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Introduction

Introduced in 1945, the Hochschild cohomology groups are subtle and interesting invariants of
associative algebras. The lower-dimensional groups have simple interpretations: for instance, the Oth
group is the centre of the algebra, the 1st group can be thought of as the group of outer deriva-
tions of the algebra, while the 2nd and 3rd groups are related to the rigidity properties of the
algebra. In [40, §3, Pb. 1], Skowronski has related the vanishing of the first Hochschild cohomology
group HH!(A) of an algebra A (with coefficients in the bimodule 4A,) to the simple connectedness
of A. Recall that a basic and connected finite-dimensional algebra over an algebraically closed field
k is simply connected if it has no proper Galois covering or, equivalently, if the fundamental group
(in the sense of [33]) of any presentation is trivial. In particular, Skowronski posed the following
problem: for which algebras A do we have HH!(A) = 0 if and only if A is simply connected? This
problem has been the subject of several investigations: notably this equivalence holds true for al-
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gebras derived equivalent to hereditary algebras [31], weakly shod algebras [30] (see also [7]), large
classes of selfinjective algebras [34] and schurian cluster-tilted algebras [10]. It was proved in [15]
that, for a representation-finite algebra, the first Hochschild cohomology group vanishes if and only
if its Auslander-Reiten quiver is simply connected. Note that if A is a representation-finite triangular
algebra, then its Auslander-Reiten quiver is simply connected if and only if A has no proper Galois
covering, that is, A is simply connected.

Here, we study this conjecture for laura algebras. These are defined as follows. Let mod A be the
category of finitely generated right A-modules, and ind A be a full subcategory consisting of exactly
one representative from each isomorphism class of indecomposable A-modules. The left part L4 of
mod A is the full subcategory of ind A consisting of those modules whose predecessors have projective
dimension at most one, and the right part R 4 is defined dually. These classes were introduced in [24]
in order to study the module categories of quasi-tilted algebras. Following [3,42], we say that A is
laura provided ind A\(£4 UR4) has only finitely many objects. Part of the importance of laura alge-
bras comes from the fact that this class contains (and generalises) the classes of representation-finite
algebras, tilted, quasi-tilted and weakly shod algebras. Laura algebras have appeared naturally in the
study of Auslander-Reiten components: an Auslander-Reiten component is called quasi-directed if it
is generalised standard and almost all its modules are directed. It was shown in [3] that a laura alge-
bra which is not quasi-tilted has a unique faithful convex quasi-directed Auslander-Reiten component
(which is also the unique non-semiregular component). Conversely, any convex quasi-directed compo-
nent occurs in this way [43]. The techniques used for the study of laura algebras were applied in [27]
to obtain useful results on the infinite radical of the module category. Their representation dimension
is at most three and this is a class of algebras with possibly infinite global dimension which satisfies
the finitistic dimension conjecture [9]. Also, laura algebras have been characterised in terms of the
Gabriel-Rojter measure as announced by Lanzilotta in the ICRA XI in Mexico, 2004 (see also [5]). For
further properties of laura algebras we refer the reader to [3,4,6,8,42]. Here we concentrate on the
conjecture that a laura algebra A is simply connected if and only if HH!(A) = 0.

Our approach, already used in [30,31], uses coverings. Covering theory was introduced by Gabriel
and his school (see, for instance, [14,21,36]) and consists in replacing an algebra by a locally bounded
category, called its covering, which is sometimes easier to study. We recall that a tilted algebra is char-
acterised by the existence of at least one, and at most two, connecting components (it has two if and
only if it is concealed, in which case the connecting components are postprojective and preinjective)
see [11]. If A is a laura not quasi-tilted algebra, then its unique faithful quasi-directed component is
also called a connecting component (see [3]). Hence, by laura algebra with connecting component, we
mean a connected laura algebra which is either tilted or not quasi-tilted. We call a laura algebra with
connecting component standard provided its connecting components are all standard (it is known
from [39] that the connecting components of concealed algebras are standard). This generalises the
notion of standard representation-finite algebra (see [14]). Several classes of laura algebras are stan-
dard, notably tilted algebras or weakly shod algebras. Our first main theorem says that if F>risa
Galois covering of the connecting component such that there exists a well-behaved covering functor
k(I") — ind I" then it induces a covering of the algebra.

Theorem A. Let A be a laura algebra with connecting component I" and 7 : I — T be a Galois covering
with group G with respect to which there exists a well-behaved covering functor p : k(I") — ind I". Then there
exists a covering functor F : A — A whose fibres are in bijection with G. If moreover A is standard, then F is a
Galois covering with group G.

Note that if I is standard then there always exists a well-behaved covering functor p.

In order to prove Theorem A, we consider a more general situation. We first consider an Auslander-
Reiten component, which contains a left section (in the sense of [1]) and show that to a Galois
covering of this component such that there is a corresponding well-behaved functor corresponds a
covering of its support algebra with nice properties, see Theorem 5.12 below. Applying this result to
the connecting component of a laura algebra yields the required covering.

Because of the theorem, if A is standard, then we are able to work with Galois coverings which
are notably easier to handle than covering functors. We prove that if A is standard laura, then any
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Galois covering of the connecting component induces a Galois covering of A, with the same group.
This allows us to prove our second main theorem, which settles the conjecture for standard laura
algebras.

Theorem B. Let A be a standard laura algebra, and I' its connecting component(s). The following are equiva-
lent:

(a) A has no proper Galois covering, that is, A is simply connected.
(b) HH!(A) =0.

(c) I is simply connected.

(d) The orbit graph O(I') is a tree.

Moreover, if these conditions are verified, then A is weakly shod.

If one drops the standard condition, then the above theorem may fail. Indeed, there are examples
of non-standard representation-finite algebras which have no proper Galois covering and with non-
zero first Hochschild cohomology group (see [14,15], or below). However, some implications are still
true in Theorem B without assuming standardness. Indeed, we always have: (c) and (d) are equivalent
and (c) implies (a) and (b).

Our paper is organised as follows. After a short preliminary section, we prove a few preparatory
lemmata on covering functors in Section 2. In Section 3, we give examples of standard laura algebras.
Section 4 is devoted to properties of tilting modules which are in the image of the push-down functor
associated to a covering functor. In Section 5 we study the coverings of Auslander-Reiten components
having left sections. The proof of Theorem A occupies Section 6. We concentrate on Galois coverings
in Section 7, and prove Theorem B in Section 8.

1. Preliminaries
Categories and modules

Throughout this paper, k denotes a fixed algebraically closed field. All our categories are locally
bounded k-categories, in the sense of [14, 2.1]. We assume that all locally bounded k-categories are
small and all functors are k-linear (the categories of finite-dimensional modules and their bounded
derived categories are skeletally small).

Let F : £ — B be a k-linear functor and G be a group acting on £ and B by automorphisms. Then
F is called G-equivariant if Fog=goF for every g €G.

A basic finite-dimensional algebra A can be considered equivalently as a locally bounded k-
category as follows: fix a complete set {ei,...,e,} of primitive orthogonal idempotents, then the
object set of A is the set {eq,...,e,} and the morphisms space from e; to e; is ejAe;. The composi-
tion of morphisms is induced by the multiplication in A.

Let C be a locally bounded k-category. We denote by C, its object class. A right C-module M is a
k-linear functor M : C°> — MODk, where MODKk is the category of k-vector spaces. We write MODC
for the category of C-modules and modC for the full subcategory of the finite-dimensional C-modules,
that is, those modules M such that erco dimM(x) < oo. If A is a subcategory of MODC, we use the
notation X € A to express that X is an object in .A. For every x € C,, the indecomposable projective
C-module associated to x is C(—, x). The standard duality Homy(—, k) is denoted by D. Let M be a
C-module. If B is a full subcategory of C, then M|g is the induced B-module. If X’ is a subcategory
of modC, then the X'-module Hom¢(—, M)|y is denoted by Hom¢ (X, M). Also, Hom¢e (M, C) denotes
the C%-module Hom¢ (M, @y, C(—. %)) (if A=C is a finite-dimensional algebra, this is just the left
A-module Homy (M, A)).

We let indC be a full subcategory of modC consisting of a complete set of representatives of the
isomorphism classes of indecomposable C-modules. We write projC and injC for the full subcategories
of indC of projective and injective modules, respectively. Whenever we speak about an indecompos-
able C-module, we always mean that it belongs to indC.
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For a full subcategory A of modC, we denote by add.4 the full subcategory of modC with
objects the direct sums of summands of modules in A. If M is a module, then addM denotes
add{M}.

The Auslander-Reiten translations in modC are denoted by ¢ = DTr and 7 ! = TrD. The
Auslander-Reiten quiver of C is denoted by I"(mod(C). For a component I" of I"(modC), we denote
by O(I") its orbit graph (see [14, 4.2], or Section 8 below). The component I" is non-semiregular if it
contains both an injective and a projective module. It is faithful if its annihilator AnnI" = (" y. Ann X
is zero. Following [41], a component of I is generalised standard if rad> (X, Y) =0 for every X,Y e I'".
Denoting by k(I") the mesh category of I" (see [14, 2.5]), I" is standard if there exists an isomorphism
of k-categories k(I") — ind I" which extends the identity on vertices, and which maps meshes to al-
most split sequences. Let 7 : > T bea morphism of translation quivers. Let X be a full convex
subquiver of I. We let k(X) be the full subcategory of k(I) with objects the vertices in X'. Following
[14, 3.1], a functor p: k(X) — ind I" is well-behaved (with respect to i) if it satisfies:

1. p(X) =7m(X) for every X € X.

2. Let X € X. Let (uj : Zi = X)i=1,..r be all the arrows in X ending at X (or (vj: X — Y;)j=1,..,
be all the arrows in X starting from X), then the morphism [p(uq) ... pue)]: @§:1 p(Zi) -
p(X) (or [p(v1) ... pve) ] :pX)— QB;:] Y;, respectively) is irreducible.

Condition 2 above implies that if a mesh in I is contained in X, then p maps this mesh to an almost
split sequence.

For notions and results on modules, we refer the reader to [11]. For coverings and fundamental
groups of translation quivers, we refer the reader to [14, §1]. Note that the translation quivers we use
are not valued translation quivers and may have multiple arrows.

Paths

Let C be a locally bounded k-category. Let X, Y be in indC. Following the convention used in [24],
a path X ~»Y from X to Y in indC is a sequence of non-zero morphisms:

) X=XoXi> o X Xe=y (>0,

where X; €indC for all i. We then say that X is a predecessor of Y and that Y is a successor of X.
A path from X to X involving at least one non-isomorphism is a cycle. A module X € indC which lies
on no cycle is directed. If each f; in (x) is irreducible, we say that (x) is a path of irreducible morphisms
or a pathin I'(modC). A path (x) of irreducible morphisms is sectional if T¢ X1 # Xj—1 for all i with
O<i<t.

An indecomposable module M € L4 is Ext-injective in add L4 if Ext}‘(—, M)|z, =0 (see [12]). This
is the case if and only if T;]M ¢ La.

The endomorphism algebra of the direct sum of the indecomposable projective modules lying in
L, is called the left support of A. If A is laura with connecting component, then its left support is a
product of tilted algebras (see [6, 4.4, 5.1]).

An algebra A is weakly shod if the length of any path in ind A from an injective to a projective
is bounded [17]. Also, A is quasi-tilted if its global dimension gl.dim A is at most two and indA =
LaURa, see [24].

2. Covering functors

A k-linear functor F : £ — B is a covering functor if (see [14, 3.1]):

1. F~1(x) % ¢ for every x € B,.
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2. For every x, y € &, the two following k-linear maps are bijective:

P cxy)—>B(F®.Fy). and @ EK.y)— B(Fx).Fy)).

F(yH=F(y) F(x')=F(x)

Following [21, §3], F is a Galois covering with group G if there exists a group morphism G — Aut(&)
such that G acts freely on &,, Fo g =F for every g € G and the functor £/G — B induced by F is an
isomorphism. We refer the reader to [21, 3.1] for the definition of £/G. Galois coverings are covering
functors.

