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Introduction

The very first approach to the representation theory of finite reductive groups is the construction
of representations via Harish-Chandra (or parabolic) induction. If G is a connected reductive group
over F = Fp with an Fq-structure associated to a Frobenius endomorphism F : G −→ G, and P is an
F -stable parabolic subgroup with an F -stable Levi complement L, one can define, over any ring Λ,
the following functors

RG
L :ΛLF -mod −→ ΛGF -mod

and

∗RG
L :ΛGF -mod −→ ΛLF -mod

called Harish-Chandra induction and restriction functors. One of the main features of these functors
is that they satisfy the so-called Mackey formula: if Q is another F -stable parabolic subgroup with
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F -stable Levi complement M then

∗RG
M ◦ RG

L �
∑

RL
L∩xM ◦ ∗R

xM
L∩xM ◦ ad x

where x runs over an explicit finite set associated to L and M. In addition to being a powerful tool for
studying an induced representation, this formula is also essential for proving that the Harish-Chandra
functors depend on L only and not on the choice of P.

It turns out that not all the representations of GF can be obtained by Harish-Chandra induction (al-
ready for G = SL2(F), many representations are cuspidal). To resolve this problem Deligne and Lusztig
defined in [6] a generalised induction in the case where P is no longer F -stable but L still is. They
constructed morphisms between the Grothendieck groups

RG
L : K0

(
ΛLF -mod

) −→ K0
(
ΛGF -mod

)
and

∗RG
L : K0

(
ΛGF -mod

) −→ K0
(
ΛLF -mod

)
still satisfying the Mackey formula. These morphisms come from a virtual character given by the �-
adic cohomology of a quasi-projective variety X̃L,P , the parabolic Deligne–Lusztig variety associated to
(L,P). Here, Λ is a finite extension of Q� , Z� or F� .

When Λ is field of characteristic zero, the category ΛGF -mod is semisimple, and its Grothendieck
group encodes most of the information. However, in the modular framework, that is when Λ = Z�

or F� , the Deligne–Lusztig induction and restriction morphisms give only partial information on the
category of modules. To obtain homological properties, one needs to consider the complex RΓc(X,Λ)

representing the cohomology of the variety in the derived category Db(ΛGF -mod). Using this point
of view, Bonnafé and Rouquier defined in [1] triangulated functors

RG
L⊂P : Db(ΛLF -mod

) −→ Db(ΛGF -mod
)

and

∗RG
L⊂P : Db(ΛGF -mod

) −→ Db(ΛLF -mod
)
.

Unlike the previous functors, these are not expected to satisfy a naive Mackey formula as they highly
depend on the choice of P. However, there is a good evidence that the composition ∗RG

M⊂Q ◦ RG
L⊂P

should be somehow related to functors associated to smaller Levi subgroups. The purpose of this
paper is to investigate the case where Q is F -stable. If U denotes its unipotent radical, then the
composition ∗RG

M⊂Q ◦RG
L⊂P is induced by the cohomology of the quotient variety UF \X̃L,P .

In the original paper of Deligne and Lusztig [6], the Levi subgroup L is a torus and X̃L,P corresponds
to some element w of the Weyl group W of G. The motivating example is when (L,P) represents a
Coxeter torus, that is when w is a Coxeter element of W . In that case, the variety XL,P = X̃L,P/LF is
contained in the maximal Schubert cell and its quotient by UF has been computed by Lusztig in [15].
In the case where Λ = Q� it is given by the following quasi-isomorphism of MF -modules:

RΓc
(
UF \XL,P,Q�

) � RΓc(XL∩M,P∩M,Q�) ⊗ RΓc
((

F×)d
,Q�

)
where d is the semisimple Fq-index of M in G. Surprisingly, this isomorphism does not come from an
MF -equivariant isomorphism of varieties, and we will see that it is more natural to study the quotient
of X̃L,P instead of XL,P .

In general, the variety XL,P is not contained in only one Schubert cell. The strategy towards the
determination of the cohomology of UF \X̃L,P will consist in the following steps:
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• decompose the variety X̃L,P into pieces X̃x coming from the decomposition of G/P into Q-orbits
(see Section 2);

• in some well-identified cases, express the cohomology of UF \X̃x in terms of parabolic Deligne–
Lusztig varieties associated to Levi subgroups of M (see Section 3).

The second step is undoubtedly the most difficult. We are able to provide a satisfactory solution to
this problem in presumably very specific situations, namely when the pair (L ∩ xM,P ∩ xM) is close
to (L,P) (see Theorem 3.11 for more details). However, it turns out that our main result is general
enough to cover most of the Deligne–Lusztig varieties associated with unipotent Φd-blocks with cyclic
defect group. This should give many new results on the geometric version of Broué’s abelian defect
group conjecture. To illustrate this phenomenon, we compute in Section 3.3 the principal part of the
cohomology of the parabolic variety associated to the principal Φ2n−2-block for a group of type Bn

as well as its Alvis–Curtis dual. In subsequent papers this baby example will be supplemented by the
following results:

• for exceptional groups, the determination of the cohomology of varieties associated to principal
Φd-blocks when d is the largest regular number besides the Coxeter number. This should be
enriched with predictions for the corresponding Brauer trees [14];

• for groups of type An , the determination of the cohomology of varieties associated to any unipo-
tent block from the knowledge of the cohomology of the variety X(w2

0) [13].

1. Parabolic Deligne–Lusztig varieties

Let G be a connected reductive algebraic group, together with an isogeny F , some power of which
is a Frobenius endomorphism. In other words, there exists a positive integer δ such that F δ defines
a split Fqδ -structure on G for a certain power qδ of the characteristic p (note that q might not be
an integer). For all F -stable algebraic subgroup H of G, we will denote by H = HF the finite group of
fixed points.

We fix a Borel subgroup B containing a maximal torus T of G such that both B and T are F -stable.
They define a root system Φ with basis �, and a set of positive (resp. negative) roots Φ+ (resp. Φ−).
Note that the corresponding Weyl group W is endowed with an action of F , compatible with the
isomorphism W � NG(T)/T. The set of simple reflections will be denoted by S . We shall also consider
representatives {ẇ | w ∈ W } of W in NG(T) compatible with the action of F (this is possible by [9,
Proposition 8.21]).

To any subset I ⊂ S one can associate a standard parabolic subgroup PI containing B and a
standard Levi subgroup LI containing T. If UI denotes the unipotent radical of PI , the parabolic sub-
group can be written as PI = LI UI . The corresponding root system will be denoted by ΦI . Let U
(resp. U−) be the unipotent radical of B (resp. the opposite Borel subgroup B−). Each root α de-
fines a one-parameter subgroup Uα , and we will denote by uα : F −→ Uα an isomorphism of
algebraic group. In order to simplify the calculations, we shall choose these isomorphisms so that
uα(λ)ṡα = u−α(λ−1)α∨(λ)uα(−λ−1). Note that the groups Uα might not be F -stable in general even
though the groups U and U− are.

Finally, we denote by B+
W (resp BW ) the Artin–Tits monoid (resp. Artin–Tits group) of W , and by

S = {sα | α ∈ �} its generating set. The reduced elements of B+
W form a set W which is in bijection

with W via the canonical projection BW � W . We shall also consider the semi-direct product BW �

〈F 〉 where F · b = F b · F .
Let I be a subset of S and denote by B+

I the submonoid of B+
W generated by I. Following [9], we

will denote by I
b−→ F I any pair (I,b) with b ∈ B+

W satisfying the following properties:

• any left divisor of b in B+
I is trivial;

• bF I = I, that is every s ∈ I satisfies b−1sb ∈ F I.
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Digne and Michel have constructed in [9] a parabolic Deligne–Lusztig variety X(I,bF ) associated to
any such pair. Note that when b = w ∈ W and if w denotes its image by the canonical projection
BW � W , the previous conditions are equivalent to w being I-reduced with w F I = I . In that case, the
variety X(I,wF ) can be written

X(I, w F ) = {
g ∈ G

∣∣ g−1 F g ∈ PI w F PI
}
/PI .

As in the case of tori, we can construct a Galois covering of X(I, w F ). It is well-defined up to a choice
of a representative n of w in NG(T):

X̃(I,nF ) = {
g ∈ G

∣∣ g−1 F g ∈ UIn
F UI

}
/UI .

The natural projection G/UI −→ G/PI makes X̃(I,nF ) an LnF
I -torsor over X(I, w F ). By using an

F -stable Tits homomorphism t : BW −→ NG(T) extending w ∈ W 
−→ ẇ , Digne and Michel have gen-

eralised in [9] this construction to any element I
b−→ F I. The corresponding variety will be denoted

by X̃(I,bF ). It is an Lt(b)F
I -torsor over X(I,bF ). When b = w ∈ W we shall simply denote t(w) by ẇ .

