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Let R and A′ be two (commutative) A-algebras. A higher order derivation [5], of
order n, is a sequence ∂n = (d0, . . . , dn) of A-linear maps dp:R −→ A′, where d0 is an
algebra homomorphism, and where

dp(xy) =
∑

i+j=p

di(x)dj(y),

for all 1 ≤ p ≤ n. A higher order derivation is also called Hasse–Schmidt derivation, and
works relating these to ordinary derivations can be found in e.g. [7,3].

We let DernR/A(A′) denote the set of all higher order derivations from R to A′. By com-
position one obtains that the set of higher order derivations form a functor DernR/A(−),
from the category of A-algebras to sets. One can construct the representing object HSn

R/A

by forming the polynomial ring over R, with n variables for each element in R, modulo
all the expected relations, see e.g. [10].

We will give a different, and a more compact, description of the representing object
HSn

R/A. It is well-known that Hasse–Schmidt derivations are equivalently described by
jets and arc spaces. An A-algebra homomorphism

u:R −→ A′[t]/
(
tn+1) = A′ ⊗

A A[t]/
(
tn+1)

encodes the same information as a higher order derivation from R to A′. In other words
the higher order derivations are given as the functor HomA-alg(R,E), with co-domain
the arc of jets E = A[t]/(tn+1).

The functors HomA-alg(R,E) were described explicitly using Fitting ideals in [8], and
the results in the present paper are obtained by specializing to E = A[t]/(tn+1). With
this specific co-domain E = A[t]/(tn+1) we will write down explicitly the representing
object, and use the explicit presentation to extract new information as well as answer
questions about the Hasse–Schmidt derivations.

Our explicit presentation is as follows. Write the A-algebra R = A[x, y, . . . , z]/
(f1, . . . , fm), that is as a quotient of a polynomial ring modulo some relations (for nota-
tional simplicity we present the result only using finitely many variables and relations).
Then the Hasse–Schmidt derivations of order n are represented by HSn

R/A which is the
algebra

HSn−1
R/A[dnx, dny, . . . , dnz]/(dnf1, . . . , dnfm),

where dnx, dny, . . . , dnz are variables over HSn−1
R/A, and where dnf is the n’th order deriva-

tion of f ∈ A[x, y, . . . , z]. In particular we recover that HS1
R/A equals the symmetric

tensor algebra of the R-module of differentials Ω1
R/A.

As the Weil restriction of A[t]/(tn+1)-algebras is closely related, we also write explicit
presentations for these rings. The Weil restrictions are important objects within algebraic
geometry, and it might be of interest to see explicit presentations of these algebras as well.
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In the last section we focus on Hasse–Schmidt derivations and localizations. We show
that the functor of Hasse–Schmidt derivations HS∞

R/A is representable, and that it be-
haves well under localizations. We give two proofs for that claim. One proof is obtained
by identifying the Hasse–Schmidt derivations as the direct limit of the Hasse–Schmidt
derivations of finite order, of which we have an explicit description. The other proof
is based on identifying the Hasse–Schmidt derivations with the infinite tensor product.
The question concerning the localization property for the Hasse–Schmidt derivations was
conjectured in [9], apparently motivated by [1].

2. Hasse–Schmidt derivations

We will first give a description of the ring of Hasse–Schmidt derivations of order n,
and thereafter relate that ring with the Hasse–Schmidt derivations of order n − 1. All
rings and algebras considered are commutative and with unit.

2.1. Parameterizing algebra homomorphisms

As a prelude to our description of Hasse–Schmidt derivations, we will consider the
following functor. Let R and E be two A-algebras. Then we have the functor HomA(R,E)
from the category of A-algebras to sets, sending an A-algebra A′ to the set

HomA(R,E)
(
A′) = HomA-alg

(
R,E

⊗
A A′).

2.2. Symmetric algebra

Let E be an A-algebra that is free of finite rank. It is well-known, and read-
ily checked, that the symmetric tensor algebra SA(V

⊗
A E�) represents the functor

HomA(SA(V ), E), where E� denotes the dual module E� = HomA(E,A), and where V

is any A-module. We denote by

u: SA(V ) −→ E
⊗

A SA

(
V

⊗
A E�

)
(2.2.1)

the universal element, given explicitly below.

