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We characterize the toric face rings that are normal (respectively
seminormal). Extending results about local cohomology of Brun,
Bruns, Ichim, Li and Römer of seminormal monoid rings and Stan-
ley toric face rings, we prove the vanishing of certain graded parts
of local cohomology of seminormal toric face rings. The combina-
torial formula we obtain generalizes Hochster’s formula. We also
characterize all (necessarily seminormal) toric face rings that are
F -pure or F -split over a field of characteristic p > 0. An example
is given to show that F -injectivity does not behave well with re-
spect to face projections of toric face rings. Finally, it is shown that
weakly F -regular toric face rings are normal affine monoid rings.
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1. Introduction

Combinatorial commutative algebra utilizes techniques and constructions from combinatorics to
study problems in commutative algebra related to monomial subrings or monomial quotients of poly-
nomial rings. One of the classical applications of combinatorial commutative algebra is the solution of
Stanley [22] to the Upper Bound Conjecture proposed by Klee on triangulations of the sphere.

The class of toric face rings was first defined by Stanley in [23]. One of the main advantages of
studying toric face rings is that we can often unify separated results in two seemingly unrelated
classes of rings, namely Stanley–Reisner rings and affine monoid rings. Later this class was gener-
alized by allowing more flexible monoidal structures and studied by M. Brun, W. Bruns, B. Ichim,
R. Koch, T. Römer in [2,3,7] and R. Okazaki, K. Yanagawa in [18]. The author considered the problem
of characterizing Koszul toric face rings in [16].
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Our basic objects of study in this paper are the following. We have a field k, a rational pointed
fan in Rd denoted by Σ (where d � 1) and a monoidal complex M supported on Σ . Let R = k[M]
be the toric face ring of M. Naturally, R is Zd-graded. We call toric face rings with these conditions
embedded toric face rings. Denote by m the unique graded maximal ideal of R .

B. Ichim and T. Römer [14] studied embedded toric face rings. They were able to extend various
results from the theory of Stanley–Reisner rings to toric face rings. For example, if the underlying
monoidal complex is pure shellable and the monoid rings k[MC ] are Cohen–Macaulay for all C ∈ Σ ,
then the toric face ring k[M] is also Cohen–Macaulay. This generalizes the result saying that a pure
shellable simplicial complex is Cohen–Macaulay. Ichim and Römer also determined the canonical
modules and Gorenstein criterion for Stanley toric face rings, i.e., toric face rings with MC = C ∩ Zd

for every C ∈ Σ . The method developed in [14] also gives a compact derivation of the formula of
graded local cohomology of toric face rings in Brun, Bruns and Römer [1].

R. Okazaki and K. Yanagawa [18] determined the dualizing complex of toric face rings under the
normality assumption of the monoid rings involved. On the other hand, Okazaki and Yanagawa did
not assume that the toric face rings considered are endowed with a Zd-grading. They also relaxed
the condition “MC = C ∩ Zd for every C ∈ Σ”. Thus they provided more general results than those of
Ichim and Römer [14]. They also defined square-free modules over a toric face ring and characterize
the Cohen–Macaulay, Buchsbaum and Gorenstein∗ properties of toric face rings with the normality
assumption.

In an interesting paper, Bruns, Li and Römer [6] considered seminormal affine monoid rings, gen-
eralized on the way the known results for the classical case of normal affine monoid rings. For
example, they give certain results extending Hochster’s theorem on Cohen–Macaulayness of normal
affine monoid rings. One of the main purposes of this paper is to extend further the results of [6]
and [14] to seminormal toric face rings and toric face rings with a Zd-grading in general. Somewhat
surprisingly, we find that the method of studying Stanley–Reisner rings can give new results in the
case of seminormal toric face rings and thus, new results in the case of seminormal affine monoid
rings, see Section 5.

The paper is organized as follows. In Section 2, we recall the basic notions and results concerning
convex geometry of cones and polytopes, affine monoids and monoidal complexes, toric face rings and
seminormality of monoids. In Section 3, we prove that normal toric face rings are precisely normal
affine monoid rings. We prove that R is seminormal if and only if for all C ∈ Σ , the monoid MC

is seminormal. We explain the construction of the seminormalization of M following Bruns and
Gubeladze [4, Exercise 8.13] at the end of Section 3.

In the Section 4, we extend the results of Bruns, Li and Römer concerning local cohomology of
seminormal monoid rings. We prove the following vanishing result for seminormal toric face rings.

Theorem. Let Σ be a rational pointed fan in Rd (where d � 1), M a seminormal monoidal complex sup-
ported on Σ , and R = k[M]. Assume that Hi

m(R)a �= 0 for some a ∈ Zd. Then a ∈ −MC for a cone C ∈ Σ of
dimension � i. In particular,

Hi
m(R)a = 0 if a /∈ −|M| =

⋃
C∈Σ

(−MC ).

After proving a combinatorial formula computing local cohomology of seminormal toric face rings,
we ask whether seminormalization can be characterized by vanishing of certain graded parts of local
cohomology.

Question. Is it true that for a toric face ring R = k[M] the following statements are equivalent?

(i) M is seminormal;
(ii) Hi

m(R)a = 0 for all i and all a ∈ Zd such that a /∈ −|M|.

Note that this is indeed the case for affine monoid rings, as proved in [6, Theorem 4.7].
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Hochster described graded local cohomology of Stanley–Reisner rings in terms of combinatorial
data of the associated simplicial complexes. In the second part of Section 4 we extend Brun, Bruns
and Römer’s generalized version of Hochster formula for seminormal toric face rings via Theorem 4.5.
We deduce the formula of Brun, Bruns and Römer at the end of this section.

In Section 5, we apply the combinatorial description of local cohomology (Theorem 4.5) to study
the depth of seminormal toric face rings. We are able to prove a rank-selection theorem describing
depth in terms of the skeletons of the monoidal complex. This is well-known for simplicial complexes
but is new for affine monoids to our knowledge.

In the last section, given a toric face ring k[M] over a field k with char k = p > 0, we consider
the problem of characterizing the F -purity and F -splitness of k[M]. Using a result of Schwede [20],
we prove that firstly M is seminormal as long as k[M] is F -injective. Then we describe all possible
values of p depending on M such that k[M] is F -pure. These are also the values of p such that k[M]
is F -split. We give an example showing that in general, F -injectivity is not stable under projections
of a toric face ring onto its faces. In the end, we prove that weak F -regularity is a strong condition,
so that a toric face rings is weakly F -regular if and only if it is a normal affine monoid ring.

The main content of this paper is part of the author’s PhD dissertation [17].