Remark 1.1. When I is empty, we obtain the usual Deligne–Lusztig varieties X(bF ) and X̃(bF ) associ-
ated to any element b of the Braid monoid (as defined in [3] or [1]).

2. Decomposing the quotient of X(I, w F )

Let (I, w) be a pair consisting of an element w of W and a subset I of S such that w is I-reduced
and w F I = I . Let J be another subset of S . If J is F -stable, then so is the corresponding standard
parabolic subgroup P J and its unipotent radical U J . In this section we are interested in describing the
quotient of the parabolic Deligne–Lusztig variety

X(I, w F ) = {
g ∈ G

∣∣ g−1 F g ∈ PI w F PI
}
/PI

by the finite unipotent group U J . Our main goal is to express this quotient (or at least its cohomology)
in terms of “smaller parabolic varieties” associated to the Levi subgroup L J .

Throughout this paper, Λ will be any extension of the ring Z� of �-adic integers. We shall always
assume that � is different from p, so that by cohomology over Λ we mean the extension of the étale
cohomology of quasi-projective varieties with coefficients in Z� . The properties of RΓc(−,Λ) that we
will use are either classical or can be found in [16].

2.1. A general method

Recall that the partial flag variety G/PI admits a decomposition into P J -orbits G/PI = ∐
P J xPI

where x runs over any set of representatives of W J \W /W I . The restriction of this decomposition to
X(I, w F ) can be written as

X(I, w F ) =
∐

x∈[W J \W /W I ]

{
pxPI ∈ P J xPI/PI

∣∣ p−1 F p ∈ x
(
PI w F PI

)F x−1}. (2.1)

We will denote by Xx = X(I, w F ) ∩ P J xPI/PI a piece of this decomposition. It is a locally closed P J -
subvariety of X(I, w F ). Now, each of these pieces can be lifted up to P J . More precisely, if we define
the variety

Zx = {
p ∈ P J

∣∣ p−1 F p ∈ x
(
PI w F PI

)F x−1}
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then the canonical projection G −→ G/PI induces a fibration Zx −→ Xx with fiber isomorphic to
P J ∩ xPI . Now if we assume that x is J -reduced-I , the intersection P J ∩ xPI can be decomposed
as P J ∩ xPI = (L J ∩ xPI ) · (U J ∩ xU). Furthermore, L J ∩ xPI is a standard parabolic subgroup of L J (it
contains L J ∩ B) and hence it can be written L J ∩ PKx with Kx = J ∩ xΦI . The cohomology of Xx is
thus given by

RΓc(Xx,Λ) � RΓc(Zx/L J ∩ PKx ,Λ)
[
2 dim U J ∩ xU

]
. (2.2)

The advantage of this description is that the quotient of the variety Zx by U J is easier to compute.
If we decompose p ∈ P J as p = ul ∈ U J L J then the quotient variety can be written (see for example
[11, Proposition 1.3])

U J \Zx = {
(p̄, l) ∈ [(

xPI w F PI
F x−1) ∩ P J

] × L J
∣∣ π J (p̄) = l−1 F l

}
where π J : P J −→ L J is the canonical projection.

Our aim is to relate this variety to “smaller” parabolic Deligne–Lusztig varieties. For that purpose,
we need to identify the double cosets in which l−1 F l lies, which amounts to decomposing the inter-
section (xPI w F PI

F x−1)∩ P J as well as its image under π J . Let v ∈ W J be a Kx-reduced-F Kx element.
We can decompose the double coset PKx v F PKx as follows:

PKx v F PKx = (L J ∩ PKx)U J v
(
L J ∩ F PKx

)
.

Since L J ∩ PKx = L J ∩ xPI is a subgroup of xPI , the intersection (xPI w F PI
F x−1) ∩ (PKx v F PKx ) is

non-empty if and only if (xPI w F PI
F x−1 v−1) ∩ U J is. In this case, the projection π J : P J −→ L J in-

duces a fibration (xPI w F PI
F x−1) ∩ (PKx v F PKx ) −→ (L J ∩ PKx )v(L J ∩ F PKx ) with fiber isomorphic to

(xPI w F PI
F x−1 v−1) ∩ U J . If we define Zv

x to be the variety

Zv
x = {

(p̄, l) ∈ [(
xPI w F PI

F x−1) ∩ (
PKx v F PKx

)] × L J
∣∣ π J (p̄) = l−1 F l

}
then we obtain a decomposition of U J \Zx into locally closed subvarieties together with L J -equivariant
maps

Zv
x −→ {

l ∈ L J
∣∣ l−1 F l ∈ L J ∩ PKx v F (L J ∩ PKx)

}
(2.3)

with fibers isomorphic to (xPI w F PI
F x−1 v−1) ∩ U J .

Remark 2.4. In the case where v F Kx = Kx , the quotient by L J ∩ PKx of the variety on the right-hand

side of (2.3) can be identified with the parabolic Deligne–Lusztig variety associated to Kx
v−→ F Kx . We

shall, by convenient abuse of notation, denote it by XL J (Kx, v F ) even when v F does not normalise Kx .

Finally, we set Zv
x = Zv

x /L J ∩ PKx . The right action of U J ∩ xU on Zx induces an action by F -
conjugation on Zv

x and let Xv
x = Zv

x /U J ∩ xUI be the quotient (equivalently, it is the image of Zv
x

by the morphism U J \Zx � U J \Xx). At this point we have obtained:

• A decomposition of U J \X(I, w F ) into some locally closed L J -varieties Xv
x .

• A quasi-isomorphism RΓc(X
v
x ,Λ) � RΓc(Z

v
x ,Λ)[2 dim U J ∩ xU] (obtained as in (2.2)).

• An LI -equivariant morphism Zv
x −→ XL J (Kx,v F ) with fiber isomorphic to (xPI w F PI

F x−1 v−1)∩ U J .

Therefore, if we want to express the cohomology of U J \X(I, w F ) in terms of the different varieties
XL J (Kx, v F ) that can appear we need to refine the description of the latter morphism. This will be
done in Section 2.3 after discussing the case of parabolic varieties associated to elements of the Braid
monoid.
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Remark 2.5. When v F Kx = Kx , we can actually be more precise: l−1 F l can be written uniquely as
l1 v̇ F l2 with l1 ∈ (L J ∩ UKx ) ∩ v F (L J ∩ U−

Kx
) and l2 ∈ L J ∩ PKx . Then for z ∈ (xPI w F PI

F x−1 v−1) ∩ U J

we have (l1zv̇ F l2, l) ∈ Zv
x and all the elements are obtained that way. In other words, we have the

following isomorphism of varieties

Zv
x � [(

xPI w F PI
F x−1 v−1) ∩ U J

] × {
l ∈ L J

∣∣ l−1 F l ∈ L J ∩ PKx v F (L J ∩ PKx)
}
.

Through this isomorphism the group L J (resp. L J ∩ PKx ) acts on l ∈ L J by left (resp. right) multipli-
cation. However, it is more difficult to describe the action of L J ∩ PKx on (xPI w F PI

F x−1 v−1) ∩ U J .
In particular, Zv

x is in general not isomorphic to [(xPI w F PI
F x−1 v−1) ∩ U J ] × XL J (Kx, v F ). We shall

nevertheless give many examples where the cohomology of these two varieties coincide.

2.2. Elements of the Braid monoid

By [9, Section 6] any element I
b−→ F I can be decomposed as I = I1

w1−→ I2
w2−→ · · · wr−→ Ir+1 = F I

where wi ∈ W. Using this property one can easily generalise the previous constructions to X(I,bF ):
to each tuple x = (x1, . . . , xr) with xi a J -reduced-Ii element of W one can associate varieties Xx and
Zx such that

Zx =
{

(p1, . . . , pr) ∈ (P J )
r
∣∣∣ p−1

i pi+1 ∈ xiPIi wiPIi+1 x−1
i+1

p−1
r

F p1 ∈ xrPIr wr
F PI1

F x−1
1

}

and

RΓc(Xx,Λ) � RΓc

(
Zx

/∏
L J ∩ PKxi

,Λ
)[

2
∑

dim U J ∩ xi U
]

with Kxi = J ∩ xi ΦIi .
By looking at the intersections of xiPIi wiPIi+1 x−1

i+1 with double cosets of the form PKxi
viPKxi+1

one
can decompose U J \Zx into locally closed subvarieties Zv

x together with L J -equivariant maps

Zv
x −→

{
(l1, . . . , lr) ∈ (L J )

r
∣∣∣ l−1

i li+1 ∈ (L J ∩ PKxi
)vi(L J ∩ PKxi+1

)

l−1
r

F l1 ∈ (L J ∩ PKxr
)vr

F (L J ∩ PKx1
)

}
(2.6)

with fibers isomorphic to

U J ∩ (
xrPIr wr

F PI1
F x−1

1 v−1
r

) ×
r−1∏
i=1

U J ∩ (
xiPIi wiPIi+1 x−1

i+1 v−1
i

)
.