2.3. Universal map and grading

We fix a basis e0, . . . , en for E, and let e�0, . . . , e�n denote its dual basis. Then the uni-
versal element u (2.2.1) is the A-algebra homomorphism determined by sending elements
x ∈ V to

u(x) =
n∑

ei ⊗ x⊗ e�i .

i=0
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Having the basis of E fixed we also get an induced grading on the A-module
SA(V

⊗
A E�). We let elements of the form x⊗ e�i in V

⊗
A E� have degree

deg(x⊗ e�i ) = i for i = 0, . . . , n.

Definition 2.4. Let d: SA(V ) −→ SA(V
⊗

A E�) denote the A-algebra homomorphism
determined by sending x ∈ V to d(x) =

∑n
i=0 x ⊗ e�i . For each integer 0 ≤ k ≤ n we

define the map

dk: SA(V ) −→ SA

(
V

⊗
A E�

)
by letting dk(x) = (d(x))k denote the degree k-part of the A-algebra homomor-
phism d.

2.5. Notation

We let En denote the A-algebra En = A[ε]/(εn+1). The basis we fix is given by powers
of the variable ε, so e0, . . . , en with ei = εi is an A-module basis of En. Note that with
this convention we have that the products of the basis elements are given as

ei · ej =
{

ei+j if i + j ≤ n,

0 otherwise.
(2.5.1)

Lemma 2.6. Let En = A[ε]/(εn+1), where the basis is given by the powers of the variable ε.
For monomials x = x1 ⊗ · · · ⊗ xm in SA(V ) we have that

dk(x) =
∑

i1+···+im=k

(x1 ⊗ e�i1) · · · (xm ⊗ e�im). (2.6.1)

In particular, for any x ∈ SA(V ) we get that

u(x) =
n∑

k=0

ek ⊗ dk(x), (2.6.2)

where u is the universal map (2.2.1).

Proof. The expression (2.6.1) follows if we prove that Eq. (2.6.2) holds. As u is A-linear,
it suffices to show the statement for monomial elements x = x1 ⊗ · · · ⊗ xm of SA(V ).
Then, by definition, we have that

u(x) =
(

n∑
ek ⊗ x1 ⊗ e�k

)
· · ·

(
n∑

ek ⊗ xm ⊗ e�k

)
.

k=0 k=0



118 R.M. Skjelnes / Journal of Algebra 411 (2014) 114–128
Expanding the product gives

u(x) =
∑

0≤ki≤n
i=1,...,m

ek1 · · · ekm
⊗

(
x1 ⊗ e�k1

)
· · ·

(
xm ⊗ e�km

)
.

Now, using the product on En, displayed in (2.5.1), we get that the k’th component of
u(x), written out with respect to the basis e0, . . . , en, is

∑
i1+···+im=k

(
x1 ⊗ e�i1

)
· · ·

(
xm ⊗ e�im

)
,

proving the claim. �
Lemma 2.7. The sequence ∂n = (d0, . . . , dn) is a higher order derivation, of length n, from
SA(V ) to SA(V

⊗
A E�

n). In particular we have that d0: SA(V ) −→ SA(V
⊗

A E�
n) is an

A-algebra homomorphism, and d1: SA(V ) −→ SA(V
⊗

A E�) is an A-linear derivation.

Proof. The universal map u: SA(V ) −→ En

⊗
A SA(V

⊗
E�

n) in (2.2.1) is an A-algebra
homomorphism. The co-domain is simply B[ε]/(εn+1), where B = SA(V

⊗
A E�

n).
By Lemma 2.6 we have u(x) expressed in terms of the basis e0, . . . , en as u(x) =∑n

k=0 dk(x)ek. This is equivalent with ∂n being a higher derivation of order n, over A,
see e.g. [5]. �
Example 2.8. For x ∈ V , let xi = x⊗e�i , for i ≥ 0, so that deg(xi) = i. For any monomial
x⊗ y ⊗ · · · ⊗ z, we consider the product

(x0 + x1 + · · ·)(y0 + y1 + · · ·) · · · (z0 + z1 + · · ·).