2. Preliminaries

In this paper, we denote by R,R+,Z the sets of real numbers, non-negative real numbers and
integer numbers, respectively.

We consider Rd with fixed coordinates (where d � 1). A linear hyperplane in Rd is a hyperplane
which contains the origin. A linear hyperplane in Rd defines two closed linear half spaces of Rd .
A cone C in Rd is a finite intersection of linear half spaces.

We say that C is rational, if each of the hyperplanes which cut out C is defined by a homogeneous
linear equation with integral coefficients.

A supporting hyperplane H of C is a linear hyperplane for which C is contained in one of the
two half spaces defined by H and H ∩ C �= ∅. The non-empty intersection of C with a supporting
hyperplane is called a face of C . Faces of a cone are again cones. The set of all faces of C , including C
itself forms a finite partially ordered set (by inclusion) called the face poset of C , since the relation of
being a face of a cone is transitive. We denote the face poset of a cone C by F(C).

C is called pointed if {0} belongs to the face poset F(C). We assume that the cones considered in
this paper are rational and pointed.

An affine monoid M is a finitely generated submonoid of Zd for some d � 1. Denote by ZM the
subgroup {x − y: x, y ∈ M} of Zd . The set of finite non-negative real combinations of elements from
M is denoted by R+M . In fact, R+M is a cone in Rd .

We say that M is positive if z,−z ∈ M implies that z = 0. We have R+M is a pointed cone if and
only if M is a positive monoid.

The normalization of M in ZM is the monoid

M = {x ∈ ZM: px ∈ M for some p ∈ Z, p > 0}.
Gordan’s lemma says that M is also an affine monoid. M is a normal monoid if M = M .

Definition 2.1. A set Σ of cones in Rd is called a fan if the two conditions:

(i) if C ∈ Σ and D is a face of C then D ∈ Σ ;
(ii) if C, C ′ ∈ Σ then C ∩ C ′ is a common face of C and C ′ ,

are satisfied.

If all the cones in Σ are rational and pointed then we call Σ a rational pointed fan. Let Σ be a
rational pointed fan in Rd . An embedded monoidal complex M supported on Σ is a collection of affine
monoids MC parameterized by C ∈ Σ satisfying the following conditions:
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i

(i) MC ⊆ C ∩Zd and R+MC = C for each C ∈ Σ ;
(ii) if D is a face of C ∈ Σ then MD = MC ∩ D .

Denote by |M| the set
⋃

C∈Σ MC , called the support of M. Let {a1, . . . ,an} be a set of generators for
|M|, i.e., {a1, . . . ,an} ∩ MC generates MC for each C ∈ Σ . Denote S = k[X1, . . . , Xn].

Assume that C1, . . . , Cr are the maximal cones of Σ , and denote Mi = MCi , i = 1, . . . , r. Let
I1, . . . , Ir be the binomial defining ideal of the affine monoid rings k[M1], . . . ,k[Mr], respectively,
thus It is the kernel of the epimorphism

k
[

Xi : i ∈ {1,2, . . . ,n}, ai ∈ Mt
]
� k[Mt].

We will define the toric face ideal as

IM = AM +
r∑

i=1

S · Ii,

where AM is the ideal generated by all the square-free monomials Xi1 · · · Xi j for which {ai1 , . . . ,ai j }� C
for all i = 1, . . . , r.

Then the toric face ring of M over k is k[M] = S/IM . Note that k[M] does not depend on the
generators a1, . . . ,an . We also have that as a k-vector space

k[M] =
⊕

a∈|M|
k · Xa,

and the multiplication on k[M] is given by the addition on the monoids MC ,

Xa · Xb =
{

Xa+b if for some C ∈ Σ both a and b belong to MC ;
0 otherwise.

For a ∈ |M|, sometimes we write a instead of Xa , and ab instead of Xa · Xb . It would be clear from the
context which meaning should be attributed to the corresponding notation. In the case MC = C ∩ Zd

for all C ∈ Σ , we call the resulting ring k[Σ] a Stanley toric face ring.

Example 2.2. (i) If all the cones C ∈ Σ are generated by linearly independent vectors and MC is
generated by dim C elements, then for i = 1, . . . , r, the ideal Ii = 0 and k[M] is a Stanley–Reisner ring.

(ii) On the other hand, if r = 1 or in other words, Σ is the face poset of a cone, then k[M] is the
affine monoid ring k[M1].

Thus one can say that toric face rings are a natural generalization of Stanley–Reisner rings and
affine monoid rings. The reader might wish to consult Bruns–Herzog [5, Chapters 5 and 6] for a
detailed discussion of these two kind of rings.

Example 2.3. (See [16, Example 4.6].) Consider the points in R3 with the following coordinates O =
(0,0,0), A1 = (2,0,0), A2 = (0,2,0), A3 = (0,0,2), A4 = (1,1,0).

Consider the rational pointed fan Σ in R3 with the maximal cones O A1 A2, O A1 A3, and O A2 A3.
In other words, Σ is the boundary complex of the cone generated by the three positive axes of R3.
Let M be the monoidal complex supported on Σ with the three maximal monoids generated by
{A1, A2, A4}, {A1, A3} and {A2, A3}.

The defining ideal of the corresponding toric face ring is

IM = (X3 X4, X1 X2 X3) + (
X1 X2 − X2

4

) = (
X1 X2 − X2

4, X3 X4
)
.

Thus the toric face ring of M is
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k[M] = k[X1, X2, X3, X4]/
(

X1 X2 − X2
4, X3 X4

)
.

Next, we recall the projection on to the faces of a toric face ring. We have a natural inclusion
k[MC ] ↪→ k[M] for every C ∈ Σ . Moreover, we have the face projection morphism k[M] � k[MC ]
which is given by

Xa 
→
{

Xa if a ∈ MC ;
0 otherwise.

Note that the composition of k[MC ] ↪→ k[M] and k[M] � k[MC ] is the identity of k[MC ]. Thus
k[MC ] ↪→ k[M] is an algebra retract for each C ∈ Σ .

For each C, D ∈ Σ with D is a face of C , we also have a natural projection map k[MC ] � k[MD ]
defined in the same way.

Proposition 2.4. (See [7, Proposition 2.2].) We always have k[M] ∼= lim←−k[MC ].

For more discussions of basic ring-theoretic properties of toric face rings, we refer the reader
to [14].

Definition 2.5. (See Swan [24].) A reduced ring R is called seminormal if whenever x, y ∈ R are such
that x2 = y3, then we find a z ∈ R such that x = z3, y = z2.

Equivalently, a reduced ring R is seminormal if and only if for every z in the total ring of fractions
Q (R) of R such that z2, z3 ∈ R , we have z ∈ R . The following result follows easily from Definition 2.5.