In the case where vi Kxi+1 = Kxi and vr F Kx1 = Kxr , the quotient by
∏

L J ∩ PKxi
of the vari-

ety on the right-hand side of (2.6) can be identified with the parabolic Deligne–Lusztig variety
XL J (Kx1 ,v1 · · ·vr F ).

2.3. A further decomposition

We now study the intersection (xPI w F PI
F x−1 v−1) ∩ U J in order to obtain information on the

fibration Zv
x −→ XL J (Kx, v F ) defined at the end of Section 2.1. This will be achieved using the Curtis–

Deodhar decomposition.
Let x, w, w ′ be elements of W , and fix a reduced expression w = s1 · · · sr of w . Recall that a

subexpression of w (with respect to the decomposition w = s1 · · · sr ) is an element of Γ = {1, s1} ×
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· · · × {1, sr}. Such a subexpression γ = (γ1, . . . , γr) is said to be x-distinguished if γi = si whenever
xγ1 · · ·γi−1si > xγ1 · · ·γi−1. The main result in [7] and [5] gives a decomposition of the double Schu-
bert cell BwB ∩ (B)x w ′B ⊂ G/B in terms of certain x-distinguished subexpressions of w , as well as an
explicit parametrisation of each piece (see [12, Section 2.2] for more details).

Theorem 2.7 (Deodhar, Curtis). Let w, w ′, x be elements of the Weyl group and w = s1 · · · sr be a reduced
expression of w. There exists a decomposition of BwB ∩ (B)x w ′B into locally closed subvarieties

BwB ∩ (B)x w ′B =
∐

γ ∈Γw′
Ωγ w ′B

where γ runs over the set Γw ′ of subexpression of w whose product is w ′ . Furthermore, the decomposition has
the following properties:

(i) Each cell Ωγ w ′B is stable by multiplication by U ∩ Ux;
(ii) Ωγ ⊂ Ux and the restriction of the map Bx −→ (B)x w ′B/B to Ωγ is injective;

(iii) Ωγ is non-empty if and only if γ is x-distinguished;
(iv) If Ωγ is non-empty, then it is isomorphic to Anγ × (Gm)mγ where

nγ = #{i = 1, . . . , r | xγ1 · · ·γi−1si > xγ1 · · ·γi−1}

and

mγ = #{i = 1, . . . , r | γi = 1}.

Remark 2.8. For convenience, we will always denote by Gm the spectrum of the ring F[t, t−1] al-
though we will not necessarily use its group structure.

In order to use this result, we first write the fiber of (2.3) as

(
xPI w F PI

F x−1 v−1) ∩ U J = (
xBW I wBF x−1 v−1) ∩ U J .

Let y ∈ W I , and let γ be an x-distinguished subexpression of yw whose product is w ′ = x−1 v F x.
Then the map (z, z′) ∈ Ωγ × Ux ∩ w ′

U 
−→ zz′w ′ ∈ BwB ∩ (U)x w ′ is well-defined and it is injective by
Theorem 2.7(ii). By taking the union over such subexpressions, we obtain the following decomposition

U ∩ xBywB
(

v F x
)−1 =

⊔
γ ∈Γx−1 v F x

(xΩγ

) · (U ∩ v F xU
)
.

Note that we do not need to fix a reduced expression of y: indeed, since x is reduced-I , the subex-
pression γ will start with any reduced expression of y.

Furthermore, by Theorem 2.7(i), each coset Ωγ x−1 v F xB is stable by left multiplication by U ∩ Ux ,
and therefore all the varieties occurring in the previous decomposition are stable by the left action of
xU ∩ U. Since x is J -reduced, they are in particular stable by the action of L J ∩ U. Taking the image
by the projection 
 J : U −→ U J associated to the decomposition U = (U ∩ L J )U J we obtain

U J ∩ xBywB
(

v F x
)−1 =

⊔
γ ∈Γ −1 F


 J
(xΩγ · (U ∩ v F xU

)) =
⊔

γ ∈Γ −1 F

Υγ . (2.9)
x v x x v x
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In many interesting examples, the intersection (xPI w F PI
F x−1 v−1)∩ U J will always consist of at most

one cell Υγ , which will be isomorphic to (Gm)r ×As for some integers r, s. Note that in this case, the
cell is automatically stable by the action of (L J ∩ PKx) ∩ v F (L J ∩ PKx) by conjugation. If in addition
one can find an equivariant embedding Υγ ⊂ Ar+s , then the cohomology of U J \Xx can be obtained
by shifts of the cohomology of XL J (Kx, v F ). We shall not make this claim more precise as we will
encounter only the cases where r = 0 or 1.

Remark 2.10. The decomposition (2.9) gives a combinatorial test for the emptiness of a piece Xx: it is
non-empty if and only if there exist y ∈ W I and an x-distinguished subexpression γ of yw such that
the product of the elements of γ lies in x−1W J

F x.

2.4. Examples

In this section we give examples for which the previous method is effective. Some of them will
nevertheless suggest that one should rather work with the variety X̃(I, ẇ F ) instead of X(I, w F ).

2.4.1. Fibers are affine spaces
Let J be an F -stable subset of S . Assume that there exists a J -reduced-I element x such that

xw F x−1 ∈ W J and let v be the corresponding W Kx -reduced element. Then we have U J \Zx = Zv
x and

the map

Zv
x � XL J (Kx, v F )

has affine fibers. In particular, the cohomology of the varieties U J \Xx and XL J (Kx, v F ) differs only by
a shift.

Let v ′ ∈ W J . We start by showing that the intersection xPI w F PI
F x−1 ∩ U J v ′ is empty if v ′ and v

are not in the same W Kx -coset of W J . Since w F normalises I , the element xw F x−1 F normalises W Kx

and so does v F . Thus we can write

xPI w F PI
F x−1 ∩ U J v ′ = xBw F W I B

F x−1 ∩ U J v ′ = (xB
)

v F xF W I B
F x−1 ∩ U J v ′.

By multiplying by F xB, we observe that if this set is non-empty, then one of the following double
Bruhat cells

(xB
)

v F xF W I B ∩ Bv ′ F xB

is also non-empty. By Theorem 2.7, this means that there exists an x−1-distinguished subexpression γ
of v ′ F x such that the product of the elements of γ lies in the coset v F xF W I . Since x−1 is reduced- J ,
this subexpression has to start with a reduced decomposition of v ′ . The product of its elements is
therefore of the form v ′ F x′ with x′ � x for the Bruhat order. But then v ′ F x′ ∈ v F xF W I so that x′ is in
the double coset W J xW I . This forces x = x′ since x is the minimal element of this coset. Now, since
W Kx = W J ∩ (W I )

x , the condition v ′ F x ∈ v F xF W I implies v ′ ∈ v F W Kx which, with v F -normalising
W Kx is equivalent to v ′ ∈ W Kx v .

Now, if we assume that v ′ is Kx-reduced, we must have v ′ = v . In this case, the intersection
xPI w F PI

F x−1 ∩ U J v is just xBx−1 v F xBF x−1 ∩ U J v . The Curtis–Deodhar cell Ωγ associated to the
unique x-distinguished subexpression of x−1 v F x giving x−1 v F x is contained in U∩Ux . Since the prod-
uct xΩγ · (U ∩ v F xU) is stable by left multiplication by U ∩ xU, we deduce that

xBx−1 v F xBF x−1 v−1 ∩ U = (
U ∩ xU

) · (U ∩ v F xU
)
.
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Finally, we can write U ∩ v F xU = (U ∩ L J ∩ v F xU) · (U J ∩ v F xU) and use the fact that U ∩ L J ⊂ U ∩ xU to
obtain

xPI w F PI
F x−1 v−1 ∩ U J = (

U J ∩ xU
) · (U J ∩ v F xU

)
.

This proves that the fibers of U J \Zx/(L J ∩ PKx ) � XL J (Kx, v F ) are affine spaces of same dimension.

