (38) (λ3, λ3, λ1, λ1, λ5, λ6), (39) (λ1, λ1, λ3, λ3, λ6, λ5),

(40) (λ1, λ3, λ1, λ3, λ6, λ5), (41) (λ1, λ3, λ3, λ1, λ6, λ5), (42) (λ3, λ1, λ1, λ3, λ6, λ5),

(43) (λ3, λ1, λ3, λ1, λ6, λ5), (44) (λ3, λ3, λ1, λ1, λ6, λ5).

For Γ in cases 1, 3, 5, 7, 10, 12, 14, 16, 17, 19, 21, 23, 26, 28, 30, 32, 35, 36, 41, and 42,
X has the following form: if Xi,j �= 0, then (i, j) = (1,3), (2,4), (3,1), (4,2), (5,6), or (6,5).

For Γ in cases 2, 4, 6, 8, 9, 11, 13, 15, 18, 20, 22, 24, 25, 27, 29, 31, 34, 37, 40, and 43 X has
the following form: if Xi,j �= 0, then (i, j) = (1,4), (2,3), (3,2), (4,1), (5,6), or (6,5).

For Γ in cases 33, 38, 39, and 44, X has the following form: if Xi,j �= 0, then (i, j) = (1,3),

(1,4), (2,3), (2,4), (3,1), (3,2), (4,1), (4,2), (5,6), or (6,5).
Fix Γ in one of the above cases. Then Y has the following form: if Yi,j �= 0, then λiγj = 1.

We note that the selection of Γ in the cases 1 through 32 does not force (X,Y ) to be reducible.

Case 10. Listed below are the 24 possible values for Γ and the corresponding forms of X and
Y . The forms of X and Y are described by which entries (of X or Y respectively) must equal 0.
There are 2 forms for X and 24 forms for Y .

(γ1, γ2, γ3, γ4, γ5, γ6) =
(1) (λ1, λ1, λ5, λ6, λ3, λ4), (2) (λ1, λ1, λ6, λ5, λ3, λ4), (3) (λ5, λ6, λ1, λ1, λ3, λ4),

(4) (λ6, λ5, λ1, λ1, λ3, λ4), (5) (λ1, λ1, λ5, λ6, λ4, λ3), (6) (λ1, λ1, λ6, λ5, λ4, λ3),

(7) (λ ,λ ,λ ,λ ,λ ,λ ), (8) (λ ,λ ,λ ,λ ,λ ,λ ), (9) (λ ,λ ,λ ,λ ,λ ,λ ),
5 6 1 1 4 3 6 5 1 1 4 3 1 1 3 4 5 6
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(10) (λ1, λ1, λ4, λ3, λ5, λ6), (11) (λ3, λ4, λ1, λ1, λ5, λ6), (12) (λ4, λ3, λ1, λ1, λ5, λ6),

(13) (λ1, λ1, λ3, λ4, λ6, λ5), (14) (λ1, λ1, λ4, λ3, λ6, λ5), (15) (λ3, λ4, λ1, λ1, λ6, λ5),

(16) (λ4, λ3, λ1, λ1, λ6, λ5), (17) (λ3, λ4, λ5, λ6, λ1, λ1), (18) (λ3, λ4, λ6, λ5, λ1, λ1),

(19) (λ4, λ3, λ5, λ6, λ1, λ1), (20) (λ4, λ3, λ6, λ5, λ1, λ1), (21) (λ5, λ6, λ3, λ4, λ1, λ1),

(22) (λ5, λ6, λ4, λ3, λ1, λ1), (23) (λ6, λ5, λ3, λ4, λ1, λ1), (24) (λ6, λ5, λ4, λ3, λ1, λ1).

For Γ in cases 3, 4, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24, X has the following
form: if Xi,j �= 0, then (i, j) = (1,2), (2,1), (3,4), (4,3), (5,6), or (6,5).

For Γ in cases 1, 2, 5, 6, 9, 10, 13, and 14, X has the following form: if Xi,j �= 0, then
(i, j) = (1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (5,6), or (6,5).

Fix Γ in one of the above cases. Then Y has the following form: if Yi,j �= 0, then λiγj = 1.
Note that λ1 = 1

λ1
, λ3 = 1

λ4
, and λ5 = 1

λ6
. Also, the selection of Γ in the cases 3, 4, 7, 8, 17, 18,

19, and 20, does not force (X,Y ) to be reducible.