Proposition 2.6. (See [24, Corollary 3.3].) If R = lim←− Rα and all Rα are seminormal, then R is seminormal.

An affine monoid M is called seminormal if for every x ∈ ZM such that 2x,3x ∈ M , we have x ∈ M .
Note that a normal monoid is always seminormal. Denote +M the intersection of all seminormal
submonoid of ZM which contains M . We call +M the seminormalization of M . Then +M is contained
in the normalization M of M in ZM and +M is again an affine monoid.

Hochster and Roberts [13, Proposition 5.32] proved that an affine monoid ring k[M], which is
always domain, is a seminormal ring if and only if M is a seminormal monoid. L. Reid and L. Roberts
proved the following formula for the seminormalization of a monoid.

Theorem 2.7. (See [19, Theorem 4.3].) Let M ∈ Zd be an affine monoid. Then

+M =
⋃

F is face of R+M

Z(M ∩ F ) ∩ int F ,

where int F denote the relative interior of the cone F .

In particular, if M is seminormal then we have ZM ∩ intR+M ⊆ M .
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3. Normality and seminormality of toric face rings

We will show that a normal toric face ring is nothing but a normal affine monoid ring. First we
prove a general statement about reduced graded algebra over a field.

Lemma 3.1. Let R be a reduced Nd-graded affine k-algebra which is generated by elements of non-zero degrees
(d � 1). If R is normal then R is a domain.

Proof. Assume that R is not a domain. As R is normal, it must be a non-trivial finite product of
normal domains. In that case, Spec R is disconnected. However, this is not the case.

Indeed, the minimal prime ideals of R are Nd-graded, hence contained in the Nd-graded maximal
ideal m of R . So each irreducible components of Spec R contains m. We then see that Spec R is
connected. So the lemma is true. �
Lemma 3.2. If the toric face ring k[M] is a domain, then Σ is the face poset of a cone. In particular, k[M] is
an affine monoid ring.

Proof. Choose a system of generators a1, . . . ,an of M where all the ai are non-zero. If Σ has more
than one maximal cone then a1 · · ·an = 0, which contradicts the condition that k[M] is a domain. �

We deduce the first main result of this section.

Theorem 3.3. Assume that k[M] is normal. Then Σ is the face poset of a cone and k[M] is a normal affine
monoid ring. In particular, k[M] is Cohen–Macaulay.

Proof. Notice that toric face rings are always reduced, so we are in position to apply Lemma 3.1 and
Lemma 3.2. Hochster’s theorem [11, Theorem 1] says that normal affine monoid rings are Cohen–
Macaulay, see [5, Theorem 6.3.5] for a proof using local cohomology. This concludes the proof of the
theorem. �

Next, we consider seminormality of toric face rings. We have the second main result of this section
as follows.

Proposition 3.4. If k[M] is a seminormal ring then for every cone C ∈ Σ , the affine monoid ring k[MC ] is
seminormal. Conversely, if for each cone C ∈ Σ , the monoid MC is seminormal, then the toric face ring k[M]
is also seminormal.

First we have a simple remark.

Lemma 3.5. Let R ↪→ S be an algebra retract of reduced rings. If S is seminormal then so is R.

Proof. If x2 = y3 in R , then since S is seminormal, there is some z ∈ S such that x = z3, y = z2. Apply
the retracting morphism S → R , we are done. �

Since for each C ∈ Σ , we have an algebra retract k[MC ] ↪→ k[M], so the first statement is true.
The second statement is a consequence of Proposition 2.4 and Proposition 2.6.

Another way to see that is by using the result in the book of Bruns and Gubeladze [4, Exercise 8.13]
which says that if for each cone C ∈ Σ , the monoid MC is seminormal, then all finitely generated pro-
jective modules over k[M] are free. It is an easy exercise to show that the polynomial extensions of
a toric face ring are again toric face rings. Moreover, the property: that the monoid MC is seminor-
mal for all C ∈ Σ , is stable under those polynomial extensions. Thus the Picard groups of k[M] and
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k[M][X] (where X is an indeterminate) are trivial. Apply Swan’s theorem [24, Theorem 1], which
generalized Traverso’s theorem [25, Theorem 3.6], we have the conclusion that k[M] is seminormal.

Given a monoidal complex M, we can define its seminormalization complex +M as follows. For
each C , let +MC be the seminormalization of MC inside ZMC . Then +M is the collection of affine
monoids +MC with C ∈ Σ . Denote +R = k[+M].

Theorem 3.6. (See [4, Exercise 8.13].) +M is a seminormal monoidal complex supported on Σ and the natural
inclusion R ↪→ +R is finite. Moreover, R is seminormal if and only if M= +M.

Proof. It is known that each +MC is an affine monoid. We can check that +M is a monoidal complex
supported on Σ . That +M is seminormal follows from Proposition 3.4. Since for each C ∈ Σ , we have
MC ⊆ +MC ⊆ MC , the second and the last statement are also true. �
4. Local cohomology of seminormal toric face rings

In this section, we generalize previous results of [1,6,14] concerning local cohomology of toric face
rings. We ask a question which amounts to a characterization of seminormal toric face rings via the
vanishing of their local cohomology modules. We keep using the notation of Section 3. Note that R is
Zd-graded. Hence, all the local cohomology modules of R are Zd-graded. For this reason, we will
restrict our attention to the Zd-graded components of Hi

m(R), i � 0.
First we recall basic constructions and facts about cell complex. Given a rational pointed fan

Σ ⊆ Rd , we associate a finite regular cell complex (X,ΓΣ) as follows. Let X = Σ ∩Sd−1 where Sd−1 is
the (d − 1)-dimensional unit sphere in Rd . Let ΓΣ = {int(C) ∩ Sd−1: C ∈ Σ}.

For each C ∈ Σ , denote eC = int(C) ∩ Sd−1. Each eC is an open cell. Denote Γ i
Σ = {e ∈ ΓΣ :

ē homeomorphic to Bi}, where Bi is the i-dimensional ball in Ri . Then
⋃

j�i Γ
j

Σ is the i-skeleton

of ΓΣ . The dimension of ΓΣ is dim ΓΣ = max{i: Γ i
Σ �= ∅} = dimΣ − 1. We say that eC ′ is a face of eC

if C ′ is a face of the cone C .
There is an incidence function δ(.,.) on pairs of cells eC , eC ′ of ΓΣ with eC ∈ Γ i

Σ and eC ′ ∈ Γ i−1
Σ for

some i � 0. For each such pair of cells, δ(eC , eC ′) ∈ {0,±1} and δ(.,.) satisfies the following conditions:

(i) δ(eC , eC ′ ) �= 0 if and only if eC ′ is a face of eC ;
(ii) δ(eC ,∅) = 1 for each 0-cell eC ;

(iii) if eC ′ ∈ Γ i−2
Σ is a face of eC ∈ Γ i

Σ then

δ(eC , eC1)δ(eC1 , eC ′) + δ(eC , eC2)δ(eC2 , eC ′) = 0

where eC1 , eC2 are the uniquely determined (i − 1)-cells such that eC ′ is a face of eCi and eCi is
face of eC .