Remark 2.11. Note that the previous statement remains true if we replace F x by x′ with �(x′) = �(x).
More precisely, if I w = I ′ and xwx′−1 = v ∈ W J is such that (Kx)

v = Kx′ then xPI wPI ′ x′−1 v ′−1 ∩ U J is
empty unless v ′ and v are in the same W Kx -coset and in that case

xPI wPI ′ x
′−1 v−1 ∩ U J = (

U J ∩ xU
) · (U J ∩ vx′

U
)
.

The condition �(x) = �(x′) is essential, as several W Kx -cosets of W J might be involved otherwise.

2.4.2. Coxeter elements for split groups
Let {t1, . . . , tn} be the set of simple reflections associated to the basis � of the root system. Let

w = t1 · · · tn be a Coxeter element. We claim that all the pieces of X(w) but one are empty: by
Remark 2.10 applied to J = ∅, the quotient U\Xx is non-empty if and only if there exists an x-
distinguished subexpression of w whose product is trivial. But the only subexpression of w whose
product is trivial is (1,1, . . . ,1), and it is x-distinguished for x = w0 only.

Now let J be a subset of S and let x = w J w0 be the element of minimal length in W J w0. Let v ∈
W J be such that there exists an x-distinguished subexpression of w whose product is vx ∈ (W J )

w0 .
Denote by J̃ = {t j1 , . . . , t jm } the conjugate of J by w0. Then γi = ti forces ti ∈ J̃ ; furthermore, since γ
is x-distinguished then γi = 1 forces ti /∈ J̃ . We deduce that such a subexpression is unique and that
v = x(t j1 · · · t jm ) is a Coxeter element of W J .

For this subexpression, the cell Ωγ is the ordered product of the groups Ui = uγ1···γi(−αi)(?) where
? = F is γi �= 1 and ? = F× otherwise. Note that when i < jb and ti /∈ J̃ , the groups Ui and U jb

commute. Indeed, a positive combination of γ1 · · ·γi(−αi) = t j1 · · · t ja (−αi) and γ1 · · ·γ jb (−α jb ) =
t j1 · · · t jb−1 (αb) is never a root since a positive combination of −αi ∈ S � J̃ and t ja+1 · · · t jb−1 (αb) ∈ Φ+

J̃
never is. Furthermore, U ∩ vxU = L J ∩ U ∩ v U and it is not difficult to show that this group commutes
with the groups xUi whenever ti /∈ J̃ . As a consequence

Υγ = 
 J
(xΩ · U ∩ vxU

) =
∏

ti∈S� J̃

ui
(
F×)

.

We deduce that the morphism U J \Zx = U J \X(w) −→ XL J (v) has fibers isomorphic to (Gm)|S|−| J | .
In [15], Lusztig actually constructs an isomorphism between U J \X(w) and XL J (v) × (Gm)|S|−| J | , but
which is not compatible with the action of L J . However, he proves that the cohomology groups of
these two varieties are isomorphic as L J -modules [15, Corollary 2.10].

2.4.3. n-th roots of π for groups of type An

Assume that (G, F ) is a split group of type An . We denote by t1, . . . , tn the simple reflections of
W with the convention that there exists an isomorphism W � Sn+1 sending the reflection ti to the
transposition (i, i + 1). Let J = {t1, . . . , tn−1} and w = t1t2 · · · tn−1tntn−1 be an n-regular element. The
J -reduced elements are of the form xi = tntn−1 · · · ti for i = 1, . . . ,n + 1. If i �= 1,n, then xi < xit1 <

xit1t2 < · · · < xi w and therefore the only xi-distinguished subexpression of w is (t1, t2, . . . , tn, tn−1).
Since xi w /∈ W J , we deduce from Remark 2.10 that the pieces Xxi are empty.

If i = n, then there are two xn-distinguished subexpressions of w , namely (t1, t2, . . . , tn, tn−1) and
(t1, t2, . . . , tn,1). But only one will give an element of W J , since xn (t1 · · · tn) /∈ W J whereas xn w =
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t1t2 · · · tn−1. By Example 2.4.1, the cohomology of U\Xxn is then, up to a shift, isomorphic to the
cohomology of the Coxeter variety XL J (t1 · · · tn−1).

If i = 1 then x1 = w J w0. In that case there are many distinguished subexpressions of w . However,
only one has a product in (W J )

x = W {t2,...,tn} . Indeed, that condition forces γ1 to be 1 and therefore
γ = (1, t2, . . . , tn, tn−1) is the only x1-distinguished subexpression of w whose product lies in (W J )

x .
For that subexpression, the Curtis–Deodhar cell x(Ωγ ) is the product of uα1+···+αn (Gm) with some
affine subspace of L J ∩ U. Since α1 + · · · + αn is the longest root, the group L J ∩ U acts trivially on
Uα1+···+αn and we obtain Υγ = uα1+···+αn (Gm) � Gm .

As in the Coxeter case, the varieties U J \Xx1 and XL J (t1t2 · · · tn−2tn−1tn−2) × Gm can be shown to
have the same cohomology (see [8, Proposition 8.17]) but are non-isomorphic as L J -varieties. How-
ever, there is a good evidence that such an isomorphism should hold for some Galois coverings of X
and Gm . We shall make this statement precise in the next section (see Section 3.3 for an application
to this example).

3. Lifting the decomposition to ˜X(I, ẇ F )

Recall that one can associate to I
b−→ F I a variety X̃(I,bF ) together with a Galois covering

πb : X̃(I,bF ) −→ X(I,bF ) with Galois group Lt(b)F
I . Using this map one can pullback the previous con-

structions. More precisely, one can define the varieties X̃x = π−1
b (Xx) in order to obtain a partition of

X̃(I,bF ) into locally closed P J × Lt(b)F
I -subvarieties. Furthermore, we can lift the definition of Zx by

considering the following cartesian diagram:

Z̃x

/Lt(b)F
I

Zx

X̃x

/Lt(b)F
I

Xx

(3.1)

For example, when b = w ∈ W, we can identify PI/UI with LI to construct Z̃x explicitly by

Z̃x = {
(p,m) ∈ P J × xLI

∣∣ (pm)−1 F (pm) ∈ ẋ
(
UI ẇ F UI

)F ẋ−1}
where the action of L J ∩ xPI is given by (p,m) · l = (pl, l−1m) with the convention that L J ∩ xUI acts
trivially on m. With this description, the map Z̃x −→ X̃x is then given by (p,m) 
−→ pmẋUI . Unlike
the case of Xx , it is unclear whether there always exists a precise relation between quotients of X̃x
and smaller parabolic Deligne–Lusztig varieties. We shall therefore restrict ourselves to the particular
cases that we have already encountered in Section 2.4.

Case 1. If v = xw F x−1 lies in the parabolic subgroup W J then, as in Example 2.4.1, the cohomology
of U J \X̃x is related to the cohomology of X̃L J (Kx, v̇ F ). In this situation Lv̇ F

Kx
� (LI ∩ Lx

J )
ẇ F

is a split Levi subgroup of Lẇ F
I so that one can modify X̃L J (Kx, v̇ F ) in order to obtain an

action of Lẇ F
I by Harish-Chandra restriction.

Case 2. If w = sw ′ and v = xw ′ F x−1 lies in W J , one can relate the varieties U J \X̃x and X̃L J (Kx, v̇ F )

(under some extra conditions on s and x). The presence of s is reflected by a Galois covering
of Gm which explains the geometry of the fiber in Examples 2.4.2 and 2.4.3. This covering
carries actions of Lw F

I and Lw ′ F
I giving rise to a natural isomorphism between large quotient

of these groups as in [1] in the case of tori.

It turns out that this two rather specific cases are sufficient to study a large number of interesting
Deligne–Lusztig varieties, namely the ones that are associated in [3] and [9] to principal Φd-blocks
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when 2d is strictly bigger than the Coxeter number. This will be treated in subsequent papers (see [14]
and [13]).

3.1. Case 1 – Fibers are affine spaces

We start under the assumptions of Example 2.4.1. We assume that x and w satisfy xw F x−1 ∈ W J .
For simplicity, we shall also assume that this element is W Kx -reduced, as it will always be the case
in the examples.

Proposition 3.2. Assume that v = xw F x−1 is a W Kx -reduced element of W J . Let e = dim(Ux
J ∩ w U ∩ U−).

Then there exists a group isomorphism Lẇ F
I � (xLI )

v̇ F such that we have the following isomorphism in
Db(ΛL J × (Lẇ F

I � 〈F 〉)-Mod):

RΓc(U J \X̃x,Λ)[2e](−e) � RΓc
(̃
XL J (Kx, v̇ F ),Λ

) L⊗ΛP J ∩(xLI )
v̇ F ΛLẇ F

I .