If F:£ — B is a covering functor, then F defines an adjoint pair (F,, F.) of functors F, : MOD & —
MOD B and F,: MODB — MODE (see [14, 3.2]). The functor F, is the pull-up functor and F; is the
push-down. We recall their construction: If M € MOD B, then F. M = Mo F°P; if M € MOD &, then F;, M
is the B-module such that F, M(x) = @F@:X M(X), for every x € B,. Both F, and F. are exact.

Let F: £ — B be a covering functor between locally bounded k-categories. We prove a few facts
relative to F. Some are easy to prove in case F is a Galois covering. However, in general, the proofs
are more complicated. This can be explained by the following fact: F° : £ — B° is also a covering
functor, and DF;"’ ~ F, D if F is Galois. However, this isomorphism no longer exists in the general
case of covering functors (see [14, 3.4], for instance).

As a motivation for the results in this section, we start with the following construction. We recall
that the universal covering of a translation quiver I" was introduced in [14, 1.2] using a homotopy re-
lation denoted as H. We define H to be the smallest equivalence relation containing H and satisfying
the following additional relation: Let o and B be two arrows in I having the same source and the
same target, then « and 8 are equivalent for H. Using the construction of [14, 1.3] with respect to the
relation H we construct a covering of I which we call the generic covering of I'. It is an immediate
consequence of this definition and of [14, 1.3] that the generic covering is a Galois covering and is a
quotient of the universal covering. They coincide if I" has no multiple arrows (for example, if I" is
the Auslander-Reiten quiver of a representation-finite algebra).

The following proposition is mainly due to Riedtmann (see [36, 2.2]).

Proposition 2.1. Let A be a basic finite-dimensional algebra. Let I" be a component of I'(modA). Let
7w . I" — I be the generic covering. Then there exists a well-behaved functor p : k(I") — ind I'. If, moreover,
I is generalised standard, then p is a covering functor.

Proof. The functor p was constructed in [36, 2.2] for the stable part of the Auslander-Reiten quiver of
a self-injective representation-finite algebra. The covering property was proved in [36, 2.3] under the
same setting. The construction of p was generalised to any Auslander-Reiten component in [14, 3.1].
It is easily seen that the arguments given in [36, 2.3] to prove that p is a covering functor apply to
the case of generalised standard components. O

Note that if I" is a standard Auslander-Reiten component, then, by definition, there exists a well-
behaved functor k(I") — ind I". In particular, any covering of translation quivers p: I’ — I" gives rise
to a well-behaved covering functor k(I"") — ind I by composing the functors k(p) : k(I"") — k(I") and
k(I'y—indI.

The results of this section will be applied to covering functors as in 2.1. We now turn to the
general situation where F : £ — B is a covering functor between locally bounded k-categories.

Since F, and F, are exact, we still have an adjunction at the level of derived categories. Here and
in the sequel, D(MOD &) and D?(mod &) denote the derived category of £-modules and the bounded
derived category of finite-dimensional £-modules, respectively. The following lemma is immediate.
For a background on derived categories, we refer the reader to [22, Chap. III].
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Lemma 2.2. F, and F, induce an adjoint pair (F,, F.) of exact functors:

Fy
—_—

D(MODE) D(MOD B).
F.

Moreover F) (DP(mod £)) € DP(mod B).

Let x € &. By condition 2 in the definition of a covering functor, F induces a canonical isomor-
phism F; (€£(—, x)) —> B(—, F(x)) of B-modules (see [14, 3.2]). In the sequel, we always identify these
two modules by means of this isomorphism. Using this identification we get the following result.

Lemma 2.3. Let M € D(MOD &). Then F,, induces two linear maps for every x € B,:

om: @ DMODE) (M, E(—. %)) — DMOD B)(F,M, B(—, %)),
F(X)=x

and

Y : @ DMODE)(E(—, %), M) — D(MOD B)(B(—, X), F;,M).
F(X)=x

These maps are functorial in M, and are bijective if M is quasi-isomorphic to a bounded complex of finite-
dimensional projective modules (for example, if gl.dimE < co and M e mod £).

Proof. If M = P[I] where | # 0 and P is a projective £-module, then ¢y, is bijective (because
Extg’(P,E(—,fc)) = 0). Also, if M is an indecomposable projective £-module, then ¢y is bijective
(because F is a covering functor). Finally, if M — M’ — M” — M[1] is a triangle in D(MOD &), then
oM, v and @y are bijective as soon as two of them are so. Consequently, ¢y is bijective if M is
quasi-isomorphic to a bounded complex of finite-dimensional projective £-modules. The second map
is handled similarly. O

In general, F, does not commute with the Auslander-Reiten translations. However, we have the
following.

Lemma 2.4. Let X €ind &€ be such that F; X € ind 5 and pd X < oco. Then dimt¢ X = dim 75F, X.

Proof. Let X € mod& be any module. Let P1 — Pg — X — 0 be a minimal projective presentation in
mod £. By [14, 3.2], we deduce that F; P1 — F3Pg — F; X — 0 is a minimal projective presentation in
mod B. So we have exact sequences in mod £ and mod B°P, respectively:

0 — Homg (X, ) — Homg(Pg, £) — Homg(P1,E) — Tre X — 0,

and

0 — Hompg(F, X, B) - Hompg(F, Po, B) — Homg(F; Py, B) — TrgFy X — 0.

Let X € mod& be of finite projective dimension, thus quasi-isomorphic to a bounded complex
of finite-dimensional projective £-modules. The bijections of 2.3 imply that dimHomg(X,E&) =
erso dimHomg (X, E(—, X)) = erBo dimHompg(F; X, B(—, x)) = dimHomg(F; X, B). Using the above
exact sequences, we deduce that dimTre X = dim TrgF, X. Thus dim ¢ X = dim tgF, X if both X and
F; X are indecomposable. O



1. Assem et al. / Journal of Algebra 323 (2010) 83-120 89

3. Standard laura algebras

We now derive sufficient conditions for a laura algebra to be standard. Weakly shod algebras are
particular cases of laura algebras. It is proved in [17, §4] that if A is weakly shod and not quasi-tilted,
then A can be written as a one-point extension A = B[M] such that the connecting component of
A can be recovered from M and from the connecting components of B. This motivates the following
definition.

Definition 3.1. Let A be a laura algebra with connecting components. An indecomposable projective A-
module P lying in a connecting component I" is a maximal projective if it has an injective predecessor
and no proper projective successor in ind A. Furthermore, A is a maximal extension of B if there exists
a maximal projective P =eA such that B= (1 —e)A(1 —e) and A = B[M], where M =rad P.

By definition, a maximal projective belongs to R4. In particular, by [7, 2.2], it is directed. The
notions of minimal injective or maximal coextension are dual. If A is a tilted algebra which is the en-
domorphism algebra of a regular tilting module, then it has neither maximal projective, nor minimal
injective (see [39]).

Proposition 3.2. Let A = B[M] be a maximal extension. Then B is a product of laura algebras with connecting
components. Moreover, if every connected component of B is standard, then so is A.

Proof. By [4], every connected component of B is a laura algebra. Let Py € indA be the maximal
projective such that rad P, = M and denote by I" the component of I"(mod A) in which Py, lies. So
Pm € R4 NI In particular, Py, is directed. Note that every proper predecessor of P, is an indecom-
posable B-module.

Let us prove the first assertion. If it is false, then a connected component B’ of B is quasi-tilted
and not tilted (and, therefore, quasi-tilted of canonical type). Since A is connected, at least one in-
decomposable summand M’ of M lies in ind B’. Assume first that M’ is not directed. In particular,
M’ e I' implies that M" ¢ £4 U R 4. Therefore there is a non-sectional path M’ ~ P in ind A with
P projective. If P = Pp,, then there exists a non-sectional path M’ ~ M” with M” an indecompos-
able summand of M = rad Py,. This is impossible because P, is directed (see [25, Thm. 1 of §2]). So
P # Py,. By maximality of Py, the path M’ ~ P is a non-sectional path in ind B’ ending at a projec-
tive. So M’ ¢ Rp'. On the other hand, M’ ¢ £, means that there exists a non-sectional path [ ~~ M’
in ind A, where I is injective. By maximality of Py, this is a non-sectional path in ind B’. For the same
reason, we have Homx (P, I) =0, so that [ is injective as a B’-module. So M’ ¢ Lp U Rp. This is
impossible because B’ is quasi-tilted. Therefore M’ is directed. Since B’ is quasi-tilted of canonical
type, the component I’ of I"(mod B’) containing M’ is either the unique postprojective or the unique
preinjective component (see [32, Prop. 4.3]). Assume that I'’ is the unique postprojective compo-
nent of I"(mod B’). Then I'" C Lp\Rp (see [18, 5.2]). In particular, there exists a non-sectional path
M’ ~ P in ind B’ with P projective. Since Py, is maximal, this is also a non-sectional path in ind A.
Since P is projective and since M’ € I, we deduce that P € I and that the path is refinable to a
non-sectional path in I'(mod A) and therefore in I"(modB’) because P, is maximal. Consequently,
M’ lies in the postprojective component I’ of I'(mod B’) and is the starting point of a non-sectional
path in I"'(mod B’) ending at a projective. This is absurd. If I"’ is the unique preinjective component
of I'(mod B’), then, using dual arguments, we also get a contradiction. Thus, B’ is either tilted or not
quasi-tilted.

Now, we assume that every connected component of B is standard, and prove that A is standard.
Later, in 5.7, we shall see that, if A is tilted, then its connecting components are standard. So assume
that A is not tilted. Let I" be the connecting component of I"(modA) and I’ be the disjoint union
of the connecting components of the Auslander-Reiten quivers of the connected components of B.
We compare I" and I"’. More precisely, let X be the full subquiver of I" with vertices those modules
which are not successors of Py. So X is a full subquiver of I'(mod B) stable under predecessors in
I'(mod B), and it contains I"\R 4. We claim that X’ is contained in I"’. We prove a series of assertions.
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(a) The left supports of A and B coincide. Indeed, we have £4 NindB € Lp (see [4, 2.1]). On the
other hand, if P €indB is a projective not lying in L4, then there is a non-sectional path I ~» P in
ind A with I injective. Since P, is maximal, this is a non-sectional path in ind B. For the same reason,
Homu (P, I) =0, so that I is injective as a B-module. So P ¢ L. Thus A and B have the same left
support.

(b) Let P # Py, be a projective lying in I". Then P € I"’. Indeed, if there exists a path I ~» P in I
with [ injective, then the maximality of P, implies that this path lies entirely in ind B and starts in
an injective B-module. So P € I'’. If there is no such path, then P € L4 N T. So P lies in a connecting
component of one of the components of the left support of A, which is also the left support of B.
From [3, 5.4], we deduce that P lies in I"’.

(c) Let X € X. There exists m > 0 such that 7J'X € I"’. By assumption on X, we have 73X = 74 X.
Assume first that 7j'X = P for some m > 0 and some projective P. So P # Py. From (b), we get
that P € I''. Now assume that X is left stable and non-periodic. If X € R,, there exists [ > 0 such
that '(lqu is Ext-projective in R 4. Since X is left stable, we deduce that ri\“X € I'\'Ra. So assume
that X € I'\R4. Since A is laura, there exists m such that tj'X € I' N L4. So 7;'X lies in one of
the connecting components of the left support of A. So 7)'X € I'" because the left supports of A
and B are equal. Finally, assume that X is periodic. Then there exists a projective module P € I', a
periodic direct summand Y of rad P, and a path Y ~» X in I"\Ra, and therefore in I"(mod B). Since Y
is periodic, then P # Py, (otherwise P, would be a proper successor of itself). Since P € I'’, we have
Y € I'" and therefore X € I''.

(d) X is contained in I"’. Indeed, we already know that X is a full subquiver of I"(mod B). Also,
we proved that for every X € X, there exists m > 0 such that t'X =t['X € I'". So X' is contained in
r'.