We can now define the augmented oriented chain complex of ΓΣ as follows:

C•(ΓΣ) : 0 → Cdim ΓΣ
(ΓΣ) → ·· · → C0(ΓΣ) → C−1(ΓΣ) → 0

where Ci(ΓΣ) = ⊕
eC ∈Γ i

Σ
ZeC for i = 0, . . . ,dimΓΣ , and C−1(ΓΣ) = Z. The differential ∂ is defined on

Γ i
Σ as follows:

∂(eC ) =
∑

eC ′ ∈Γ i−1
Σ

δ(eC , eC ′)eC ′ .

Denote by H̃i(ΓΣ) the i-th homology of C•(ΓΣ).
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The local cohomology modules of toric face rings are computed by the following version of Čech
complex. For each cone C of Σ , denote by RC the localization of R at the multiplicative closed set
{Xa: a ∈ MC }. Define the R-modules

Lt(M) =
⊕

C∈Σ,dim C=t

RC , t = 0, . . . ,dim Σ,

and define the differential ∂ : Lt−1 → Lt componentwise as follows: the map ∂C,C ′ : RC ′ → RC is
δ(eC , eC ′)nat, where “nat” is the natural localization map. The following theorem is a generalization
of the computation of local cohomology of affine monoid rings [5, Theorem 6.2.5].

Theorem 4.1. (See [14, Theorem 4.2].) The complex L•(M) defined above computes the local cohomology of
an arbitrary R-module G. Hence for all i � 0, we have

Hi
m(G) ∼= Hi(L•(M) ⊗R G

)
.

We will also need the Mayer–Vietoris sequence for local cohomology of toric face rings. Recall
that for a subfan Σ ′ of Σ , we have the induced monoidal complex MΣ ′ and an induced toric face
ring RΣ ′ = k[MΣ ′ ]. (This is not to be confused with the localization RC described above.) There’s a
natural surjection R = RΣ → RΣ ′ mapping every homogeneous elements outside Σ ′ to zero, which
preserves the graded maximal ideals. Hence the local cohomology modules of RΣ ′ are the same when
we consider it as an R-module.

Moreover, if Σ = Σ1 ∪ Σ2 for two subfans Σ1,Σ2 then we have a short exact sequence of R-
modules:

0 → R → RΣ1 ⊕ RΣ2 → RΣ1∩Σ2 → 0.

This gives rise to the following result, which might be called the Mayer–Vietoris sequence of local
cohomology.

Theorem 4.2. (See [14, Proposition 4.3].) Let M be a monoidal complex supported by a rational pointed fan Σ

in Rd. Suppose that Σ is the union of two subfans, Σ = Σ1 ∪Σ2 . Then there is an exact sequence of Zd-graded
R-modules

· · · → Hi−1
m (RΣ1∩Σ2) → Hi

m(R) → Hi
m(RΣ1) ⊕ Hi

m(RΣ2) → Hi
m(RΣ1∩Σ2) → ·· · .

Now we have the following theorem concerning the vanishing of local cohomology of seminormal
toric face rings, which extends [6, Theorem 4.3] and [14, Proposition 4.4].

Theorem 4.3. Let Σ be a rational pointed fan in Rd (where d � 1), M be a seminormal monoidal complex
supported on Σ and R = k[M]. Assume that Hi

m(R)a �= 0 for some a ∈ Zd. Then a ∈ −MC for a cone C ∈ Σ

of dimension � i. In particular,

Hi
m(R)a = 0 if a /∈ −|M| =

⋃
C∈Σ

(−MC ).

Proof. If i = 0, since R is reduced, we have H0
m(R) = 0 and thus there’s nothing to do. Assume that

i > 0 and a /∈ −MD for any cone D ∈ Σ of dimension � i. We will prove that Hi
m(R)a = 0.

If dimΣ = 0 then R ∼= k and the claim is clearly true. Assume that dimΣ > 0. Let C ∈ Σ be a cone
of maximal dimension dim C = dimΣ .
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Let Σ1 = Σ − C and Σ2 =F(C) be the face poset of C . We have the Mayer–Vietoris sequence:

· · · → Hi−1
m (RΣ1∩Σ2)a → Hi

m(R)a → Hi
m(RΣ1)a ⊕ Hi

m(RΣ2)a → ·· · .

Note that RΣ2
∼= k[MC ]. If a /∈ ZMC , we have Hi

m(RΣ2 )a = 0, since Hi
m(k[MC ]) is ZMC -graded. Assume

that a ∈ ZMC . Since MC is seminormal and a /∈ −MD for any face D with dimension � i of C , Theo-
rem 4.3 in [6] implies that Hi

m(RΣ2 )a = 0. Moreover, a /∈ −MD if D is either a cone of dimension � i
of Σ1 or a cone of dimension � i − 1 of |Σ1 ∩ Σ2|. Thus by setting up an induction on i, another on
the dimension and yet another induction on the number of cones of maximal dimension of a fan, we
may assume that Hi−1

m (RΣ1∩Σ2 )a = 0 and Hi
m(RΣ1 )a = 0. From the long exact sequence we see that

Hi
m(R)a = 0, as claimed. �

Next we present a computation of local cohomology of seminormal toric face rings in combinato-
rial terms, that is, via homology of certain cell complexes. We give an application of this computation,
namely to deduce Brun, Bruns and Römer’s generalized version of Hochster’s formula for local coho-
mology of Stanley–Reisner rings.

Definition 4.4. For each a ∈ Zd , denote by starΣ(a) = {D ∈ Σ : a ∈ MD} and Σ(a) = Σ \ starΣ(a),
which is a subfan of Σ . Denote by C•(ΓstarΣ(a)) the complex C•(ΓΣ)/C•(ΓΣ(a)). The complex
HomZ(C•(ΓstarΣ(a)),k) is denoted by C•(ΓstarΣ(a)). Denote the corresponding homology and cohomol-
ogy of the above complexes by H̃i(ΓstarΣ(a)) and H̃ i(ΓstarΣ(a)), respectively.