We have that dk(x ⊗ y ⊗ · · · ⊗ z) equals the degree k term of the expansion of the
product above. In particular with x ⊗ x ⊗ y = x2y we get that d0(x2y) = x2

0y0, that
d1(x2y) = 2x1y0 + x2

0y1, and that

d2
(
x2y

)
= 2x2x0y0 + x2

1y0 + 2x0x1y1 + x2
0y2.

Definition 2.9. For any ideal I ⊆ SA(V ) we let ∂nI ⊆ SA(V ⊗A E�
n) denote the ideal

generated by

∂nI =
{
d0(f), . . . , dn(f) | f ∈ I

}
.

Proposition 2.10. Let En = A[ε]/(εn), and let R = SA(V )/I be an A-algebra. Then the
functor HomA(R,En) is represented by

HSn
R/A := SA

(
V

⊗
A E�

n

)
/∂nI.

The universal element is induced by u (2.2.1).
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Proof. We have (see e.g. [8]) that the representing object is given as the quotient algebra

SA

(
V

⊗
A E�

n

)
/Fitt

(
u(I)

)
,

where Fitt(u(I)) is the (n − 1)-th Fitting ideal of the SA(V
⊗

A E�
n) cokernel module

u(I) ⊆ E
⊗

A SA(V
⊗

A E�
n). Let f ∈ I be an element. By Lemma 2.6 we have that

u(f) =
∑n

k=0 dkek. We then get that

Fitt
(
u(f)

)
=

(
d0(f), . . . , dn(f)

)
,

and the claim follows. �
2.11. Hasse–Schmidt derivations

A Hasse–Schmidt derivation, of order n on an A-algebra R, is an A-algebra homo-
morphism

∂n:R −→ R[ε]/
(
εn+1)

that decomposed ∂n = (d0, . . . , dn) is such that d0 = id. The Hasse–Schmidt derivation
becomes in a natural way a functor DerR/A(−) from the category of A-algebras to sets.

Corollary 2.12. Let R be an A-algebra. Then the functor of Hasse–Schmidt deriva-
tions DerR/A(−) is represented by the pair (HSn

R/A, ∂
R
n ), where ∂R

n is induced by the
sequence ∂n.

Proof. By the usual properties of the tensor product we have that an A-algebra homo-
morphism R −→ R

⊗
A A′ is a pair (ι, ∂) of A-algebra homomorphisms ι:R −→ R and

∂:R −→ A′. As the A-algebra homomorphism ι:R −→ R is assumed to be the identity,
we see that a Hasse–Schmidt derivation is nothing but an A-algebra homomorphism
R −→ A′[ε]/(εn+1). �
2.13. Iterations

We have a canonical morphism En −→ En−1. Having the basis of En fixed, we get an
identification En = E�

n. Hence we have an induced map E�
n −→ E�

n−1 of A-modules. We
then have a, non-canonical, induced A-algebra homomorphism

pVn : SA

(
V

⊗
A E�

n

)
−→ SA

(
V

⊗
A E�

n−1
)
.

Let dnk : SA(V ) −→ SA(V
⊗

A E�
n) denote the degree operator in Definition 2.4, where we

now have added the superscript to keep track of n. Then, for every 0 ≤ k ≤ n − 1 we
have that pVn ◦ dnk = dn−1

k . Thus we have that

pVn ◦ ∂n = ∂n−1. (2.13.1)
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Proposition 2.14. Write an A-algebra R as a quotient of a polynomial ring R =
A[xα]/(fβ)α∈A ,β∈B, and set A := HS−1

R/A. Then we have, for each integer n ≥ 0, that
HSn

R/A is the quotient of the polynomial ring in the variables {dnxα}α∈A over HSn−1
R/A,

modulo the ideal generated by {dnfβ}β∈B; that is

HSn
R/A = HSn−1

R/A[dnxα]/(dnfβ)α∈A , β∈B.

In particular we have that HS0
R/A = R, and that HS1

R/A = SR(Ω1
R/A).