Proof. Since v = xw F x−1, one can use Lang’s Theorem to find an element n ∈ NG(T) such that
v̇ = nẇ F n−1. Then the conjugation by n induces an isomorphism Lẇ F

I � (xLI )
v̇ F . Moreover, the map

(p,m) ∈ Z̃x 
−→ (p,mẋn−1) induces an isomorphism

Z̃x � {
(p,m) ∈ P J × xLI

∣∣ (pm)−1 F (pm) ∈ n
(
UI ẇ F UI

)F n−1}
so that we can work with n instead of ẋ. We shall relate the cohomology of this variety to
the cohomology of X̃L J (K , v̇ F ). For that purpose, we shall construct a morphism Ψ : Z̃x −→
X̃L J (K , v̇ F ) ×P J ∩(xLI )

v̇ F Lẇ F
I which will factor through Z̃x −→ U J \̃Zx/L J ∩ xPI and then study its fibers.

Let (p,m) ∈ Z̃x . Since p−1 F p lies in xPI w F PI
F x−1 one can proceed as in Example 2.4.1 to show

that it also lies in the double coset PKx v F PKx . If we write p = ul ∈ U J L J , we deduce that l−1 F l ∈ (L J ∩
xPI )v F (L J ∩ xPI ). Therefore, there exists l′ ∈ LK = L J ∩ xLI , unique up to multiplication on the right by
Lv̇ F

K such that (ll′)−1 F (ll′) ∈ (L J ∩xUI )v̇ F (L J ∩xUI ). As a consequence, any element of Z̃x/L J ∩xPI can be
written [p;m] where p = ul is such that l yields an element of X̃LI (Kx, v̇ F ). For such a representative,
we have

p−1 F p = l−1(
u−1 F u

)(
l−1 F l

) ∈ (
L J ∩ xUI

) · U J v̇ F (
L J ∩ xUI

)
.

We can actually be more precise on the contribution of U J in this decomposition. Indeed, we have

seen in Example 2.4.1 that xPI w F PI
F x−1 v−1 ∩ U J = (U J ∩ xU) · (U J ∩ v F xU) and hence

p−1 F p ∈ (
L J ∩ xUI

) · (U J ∩ xU
) · (U J ∩ v F xU

)
v̇ F (

L J ∩ xUI
)
.

Now, the condition (p,m) ∈ Z̃x can be written p−1 F p ∈ mv̇ F m−1(xUI )v̇ F (xUI ) and we deduce that

mv̇ F m−1 ∈ xUI · (U J ∩ xU
) · (U J ∩ v F xU

) · v F xF UI .

We want to show that mv̇ F m−1 ∈ P J . For that purpose, we can decompose the intersection U J ∩
v F xU into (U J ∩ v F xF (LI ∩ U)) · (U J ∩ v F xF UI ) and we observe that U J ∩ v F xF (LI ∩ U) ⊂ xU. Indeed,
x−1 v F (x) = w and by assumption w F stabilises LI ∩ U. We deduce that

mv̇ F m−1 ∈ xUI · (U J ∩ xU
) · v F xF UI .
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Note that xUI · (U J ∩ xU) is contained in xPI . In particular, the contribution of v F xF UI in the decom-

position of mv̇ F m−1 should also lie in xPI . Since w F normalises LI , the intersection v F xF UI ∩ xPI is
contained in xUI . Finally, since LI normalises UI we deduce that mv̇ F m−1 ∈ U J ∩ xLI .

Therefore there exists u′ ∈ U J ∩ xLI , unique up to multiplication by U J ∩ (xLI )
v̇ F on the right, such

that u′−1m ∈ (xLI )
v̇ F . To summarise, we have shown that to any pair (p,m) ∈ Z̃x one can associate a

pair (p′,m′) such that

• (p,m) and (p′,m′) are in the same P J ∩ xLI -orbit, that is there exists q ∈ P J ∩ xLI such that
p′ = pq and m′ = q−1 p;

• the image of p′ by the composition P J −→ P J /U J � L J −→ L J /(L J ∩ xUI ) lies in X̃L J (K , v̇ F );
• m′ ∈ xLI is invariant by v̇ F .

Moreover, if (p′′,m′′) is any other pair satisfying the same conditions, then there exists q′ ∈ P J ∩
(xLI )

v̇ F such that (p′′,m′′) = (p′q′,q′−1m′) which means that (p′,m′) is well-defined in P J ×P J ∩(xLI )
v̇ F

(xL J )
v̇ F . Let us define now the morphism Ψ by

Ψ : (p,m) ∈ Z̃x 
−→ [
π J

(
p′)(L J ∩ xUI

);m′] ∈ X̃(K , v̇ F ) ×P J ∩(xLI )
v̇ F

(xL J
)v̇ F

where the action of P J ∩ (xLI )
v̇ F on X̃L J (Kx, v̇ F ) is just the inflation of the action of Lv̇ F

Kx
= L J ∩ (xLI )

v̇ F .

It is clearly surjective and equivariant for the actions of P J on the left and (xLI )
v̇ F on the right.

Furthermore, if (p1,m1) and (p2,m2) are in the same orbit under L J ∩ xPI , then (p′
1,m′

1) and (p′
2,m′

2)

are in the same orbit under P J ∩ xPI . Let q ∈ P J ∩ xPI be such that (p′
2,m′

2) = (p′
1q,q−1m′

1) and write

q = ul ∈ (P J ∩ xUI ) · (P J ∩ xLI ). Then l = m′
1m′

2
−1 ∈ (xLI )

v̇ F so that Ψ (p1,m1) = Ψ (p2,m2). In other
words, Ψ induces a morphism

Z̃x/L J ∩ xPI −→ X̃L J (K , v̇ F ) ×P J ∩(xLI )
v̇ F

(xL J
)v̇ F

which, in turn, yields a surjective equivariant morphism

U J \̃Zx/L J ∩ xPI −→ X̃L J (K , v̇ F ) ×P J ∩(xLI )
v̇ F

(xL J
)v̇ F

.

To conclude, it remains to study the fibers of this morphism. Since (xL J )
v̇ F acts freely on both

varieties, we can rather look at the fibers of the map induced on the quotient varieties. Using the dia-
gram (3.1), we can check that the latter coincides with the map Zv

x = U J \Zx/L J ∩ xPI −→ XL J (Kx, v F )

which has affine fibers of dimension r + dim U J ∩ xU (see Example 2.4.1). �
3.2. Case 2 – Minimal degenerations

In this section we address the problem of computing the cohomology of the piece X̃x of X̃(I, ẇ F )

when xw F x−1 is close to be an element of W J . Namely, we shall consider the following situation:
w = sw ′ > w ′ where s ∈ S and v = xw F x−1 ∈ W J . Under some assumption on s and w ′ we will prove
that the cohomology of U J \Xx and Gm × XL J (Kx, v F ) coincides. As we have seen in the examples,
these two varieties are non-isomorphic in general. However, at the level of the varieties X̃ we shall
construct a Galois covering G̃m −→ Gm and a quasi-vector bundle

U J \X̃x � X̃(Kx, v̇ F ) ×P J ∩(xLI )
v̇ F G̃m

such that G̃m/Lẇ F
I � Gm . As a byproduct, we will relate the cohomology of U J \X̃x and Gm × X̃(Kx, v̇ F )

with coefficients in any unipotent local system.
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Throughout this section, we will assume that [G,G] is simply connected. This is not a strong as-
sumption since it has no effect on the unipotent part of the cohomology of a Deligne–Lusztig variety
(see for example [1, Section 5.3]).

3.2.1. Galois coverings of tori

Let I
b−→ F I, decomposed as I = I1

w1−→ I2
w2−→ · · · wr−→ Ir+1 = F I. Let us consider an element c ∈ B+

obtained by minimal degenerations of the w ′
i s: we assume that c = z1 · · · zr where zi = γi wi with

γi ∈ S ∪ {1} and �(γi wi) � �(w). We will also assume that each γi commutes with Ii so that cF
normalises I. Following [1, Section 4], we set αb,c,i = α if γi = sα or αb,c,i = 0 if γi = 1 and we define
the following algebraic variety

SI,b,c =
{

(l1, . . . , lr) ∈ LI1 × · · · × LIr

∣∣∣ l−1
i (ẇi li+1) ∈ Imα∨

b,c,i if 1 � i � r − 1

l−1
r (ẇr F l1) ∈ Imα∨

b,c,r

}
.