In the following, as usual, given a complex C• the notation C•[m] denotes the complex C• right-
shifted by m positions, so Ci[m] = Ci+m . Theorem 4.5 generalizes Theorem 4.5 in [14].

Theorem 4.5. Let M be a monoidal complex supported on the rational pointed fan Σ in Rd. Let a ∈ Zd. Then

L•(M)a ∼= L•(MΣ(−a))a ⊕ HomZ

(
C•(ΓstarΣ(−a))[−1],k

) ⊗k k(−a)

as complexes of Zd-graded k-vector spaces. Hence for all i � 0 we have an isomorphism of graded k-vector
spaces:

Hi
m(R)a ∼= Hi

m(RΣ(−a))a ⊕ H̃ i−1(ΓstarΣ(−a)) ⊗k k(−a).

If in addition, M is seminormal then for each i � 0,

Hi
m(R)a ∼= H̃ i−1(ΓstarΣ(−a)) ⊗k k(−a).

First we prove an auxiliary result.

Lemma 4.6. We have the following:

(i) If C ∈ Σ(−a) then (RC )a ∼= (k[MΣ(−a)]C )a.
(ii) If C ′ ⊆ C are cones of Σ such that C ′ ∈ Σ(−a), C ∈ starΣ(−a) then the natural map (RC ′ )a → (RC )a is

zero.

Proof. (i) Note that we have a short exact sequence of graded R-modules:

0 → qΣ(−a) → R → k[MΣ(−a)] → 0.

After localizing, we are left with proving that (qΣ(−a)C )a = 0. Assume the contrary, so there exists
0 �= X z/X y ∈ qΣ(−a)C with z /∈ |MΣ(−a)| and y ∈ MC such that z − y = a.
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Since X z/X y �= 0, there’s a cone D for which MD contains z and y. Since z ∈ MD and z /∈ |MΣ(−a)|,
we must have D ∈ starΣ(−a) , and thus −a ∈ MD .

Since y ∈ MC∩D , replace C by C ∩ D if necessary, we can assume that C ⊆ D . Now −a, z are
elements of D such that −a + z = y and y ∈ MC . But C is a face of D , so we have z ∈ C ∩ MD = MC .
But then z ∈ |MΣ(−a)|, contradiction.

(ii) Clearly −a ∈ C . Since −a ∈ MC = ZMC ∩ C , we can write −a = u − w where u, w ∈ MC . First
note that u /∈ C ′ , otherwise (−a) + w ∈ C ′ , hence −a ∈ C ′ and u, w ∈ C ′ ∩ MC = MC ′ . Therefore −a ∈
ZMC ′ ∩ C ′ = MC ′ , a contradiction.

Assume that X z/X y ∈ RC ′ with z ∈ |M|, y ∈ MC ′ and z − y = a. We will prove that Xu X z = 0 in R .
Then since Xu is a unit in RC , we have X z/X y = 0 in (RC )a .

It is enough to show that there is no cone D ∈ Σ such that z, u ∈ MD . Assume that there is such
a cone. Since z − y = a, we have y + w = z + u ∈ D . But y, w ∈ C so both of them are in C ∩ D . The
same argument implies that z, u ∈ C ∩ D . Now (−a) + z = y and −a, z ∈ C, y ∈ C ′ ⊆ C , so −a, z ∈ C ′ .
But then z ∈ MC ′ , therefore −a = y − z ∈ ZMC ′ ∩ C ′ = MC ′ , a contradiction. The proof of the lemma is
completed. �
Proof of Theorem 4.5. We notice that it is enough to prove the first isomorphism. The last statement
follows easily from the first isomorphism and Theorem 4.3 since in this case MΣ(−a) is seminormal
and a /∈ −|MΣ(−a)|. Thus Hi

m(RΣ(−a))a = 0 for all a.
If starΣ(−a) = ∅ then the isomorphism is trivial. Thus in the following we assume that

starΣ(−a) �= ∅. We have

Li(M)a =
⊕

C∈Σ(−a),dim C=i

(RC )a ⊕
⊕

D∈starΣ(−a),dim D=i

(R D)a.

For each D ∈ starΣ(−a), we have −a ∈ MD . Thus X−a is a non-zero element of (R D)a , hence
(R D)a ∼= k. We get ⊕

D∈starΣ(−a),dim D=i

(R D)a ∼= HomZ

(
Ci−1(ΓstarΣ(−a)),k

) ⊗k k(−a),

as k-vector spaces. Combine with Lemma 4.6, the first isomorphism is proved on the module level.
Next, we prove the isomorphism on the graded complex level and thus finish the proof of the

theorem. Consider C ′ ⊆ C with C ′ ∈ Γ i
Σ, C ∈ Γ i+1

Σ . There are three cases to consider.

Case 1: If both C ′ and C belong to ∈ Σ(−a). We can check that the following diagram, with two
vertical maps being isomorphisms, is commutative.

(RC ′)a (RC )a

(k[MΣ(−a)]C ′)a (k[MΣ(−a)]C )a

Case 2: If C ′ belongs to starΣ(−a), then so does C . It is easy to check that the following diagram is
commutative.

(RC ′)a (RC )a

HomZ(Ci−1(ΓstarΣ(−a)),k) ⊗k k(−a) HomZ(Ci(ΓstarΣ(−a)),k) ⊗k k(−a)
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Case 3: If C ′ ∈ Σ(−a) but C ∈ starΣ(−a). In the diagram

(RC ′)a (RC )a

(k[MΣ(−a)]C ′)a HomZ(Ci(ΓstarΣ(−a)),k) ⊗k k(−a)

the horizontal map below is zero. According to Lemma 4.6 the above horizontal map is also zero. This
concludes the proof of the theorem. �
Proposition 4.7. We always have

Hi
m(+R) =

⊕
a∈−|M|

Hi
m(+R)a,

and Hi
m(+R) is a k-direct summand of

⊕
a∈−|M| Hi

m(R)a.

Proof. Since +R is seminormal, Theorem 4.3 shows that Hi
m(+R)a = 0 for a /∈ −|M|. Thus the first

statement is clear. The second statement follows from Theorem 4.5. Indeed, for each C ∈ Σ , we have
MC ⊆ +MC ⊆ MC so the sets Σ(a) and starΣ(a) do not change when one passes from M to +M.
Thus

Hi
m(R)a ∼= Hi

m(RΣ(−a))a ⊕ Hi
m(+R)a

and this implies the desired conclusion. �
Corollary 4.8. Let M be a positive affine monoid and a ∈ −M. Denote by Σ the cone R+M. Then

Hi
m

(
k[MΣ(−a)]

)
a = 0.