Appendix B

In this appendix, we list the specific choices of polynomials and the Maple commands used
in the latter half of the proof of Lemma 6.2.

Our choices of F1, F2, and F3 are:

F1 = c2
1c

2
2 − c2

1c2 + c2
1 − c1c2 − c1 + 1,

F2 = c2
1c

2
2 − c1c

2
2 + c2

2 − c1c2 − c2 + 1,

F3 = c4
1c

4
2 + c4

1c
3
2 + c4

1c
2
2 + c3

1c
4
2 − c3

1c
3
2 − c3

1c
2
2 + c3

1c2 + c2
1c

4
2 − c2

1c
3
2 − 6c2

1c
2
2

− c2
1c2 + c2

1 + c1c
3
2 − c1c

2
2 − c1c2 + c1 + c2

2 + c2 + 1.

For multivariate polynomials A and B in the indeterminate x, sprem(A, B , x, ‘m’, ‘q’)
outputs a multivariate polynomial r , where mA = qB + r and m,q, r are polynomials over Z.
The variables m and q are assigned their corresponding polynomial values. Furthermore, the
degree of x in r is strictly less than the degree of x in B . We use the command ‘factor’ to
determine the roots of the polynomials in question.

To solve R1 = F1 = 0:
> A1:= sprem(R1, F1, c2, ‘m’, ‘q’);
> sprem(F1, A1, c2, ‘m’, ‘q’);
> factor(%);

To solve R1 = F2 = 0:
> A2:= sprem(R1, F2, c2, ‘m’, ‘q’);
> sprem(F2, A2, c2, ‘m’, ‘q’);
> factor(%);

To solve R1 = F3 = 0:

Without factoring R1:
> A3:= sprem(R1, F3, c2, ‘m’, ‘q’);
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> A4:= sprem(F3, A3, c2, ‘m’, ‘q’);
> A5:= sprem(A3, A4, c2, ‘m’, ‘q’);
> sprem(A4, A5, c2, ‘m’, ‘q’);
> factor(%);
By factoring R1:
> factor(R1);
> sprem(F3, c1∧2 * c2 - 1, c2, ‘m’, ‘q’);
> factor(%);
> sprem(F3, c2 - c1, c2, ‘m’, ‘q’);
> factor(%);
> A6:= sprem(F3, c1 * c2∧2 - 1, c2, ‘m’, ‘q’);
> sprem(c1 * c2∧2 - 1, A6, c2, ‘m’, ‘q’);
> factor(%);
> A7:= sprem(R3, F3, c2, ‘m’, ‘q’);
> A8:= sprem(F3, A7, c2, ‘m’, ‘q’);
> A9:= sprem(A7, A8, c2, ‘m’, ‘q’);
> sprem(A8, A9, c2, ‘m’, ‘q’);
> factor(%);

To solve R1 = R2 = c2
1 + c1 + 1 = 0:

We first solve R1 = c2
1 + c1 + 1 = 0.

> B1:= sprem(R1, c1∧2 + c1 + 1, c1, ‘m’, ‘q’);
> sprem(c1∧2 + c1 + 1, B1, c1, ‘m’, ‘q’);
> factor(%);
Then we solve R2 = c2

1 + c1 + 1 = 0.
> B2:= sprem(R2, c1∧2 + c1 + 1, c1, ‘m’, ‘q’);
> sprem(c1∧2 + c1 + 1, B2, c1, ‘m’, ‘q’);
> factor(%);

To solve R1 = R2 = c2
1 − c1 + 1 = 0:

We first solve R1 = c2
1 − c1 + 1 = 0.

> B3:= sprem(R1, c1∧2 - c1 + 1, c1, ‘m’, ‘q’);
> sprem(c1∧2 - c1 + 1, B3, c1, ‘m’, ‘q’);
> factor(%);
Then we solve R2 = c2

1 − c1 + 1 = 0.
> B4:= sprem(R2, c1∧2 - c1 + 1, c1, ‘m’, ‘q’);
> sprem(c1∧2 - c1 + 1, B4, c1, ‘m’, ‘q’);
> factor(%);
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