We now show that I' is standard. By hypothesis, there exists a well-behaved functor ¢ : k(I'") —
ind I"’. Since X is a full subquiver of I’ stable under predecessors in I"(mod B), there exists a well-
behaved functor v : k())) — ind I" where ) is a full subquiver of I" such that:

1. Y contains X.

2. Y is stable under predecessors in I"(mod A).
3. ¢ and ¢ coincide on X.

4, Y is maximal for these properties.

We show that ) = I'. Assume that )} # I'. Since ) contains /X, it contains I"\R4, so there exists a
source X in "'\ V. If X is projective, then X = Pp,. So v is defined on every indecomposable summand
Y of rad Pp,. Set v/ (X) = Py,. Let o1 : X1 — Py, ..., : Xy — Pp be the arrows ending at X. Then
X1®---® Xy =rad Py, and let ¥ (o) be the inclusion X; < Pp,. If X is not projective, then the mesh
ending at X has the following shape:

X : X. (*)
u\; /Vn‘/
n
Since X is a source of I'\), then ¢ is already defined on the full subquiver of the mesh consisting

of all vertices except X. In particular, the following map is right minimal almost split:

[v@) ... vn] :taX—> X1 @& Xn.

Let v(X) =X, and [¢¥(v1) ... ¥ (vp)]: X1 @ - X; — X be the cokernel of the above map,
following [14, 3.1, Ex. b]. Clearly, this construction contradicts the maximality of ). So V= I" and
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there exists a well-behaved functor ¢ : k(I") — ind I" which is the identity on objects. The arguments
in the proof of [14, 5.1] show that this is an isomorphism. So I" is standard. O

Since weakly shod algebras are laura, it makes sense to speak of weakly shod algebras with con-
necting components. We have the following corollary.

Corollary 3.3. Let A be a (connected) weakly shod algebra with connecting components, then A is standard.

Proof. By [7, 3.3], there exists a sequence of full convex subcategories

C=A)CAIC - CAn=A

with C tilted and, for each i > 0, the algebra A;;; is a maximal extension of A;. The result follows
from 3.2 and induction because C is standard (see 5.7 below). O

The preceding result motivates the following definition, inspired from [7, 2.3].

Definition 3.4. Let A be a laura algebra. We say that A admits a maximal filtration if there exists a
sequence

C=A)CAIC - CAn=A (f)

of full convex subcategories with C a product of representation-finite algebras and, for each i > 0, the
algebra A;y1 is a maximal extension, or a maximal coextension, of A;.

Corollary 3.5. Let A be a laura algebra admitting a maximal filtration (f):

(a) If C is a product of standard representation-finite algebras, then A is standard.
(b) If the Auslander-Reiten quiver of every connected component of C is simply connected, then A is standard.
(c) IFHH(A) =0, then A is standard.

Proof. Statement (a) follows directly from 3.2.

(b) This follows from 3.2 and the fact that if a representation-finite connected algebra C has
HH!(C) = 0, or equivalently, if its Auslander-Reiten quiver is simply connected, then C is stan-
dard [15, 4.2].

(c) We use induction on the length m of a maximal filtration. If m =0, then A is representation-
finite and the result follows from [15, 4.2]. Assume that m > 1 and that the statement holds for
algebras admitting maximal filtrations of length less than m. Without loss of generality, we may as-
sume that A = Ap_1[M] is a maximal extension. We claim that Ext%mi] (M, M) = 0. Indeed, if this is
not the case, then there exists an indecomposable summand N of M such that Ext}‘m_1 (M,N) #0.

Write M >~ N @® N’ and let P be the indecomposable projective such that M =rad P. Then N’ is a sub-
module of P and L = P/N’ is indecomposable. By [24, 111.2.2(a)] we have id L > 2. But this contradicts
the fact that L € R4 because it is a successor of the maximal projective P. So Ext}%mi1 (M, M) =0.

Applying [23, 5.3], the exact sequence
HH'(A) - HH' (Ap_1) — Ext} (M, M)

yields HH! (A1) = 0. By the induction hypothesis, Ap,_1 is standard. By 3.2, so is A. O
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Examples 3.6.

(a) Let A be the radical-square zero algebra given by the quiver

PN L
1. "2<~—3<—4__ 5

This is a laura algebra (see [3, 2.3]). Here and in the sequel, we denote by Py, Iy and Sy the
indecomposable projective, the indecomposable injective, and the simple module corresponding
to the vertex x, respectively. Clearly P is maximal projective and I5 is minimal injective. Letting
C be the full convex subcategory with objects {2, 3,4} we see that

CC[S4DS4ICCA

is a maximal filtration. Since C is standard, so is A. Its connecting component is drawn below:

NN, 2NN
' ' \ / N N ' '
/ \ / \

\ / N\ /

I

where the two copies of S3 are identified.

Let B,C be products of standard laura algebras, and A an articulation of B,C (in the sense
of [20]). Then A is laura with connecting components (see [20]). Using [20, 3.9] it is easy to
check that A is standard.

(b

=

The section motivates the following questions.
Problem 1. Which laura algebras admit maximal filtrations?

Problem 2. Assume that A is a laura algebra which does not admit a maximal filtration. If HH! (A) =
do we have that A is standard?

4. Tilting modules of the first kind with respect to covering functors

For tilting theory, we refer to [11]. Let B be a product of tilted algebras and n be the rank of
its Grothendieck group. In [31, Cor. 4.5], it is proved that tilting modules are of the first kind with
respect to any Galois covering of B. More precisely, let F : B — B be a Galois covering with group G,
where B is locally bounded. Denote by 7 the class of complexes T € D?(mod B) such that:

1. T is multiplicity-free and has n indecomposable summands.
2. Db(mod B)(T, T[i]) =0 for every i > 1 (so T is a silting complex in the sense of [26]).
3. T generates the triangulated category DP(mod B).

Any multiplicity-free tilting module lies in 7. It was proved in [31, §4] that for any T € 7 and for
any indecomposable summand X of T, there exists X € D?(mod B) such that:
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1. FX > X.
2. 8X "X for g #£h.
3. If Y € D’(mod B) is such that F, Y ~ X, then Y ~ &X for some g € G.

Given T € 7 and an indecomposable summand X of T, we fix X eDb (mod B) arbitrarily such that
F, X ~ X.

For later reference, we recall some facts. The following result was proved in [31, Cor. 4.5, Prop. 4.6,
Lem. 4.8].

Lemma 4.1. Let F : B — B be a Galois covering with group G. Let T € mod B be a multiplicity-free tilting
module. Let T=T1®---®Tn be such that T+, ..., T, are indecomposable. For every i, there exists T; € ind B
such that F, T; = T;. Moreover:

(a) £T; 2T for (g, i) # (h, j).

(b) pdT; < 1 for every i.

(c) Extlg(gT,-,th) =0forevery g, h e G.i.jefl,....n).

(d) For every indecomposable projective B-module P, there exists an exact sequence 0 — P — TD
T® 5 0with TV, T® inadd{sT; |geG, ie(1,...,n}}.

We need similar facts about covering functors which need not be Galois. Thus we prove the fol-
lowing result.

Proposition4.2. Let F : B — B be a Galois covering with group G, where Bis locally bounded. With the above
setting, let p : B — B be a covering functor such that F(x) = p(x) for every x € Bo. Let T € T and X be an
indecomposable summand of T. Then:

(a) There exists an isomorphism px(gy() = X, forevery g € G.

(b) If L € D(mod B) is such that p; L >~ X, then L >~ ¢X for some g € G.

(c) For every L € DP(mod B), the following maps induced by p, and by the isomorphisms of (a) are linear
bijections:

ox.L: @ D" (mod B)(¥X. L) = DP(mod B)(X. p; L),
geG

and

¥x. : @D D" (mod B) (L. 8X) = DP(mod B)(p,.L. X).
geG

In order to prove the proposition, we need the following lemma. In case p is a Galois covering, the
lemma was proved in [31, Lems. 4.2, 4.3] (see also [29, Lems. 3.2, 3.3]). For simplicity, we write
Hom(X, Y) for the space of morphisms in the derived category.

Lemma4.3. Let T, T’ € T be such that 4.2 holds true for T and for T'. Consider a triangle in D? (mod B):

t
X—EPxi—v— XM, (A)

i=1

where X € addT and X, ..., X; are indecomposable summands of T'. Assume that Hom(Y, X{[1]) = O for
all i (we do not assume that Y € add T or Y € add T’). Then for every g € G, there exist Y € Db (mod Eland
g1, ..., 8 € G such that the triangle A is isomorphic to the image under p; of a triangle in DP (mod B) as
follows:
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t
£X — (P &X] - ¥ — £X[11.
i=1

Dually, consider a triangle in D? (mod B):

t
Y - @ X - X— vl (A"
i=1

where X € addT and X1, ..., X{ are indecomposable summands of T'. Assume that Hom(X;, Y[1]) = 0 for

all i. Then for every g € G, there exist Ye DP (mod B;) and g1, ..., g € G such that the triangle A’ is isomor-
phic to the image under p,, of a triangle in D (mod B) as follows:

t
Y- P X~ X - Yl
i=1

Proof. The proofs of [31, Lems. 4.2, 4.3] use the following key property of a Galois covering F : B—B
with group G. Given L, M € D" (mod B), we have linear bijections induced by F;:

@D Hom (8L, M) = Hom(F,L, F,M) and @) Hom(L,¥M) = Hom(FL, F;M).
geG geG

Of course, these bijections no longer exist for a covering functor which is not Galois. However,
using our hypothesis that 4.2 holds true for T and for T’, it is easy to check that the proofs
of [31, Lems. 4.2, 4.3] still work in the present case. Whence the lemma. O

Proof of 4.2. We proceed in several steps.

Step 1: If T = B, then 4.2 holds true. The following facts follow from the definition of covering
functors (see also [14, 3.2]):

1. Ye Db (mod B) is a projective module if and only if p,Y is a projective module.
2. p,(B(—. %) = Fi(B(—. %) ~ B(—, F(x)) = B(—, p(x)) for every x € B,.
3. gB(f X) = B(f gx) for every x € Bo and every g € G.

Therefore 4.2 holds true for T = B.
Given an object X in a triangulated category, we write (X) for the smallest additive full subcate-
gory containing X which is stable under direct summands and shifts (in both directions).

Step2:If T, T’ € 7 are such that T’ € (T), then 4.2 holds true for T if and only if it does for T'. This
follows directly from the compatibility of p, with the shift.
For the next step, consider the following situation. Assume that T, T’ € 7 are such that:

1. T=M@®T, where M is indecomposable.

2. T"=M &T, where M’ is mdecomposable

3. There exists a non-split triangle A : M > E ¥ M’ — M[1] where u is a left minimal add T-
approximation and v is a right minimal add T -approximation.

Step 3: If T, T’ € 7 are as above, then 4.2 holds true for T if and only if it does for T'. We prove
that the condition is necessary. Clearly, it suffices to prove that the assertions (a), (b), and (c) of 4.2
are true for M’. For simplicity, we identify p,(¥X) and X via the isomorphism used to define ¢x _
and yx _ for every indecomposable summand X of T and g € G.
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Let E = EBf»:] E; with the E; indecomposable. Recall from [31, Lem. 4.4] that A is isomorphic to
the image under F, of a triangle A in D?(mod B):

t
ML @ Y, Sop1’ — M[1], (A)

for some go, g1, ..., & € G. Moreover, i is a left minimal add X' -approximation and Vv is a rigNht min-
imal add X”-approximation, where X’ and X’ are the following full subcategories of D?(mod B):

= {g)N(N\ g € G, X an indecomposable summand of T and gy(Ni I\N/IJ
X' ={8X | g € G, X an indecomposable summand of T' and X 2 M'}.