This follows from the proof of Proposition 4.7 and the fact that

Hi
m

(
k[M])a

∼= Hi
m

(+k[M])a,

for a ∈ −M , see [6, Proposition 4.4].
We have a complete analog of [6, Corollary 4.6] with the same proof. It shows that for properties

like Cohen–Macaulayness and Serre’s condition (Sr), restriction to the class of seminormal toric face
rings is reasonable.

Corollary 4.9. Let M be a monoidal complex supported on a rational pointed fan Σ in Rd, and R = k[M].
Then:

(i) If M is Cohen–Macaulay over k, then so is +M.
(ii) If depth R � r then depth +R � r.

(iii) If R satisfies (Sr) then +R satisfies (Sr).

In the case of affine monoid rings, the following theorem was proved in [6].
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Theorem 4.10. (See [6, Theorem 4.7].) Let M be a positive affine monoid. Then the following are equivalent:

(i) M is seminormal;
(ii) Hi

m(R)a = 0 for all i and all a ∈ ZM such that a /∈ −M.

We would like to extend the cohomological characterization of seminormality of Bruns, Li and
Römer to toric face rings. However, we do not have an answer for the following question.

Question 4.11. Is it true that for a toric face ring k[M] the following statements are equivalent?

(i) M is seminormal;
(ii) Hi

m(R)a = 0 for all i and all a ∈ Zd such that a /∈ −|M|.

Remark 4.12. The method to prove Theorem 4.10 given in [6] cannot be directly generalized to deal
with toric face rings. Analyzing this proof, we observe that it depends crucially on Corollary 4.8.
However, in contrast to the situation of affine monoid rings, the next example shows that for some
2-dimensional toric face ring k[M] and some a ∈ −|M|, it can happen that H2

m(RΣ(−a))a �= 0.

Example 4.13. Let Σ be the fan in R2 consists of two maximal cones C with generators x = (3,0),
y = (3,1), z = (3,3) and C ′ with two generators z and t = (0,1). Define M to be the monoidal
complex supported on Σ with two maximal monoids: M generated by x, y, z, M ′ generated by z, t .
The toric face ring k[M] is k[x, y, z, t]/(x2z − y3, xt, yt).

Let D be the ray spanned by t , let a = −t = (0,−1).

Note that −a ∈ MD = MD and Σ(−a) =F(C), the face poset of C . Thus

H2
m(RΣ(−a))a = H2

m

(
k[M])a

∼= k,

the last equality can be checked by computation on the Čech of the monoid ring A = k[M],

0 → A → Ax ⊕ Az → AC → 0.

Indeed, x/y is a non-zero element of (AC )a while (Ax)a = (Az)a = 0.

Theorem 5.5 of [1] delivered a formula for the graded local cohomology of toric face rings by
the machinery of cohomology of sheaves on partially ordered set. This formula, which generalizes
Hochster’s formula for local cohomology of Stanley–Reisner rings, was reproved in [14, Corollary 4.7]
by the more compact language of toric face rings. In the Corollary 4.16, we derive this formula from
Theorem 4.5.

Definition 4.14. For each cone C of Σ , denote by starΣ(C) = {D ∈ Σ : C ⊆ D}. We also denote by
Σ(C) the set Σ \ starΣ(C), which is a subfan of Σ . In the same way as in Definition 4.4, we define
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the complexes C•(ΓstarΣ(C)) and C•(ΓstarΣ(C)), and the homology and cohomology groups H̃i(ΓstarΣ(C))

and H̃ i(ΓstarΣ(C)).

The set starΣ(C) is partially ordered by inclusion. Denote by �(starΣ(C)) the order complex of
starΣ(C) \ {C}, which is the simplicial complex whose faces are the chains of starΣ(C) \ {C}. Denote
by H̃i(�(starΣ(C))), H̃ i(�(starΣ(C))) the simplicial homology and cohomology of �(starΣ(C)) with
coefficients in k.

Lemma 4.15. (See [14, Lemma 4.6].) With the above notation we have for each i ∈ Z:

H̃i(ΓstarΣ(C)) ∼= H̃i−dim C
(
�

(
starΣ(C)

))
, H̃ i(ΓstarΣ(C)) ∼= H̃ i−dim C (

�
(
starΣ(C)

))
.

Corollary 4.16. (See Brun, Bruns, Römer [1].) Let Σ be a rational pointed fan in Rd, and R = k[Σ]. Then for
all i � 0, there are isomorphisms of finely graded k-modules

Hi
m(R) ∼=

⊕
C∈Σ

⊕
a∈− int C

H̃ i−1(ΓstarΣ(C)) ⊗k k(−a)

∼=
⊕
C∈Σ

⊕
a∈− int C

H̃ i−dim C−1(�(
starΣ(C)

)) ⊗k k(−a).

Proof. Note that for every C ∈ Σ we have MC = C ∩ Zd is a normal monoid. Thus R is seminormal
and |M| = |Σ |. We also have starΣ(a) = {D ∈ Σ : a ∈ D}. Therefore starΣ(a) = starΣ(C) if a ∈ int C .

From Theorem 4.3, we can restrict our attention to graded pieces Hi
m(R)a where a ∈ −|Σ |. For

each a ∈ −|Σ |, there is a unique C such that −a ∈ int C . So apply Theorem 4.5 and Lemma 4.15 we
have:

Hi
m(R) ∼=

⊕
a∈−|Σ |

H̃ i−1(ΓstarΣ(−a)) ⊗k k(−a)

∼=
⊕
C∈Σ

⊕
a∈− int C

H̃ i−1(ΓstarΣ(C)) ⊗k k(−a)

∼=
⊕
C∈Σ

⊕
a∈− int C

H̃ i−dim C−1(�(
starΣ(C)

)) ⊗k k(−a).

This concludes the proof of the corollary. �
5. Depth and the Cohen–Macaulay property

In this section, we present an alternative description for the depth of a seminormal toric face ring.
The main tool is Theorem 4.5.

Definition 5.1. For each i = 0,1, . . . ,dim R , denote by Σ(i) the set {C ∈ Σ : dim C � i}. We call Σ(i) ,
which is a subfan of Σ , the i-skeleton of Σ . Denote by M(i) the restriction MΣ(i) , which is called
the i-skeleton of M.