Note that the assumption on γi ensures that the torus Imα∨
b,c,i is central in LIi , and therefore SI,b,c is

an algebraic group.
Recall that Lt(c)F

I can be identified with L′cF ′
where L = LI1 × · · · × LIr and cF ′ : (l1, . . . , lr) 
−→

(ż1 l2, . . . , żr−1 lr, żr F l1). The condition l−1
i (ẇi li+1) ∈ Imα∨

b,c,i is equivalent to l−1
i (żi li+1) ∈ Imα∨

b,c,i so that
we can replace wi by zi in the definition of SI,b,c . In particular, the variety SI,b,c defines two Galois
coverings of the torus

∏
Imα∨

b,c,i , namely πb : l 
−→ l−1bF ′
l and π c : l 
−→ (cF ′

l)l−1, with respective

Galois groups Lt(b)F
I and Lt(c)F

I . We will denote by d = �(b) − �(c) the dimension of this torus. Note

that the induced action of Lt(b)F
I and Lt(c)F

I on SI,b,c is explicitly given by

(
m,m′) · (l1, . . . , lr) = (

ml1m′−1,
(
mẇ1

)
l2

(
m′−1)ż1

, . . . ,
(
mẇ1···ẇr−1

)
lr
(
m′−1)ż1···żr−1

)
for m ∈ Lt(b)F

I and m′ ∈ Lt(c)F
I .

Let S◦
I,b,c be the identity component of SI,b,c . Since S∅,b,c = Tr ∩ SI,b,c is a d-dimensional closed

subvariety of SI,b,c (it is also a Galois covering of
∏

Imα∨
b,c,i) it must contain the identity component

S◦
I,b,c . This forces the stabiliser N (resp. N ′) of S◦

I,b,c in Lt(b)F
I (resp. Lt(c)F

I ) to be contained in T. In
particular, we can readily extend the results in [1, Section 4.4.3] to obtain an explicit description of N
and N ′ in terms of sublattices of the group of cocharacters of T. For example one can check that W I
acts trivially on these lattices so that N and N ′ are normal subgroups of LI .

It turns out that the covering SI,b,c will naturally appear in the quotient of the parabolic Deligne–

Lusztig varieties that we will consider. The action of Lt(b)F
I and Lt(c)F

I yields canonical isomorphisms

Lt(b)F
I /N � Lt(c)F

I /N ′ � SI,b,c/S◦
I,b,c . Let us write SI,b,c = Lt(b)F

I ×N S◦
I,b,c . The quotient of this variety by

the action of N (by left multiplication) is given by

N\SI,b,c � Lt(b)F
I /N ×

(∏
Imα∨

b,c,i

)
� SI,b,c/S◦

I,b,c ×
(∏

Imα∨
b,c,i

)
.

On this quotient, Lt(b)F
I /N acts on the first factor only but the action of Lt(c)F

I is more compli-

cated: an element m ∈ Lt(c)F
I acts on

∏
Imα∨

b,c,i by multiplication by (m(γ1m−1), (mz1 )γ2 ((m−1)z1 ), . . . ,

(mz1···zr−1 )γr ((m−1)z1···zr−1 )). This action can be extended to the connected group LI . Consequently, if
the order of Lt(c)F

I is invertible in Λ, then the cohomology of N\SI,b,c can be represented by a complex
with a trivial action of N ′ and we have

RΓc(N\SI,b,c,Λ) � RΓc
(
N\SI,b,c/N ′,Λ

) � ΛSI,b,c/S◦
I,b,c

L⊗ΛRΓc
(
(Gm)d,Λ

)
(3.3)

in Db(ΛLt(b)F
I /N × Lt(c)F

I /N ′-mod).
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3.2.2. The model w = sw ′
We start with the case r = 1, that is when b = w ∈ W. Let x be a J -reduced-I element of W and

s ∈ S be such that w ′ = sw < w and v = xsw F x−1 ∈ W J . Recall from the previous section that if s acts
trivially on ΦI , then there exists normal subgroups N of Lẇ F

I and N ′ of Lẇ ′ F
I together with a canonical

isomorphism Lẇ F
I /N � Lẇ ′ F

I /N ′ . Using these small finite groups one can relate the cohomology of
U J \X̃x to the cohomology of X̃L J (Kx, v̇ F ):

Proposition 3.4. Let w be an I-reduced element of W such that w F I = I . Assume that w can be decomposed
into w = sw ′ such that

(i) v = xw ′ F x−1 ∈ W J with �(v) = �(w ′),
(ii) s ∈ S acts trivially on ΦI ,

(iii) x(W I s) ∩ W J = 1.

Then there exists a group isomorphism Lẇ F
I /N � Lẇ ′ F

I /N ′ such that, if the order of Lẇ ′ F
I is invertible in Λ, we

have

RΓc(U J \X̃x/N,Λ) � RΓc
(
Gm × X̃L J (Kx, v̇ F ),Λ

) L⊗Λ(P J ∩xLI )
v̇ F ΛLẇ ′ F

I /N ′

in Db(ΛL J × (Lẇ F
I /N � 〈F 〉)-mod).

Proof. Let v = xw ′ F x−1 ∈ W J and let n be a representative of x in NG(T) such that v̇ = nẇ ′ F n−1. As
in the proof of Proposition 3.2, we shall work with n instead of ẋ and identify the variety Z̃x with

{
(p,m) ∈ P J × xLI

∣∣ (pm)−1 F (pm) ∈ n
(
UI ẇ F UI

)F n−1}.
In order to compute the quotient by U J , we need a precise condition on u ∈ U J , l ∈ L J and m for
(ul,m) to belong to this variety. We start by proving the following:

Lemma 3.5. Under the assumptions of Proposition 3.4, if (p,m) belongs to Z̃x then mv̇ F m−1 lies in P J .

Proof. Since sw ′ is I-reduced, s /∈ I and UI ṡ ⊂ Uαs ṡUI . Therefore we can write

UI ṡẇ ′ F UI ⊂ Uαs ṡUI ẇ ′ F UI .

Note that this inclusion is actually an equality: indeed, w ′−1(αs) ∈ Φ+ since sw ′ > w ′ and w ′−1(αs) /∈
F Φ+

I otherwise −αs = sw ′(w ′−1(αs)) would be in Φ+
I by assumption on sw ′ .

The double coset UI ẇ ′ F UI can also be simplified: for a ∈ W we denote N(a) = {α ∈ Φ+ | a−1(α) ∈
Φ−}. If �(ab) = �(a) + �(b) then N(ab) = N(a) � aN(b). Using assumption (i) we can apply this to
xw ′ = v F x in order to obtain

xN
(

w ′) = N
(
xw ′)

� N(x) = (
N(v) � vN

(F x
))

� N(x).

Since v ∈ W J and x is J -reduced, the sets N(v) and N(x) are disjoint. Moreover, N(x) and N(F x) have
the same number of elements and hence xN(w ′) = N(v). This proves that U∩ w ′

U− = (U∩ v U−)x ⊂ Lx
J .

Since w ′ F (like w F by assumption (ii)) normalises I we deduce that

UI ẇ ′ F UI = (
UI ∩ Lx

J

)
ẇ ′ F ((

UI ∩ Lx
J

) · (UI ∩ (
U−

J

)x) · (UI ∩ Ux
J

))
. (3.6)
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Now let p ∈ P J be an element of mnUI ṡẇ ′ F UI
F (mn)−1. There exists ls ∈ Uαs ṡ such that p ∈

mnlsUI ẇ ′ F UI
F (mn)−1. Since LI normalises UI , we have p ∈ (mnls

v̇ F m−1)nUI ẇ ′ F UI
F n−1. Now, by (3.6),

the class nUI ẇ ′ F UI
F n−1 is contained in P−

J · P J and therefore mnls
v̇ F m−1 ∈ P J · P−

J . We claim that this

forces ls /∈ Tṡ. Otherwise x(LI sLI ) = x(LI s) would have a non-trivial intersection with P J · P−
J , which is

impossible by the Bruhat decomposition since x(W I s) and W J are disjoint.
Let Ts be the image of α∨

s . By a simple calculation in Gs = 〈Uαs ,U−αs 〉, we deduce that ls ∈
U−αs TsUαs . Since s acts trivially on ΦI , the group LI normalises Uαs and Ts = Imα∨

s . Moreover,
xUαs ⊂ U−

J and therefore mv̇ F m−1 ∈ P J · P−
J . If we decompose LI into (BI ,B−

I )-orbits, we have, as
x is reduced-I

x(LI ) ∩ (
P J · P−

J

) =
∐

v ′∈W Kx

xBI v ′xB−
I = (xLI ∩ P J

) · (xLI ∩ U−
J

)
.