Fix g € G. Since 4.2 holds true for T, we apply 4.3 to construct a triangle A’ : LY N @ gtE, v
Zg — €M[1] whose image under p, is 1somorph1c to A. In partlcular p,\(Zg) ~ M. For simplic-
ity, assume that A is equal to the image of A under Py, and set E = @, 1g1E1 Let us prove that
Zg > 8200’ It suffices to prove that A’ and &A are isomorphic. For this purpose, we only need to
prove that @i’ is a left minimal add gX—app,rgmmatlon. Let f: &M — €'Y be non-zero, where Y is an
indecomposable summand of T such that &Y € X Since ¢, f; is bijective and since End(M) =k, we
have Y e add T. So we have a factorisation of p (f) by u = p; (ii'):

M

u
_ E
f/
pa(f)

Y.

Since vy g, is bijective for every i, we have "= nec Pr(fy), where (f)n € Ppeg Hom(E, "Y).
So p,(f — fé,ﬁ’) - Zh#, pa(fu') = 0. Using 4.2, we get f = fé,,ﬁ’. Hence @i’ is a left add8X-
approximation. On the other hand, @’ is left minimal because u = p; (&' is left minimal and p; is
exact. As explained above, these facts imply that Z, >~ 880M’. So p; (8M') ~ M’, for every g € G.

Let Y € Db (mod B). Using the triangles gA (g € G) and using that 4.2 holds true for T, the maps
@m.y and ¥y y are bijective (recall that Hom-functors are cohomological).

Finally, if Y € Db(mogﬁ), and if f:p,Y — M’ is an isomorphism, then f = dec py.(fg) with
(fe)g € DgecHom(Y,EM"). Since p,Y and M’ are indecomposable, there exists g1 € G such that
p(fg,) is an isomorphism. Since p, is exact, we deduce that fg, : Y — $1M’ is an isomorphism. This
finishes the proof of the assertion: 4.2 holds true for T’ if it holds true for T. The converse implication
is proved using similar arguments.

Step4:If T € 7, then 4.2 holds true. This follows directly from the three preceding steps, and from
[31, Prop. 3.7]. O

a
Example 4.4. Let B =kQ be the path algebra of the Kronecker quiver 1 ——= 2. There is a Galois
b
covering F : B — B with group Z/27 = {1, 0}, where B=kQ is the path algebra of the following
quiver:
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and where F is the functor such that~F(0ioz) =« for every arrow « and every i € {0, 1}. On the other
hand, there is a covering functor p: B — B such that p(b) = p(ob) =b, p(a) =a and p(oa) =a+b.
The B-module T =e2B @ 75 Le1B) is tlltmg One checks easily that Fx(ezB) =e3B, F)L('(~ (613)) =

Ty (e1B) and that p,\(ezB) ~e)B, pk(rB (e1B)) ~Tp (e1B).

5. Coverings of left sections

Let A be a basic finite-dimensional k-algebra, I a component of I"(modA), 7 : I — I' a Galois
covering of translation quivers with group G such that there exists a well-behaved functor p : k(I") —
ind I". A left section (see [1, 2.1]) in I" is a full subquiver X' such that: X is acyclic; it is convex in I';
and, for any x € I', predecessor in I" of some y € X, there exists a unique n > 0 such that T7"x € X.
Assume that X is a left section in I" and let B =A/Ann X In this section, we construct a covering
functor F : B — B associated to p and a functor ¢ : k(I") — mod B. Both F and ¢ are essential in the
proofs of Theorems A and B.

By [1, Thm. A], the algebra B is a full convex subcategory of A and a product of tilted algebras
and the components of X form complete slices in the connecting components of the connected com-
ponents of B. Recall from [39] that a connected algebra B’ is tilted if and only if its Auslander-Reiten
quiver contains a so-called complete slice X’, that is, a class of indecomposable B’-modules such
that: (1) U =@y 5 X is sincere (that is, Homp/ (P, U) # 0 for any projective B’-module P); (2) X’ is
convex in indB’; (3) If 0~ L — M — N — 0 is an almost split sequence, then at most one of L and
N lies in X’. Moreover, if an indecomposable summand of M lies in X’, then either L or N lies in X’.
Here we may assume that Q is a finite quiver with no oriented cycle and that T € modkQ is a tilting
module such that B = Endyq (T). Any module X € mod B defines the ¥-module Homg(X, X) which,
as a functor, assigns the vector space Homg(E, X) to the object E of X. By the above properties of B,
the map x — Homyq (T, D(kQey)) defines an isomorphism of k-categories kQ —> X. We denote by
I'¢ 5 the full subquiver of I" generated by all the predecessors of X in I

The covering of the left section X

Let X be the full subcategory of k(F) whose objects are the x € k(F) such that p(x) € X. Therefore
p: k(') — ind I" induces a covering functor p : $ — . Note that £ and F<f are stable under G, as

subquivers of I. Since ¥ is hereditary, so is 5. Therefore we have ¥ =kQ for some quiver Q.In
particular, the isomorphism kQ — X and the covering functor p: ¥ — X induce a covering functor
q:kQ — kQ.

The covering functor of B

Since w and p coincide on vertices, & induces a Galois covering of quivers 7 : 0 — Q with
group G. We write :kQ — kQ for the induced Galois covering with group G. Note that Q is a
disjoint union of copies of the universal cover of Q because r _is simply connected. Also, thanks to
the Galois covering w : Q — Q there~is an action of G on modkQ. Let T=T1®--&Th be sgch that
Tq,..., T, are indecomposable and B be the full subcategory of modkQ with objects the &T; (with
ie{l,...,n}, g€, see 4.3).



1. Assem et al. / Journal of Algebra 323 (2010) 83-120 97

Lemma 5.1. The k-category Bis locally bounded. The push-down functor q; : mod kQ — modkQ induces a
covering functor:
F:B — B,
Ti > Ti=q,(5Ty).

Moreover, if p : k(I:) — ind I" is a Galois covering with group w1 (I"), then so is F.

Proof. We apply the results of the preceding section to the covering functor q: kQ — kQ and the
Galois covering m : kQ — kQ. The first assertion follows from 4.1 and 4.2, and the second from 4.2.
The last assertion was proved in [29, Lem. 2.2]. O

We also have a Galois covering B — B induced by the push-down s; : mod kQ — modkQ (see
[29, Lem. 2.2]). In particular, the covering functor F : B — B and the Galois covering B — B coincide
on objects. Therefore we may apply the results of the preceding section to F. _

In the sequel, we write T for the kQ -module PD(ET; |ie{1,...,n}, g e G}. Although T is not
necessarily finite-dimensional, it follows from 4.2 that it induces a well-defined functor:

Homka(f —): modkQ — mod B.
More precisely, if X € mod ké then Hoka(T X) is the B-module defined by gi = Hoka( T,, X).

In particular, an object x in S= kQ defines the injective kQ module D(kQ(x —)) which gives rise
to the B-module Hom, 5 (T D(kQ(x —))). Therefore every B-module X defines a X -module:

3P 5 modk,

x + Homg(Hom, 5 (T, D(kQ (x, -))). X).

For reasons that will become clear later, this module is denoted by HomB(Z‘ X). In this way, we get
a functor HomB(Z‘ —-): mod B — mod £. We need the following result for later reference.

Lemma 5.2. The following diagram commutes up to isomorphism of functors:

_ Hom, 5 (T.—) - Homg (£,—) N

modkQ mod B mod X

qn i l Fy l D

modkQ mod B mod X
Homyq (T,—) Hompg (X,—)

Moreover:

(a) The two top horizontal arrows are G-equivariant.

(b) If6 : modkQ — mod X (or 8 : modkQ — mod 5 denotes the composition of the two bottom (or top)
horizontal arrows, then it induces an equivalence from the full subcategory of injective kQ -modules (or
injective k0 - -modules) to the full subcategory of projective X'-modules (or projective S-modules, respec-
tively).

(c) Leta : T— ] be a surjective morphism between injective kQ -modules. Let « : | — | be equal to g (00).
Then F, maps the connecting morphism Hoka(T, j) — Exth (T, Kerd) to the connecting morphism

Homq (T, J) — Ext,lQ(T, Kera).
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Proof. The commutativity of the diagram is an easy exercise on covering functors, and left to the
reader.

(a) This follows from a direct computation.

(b) By tilting theory, 6 induces an equivalence (see [11, Chap. VIII, Thm. 3.5]):

@ :injkQ — proj X,
I — Homg (X, Homyq (T, I)).

Let I € injka. Then pxg(l) = 0q,.(I). Moreover, g, maps indecomposable injective ka-modulesN to
indecomposable injective kQ -modules, because so does 7, : modkQ — modkQ (see 4.2). So p,6(I)
is indecomposable projective, and therefore so is o(D) (see [14, 3.2]). Consequently, 6 induces the
following functor:

lI/:injka — proji,
I+ Homg(Z, Homg (T, D).

So we have a commutative diagram:

~ v ~
inNjkQ —— proj X

qxl lm

injkQ —;> proj X

In this diagram, p;,, q, and @ are faithful. Hence, so is ¥. Let I, ] € injka and f: ¥ () —»> ¥(]J).
Let h:q, I — (i,\j~be such that @(h) = p,(f). Using 4.2, we have h = dec qx(hg), where (hg)g €
@gec Hom,g (1,8 ]). So p;.(f) = dec P (hg). Using 4.2 again, we deduce that f =W (hy). So ¥
is full. Finally, we know from the preceding section that g; : injka — injkQ is dense. Also, so is
Dy i proj X — proj X' (see [14, 3.2], for instance). Since @ is an equivalence, we deduce that ¥ is
dense. Therefore ¥ is an equivalence.

(c) The push-down functors g, and Fj are exact. So we have a commutative diagram up to iso-
morphism of functors:

_ RHom5(T.—) _
DY (modkQ) ———— DP(mod B)

DY (modkQ) ———— DY(mod B).
RHoka (T,—)

The statement follows from this diagram. 0O

We wish to construct a functor ¢ : k(F) — mod B. We proceed in several steps:

1. Define a functor ¢g :k(IEg) — mod B where k(Izg) denotes the full subcategory of k(I") with
objects the vertices in 12 5.

2. Define ¢ on objects, so that it coincides with ¢y on predecessors of 5.
3. Define ¢ on morphisms, so that it extends ¢o.
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The functor ¢g : k(fgg) — mod B

We first prove the following lemma. In the case of a Galois covering whose group acts freely
on indecomposables, a corresponding result was proved in [21, 3.6]. We know that p : 5 X and
F : B— B are covering functors, and that the latter coincides on objects with a Galois covering B — B
with group G. Finally, if X €indB is a summand of a tilting B-module, then X €indB is such that
pi(X) ~ X (see 4.2).

Lemma5.3.Let X € ['¢x and go € G. If i : E— 8Xis right minimal almost split, then so is p; i : p,\f — X.
Consequently, p; 5 (%0 X)~ 15X if X is not projective.

Proof. Notice that X is an indecomposable summand of some tilting B-module. So we may apply the
results of 4.2. If X is projective, the assertion follows from [14, 3.2]. So we assume that X, and there-
fore 80 X, are not projective. Let u : E — X be right minimal almost split and E = E{ &®--- @ E; be such
that Eq,..., E; are indecomposable. Since I'¢y is acyclic (see [1, 2.2]), we have Ext}g(E, 3X) =0.
Also, the linear map EBgec Homg(gf,-, &o 35) — Homg (E;, X) is bijective, for every i (see 4.2). Therefore
we apply 4.3 to the exact sequence 0 — 13X — E > X — 0: There exist g1,...,8 € G and mor-
phisms ; : &E; — 80X (ie{1,...,t}) fitting into a commutative diagram whose vertical arrow on the
left is an isomorphism:

We identify u and p,[is, ..., U] via this diagram. Let i € {1,...,n}. Then i; :&E; — X is not a
retraction because 8 E; and 8°X are non-isomorphic indecomposable modules. So #; factors through
u, for every i. Applying p, to each factorisation shows that u factors through p; (ii). On the other
hand, p,u is not a retraction because X is not a direct summand of E. So p; (i) factors through u.
The right minimality of u implies that the morphism u is a direct summand of p; (i1). Finally, the
following equality follows from 2.4:

dimKeru = dim g X = dim tpp 8 X = dimpﬂggoi = dimKer p; ().
So p; (i) and u are isomorphic, and p, (i) is right minimal almost split. O

Using the preceding lemma, we construct a functor ¢y : k(Fgg) — ind B.