Define the number

mk(M) = max
{

i � dim R: M(t) is Cohen–Macaulay over k for all 0 � t � i
}
.
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This makes sense because k[M(0)] = k is Cohen–Macaulay. Actually if Σ is not trivial, i.e., not only the
origin, then mk(M) � 1. Indeed, if Σ is not trivial, it is easy to see that k[M(1)] is a Stanley–Reisner
ring of dimension 1, which is well-known to be Cohen–Macaulay [5, Exercise 5.1.26]. We can now
prove a rank-selection theorem, see also (in time order) Munkres [15, Theorem 3.1], D. Smith [21,
Theorem 4.8], Hibi [10, Corollary 2.6], Duval [8, Corollary 6.5] and Brun and Römer [3, Example 5.8].

Theorem 5.2. If M is seminormal then

depth R = mk(M).

In particular, if M is seminormal and Cohen–Macaulay over k, then so are all of its skeletons.

Proof. Denote s = mk(M). Apply Theorem 4.5, for all i � 0, a ∈ Zd , we have

Hi
m(R)a ∼= H̃ i−1(ΓstarΣ(−a)) ⊗k k(−a).

Note that by construction, the right-hand side involves only cones in Σ of dimension � i + 1. Thus
for i � s − 1 and a ∈ Zd ,

Hi
m(R)a ∼= Hi

m

(
k
[
M(s)])

a.

This implies that Hi
m(R) = Hi

m(k[M(s)]) = 0, since M(s) is Cohen–Macaulay of dimension s. Thus
depth R � s.

The same argument shows that Hi
m(R) = Hi

m(k[M(s+1)]) = 0 for i � s − 1. Since M(s+1) has di-
mension s + 1 and is not Cohen–Macaulay, we have 0 �= Hs

m(k[M(s+1)]) = Hs
m(R). We conclude that

depth R = s. �
Let M be a seminormal affine monoid and define the number ck(M) to be the maximal number

t such that k[M ∩ F ] is Cohen–Macaulay for all faces F of R+M with dimension � t . According to
Theorem 5.3 of [6], we have depth k[M] � ck(M). Thus we have the following corollary.

Corollary 5.3. Let M be a seminormal affine monoid. Then

mk(M) � ck(M).

We can give another proof for Corollary 5.3 in the language of toric face rings. Indeed, if ck(M) =
dim k[M], there’s nothing to do. Otherwise, let t = ck(M). For every i � t , the i-skeleton M(i) of the
face poset of R+M is clearly pure shellable, see [14], Section 3 for more discussion of shellability
of toric face rings. Moreover, the monoid rings on the faces of M(i) are Cohen–Macaulay. Thus apply
Theorem 3.2 of [14], we can conclude that k[M(i)] is Cohen–Macaulay. This shows that t � mk(M).

6. Frobenius of toric face rings in positive characteristic

In the following, assume that k has positive characteristic p. Then we have the Frobenius endo-
morphism of R = k[M]:

F : R → R, t 
→ t p.

R is called F-finite if R is a finite F (R)-module. We say that R is F-injective if the induced maps of
Frobenius on the local cohomology modules Hi

m(R) are injective. We call R to be F-pure if F (R) is a
pure subring of R , and F-split if F (R) is a direct summand of R as F (R)-module.
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A finitely generated algebra over a perfect field of characteristic p > 0 is F -finite. It is known that

F -split ⇒ F -pure ⇒ F -injective,

and F -pure together with F -finite implies F -split, see Fedder [9] for more information on these no-
tions.

Hochster and Roberts [13, Proposition 5.38] proved that Stanley–Reisner rings over k are F -pure
for all char k > 0. Hochster and Roberts [13, Theorem 5.33] also proved that positive affine seminormal
monoid rings over k are F -pure, if char k > 0 is different from a finite set of prime numbers. Bruns, Li
and Römer describe these primes exactly.

Theorem 6.1. (See [6, Proposition 6.2].) Let M ⊆ Zd be a positive seminormal affine monoid and k be field of
characteristic p > 0. Then the following are equivalent:

(i) The prime ideal (p) is not associated to the Z-module (ZM ∩RC)/Z(M ∩ C) for any face C of R+M;
(ii) R is F -split;

(iii) R is F -pure;
(iv) R is F -injective.

T. Yasuda [26, Proposition 5.3] proved that for affine monoid rings, F -purity (even F -splitting) is
equivalent to weak normality. We would like to thank Karl Schwede for pointing to us this result of
Yasuda. We will see that similar results are true for face rings of seminormal monoidal complexes
supported on a rational pointed fan.

Remark 6.2. If char k = p > 0 and k[M] is F -injective, then M is seminormal. Indeed, we can pass to
the perfect closure of k since the F -injectivity of k[M] is not affected by a flat base change. We know
that k[M] is reduced and F -finite. Now apply a theorem of Schwede [20, Theorem 4.7], which says
that if a reduced F -finite ring with a dualizing complex is F -injective, then it is seminormal (actually
even weakly normal). Thus M is seminormal.

Now we characterize the F -split and F -pure properties of seminormal toric face rings.

Theorem 6.3. Let char k = p > 0. Let Σ be a rational pointed fan in Rd, and M a seminormal monoidal
complex supported on Σ . The following statements are equivalent:

(i) For each maximal cone C ∈ Σ , the monoid ring k[MC ] is F -pure (equivalently, F -injective);
(ii) For each maximal cone C ∈ Σ and each face D ⊆ C, the prime ideal (p) is not associated to the Z-module

(ZMC ∩RMD)/ZMD ;
(iii) k[M] is F -split;
(iv) k[M] is F -pure.

Proof. (iii) ⇒ (iv) is trivial. (iv) ⇒ (i) follows from a simple fact: if R ′ ↪→ R is an algebra retract of
rings containing a field of characteristic p > 0 and R is F -pure then R ′ is F -pure. Note that (i) ⇒ (ii)
follows Theorem 6.1. We prove that (ii) ⇒ (iii).

(ii) ⇒ (iii). We will prove that k[pM] is a k[pM]-direct summand of k[M]. Then because kp[pM]
is a kp[pM]-direct summand of k[pM], we have kp[pM] is a kp[pM]-direct summand of k[M].

Define an equivalence relation ∼ on |M| as follows: a ∼ b if and only if there is a finite sequence
a1, . . . ,an such that for i = 0, . . . ,n we have ai,ai+1 belongs to MC and ai − ai+1 ∈ pZMC for some
C ∈ Σ (where a0 = a,an+1 = b). It is easy to check that the decomposition into equivalence classes of
|M| gives rise to k[pM]-module decomposition of k[M] into direct summands. Using (ii), we claim
that MD ∩ pZMD = pMD for every D ∈ Σ . From this, we will prove that the equivalence class of 0 is
exactly p|M|. This implies that k[pM] is a direct summand in this k[pM]-module decomposition of
k[M], thus finishes the proof.
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Now assume that z ∈ ZMD and pz ∈ MD with D ∈ Σ . Choose a maximal cone C containing D and
a face B of D such that z ∈ int B . Of course, pz ∈ MD ∩ B ⊆ MB , z ∈ ZMC . Since (p) is not associated to
(ZMC ∩RMB)/ZMB we have z ∈ ZMB . Now z ∈ int B ∩ZMB ⊆ MB , as MB is seminormal. So z ∈ MD ,
as claimed.