We want to prove that the contribution of U−
J on mv̇ F m−1 is trivial. Write mv̇ F m−1 = m′m′′ with

m′ ∈ xLI ∩ P J and m′′ ∈ xLI ∩ U−
J . Using (3.6) and the fact that ls ∈ Uαs TsU−αs , we see that there

exists l′ ∈ (xUI ∩ L J )v̇ F (xUI ∩ L J ) such that p ∈ x(U−αs Ts)m′m′′Ux(αs)l
′ F ((xUI ∩ U−

J ) · (xUI ∩ U J )). In

this decomposition, x(U−αs Ts), m′ , l′ and F (xUI ∩ U J ) lie in P J , whereas m′′ , Ux(αs) and l′ F (xUI ∩ U J )

lie in U−
J . Since P J ∩ U−

J is trivial, we deduce that m′′ ∈ l′ F (xUI ∩ U−
J ) · Ux(αs) . Finally, since xUI ∩ L J

normalises xPI ∩ U−
J and both m′′ and Ux(αs) are contained in this group, we can conclude if we can

show that (xPI ∩ U−
J ) ∩ v F (xUI ∩ U−

J ) ⊂ xUI . But xPI ∩ v F (xUI ) = x(PI ∩ w ′ F UI ) = x(UI ∩ w ′ F UI ) since
w ′ F normalises LI . �
Lemma 3.7. Under the assumptions of Proposition 3.4, let m ∈ xLI and l ∈ (xUI ∩ L J )v̇ F (xUI ∩ L J ). For
u ∈ U J , the element ul lies in mnUI ṡẇ F UI

F (mn)−1 if and only if there exist λ ∈ F× , m1 ∈ xLI ∩ U J and
u1 ∈ F (xUI ∩ U J ) such that

• mv̇ F m−1 = m1 · nα∨
s (λ),

• u = mnu−αs (λ) · m1 · lu1 .

Proof. We have already seen in the course of the proof of the previous lemma (see (3.6)) that ul can
be written ul = (mnls)(mv̇ F m−1)l′u2u1 with ls ∈ uαs (F

×)ṡ, l′ ∈ (xUI ∩ L J )v̇ F (xUI ∩ L J ), u2 ∈ F (xUI ∩ U−
J )

and u1 ∈ F (xUI ∩ U J ). By a simple calculation in Gs = 〈Uαs ,U−αs 〉 we can decompose ls into ls =
u−αs (λ)α∨

s (λ−1)uαs (−λ) where λ ∈ F× is uniquely determined (note that we have chosen specific
uα ’s in Section 1). By the previous lemma mv̇ F m−1 = m1m2 with m1 ∈ xLI ∩ U J and m2 ∈ xLI ∩ L J .
From the expression of ul we obtain

m−1
1

(mnu−αs (−λ)
)
ulu−1

1 = m−1
1 mn(α∨

s

(
λ−1)uαs (−λ)

)
m2l′l−1lu2.

Since L J (resp. LI ) normalises U J (resp. Uαs and U−αs ) and Ux(−αs) ⊂ U J , the left-hand side of this
equality lies in U J whereas the right-hand side lies in P−

J . Therefore it must be trivial and we obtain

• u = mnu−αs (λ)m1
lu1;

• m−1
1 mn(α∨

s (λ−1))m2l′l−1 = 1 and therefore l = l′ and m2 = m−1
1 mn(α∨

s (λ)) = nα∨
s (λ);

• m−1
1 mnα∨

s (λ−1)(uαs (−λ))m2lu2 = 1 and hence u2 = l−1m−1
1 mn(uαs (−λ)).

Conversely, one can readily check that if these relations are satisfied then ul ∈ mnUI ṡẇ F UI
F (mn)−1. �

As a consequence of the lemmas, we can proceed as in the proof of Proposition 3.2 to show that
any element of Z̃x is in the P J ∩ xLI -orbit of an element (p,m) = (ul,m) satisfying the following
properties:
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• l−1 F l ∈ (xUI ∩ L J )v̇ F (xUI ∩ L J ),

• mv̇ F m−1 = nα∨
s (λ),

• (u−1 F u)l = (mnu−αs (λ))(l−1 F lu1),

for some λ ∈ F× and u1 ∈ F (xUI ∩ U J ) both uniquely determined. Moreover, the elements of this form
in the class of (p,m) form a single (P J ∩ xLI )

v̇ F -orbit.
Recall from the previous section that to w and w ′ one can associate an algebraic group SI,w,w′

above Gm defined by SI,w,w′ = {m ∈ LI | m−1 ẇ F m ∈ Ts}. Using the special representatives of Z̃x/P J ∩ xLI

mentioned above, we can define the following map

Ψ : [p;m] ∈ Z̃x/P J ∩ xLI 
−→ [
l
(
L J ∩ xUI

);m−1] ∈ X̃(Kx, v̇ F ) ×P J ∩(xLI )
v̇ F

nSI,w,w′

where the action of P J ∩ (xLI )
v̇ F on X̃L J (Kx, v̇ F ) is just the inflation of the action of Lv̇ F

Kx
= L J ∩ (xLI )

v̇ F .

It is clearly surjective and equivariant for the actions of P J and n(Lẇ F
I ). The quotient by U J (which

acts trivially on X̃L J (Kx, v̇ F )) gives rise to a surjective L J × n(Lẇ F
I )-equivariant morphism

U J \̃Zx/P J ∩ xLI −→ X̃(Kx, v̇ F ) ×P J ∩(xLI )
v̇ F

nSI,w,w′ . (3.8)

Furthermore, any element [U J ull′;m] in the fiber of [l(L J ∩ xUI );m−1] is uniquely determined by an
element l′ ∈ (xUI ∩ L J ) and u−1 F u. Since the latter is determined by u1 ∈ F (xUI ∩ U J ), we deduce that
the fibers are affine spaces of dimension dim(xUI ∩ P J ). By comparing the dimensions, we obtain the
following isomorphism in Db(L J -mod-n(Lẇ F

I )):

RΓc(U J \X̃x,Λ) � RΓc
(̃
X(Kx, v̇ F ),Λ

) L⊗ΛP J ∩(xLI )
v̇ F RΓc

(nSI,w,w′ ,Λ
)
,

and we conclude using (3.3), which gives the cohomology of N\SI,w,w′ with the action of Lẇ F
I /N and

Lẇ ′ F
I /N ′ . �

Remark 3.9. In many cases we will use this lemma under the assumption that either I = ∅ or x =
w0 w J . This extra condition makes the previous proof much simpler.

Remark 3.10. When [G,G] is not simply connected, the coroot α∨
s might not be injective. In that case,

the fibers of the morphism (3.8) are not necessarily affine spaces. To obtain an analogous statement,
we need to change slightly the definition of SI,w,w′ and consider instead {(m, λ) ∈ LI ×Gm | m−1 ẇ F m =
α∨

s (λ)}.

3.2.3. The main result
More generally, one can combine Propositions 3.2 and 3.4 in order to obtain the following result

for elements in the Braid monoid:

Theorem 3.11. Let I
b−→ F I be decomposed as I = I1

w1−→ I2
w2−→ · · · wr−→ Ir+1 = F I and c = z1 · · · zr obtained

by minimal degenerations of the wi ’s. More precisely, we assume that zi = γi wi with zi � wi and γi ∈ S ∪{1}.
Let x = (x1, . . . , xr) be an r-tuple of J -reduced-Ii elements of W of same length and put xr+1 = F x1 . We
assume that

• if γi = 1 then vi = xi wi x
−1
i+1 is a Kxi -reduced element of W J ;

• if γi ∈ S then the following properties are satisfied:
(i) v j = xi zi x

−1
i+1 ∈ W J and �(vi) = �(zi),

(ii) γi acts trivially on ΦI j ,
(iii) xi (W Ii s) ∩ W J = 1.
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Let us denote by

• e = ∑
dim(Uxi

J ∩ zi U ∩ U−);
• d = #{i = 1, . . . , r | γi ∈ S} = dim SI,b,c;
• v = v1 · · ·vr ∈ B+

W J
;

• N (resp. N ′) the stabiliser of S◦
I,b,c in Lt(b)F

I (resp. Lt(c)F
I ).

Then there exists a natural isomorphism Lt(b)F
I /N � Lt(c)F

I /N ′ such that if the order of Lt(c)F
I is invertible in Λ,

the cohomology of the piece X̃x of the Deligne–Lusztig variety X̃(I,bF ) satisfies

RΓc(U J \X̃x/N,Λ)[2e](−e) � RΓc
(
(Gm)d × X̃L J (Kx1 ,vF )

) L⊗Λ(P J ∩x1 LI )
t(v)F ΛLt(c)F

I /N ′

in Db(ΛL J × (Lt(b)F
I /N � 〈F 〉)-mod).