Lemma 5.4. There exists a full and faithful functor, G-equivariant on vertices, o : k(lﬂ“i< 5) — ind B. This
functor maps arrows in 12 5 to irreducible maps, and meshes to almost split sequences. Moreover, it com-

mutes with the translations and extends the canonical functor 5 —indB defined on the objects by x
Hom, g (T, D(kQ (x, —))). Finally, the following diagram is commutative up to isomorphism of functors:

~ %o ~ ~
k(I'g5) indB ¢ mod B

P\L Fa

ind(I'gx) ¢ ind B¢ mod B.
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Proof. Step 1: Clearly there is a functor ¢ : 5 — modB given by X — Hom; 5 (T, D(k@(i{, —))). Note
that £ (or X) is naturally equivalent to the full subcategory of mod kQ (or modkQ, respectively)
consisting of the indecomposable injective modules. Therefore 5.2 shows that this functor is full and
faithful, and that the following diagram commutes up to isomorphism:

~ %o ~c ~
) ind B mod B
3 C ind B© mod B.

Note that (po(M) is indecomposable for every M because so is F,¢@o(M) = p(M) The functor
Qo : ¥ —indB is G- -equivariant on vertices: Indeed, for every g € G, and every x € Qo, we have:

90(gX) = Hom5 (T, D(kQ (g%, —))) = Hom, (T, £D (kQ (%, —)))
= &Hom, g (T, D(kQ (%, —))) = £¢o(X).

Step 2: If M € k(Izg), there exists a unique n € N such that 77"M € 5. Let @o(M) be the B-
module:

Po(M) = 5o (T " M).

It follows from 5.3 that Fy@o(M) = p(M). Also ¢o(8 M) = &¢po(M) for every g € G and for every vertex
M because T commutes with the action of G.

Step 3: In order to define ¢p on morphisms, we construct inductively a sequence of G-invariant
left sections Si of I’ such that fo = %, such that S,-H\ii consists of the G-orbit of a vertex, and
such that, if J;_, 5 denotes the full subcategory of the path category kI* whose vertices are given by
those of fo, e f,-, then kIEf = Ui>0 f,-. Each inductive step defines a functor ¢ : Ui:1 ft —indB
which maps arrows to irreducible maps and extends the construction of the two preceding steps. This
functor makes the following diagram commute:

[ = ~c ~
Ur=1 2t ind B mod B
i "
ind(I'g¢x) € ind BC mod B,

where the vertical arrow on the left is induced by p. Assume that ¢o : Ui:] 5 — indB has been
defined for some i > 0. Since X is acyclic, it has a sink. Assume that all sinks are projective. First
assume that P is a projective sink, and let 2,+1 be equal to Xi\{8P | g € G}; then X, is a left

section of I', and there is a unique ¢ : '“ Et — indB satisfying the required conditions. Now
assume that there is a non-projective sink M 1n 5. Then there exists a mesh in I*:

/\
\/
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and M, Nq,...,Ns € fi because M € 5,- is a sink. In particular, ¢o(u;) is defined, and Fy¢o(u;) =
p(uj)|p for every i. For simplicity, we write @g(u) = [@o(u1) ... @o(us)] and p(u) = [p(u1)

p(us)]. Then @o(u) is right minimal almost split in mod B: Indeed, there exists a right minimal al-
most split morphism L > ¢o(M). Since ¢o(u) : EB]' @o(Nj) — @o(M) is not a retraction (because
each @o(uj) is an irreducible morphism, by the induction hypothesis), there exists a morphism
w: @j @o(Nj) — L such that ¢o(u) = ww’; applying F;, we have F)@o(u) = F,(w)F,(w); but now
Fy@o(u) = p(u)|p is right minimal almost split by construction, and so is F,(w) (see 5.3); hence,

F,(w’) is an isomorphism and therefore so is w’ because F;, is exact. We let [@g(v1) ... @o(vs)]:
@o(tM) — @;:1 @o(N;) be the kernel of ¢g(u). For simplicity, we set ¢o(v) =[@o(v1) ... wo(vs) I
and p(v) =[p(v1) ... p(vy)]. We let Ziyq = (Z\{EM | g € G) | U(8TM | g € G}. Clearly, X1 is

a left section. We now show that we may assume ¢g(v) to be taken such that F,¢o(v) = p(u)|s.
Indeed, the commutative diagram with exact rows:

Freo(v) Froo(u)

0 — Frpo(tM) Fy.g0(@j1 Nj)

0 —— paM)y ———— P} Nplp ———— p(M)|ls —> 0
Pl pWw)ls

Fyroo(M) —— 0

gives an isomorphism F,@o(t M) — p(tM)|p making the left square commute. Since F,@o(tM) =
p(tM)|p is a brick (because it belongs to fgg), this isomorphism is the multiplication by a non-
zero constant c. Hence, p(v)|p = cFa@o(v). Replacing ¢o(v) by cgp(v) does the trick. Thus, we have
defined ¢p : U;ﬂ 55— ind B. Clearly, the required conditions are satisfied. This induction gives a
functor ¢ : kf“'< 55— indB mapping arrows to irreducible maps and meshes to almost split sequences,
and such that the following diagram commutes:

~ %o ~c ~

kI'c 5 ind B mod B
i F)L
ind g x € ind B¢ mod B,

Wllfrre the vergcal arrow on the left is induced by p. Since F, is faithful, ¢o induces a functor ¢y :
I((Fgf) — ind B. It is now clear that this functor satisfies the conditions of the lemma. O

It was shown in [1, 3.2] that the existence of a left section ¥ in an Auslander-Reiten component
I' implies that I'¢ 5 is generalised standard. We now prove that it is standard.

Corollary 5.5. Let A be a finite-dimensional k-algebra and I" be a component of I'(mod A) having a left
section X. Then I' 5 is standard.

Proof. Let B = A/AnnX. Then B is a product of tilted algebras and the components of X form
complete slices of the connecting components of the connected components of B. Let I/ be the union
of the components of I"(mod B) intersecting X. The arguments of the proof of 5.4 show that there
exists a full and faithful functor k(Fé 5)—ind Fé 5 extending the identity on vertices. So I'¢y = Fé 5
is standard. O

Example 5.6. Let A be the algebra given by the quiver
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3
4
/\ x
B / J

1=——2<2"3

14

and the potential W =8B« + vua (or, equivalently, by the relations o =0, §8 =0, ad =0, ur =0,
vie =0 and Av =0). So A is a cluster-tilted algebra since it is the relation-extension (in the sense
of [2]) of the tilted algebra of type A given by the quiver

bound by o =0 and uX = 0. The transjective component I" of I"(mod A) is of the form

\/\/\/\/\/\/\/\/\/\
\/\/\/ \/\/\/\/\/
/\/\/ /\/\/\/\/\
\/\/\ /\/\/\/\/\/

\/\/\/\/\/\/\/\/\

where vertices with the same label are identified. Then I admits a left section X = {e,r,q, p, 0, c}
and B=A/Ann X is the algebra given by the quiver:

4
Y
B
1=—/—2~<——-3
12
1%
5

with the inherited relations. As we have seen, I'¢ 5 is standard (and generalised standard) while I”
itself is not.

The following corollary seems to be well-known. However we have been unable to find a reference.

Corollary 5.7. Let B be a tilted algebra and I" a connecting component of B. Then I is standard.
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Proof. If B is concealed, this follows from [38, 2.4(11), p. 80]. Assume that B is not concealed. So I" is
the unique connecting component of B. Let X be a complete slice in I". As observed in 5.5, we have
a full and faithful functor k(I'¢y) — indI" extending the identity on vertices. A dual construction
extends this functor to a full and faithful functor k(I") — ind I" extending the identity on vertices. So
I' is standard. O

From now on, we identify 5 to a full subcategory of mod B by means of ¢g.
Construction of ¢ on objects

We prove that for any M € I, there exists oM) e mod B whose image under F : mod B — mod B
coincides with p(M)|p, in such a way that ¢ (8M) = ¢ (M), for every g € G. We define Ly to be
the full subcategory of ind B which consists of the predecessors of the complete slice X. Also a
minimal add L 5 -presentation of a module R is a sequence of morphisms E;{ — E; — R where the
morphism on the right is a minimal add £ x-approximation and the one on the left is a minimal
add £ x-approximation of its kernel. Before constructing ¢ (M), we prove some lemmata.

Lemma 5.8. Let R € mod B be a module with no direct summand in L. There exists an exact sequence in
mod B, which is a minimal add L 5, -presentation:

0>E—>E—>R—0 (%)

with Eq, E € add X. Moreover, the functor Homyq (T, —) induces a bijection between the class of all such
exact sequences, and the class of minimal injective copresentations:

0— Tor? (R, T) = Iy — I — 0.

Finally, there is an isomorphism in mod B:

R~ Exty, (T, Tor} (R, T)).

Proof. Let X'(T) be the torsion class induced by T in modB. So R lies in X'(T) and has no direct
summand in X. Therefore R is the epimorphic image of a module in add X. The first assertion then
follows from [9, 2.2(d)].

Let f:I; — I be the morphism between injective kQ -modules such that Homq (T, f) is equal
to the morphism E; — E; in (x). Because of the Brenner-Butler Theorem (see [11, Chap. VI, Thm. 3.8,
p. 207]), the functor — @ T applied to (x) yields an injective copresentation in modkQ :

0— Tor¥(R, T) — I1 — I — 0.

The minimality of this copresentation follows from the minimality of E; — R. With these arguments,
it is straightforward to check that there is a well-defined bijection which carries the equivalence
class of the exact sequence 0 — E1 — E; — R — 0 to the equivalence class of the exact sequence
0—TorB(R, T) > Iy > I, - 0.

The last assertion follows from the Brenner-Butler Theorem and the fact that R € X(T). O

Lemma 5.9. add L 5 is contravariantly finite in mod A. Therefore if X € I'\Ly, then X|p lies in the torsion
class induced by T in mod B.

Proof. By [1, Thm. B], the algebra B is the endomorphism algebra of the indecomposable projective
A-modules in L. In particular, a projective B-module is projective as an A-module so the projective
dimensions in modA and in mod B coincide on Lyx. Also, by [1, Thm. B], all modules in £x have
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projective dimension at most one as B-modules. Therefore L5 C L£4. Moreover, P X is sincere as a
B-module. Hence, [1, 8.2] implies that add Ly is contravariantly finite in mod A. Let X € I'\L5. Let
P — X|p be a projective cover in mod B. As noticed above, we have P € add L. Therefore P - X|p
factors through add X. Thus, X|p lies in the torsion class. O

Lemma 5.10. There exists amap ¢ : Fo — mod B extending ¥q, and such that F, (¢(M)) = p(M)|, for every
M e T. Moreover, ©(EM)=8p(M) forevery g€ G and M € r.

Proof. Note that ¢ is already defined on F<£ because of 54. Let M € F\F<): Then p(M) e
IMNI'<y =I'\Ly. By 5.9, the module p(M)|g lies in the torsion class induced by T in modB. So
there is a decomposition in mod B:

p(M)|p=ROE,
where E € add ¥ and R has no indecomposable summand in £ 5. Also, fix a decomposition in mod ok
k(I (E,M)=Re& P,

where P is projective and maximal for this property. Let E e add £ be such that P =k(I")(Z, E).

We claim that p, : mod £ — mod X maps Rand P to Homg (X, R) and Homg (X, E) respectively.
Indeed, since p : k(F) — ind I" is a covering functor inducing p : Y - %, the image of k(F)(Z‘ M)
under p; : mod S > modX is Homg (X, p(M)) = Homp (X, p(M)|p) (functorially in M). Moreover, the
decomposition p(M)|p = R & E in modB gives a decomposition Homg (X, p(M)) = Homg(X, R) &
Homg (X, E) in mod X' where Homg (X, E) is projective and Homp (X, R) has no non-zero projective
direct summand. The claim then follows from [14, 3.2].