Assume that there are elements a1, . . . ,an such that ai,ai+1 belongs to MC and ai − ai+1 ∈ pZMC

for some C ∈ Σ (where a0 = 0). We use induction on n to show that an ∈ p|M|.
If n = 1, there is nothing to do. Assume that n � 2. We have an−1 ∈ pMC for C ∈ Σ . For some

D ∈ Σ , we have an−1,an ∈ MD and an − an−1 ∈ pZMD . Of course an−1 ∈ pMD . Thus an ∈ MD ∩
pZMD = pMD , as desired. �
Corollary 6.4. (See [13, Proposition 5.38].) If k is a field of characteristic p > 0 and I is a square-free monomial
ideal in k[X1, . . . , Xn] (where n � 1), then k[X1, . . . , Xn]/I is F -pure.

Proof. Assume that k[�] is the Stanley–Reisner ring corresponding to I . Note that for each cone C of
the geometric realization of � in Rn and each face D of C , we have ZMC ∩RMD = ZMD . So k[�] is
F -pure for every p > 0, by Theorem 6.3(ii). �
Remark 6.5. Note that from Remark 6.2 and Theorem 6.3, with given M, for all but finitely many
values of char k > 0, we have that if k[M] is F -injective then k[MC ] is F -injective (even F -split) for
every C ∈ Σ . The next example shows that we cannot expect more than that.

Example 6.6. Let k = Z/2Z. We construct a monoidal complex M supported on a 2-dimensional
fan Σ such that k[M] is F -injective but k[MC ] is not F -injective for some maximal cone C of Σ .

Let Σ be the fan in R2 consisting of two maximal cones C with generators x = (1,0), y = (0,2),
t = (1,1) and C ′ with two generators y and z = (−2,2). Define M to be the monoidal complex
supported on Σ with two maximal monoids: M generated by x, y, t , M ′ generated by y, z. The toric
face ring k[M] is k[x, y, z, t]/(x2 y − t2, xz, tz).

Let D be the ray spanned by y, let a = (0,−1). Note that M is seminormal because M ′ is normal
and M is seminormal.

The last fact can be seen by checking the equality

M =
⋃

F is face of R+M

Z(M ∩ F ) ∩ int F .

In detail, we have

Z(M ∩ F ) ∩ int F =

⎧⎪⎪⎨
⎪⎪⎩

{(m,n): m � 1, n � 1} if F = R+M;
{(0,2n): n � 1} if F = D;
{(m,0): m � 1} if F = O x;

{0} if F = {0}.
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Thus

+M =
⋃

F is face of R+M

Z(M ∩ F ) ∩ int F ⊆ M.

and hence M = +M . It is not hard to see that M \ M = {−a,−3a,−5a, . . .}.
It is easy to check that −a = t − x ∈ ZM ∩ RD,−2a ∈ ZMD but −a /∈ ZMD . Thus k[M] is not

F -injective. On the other hand, we can check that k[M] is F -injective.
Indeed, firstly, R = k[M] is a 2-dimensional Cohen–Macaulay ring. This is done by a typical

“shellability” argument. We have an exact sequence of R-modules

0 → R → k[M] ⊕ k
[
M ′] → k[MD ] → 0.

The middle rings are Cohen–Macaulay of dimension 2 (see [6, Corollary 5.4]). Using the proof of [6,
Corollary 4.11], we can even prove that k[M] is Gorenstein. Indeed, the multigraded support of the
k-dual of H2

m(k[M]) is

N = M \
⋃

F is facet of R+M

Z(M ∩ F ) = (0,1) + M

thus k[M] is Gorenstein.
The last ring is Cohen–Macaulay of dimension 1. Note that all of these rings have admissible N-

grading. Thus R is Cohen–Macaulay, so Hi
m(R) = 0, i = 0,1.

We can restrict our attention to those b such that H2
m(R)b �= 0. Apply Theorem 4.3, this happens

only when −b ∈ M ∪ M ′ = M ∪ M ′ .
Now apply Theorem 4.5. If −b ∈ M ∪ M ′ , it is easy to see that starΣ(−b) = starΣ(−2b), thus

H2
m(R)b

∼= H2
m(R)2b as k-vector spaces. We also have an isomorphism via Frobenius, by examining

action of Frobenius on the Mayer–Vietoris sequence and applying the 5-Lemma.

0 H1
m(k[MD ])b

F

H2
m(R)b

F

H2
m(k[M])b ⊕ H2

m(k[M ′])b

F

0

0 H1
m(k[MD ])2b H2

m(R)2b H2
m(k[M])2b ⊕ H2

m(k[M ′])2b 0

If −b ∈ M \ M then b = a,3a,5a, . . . , in this case we have starΣ(−b) = {M}, starΣ(−2b) =
{D, M, M ′}, and again by Theorem 4.5, we have H2

m(R)b
∼= k ∼= H2

m(R)2b . Examining action of Frobe-
nius on the last part of the Čech complex shows that Frobenius induces an isomorphism H2

m(R)b
∼=

H2
m(R)2b .

Rx ⊕ R y ⊕ Rz

F

RC ⊕ RC ′

F

0

Rx ⊕ R y ⊕ Rz RC ⊕ RC ′ 0

Thus k[M] is F -injective.

Remark 6.7. We observe that Example 6.6 also gives a negative answer to the following question:
Let R ↪→ S is an algebra retract of finitely generated algebras over a field k with char k = p > 0. If

S is F -injective and R is Gorenstein, is it true that R is F -injective?
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Finally, we prove that R = k[M] is weakly F -regular if and only if R is a normal affine monoid
ring. Recall that if char k = p > 0, then R is weakly F -regular if every ideal of R is tightly closed.
R is F -regular if the localization of R at any multiplicative subset is weakly F -regular, see Hochster
and Huneke [12] for more details. Hochster and Huneke [12, Corollary 5.11] proved that a weakly
F -regular ring must be normal. Thus apply Theorem 3.3, we have the following.

Proposition 6.8. If char k = p > 0 and k[M] is weakly F -regular, then Σ is the face poset of a cone and k[M]
is a normal affine monoid ring.

Note that normal affine monoid rings are always F -regular, because they are direct summands of
Laurent polynomial rings, see [5, Exercise 6.1.10].
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