Sketch of proof. Recall that the piece X̃x can be lifted up to a variety Z̃x defined as the set of 2r-tuples
(p,m) = (p1, . . . , pr,m1, . . . ,mr) ∈ (P J )

r × x1 LI1 × · · · × xr LIr such that

(pimi)
−1 pi+1mi+1 ∈ ẋi(UIi ẇ iUi+1)ẋ−1

i+1

and

(prmr)
−1 F (p1m1) ∈ ẋr

(
UIr ẇr

F UI1

)F ẋ−1
1 .

As in the proofs of Propositions 3.2 and 3.4 (see also Remark 2.11), we can find good representatives
in the

∏
P J ∩ xi LIi -orbit of (p,m), giving rise to a morphism

Ψ : Z̃x −→ X̃L J (Kx1 ,vF ) ×(P J ∩x1 LI )
t(v)F SI,b,c

which will factor via the quotient of Z̃x by U J and
∏

P J ∩ xi LIi into a morphism whose fibers are affine
spaces. Note that one can find n1 ∈ NG(T) such that n1t(c)F n−1

1 = t(v). The action of (x1 LI )
t(v)F on

SI,b,c is then given by the right action of Lt(c)F
I = ((x1 LI )

t(v)F )n1 on SI,b,c . We conclude using (3.3). �
Remark 3.12. By definition, any unipotent character of G appears in the cohomology of some Deligne–
Lusztig variety. If H is a normal subgroup of G contained in T , then H acts trivially on G/B and
therefore any unipotent character of G is trivial on H . This applies in particular to the subgroups N
and N ′ of Lt(b)F

I and Lt(c)F
I so that they have the same unipotent characters. Now, the group (P J )

x1 ∩
LI is a parabolic subgroup of LI , stable by t(c)F , and it has Lx1

J ∩ LI = (LKx1
)x1 as a rational Levi

complement. Therefore any unipotent character χ of Lt(c)F
I (or equivalently of Lt(b)F

I ) has a Harish-

Chandra restriction ∗RI
Kx1

χ to Lt(v)F
Kx1

(after a suitable conjugation). With this notation, we obtain

RΓc (̃Xx,Q�)
U J
χ � RΓc

(
(Gm)d × X̃L J (Kx1 ,vF ),Q�

)
∗RI

Kx1
χ
[−2e](e).

In particular, if χ is the trivial character then

RΓc(Xx,Q�)
U J � RΓc

(
(Gm)d × XL J (Kx1 ,vF ),Q�

)[−2e](e)

as expected.
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3.3. Examples

We conclude by showing how Proposition 3.4 can solve the problems encountered in Section 2.4.
As a new application, we determine the contribution of the principal series to the cohomology of a
parabolic Deligne–Lusztig variety for a group of type Bn . Many other cases will be studied in subse-
quent papers (see [14] and [13]).

3.3.1. n-th roots of π for groups of type An

Recall from Section 2.4.3 that for w = t1t2 · · · tntn−1tn one could decompose the variety X(w) into
two pieces Xxn and Xx1 with xn = tn and x1 = tn · · · t1. However, one could not directly express the co-
homology of the latter. Since x(t1 w)x−1 = t1 · · · tn−2tn−1tn−2 ∈ W J one can now apply Proposition 3.4
to obtain

RΓc(U J \Xx1 ,Q�) � RΓc
(
Gm × XL J (t1 · · · tn−2tn−1tn−2),Q�

)
in Db(Q�L J × 〈F 〉-mod).

3.3.2. A new example in type Bn

Let G be a group of type Bn . We denote by t1, . . . , tn the simple reflections of W , with the con-
vention that t2, . . . , tn generate a parabolic subgroup of type An−1. We will restrict our attention to
the principal series of Irr G , which is parametrised by the representations of the Weyl group W . Fol-
lowing [4], we will denote by [λ;μ] the unipotent character associated to the bipartition (λ,μ) of n,
with the convention that IdG = [n;−] and StG = [−;1n].

For n � 2, we consider wn = tn · · · t2t1t2. It is an I-reduced element which normalises I for I = {t1}.
Then one can use the previous method to determine the principal part of the cohomology of X(I, wn),
with coefficients in the trivial local system Q� or in the local system St associated to the Steinberg
representation of Lwn F

I :

Proposition 3.13. For n � 2, the contribution of the principal series to the cohomology of X(I, wn) with coef-
ficients in Q� or St, together with the eigenvalues of F , is given by

Hn+k
c

(
X(I, wn),Q�

)
pr =

⎧⎨⎩
qk[k − 1;21n−k−1] if 1 � k � n − 1,

qn+1[n;−] if k = n + 2,

0 otherwise

and

Hn+k
c

(
X(I, wn),St

)
pr =

⎧⎨⎩
[−;1n] if k = 1,

qk[(k − 1,1);1n−k] if 2 � k � n,

0 otherwise.

Proof. We proceed by induction. When n = 2, [9, Corollary 8.27] applied to v = 1 forces
H•

c (X(I, w2),Q�) and H•
c (X(I, w2),St) to be G × 〈F 〉-submodules of H•

c (X(w2),Q�). By [10, Theo-
rem 4.3.4], the latter is multiplicity-free and hence the theorem can be deduced from [9, Corol-
lary 8.41].

Assume that n > 2 and let J = {t1, . . . , tn−1}. We want to compute the cohomology of U J \X(I, wn).
We first observe that any J -reduced-I element of W is either xi = tn · · · ti or yi = tn · · · t2t1t2 · · · ti for
i > 1. We claim that Xxi and Xy j are empty if i �= 2 and j �= n. Indeed, if i > 2 then

W xi
J = W

yi−1
J = 〈t1, t2, . . . , ti−2, ti−1titi−1, ti+1, . . . , tn〉.
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If γ is an xi -distinguished subexpression of an element of W I w (that is, either t1 w or w) then the
product of γ is never in W xi

J . Otherwise γ would contain neither ti−1 nor ti which is impossible
since γ is distinguished. The case of yi−1 is similar. We deduce that X(I, wn) = Xx2 � Xyn . Let us
examine each of these two varieties:

• we have x2 wnx−1
2 = tn−1 · · · t2t1 ∈ W J and Kx2 = J ∩ x2 (ΦI ) = ∅. We can therefore apply Proposi-

tion 3.2 and Remark 3.12 to obtain

RΓc(U J \Xx2 ,Q�) � RΓc
(
XL J (tn−1 · · · t2t1),Q�

)[−1]
and

RΓc(U J \Xx2 ,St) � RΓc
(
XL J (tn−1 · · · t2t1),Q�

)[−1]

since the Harish-Chandra restriction of StLwn F
I

to Twn F is just the trivial character.

• yn = w0 w J acts trivially on W J and yn(tn wn)y−1
n = wn−1. We have also K yn = J ∩ yn (ΦI ) = I .

The assumptions of Proposition 3.4 are clearly satisfied and we obtain

RΓc(U J \Xyn ,Q�) � RΓc
(
Gm × XL J (I, wn−1),Q�

)
and

RΓc(U J \Xyn ,St) � RΓc
(
Gm × XL J (I, wn−1),St

)
.

The cohomology of XL J (tn−1 · · · t2t1) has been computed in [15]. By induction, one can assume that
the cohomology of XL J (I, wn−1) is given by the theorem (since the unipotent part of the cohomology
depends only on the isogeny class of the group). We observe that a character in the principal se-
ries different from Id or St cannot appear in both H•

c (XL J (tn−1 · · · t2t1),Q�) and H•
c (XL J (I, wn−1),Q�)

(resp. H•
c (XL J (tn−1 · · · t2t1),Q�) and H•

c (XL J (I, wn−1),St)). Using the long exact sequences given by
the decomposition of U J \X(I, wn) and [9, Corollary 8.28.(v)], we can deduce explicitly each coho-
mology group of U J \X(I, wn). To conclude, we observe that each of these cohomology groups is the
Harish-Chandra restriction of the groups given in the theorem, corresponding to the characters of the
principal series in the Φ2n−2-blocks of IdG and StG . Finally, we know by [2] that these characters
actually appear in the cohomology of X(I, wn) since they already appear in the alternating sum. �
Remark 3.14. In order to deal with the series corresponding to the cuspidal unipotent character of B2
we need extra information on the degree in which B2,Id and B2,St can appear.
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