In order to prove that R is the image of a B-module under F;, we consider a minimal projective
presentation in mod >R

O—>I~’1—>’132—>E—>0‘

Then there exists a_morphism f T: — T, between injective kQ -modules such that the morphism
Pl — P2 equals G(f) (here 9 is as in 5.2). Let f: Iy — I be the image of f under g, : mode —
mode Hence, the image of Kerf under g;, : mod kQ — modkQ is Ker f. Let Py — P, be the image
of Q(f) under p; : mod > — mod X. Therefore the commutativity of the diagram in 5.2 and the fact
that Homg (X, R) is the image of R under p;, :mod £ — mod X gives a minimal projective presenta-
tion in mod X':

0— Py — P, - Homg(X,R) — 0.
On the other hand, 5.2 shows that P; — P, is equal to the following morphism in mod X':

H X H T,
Homg (£, Homyq (T, I1)) oms (2 Homyg (T../))

Homg (X, Homyq (T, I2)).

Therefore we have a minimal add £ 5 -presentation:

Homyq (T, f)
Homyq (T, I{) —— Hoka(T, I,) —> R.
Because of 5.8, the sequence 0 — Hoka (T, I1) — Homyq (T,I3) - R — 0 is exact and Ker f =
Tor1 (R, T). In other words, g : modkQ — modkQ maps Kerf to Tor1 (R, T). Using 5.8 and the last
diagram in the proof of 5.2, we get FA(Ext;a (T, Ker f)) =

We give an explicit construction of ¢. Let M € k(). We fix a minimal projective presentation in
mod X':
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O—>T’J1£>’152—>7€—>0,

and injective ka—modules 71 and 72, together with a morphism f :71 — 72 such that il = g(f). Then
we let ¢ (M) be the following B-module:

¢(M) = po(E) @ Exty (T, Ker ),

where ¢0(E) gao(E]) D - 63(,00(E5) if E= E1 D - GBEs with E1,.. ES € 5. This finishes the con-
struction of the map ¢ : 1“0 — modB. We now prove the G-equivariance property. Let M € k(F)
be a vertex and let g € G. We keep the above notation R, E, etc. introduced for M, and we
adopt the dashed notation R, E, etc for the corresponding objects associated to #M. We have
k(TY(E,8M) = Ek(T)(Z, M). Indeed, the - modules k(T)(Z,8M) and &k(T")(Z, M) are given by the

functors X > k(I')(X,&M) and X > k() (&~ X M) from £ to modk, respectively. These two func-
tors coincide because G acts on k(). Hence, E' = ¢E and R’ = £R. Therefore any minimal projective
presentation of R/ in mod X is obtained from a minimal projective presentation of R by applying g.
Since, moreover, 8 is G- -equivariant (see 5.2), we deduce that fr=5f. Finally, the G-action on modkQ
implies, as above, that Ext;Q (T, Keréf) = Extlla (T, &Ker f) = gExt1~ (T, Ker f). From the construction

of ¢, we get 9(6M) =8p(M). O
Construction of ¢ on morphisms
We complete the construction of ¢ by proving the following lemma.

Lemma 5.11. Let u : M — N be a morphism in k(F). Then there exists a unique morphism ¢ (u) : (M) —
@(N) in mod B, such that F, (¢(u)) = p(u)|p.

Proof. Since F; is exact, it is faithful so the morphism ¢(u) is unique. We prove its existence. By 5.4,
we have constructed ¢ (u) = (po(u) in case N € F<2 So we may assume that N € F\F<z Since any

path in " from a vertex in ng to N has a vertex in X, we may also assume that M € (F\I‘gx) uZ.

The functor ¢ : k(l:gg) — mod B naturally extends to a unique functor ¢y : add(k(lzgg)) — mod B,
such that the following diagram commutes:

~ Yo ~
add(k(I'¢ 55)) —————— mod B

addpl F
add(ind I'¢y) & mod B.

We fix decompositions in mod 5 as in the proof of 5.10:

KTYE,My=P@R, and k(I)(E,N)=P @R,

where P, P’ are projective and R R/ have no non-zero projective direct summand. We let EF e
addE _be such that P =k (Z,E) and P’ = k(I')(Z, E), respectively. Therefore the morphism
k(F)(E, u) can be written as:

k(IYE, u) = [g; i] k(Y E,E)oR—> k(I E,E)oR.

Similarly, we fix decompositions in mod B:
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p(M)|p=E®R, p(N)|p=E @R,

where E,E’ € add X, and R, R’ have no direct summand in X. As above, the morphism p(u)|g de-
composes as:

p(u)ll_e=[”l O]ZE@R—>E’69R’.
uy us

Recall from the proof of 5.10 that p; : mod £ — mod X maps k(F)(f E) R, k(F)(f E) and R to
Homg (X, E), Homg(X, R), Homg (X, E’) and Homg (X, R’), respectively. As a consequence, it maps il
to Homp (X, u;), for every i. As in the proof of 5.10, we have morphisms f : 11 —T, and f': I/ — I’
between injective kQ -modules and minimal projective presentations in mod ok

50 2 50y > R—>0 and 30 9% 50y - ® — 0.

With these notations, we have:
@(M) = po(E) @ Exty5 (T, Ker /) and  ¢(N) = go(E") @ Exty5 (T, Ker ).

Also, if M € £, then f 0, so (M) = goo(f)
It suffices to prove that each of uq,ua, u3 is_the image under F; of some morphism (po(E) —
<po(E) gz)o(E) — Ext (T Kerf) and Ext (T Kerf) — Ext (T Kerf) respectively. Clearly,

k(F)(Z‘ E) — k(F)(Z‘ E) is induced by a_ morphlsm EF— E’ in add X. This and 5.4 imply that
u1 is the image under F; of a morphism goo(E) — <pg(E) We now prove that u; is the image un-
der F; of a morphism ¢g(E) — Ext1~(T Ker f'). Let f': I} — I} be the image of - I’ — I}, under

q;. : mod kQ — modkQ. Therefore we have a minimal projective presentation in mod X' (see 5.2 and
the proof of 5.10):

9(f)

— 0(I}) —> 6(I5) > Homp(Z, R') — 0,

together with a minimal injective copresentation in modkQ :

0> TorBR. T) > I L5 1, 0.

Recall that TorlB(R’, T) is equal to the image of Kerf’ under g, : modka — modkQ . Therefore we
have an exact sequence in mod B, which is also a minimal add £ 5 -presentation:

0 — Homyq (T, I}) — Homq (T, I5) %> R' — 0,

where v is such that Homg(X, v) is the image of v : 5(72) — R’ under Dx: mod X — mod X (see
the dlagram in 5.2). The prOJectlve cover ¥ of R’ in mod & yields a morphism §:T— I in modka

where T is the injective kQ -module such that P = 9(1) and such that the following dlagram of mod £
commutes:
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Therefore if 6 : I — I, denotes the image of 5:T— 7’2 under g : modkQ — modkQ, then

Homp (X, uy) equals the composition 6(I) 6¢) 6(1%) Homs (¥, 7) Homg (X, R’). This is an equality
of morphisms in mod X, hence, of morphisms between contravariant functors from add X' to modk.

T,
omyq ( _>) Homyq (T, I%) Y5 R

H
Applying this equality to E yields that u; equals the composition E
On the other hand, the morphism Homyq (T, %) *> R’ = ExtllQ (T, Ker f) is the connecting mor-

phism of the sequence resulting from the application of Homqo(T,—) to the exact sequence

0— Kerf' — I N Iy — 0. Therefore 5.2 implies that v equals the image under F; of the con-

necting morphism of the sequence resulting from the application of Homka(i —) to the exact

sequence 0 — Ker ]:/ — 7’1 — 7’2 — 0. Consequently, up equals the image under F, of the compo-
sition @o(E) Homg @9 @o(Homyo (T, T)) — Ext}{(i (T, Ker ).

It remains to prove that us: R — R’ equals the image under F, of a morphism Ext;é(i Ker]‘) —
Ext}{a (T, Ker f') in mod B. Using the projective presentations of R and R/, we find morphisms & : T, —

7/2 and 8: T, —>7§ such that the following diagram commutes:

— 0 -
0 0(I) 0(I) R 0
§(~)l 5(&)l ﬁsl
0 o1y —— a(1y) R 0.
o)

Therefore there exists a morphism ¥ : Kerf — Kerf/ making the following diagram in mod kQ com-
mute:

- ~ fo~
0 Ker f I I 0
oo
0 — Ker f’ I —T, 0.
f/

We claim that the image of EXt;a(’f; ) Ext’la(i Ker f) — Ext’la(i Ker f/) under F; equals us. In-
deed, lgt o, B,y be the respective images of &, E ¥ under g, : mod I<§ — modkQ . Then the image of
Ext}{a(T, 7) under Fj is equal to (see 5.2):

Extyo (T, ¥) : Extyq (T, Ker f) — Exty, (T, Ker ).

On the other hand, we have two commutative diagrams in modkQ and mod B respectively:

0 — Kerf=TorB(R, T) I I 0
0 —— Ker f' =TorB(R", T) I I 0,

and
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0 —— Hoka(T,h) E— Hoka(T,Iz) —— R ——>0

Homyq (T,B) \L Homyq (T,&) i us l

0 —— Hoka(T,I;) — Hoka(T,I/Z) — R —— 0,

from which it is straightforward to check that us : R — R’ coincides with Ext,lQ(T, y). Thus, us is
equal to the image under F; of the morphism Ext;(~2 T, Ext;{a(i Ker f) — Ext}<a (T, Ker f'). This
completes the proof. O

We summarise our results in the following theorem.

Theorem 5.12. Let A be a finite-dimensional k-algebra and I" be a component of I'(mod A) containing a left
section X. Let B=A/Ann X and 7 : I’ — T be a Galois covering with group G of translation quivers such
that there exists a well-behaved functor p : k(]i) — ind I'. Then there exists a covering F : B — B with B
locally bounded and a functor ¢ : k(I") — mod B which is G-equivariant on vertices and makes the following
diagram commute:

- @ -
k(I'y ———— modB

"l la

indl" ——— > modB.
Homx (B,—)

Proof. The functor ¢ is constructed as above. The G-equivariance on vertices follows from 5.10
and 5.11. O

Corollary 5.13. If p : k(li) — ind I' is a Galois covering (with respect to the action of G on k(F)), then the
functor ¢ : k(I") — mod B of 5.12 is G-equivariant.

Proof. We already know that ¢ is G-equivariant on objects. Also F : B — B is a Galois covering with
group G (see 5.1). Let f: M — N be a morphism in k(Ii), and g € G. Then (8 f): @(EM) — @(8N)
and 8¢ (f) : 8@(M) — Ep(N) are two morphisms in mod B such that F, (¢(8f)) =pEf)ls=p(f)lp =
F,(8@(f)) (recall that F, = F, o g for every g € G because it is the push-down functor of a Galois
covering with group G). We deduce that (8 f) =8¢(f). O

6. The main theorem

In this section we prove Theorem A. Assume that A is laura with connecting components. We use
the following notation:

- I' is the connecting component of I"(mod A) (if A is concealed we choose I" to be the unique
postprojective component), and 7 : I — I' is a Galois covering with group G of translation
quivers such that there exists a well-behaved covering functor p :k(F’) > ind . If T is stan-
dard, we assume that p equals the composition of k(i) :k(I™) — k(I') with some isomorphism
k(I') = ind I, so that p is a Galois covering with group G.

- X is the full subcategory of ind I" whose objects are the Ext-injective objects in L4.

- B is the left support of A, that is, B is the endomorphism algebra of the direct sum of the
indecomposable projective modules lying on £4 (see Section 1).
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Because of [6, 4.4, 5.1], the algebra B is a product of tilted algebras. Without loss of generality, we
assume that:

- B=Endq(T), where T=T; @ --- ® Ty, is a multiplicity-free tilting kQ -module (T; € indkQ).
- X is the full subcategory of mod B with objects the modules of the form Homyq (T, D(kQex)),
x€ Qo.

It follows from [1, 2.1 Ex. b] that X' is a left section of I". So we may apply 5.12. The proof of
Theorem A is done in the following steps: We first construct a locally bounded k-category A endowed
with a free G-action in case A is standard; then we construct a covering functor F : A — A extending
the functor F : B — B of 5.12 and satisfying the conditions of the theorem; we also construct a
functor @ : k(I") — mod A which extends the functor ¢ : k(I") — mod B of 5.12; and finally we prove
Theorem A.

The category A

We need some notation. Let C be the full subcategory of ind A with objects the indecomposable
projective A-modules not in £4. So C is a full subcategory of indI". Let C be the full subcategory
p~1(O), so that p induces a covering functor C>C.IfAis standard and p is Galois with group G,
then p: C — C is a Galois covering with group G. For every x € By, let Px be the corresponding inde-
composable projective B-module. Also, Py € mod B denotes the indecomposable projective B-module
associated to an objgct X € Bo. We ~cleﬁne the C — B-bimodule M to be the functor C x B’ — modk
such that for every P € C, and x € B,

My = Homg (Px, (P)),

with obvious actions of C (using ¢) and B.
The following lemma defines A and its G-action in case A is standard.

Lemma 6.1. Let A = [ ‘E)] Then A is locally bounded and G acts freely on A if A is standard.

43N

Proof. We know that B and C are locally bounded. Let P € C,. We have the bijection of 4.2:

@B Homg (Px. o(P)) = @B Homg (Px. p(P)I5). (i)

%eB, X€By

Since the right-hand side is finite-dimensional, then so is Py, My, for every P € Co.

Now let P e Co, let X € B,, and let us prove that EBD(P/):I,(P) Homg(F,;, @(P")) is finite-dimensional.
By definition of p, we have p~1(p(P)) = {8P | g € G). Also, we know from 5.12 that ¢ is G-equivariant
on objects. Therefore:

@ HomE(F,;, @(P)) = @ HomE(F,;, Sp(P)) = @ Homg (g71 Ps, @(P)), (ii)

p(P")=p(P) geG geG

where the last equality follows from the G-action on mod B. Applying 4.2 to the indecomposable
projective P yields a bijection of vector spaces:

@D Homy (¢ ' By, 2(P)) ~ Homg (Pr 5, Fag(P)). (iii)
geG
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From (ii) and (iii) we infer that @p([,,):p([,) Homg(ﬁ,;,(p(P’)) is finite-dimensional for every X € B,
and P e C,. This shows that A is locally bounded.

Assume now that A is standard and that p: k(F)— ind I is a Galois covering with group G. We
define a free G-action on A. We already have a free G-action on B and on C. Also, for every X € Bo,
P eC, and g € G, we have an isomorphism of vector spaces:

Mz = Homg (Px, (P)) = ;3 M gz = Homg (5, ¢ (4P)) (%)

given by the G-action on mod B (recall that ¢ is G-equivariant on objects, and that ﬁg;‘ = gﬁ,;). We
define the action of g on morphisms of A lying in i using this isomorphism. Since G acts on mod E
this defines a G-action on A, that is, g(vu) = g(v)g(u) whenever u and v are composable in A.
Moreover, G acts freely on objects in B and in C. So we have a free G-action on A. O

The functor F : Ao A

Lemma 6.2. There exists a covering functor F : A A extending F : B — B. If moreover A is standard, then
F can be taken to be Galois with group G.

Proof. Note that A = [151 2] where M is the C — B-bimodule such that p My = Homg(Px, P|p) for every
P € C, and x € B,. Let us define F : A — A as follows:

- F|y coincides with the functor F: B— B.
- Flg coincides with p: C—C.
- Letxe Bo and P e Co, then F: 3 My — F@MFw is the following map induced by F;:

Homy (ﬁx, <.0(F)) — Homg(Pr(y, p(F)IB)-

Smce Fy : modB — mod B is_a functor and F,¢ = p(—)|p (see 5.12), we have defined a functor

‘A — A. We prove that F : A—>Aisa covering functor. Since F : B— B and p: C — C are covering
functors the bijections (i), (ii) and (iii) in the proof of 6.1 show that for any a € B, and any P e C,,
the two following maps induced by F, are isomorphisms:

@ Homg(Ps. ¢(P)) — Homg (Pr@). p(P)ls).
FR=F(@)

@ Homg(ﬁa,¢(a))* HomB(PF(a),p(ﬁ)|B)~
p(Q)=p(P)

So F is a covering functor. Assume now that A is standard, We may suppose that p is a Galois
covering with group G. By 6.1, there is a free G-action on A. Moreover, F : B — B, and therefore
Fy : mod B — mod B, are G- -equivariant, and so is p: € — C, because it restricts the Galois covering
p:k(I’) —>indr. Therefore F : A — A is G-equivariant. Finally, the fibres of F : A A _on objects
are the G-orbits in A0 because F:B — B and p: C — C are Galois coverings. Since F : A Aisa
covering functor, this implies that it is also a Galois covering with group G (see for instance the proof
of [28, Prop. 6.1.37]). O

The functor @ :k(F) — mod A
We can write an A-module as a triple (K, L, f) where K € modB, L € modC and f:L®g M—K

is a morphism of B- modules. Let y : k(F) - modC be the functor ¢ : X k(I")(C X). Clearly, it is
G-equivariant. Let L € k(F) Then (L) ®¢ M is the B-module whose value at x € Bo equals:
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(v (L) @ M)(x) = ( @D k(") (P, L) @ Homg (Py, <p(ﬁ))>/N,
PeC,
where N is the following subspace:
N=(ff'®@u—f@p(fu|fekd) (P L), f ekI)P'P),
ue Homg(ﬁx, (p(ﬁ’)), forevery P, P’ € EO>.

For every x € §0 and P EO. we have a k-linear map:

NLxp  k(7)(P, L) ® Homg (Px, ¢ (P)) — Homg (Px, (L)) = p(L)(x),
feoumr e(Hu.

It is not difficult to check that the family of maps (1, , ), , 5 defines a functorial morphism:
Ny ()@ M- ¢.
Moreover, if ¢ is G-equivariant, then so is n. We let @ : k(') = mod A be the following functor:
®:Le> (o), ¥ (L), L)
The main theorem

Theorem 6.3. Let A be laura with connecting component I'. Let 7t : I’ — I be a Galois covering with group
G such that there exists a well-behaved covering functor p : k(I") — ind I'. Then there exist a covering functor
F : A— A where A is connected and locally bounded, and a commutative diagram:

~ [} ~
k(') —— mod A
Pl iﬂ
ind "' mod A,

where @ is faithful. If, moreover, A is standard, then F and p may be assumed to be Galois coverings with
group G, and @ is then G-equivariant and full.

Proof. The commutativity of the above diagram follows from the one of 5.12 and from that of the
diagram:

~ 1 ~
k(I mod C
pl/ lpx
indI” mod C.

X+>Homg (C,X)

Since Fy&® = p and p is faithful, then @ is faithful. Therefore <D(I<(F)) is contained in a connected
component £2 of mod A.
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We now prove that A is_connected. Let x € Zo and Qy be the corresponding indecompos-
able projective A-module. If F;, Qx € Co, then, by construction Qyx lies in the image of &, so that
Qx € 2. If  FaQx ¢ G, then F(x) € B, and x € B0 In this case, there is a non-zero morphism
u:Ppx = F,\Q,< — E in mod B, where E € X. Fix Ee pil(E) so that Fldb(E) =E. Since u is non-
zero, 4.2 implies that there is a non-zero morphism Qy — g<,0(E) cD(gE) in mod B (recall that ¢ is
G-equivariant on vertices). So Qx € £2, and 2 contains all the indecomposable projective A-modules.
This proves that A is connected.

It remains to prove that if A is standard, then @ is full, G-equivariant, and F is Galois with
group G. In case A is standard, we suppose that p :k(F) — ind I" is Galois with group G. Therefore ¢
is G-equivariant (see 5.13) and so is 1. Hence, @ is G-equivariant. Also, F is Galois because of 6.2. We
prove that @ is full. Given a morphism f : @(L) — @(N), there exists (fg)g € EBgec Homgry (L, EN)
such that F,(f) = ng(fg) (because p is Galois). So F;(f — @(f1)) — Zg# Fy(@(fg)) =0. Since F
is Galois with group G and since @ is G-equivariant, we get f = @(f1). So @ is full and the theorem
is proved. O

The following example of a non-standard representation-finite algebra due to Riedtmann shows
that F needs not be a Galois covering.

Example 6.4. Assume that char(k) =2 and A is given by the bound quiver (see [14, §7, Ex. 14 bis]
and [37]):

[e2
X;Y:)Pv ,04=0, ,02=80, o8 =0ps.
s

Then A is representation-finite and not standard, with the following Auslander-Reiten quiver:

a . / Y\a
ANLNLNS
SN\
NN N

NN NN
N

where the two copies of a, b, ¢, d, e and f, respectively, are identified. In this case, there exists
a well-behaved covering functor associated to the universal cover I’ of I'(mod A) (which is equal
the generic covering). Here, G = m1(I"') >~ 7Z and A is the locally bounded k-category, given by the
following bound quiver:



1. Assem et al. / Journal of Algebra 323 (2010) 83-120 113

Yi—1 Yi Yi+1 Yit2
Xi—1 Xi Xi+1 Xit+2
8i+10i = Pi+1Pi, 0i+18; =0, for all i,

where oj, §; and p; _denote the arrows y; — Xi41, Xi — Yit1, and y; — yii1, respectively. Now the
covering functor F : A — A is as follows:

. F(p;i) = p for every i,

F(oj) =0 for every i=0,1 mod4,

F(o;) =0 +op for every i =2,3 mod4,
. F(8;) =4 for every i =1,3 mod4,

. F(8;) =8+ pd, for every i=0,2 mod 4.

Obviously, F is a covering functor which is not Galois. Actually, one can easily check that A is simply
connected, that is, the fundamental group (in the sense of [33]) of any presentation of A is trivial.
Hence, A has no proper Galois covering by a locally bounded and connected k-category.

The following corollary is a particular case of our main theorem. We state it for later purposes.

Corollary 6.5. Let A be a standard laura algebra and let I" be a connecting component. There exists a Galois
covering F : A — A with group 1t (I") where A is connected and locally bounded, together with a commuta-
tive diagram:

~ @ ~
k(I') —— mod A

k() i l F

k(I') & mod A,

where 7t : I — I is the universal cover and where @ is full, faithful and 71 (I")-equivariant.

Proof. Since I" is a standard component, there exists an isomorphism of categories k(I") — ind I" and
the universal cover 7 : I' — I" induces a well-behaved functor k(7r) : k(I") — k(I") and therefore a
well-behaved covering functor k(I") — ind I". We then apply 6.3. O

We pose the following problems.

Problem 3. Does there exist a combinatorial characterisation of standardness for laura algebras (as
happens for representation-finite algebras, see [13])?

Problem 4. Let A be a left supported algebra. Is it possible to construct coverings A — A associated
to the coverings of a component of I"(mod A) containing the Ext-injective modules of £4?

7. Galois coverings of the connecting component

Theorem 7.1. Let A be a standard laura algebra, and p : I’ — I' be a Galois covering with group G of a
connecting component. Then there exist a Galois covering F' : A’ — A with group G, where A’ is connected
and locally bounded, and a commutative diagram:
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(p/
k(I''y —— mod A’

k(p) i l F;

I<(F)<—]> mod A,

where @' is full, faithful and G-equivariant.

Proof. Since A is standard, there exists a full and faithful functor j: k(") < ind A with image ind I",
which maps meshes to almost split sequences. Let 7 : I — I" be the universal cover. Then there
exists a normal subgroup H < 71 (I") such that I'/H ~I"" and G ~ m1(I")/H, and such that under
these identifications, the following diagram commutes:

r
j F/H=T",
r

where q is the projection. These identifications imply that p : F’N—> I’ is induced by 7 : F-»r
by factoring out by H. By 6.5, there exist a Galois covering F : A — A with group m1(I") and a
commutative diagram:

W

~ @ ~
k(I'y — > mod A

k(ﬂ)l lh

k(I > mod A,

where @ is full, faithful and 1 (I")-equivariant. Setting A’ = Z/H, we deduce a Galois covering
F': A’ — A with group G and where A’ is connected and locally bounded, making the following

diagram commute:
A
J A JH=A,
A

where F” is the natural projection (and F’ is deduced from F by factoring out by H). Therefore we
have a commutative diagram of solid arrows:

\/
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[

k(I mod A
k(q) Fy
Fj
¢/
k() k(r’ > mod A’
A j /
k() C mod A.

We prove the existence of the dotted arrow @’ such that ®’k(q) = F}®. For this purpose, recall
that k(q) is a Galois covering with group H. Hence, it suffices to prove that F/® is H-invariant.
Indeed, we have F}®’h = F/h®' = F]®’, for every h € H, because @ is m (F)-equivariant and F” is
a Galois covering with group H. Now, we prove that the whole diagram commutes. We have:

(F,@')k(q) = F, F)® = F,@ = jk() = jk(p)k(q),

hence, F; @’ = jk(p). We prove next that @' is full and faithful. Let f: X — Y be a morphism in
k(r" such that @’(f) = 0. Fix X, Ye k(F) such that q(X) X and q(Y) =Y. Since k(q) is Galois with
group H, there exists (fn)hen € Ppey k(F)(X hY) such that >, ., k(@) (frn) = f. The commutativity
of the diagram gives:

0=">"F/(2(fn),

heH

where (@ (fh)hen € DBren Hom;(d’(i),hcb(?)) (recall that ¢ is mq(I")-equivariant). Since
F” : A — A’ is Galois with group H, we deduce that &(f,) = 0 for every h € H, so that
fn =10 for every h € H, because & is faithful. Thus, f =3, k@ (fh) =0 and &' is faith-
ful. Let X,Y e k(I'") and u: &' (X) —» &'(Y) be a morphism in modA’, and fix X,Y € k(T) as
above. In partlcular ?'(X) = F”((D(X)) and @'(Y) = F”((D(Y)) Therefore there exists (ip)hey €
Dren HomA(dﬁ(X) h@(Y)) such that u = > nen Fi(tip). Since @’ is mi(I")-equivariant, we have
Hom (@ (X), "®(Y)) = Hom; (@ (X), ®("Y)), for every h € H. Since @ is full, there exists (fi)nen €
Dren k(F)(X,“Y) such that oy = @(fh) for every h € H. Since k(q) is Galois with group H, we
deduce that } ",y k(q)(fh) e k(I')(X,Y). Moreover, we have:

¢’<Zk<q><]‘h>) Y Fe(fn=) Fin=u,

heH heH heH

whence the fullness of @’. To finish, it remains to prove that &’ is G-equivariant. Let g € G be the
residual class of o € w1(I") modulo H. We need to prove that @' o g = go ®'. We have &’'ogok(q) =
@' ok(q) oo, because q: I' — I’ =I"/H is the canonical projection. Hence, &' o gok(q) =F{ o0 o @,
because F} o ® = &’ ok(q), and & is 1 (I")-equivariant. Since F} oo = go F (because F” is deduced
from F by factoring out by H), we have &’ ogok(q) =goF; o® =go®’ok(q), and so ®’og=god’.
The proof is complete. O

Corollary 7.2. In the situation of Theorem 7.1, the full subquiver $2 of I'(mod A") with vertex set equal to
{X €indA’ | F{ X € I'} is a faithful and generalised standard component of I"(mod A’), isomorphic, as a
translation quiver, to I''. Moreover, there exists a Galois covering of translation quivers I’ — I" with group G
extending the map X — F; X.
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Proof. Since F;®' = jk(p), the module &’(X) is indecomposable and lies in £2, for every X € I'"". On
the other hand if X € £2, there exists X" € I'’ such that F; X = k(p)(X’). Therefore F, X = F, ®'(X’).
Since X and &’(X’) are indecomposable, there exists g € G such that X =8¢’ (X') = ®'(8X') € ®'(I"").
Thus, we have shown that:

(i) £2 coincides with the full subquiver of I"(mod A”) with set of vertices {&'(X) | X € I''}.

Let X > Y be an arrow in I". Since F, @' = jk(p), then F, ®'(u) is an irreducible morphism between
indecomposable A-modules. Using [30, Lem. 2.1], we deduce that &’(u) is irreducible. This proves
that:

(ii) The full subquiver of I'(mod A") with set of vertices {®'(X) | X € I"’} is contained in a connected
component of I"(mod A’).

Combining (i), (ii) and [30, Lem. 2.3], we deduce that §£2 is a component of I"(modA’). The same
lemma shows that £2 is faithful and generalised standard because so is I".

Let us prove that @’ induces an isomorphism between I’ and £2. Since q: I* — I/ is surjective on
vertices and F/® = @’k(q), then X € 2 lies in the image of F}. Also, k(q) and & commute with the
translation, and so does F; (see [30, Lem. 2.1]). Hence @’ commutes with the translation. Finally k(q)
maps meshes to meshes, and @ maps meshes to almost split sequences. So @’ maps meshes to almost
split sequences (see [30, Lem. 2.2]). Therefore there exists a morphism of translation quivers I'’ — 2
extending the map X — @’(X) on vertices. Since it is a bijection on vertices, it is an isomorphism
= Q.

Finally, the stabiliser Gx = {g € G | $X ~ X} of X is trivial for every X € £2, because G acts freely
on I'" and @’ is G-equivariant. Therefore there exists a Galois covering of translation quivers 2 — I”
with group G and extending the map X — F| (X) (see [21, 3.6]). O

Corollary 7.3. In the situation of Theorem 7.1, if G is finite, then A’ is a finite-dimensional standard laura
algebra.

Proof. Since G is finite, A’ is finite-dimensional. By the preceding corollary, I’ is generalised standard
and faithful. Since I' has only finitely many isomorphism classes of indecomposable modules lying on
oriented cycles, the same is true for I"’. Therefore I"’ is quasi-directed and faithful. Applying [35, 3.1]
(or [43, Thm. 2]) shows that A’ is a laura algebra with I’ as a connecting component. Finally, the full
and faithful functor @’ : k(I"’) — mod A’ with image equal to ind I’ shows that I"’ is standard, that
is, A’ is standard. O

Remark 7.4. The above corollary may be compared with [8, Thm. 1.2] and [30, Thm. 3]. Indeed, if A’
is a finite-dimensional algebra endowed with the free action of a (necessarily finite) group G, then
the category A/G and the skew-group algebra A[G] are Morita equivalent.

We end this section with the following corollary:

Corollary 7.5. In the situation of Theorem 7.1, if G is finite, then:

(a) Ais tame if and only if A’ is tame.
(b) A iswild if and only if A’ is wild.

Proof. This follows from Theorem 7.1 and from [3, 5.3(b)]. O

Example 7.6. Consider the algebra A of 3.6(a). The connecting component I admits a Galois covering
with group Z/27 by the following translation quiver:
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AW AN YA WA
P L L
NN SN SN
NN N AN A

where the two copies of x are identified. With our construction, we get a Galois covering F : A’ — A
with group Z/27Z, where A’ is the radical square zero algebra with the following quiver:

1T 23— s

Both A and A’ are tame.

8. Proof of Theorem B

We recall the definition of the orbit graph O(I") (see [14, 4.2]). Given a vertex x € I', its T-orbit
X" is the set {y € I' | y = tlx, for some [ € Z}. Also, we fix a polarisation ¢ in I". The periodic com-
ponents of I are defined as follows. Consider the full translation subquiver of I with vertices the
periodic vertices in I". To this subquiver, add a new arrow x — 7x for every vertex x. A periodic
component of I" is a connected component of the resulting quiver. Then:

1. The vertices of O(I") are the periodic components of I" and the t-orbits of the non-periodic
vertices.

2. For each periodic component, there is a loop attached to the associated vertex in O(I").

3. Let u° be the o-orbit of an arrow u : x — y. If both x and y are non-periodic, then there is an
edge between x' and y®. If x (or y) is non-periodic and y (or x) is periodic, then there is an
edge between x* (or y7) and the vertex associated to the periodic component containing y (or x,
respectively). Otherwise, no arrow is associated to u®.

By [14, 4.2], the fundamental group of the orbit graph O(I") is isomorphic to 71 (I").

Throughout this section, we assume that A is standard laura, having I" as a connecting component.
We use the following lemmata:

Lemma 8.1. If O(I') is a tree, then A is weakly shod.

Proof. If O(I') is a tree, then I" is simply connected (see [14, 4.1 and 4.2]). In particular, I" has no
oriented cycle. Hence, A is laura and its non-semiregular component (there is at most one) has no
oriented cycles. So A is weakly shod ([17, 2.5]). O

Lemma 8.2. Let A be a product of laura algebras with connecting components. If the orbit graph of any con-
necting component is a tree, then A is a product of simply connected algebras and HH! (A) = 0.

Proof. This follows from the preceding lemma and from [30, Cor. 2]. O
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We now prove Theorem B whose statement we recall for convenience.

Theorem B. Let A be a standard laura algebra, and I' its connecting component(s). The following are equiva-
lent:

) A has no proper Galois covering, that is, A is simply connected.
) HH1(A) =0.

) I is simply connected.

)

(
(
(
(d) The orbit graph O(I') is a tree.

a
b
c
d
Moreover, if these conditions are verified, then A is weakly shod.

Proof. By [14, 4.1, 4.2] and the above lemma, (c) and (d) are equivalent and imply (a) and (b). If A
is simply connected, then 6.5 implies 71 (I") = 1. So (a) implies (c). Finally, assume that HH!(A) = 0.
By 6.5, the algebra A admits a Galois covering with group m1(I"). This group is free because of
[14, 4.2]. On the other hand, the rank of s{(I") is less than or equal to dimHH!(A) because of
[19, Cor. 3]. Therefore m1(I") = 1. So (b) implies (c). Thus the conditions are equivalent, and imply
that A is weakly shod by 8.1. O

We illustrate Theorem B on the following examples. In particular, note that this theorem does not
necessarily hold true if one drops standardness.

Example 8.3.

(a) Let A be as in 3.6(a). Then A clearly admits a Galois covering with group a free group of rank 3 by
a locally bounded k-category. It is given by the universal cover of the underlying graph of the or-
dinary quiver. So A is not simply connected. The orbit graph O(I") of the connecting component
I' is as follows:

//.7.7.7.7.3-

Then m1(I") is free of rank 3. A straightforward computation gives dimHH!(A) = 7 (see also
[16, Thm. 1]).

(b) Let A be as in 6.4. As already noticed, A is a simply connected representation-finite algebra. Also,
it is not standard. The orbit graph of its Auslander-Reiten quiver is as follows:

@

Finally, A admits the following outer derivation, yielding a non-zero element in HH!(A)
(see [15, 4.2])

d:A — A,

0, — 0,

p— p.
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This example shows that Theorem B may fail if one drops standardness. Note that the definition
of simple connectedness differs slightly from that used in [15, 4.3]: In [15], as in [14, §6], a
representation-finite algebra is called simply connected if its Auslander-Reiten quiver is simply
connected.

(c) Let A be given by the quiver:

p v
.= -~ ..
o

NN A

bound by e =0, ay =0, B =ad, 8¢ =0, $n =0, o =nA, v =0 Then A is laura. Actually,
it is right glued [5, 4.2]. The orbit graph O(I") of its connecting component I" is as follows:

> L

2NN

It is a tree. Also, A is simply connected, and it is not hard to see that HH!(A) = 0 using, for
instance, Happel's long exact sequence (see [23, 5.3]).

We end with the following problem.

Problem 5. Let A be a non-standard laura algebra. How can the vanishing of HH!(A) be expressed in
terms of topological properties of A?
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