Proof. With the basis of E�
n fixed, we get an isomorphism V = Vi, where Vi is the

A-module generated by tensors of the form x ⊗ e�i , where x ∈ V , for each i = 0, . . . , n.
Then we get an induced A-module isomorphism V

⊗
A E� =

⊕n
i=0 Vi, and an isomor-

phism of A-algebras

SA

(
V

⊗
A E�

)
=

n⊗
i=0

SA(Vi). (2.14.1)

Let I be an ideal in SA(V ), and for each integer 0 ≤ k ≤ n we let ∂k
nI ⊆ SA(V

⊗
A E�

n)
denote the ideal generated by the k+ 1-first components of ∂nI. That is ∂k

nI is the ideal
generated by (d0f, d1f, . . . , dkf), with f ∈ I. Under the isomorphism (2.14.1) we have
that

SA

(
V

⊗
A E�

n)/∂k
nI =

(
k⊗

i=0
SA(Vi)

) /
∂k
nI

n⊗
i=k+1

SA(Vi).

From the equality (2.13.1) combined with Proposition 2.10, it follows that

k⊗
i=0

SA(Vi)/∂k
nI = HSk

R/A,

where R = SA(V )/I. The result then follows by letting V be a free A-module, and
choosing k = n− 1. �
Example 2.15. Consider the A-algebra R = A[x, y]/(x2y), and identify x = d0x and
y = d0y. We get

HS1
R/A = R[d1x, d1y]/

(
2xy · d1x + x2 · d1y

)
= SR

(
Ω1

R/A

)
.

And we have that HS2
R/A equals the quotient of the polynomial ring HS1

R/A[d2x, d2y]
modulo the ideal generated by d2(x2y) which we computed in Example 2.8 as

y · (d1x)2 + 2x · d1x · d1y + 2xy · d2x + x2 · d2y.
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Remark 2.16. In the previous example, note that d2(x2y) is not expressed in terms of d2x

and d2y. The expression for HS1
R/A as symmetric tensor algebra of a module, appears to

be coincidental, and not the first order step of a more general pattern.

3. Weil restriction

The Weil restriction of a homomorphism En −→ R is closely related to the Hasse–
Schmidt derivations considered in the previous section. We will include a similar descrip-
tion of these Weil restrictions.

3.1. Weil restriction

In algebraic geometry the Weil restrictions appear naturally as fibers of morphism
between moduli spaces [4, 4. Variantes], and are special instances of Hom-stacks [6]. For
a thorough description of their basic properties we refer to [2].

Let E −→ R be an A-algebra homomorphism. The Weil restriction, that we denote by
RE/A(R), is the functor from the category of A-algebras to sets, that takes an A-algebra
A′ to the set

RE/A(R)
(
A′) = HomA-alg

(
R,E

⊗
A A′).

Proposition 3.2. Let R be an A-algebra, and let En = A[ε]/(εn+1). Then HSn
R/A represents

the Weil restriction REn/A(R
⊗

A En). The universal element is obtained by extension
of scalars of the universal map (2.2.1).

Proof. An A-algebra homomorphism R −→ A′ is equivalent with an A-algebra homo-
morphism R

⊗
A A′ −→ A′ being the identity on A′, from which the result follows. �

3.3. Extended grading

We will introduce some notation before we continue with the general situation with
En-algebras in general. Let V be an A-module, and let E be a free A-module of finite
rank. We fix a basis e0, . . . , en for the A-module E, and similarly we fix the dual basis
for the dual module E�. For each integer 0 ≤ k ≤ n we have the A-linear map dk+:V −→
V
⊗

A E� sending x ∈ V to

dk+(x) =
n−k∑
i=0

x⊗ e�i+k.

The map is simply a shift of the map d described in Definition 2.4. Together these maps
give an A-module map

(
d0
+, d

1
+, . . . , d

n
+
)
:

n⊕
V −→ V

⊗
A E�.
i=0
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The induced A-algebra homomorphism is denoted

d+:
n⊗

i=0
SA(V ) −→ SA

(
V

⊗
A E�

)
.

Recall that we in Section 2.3, introduced a grading on SA(V
⊗

A E�) induced by the
basis. Similar to Definition 2.4 we next extend the graded operators dk.

Definition 3.4. For each integer 0 ≤ k ≤ n we define the map

Dn
k :

n⊗
i=0

SA(V ) −→ SA

(
V

⊗
A E�

n

)

by letting Dn
k (F ) = (d+(F ))k denote the degree k-part of the A-algebra homomor-

phism d+.

Remark 3.5. It is clear that we have qVn ◦Dn
k = Dn−1

k , for each integer 0 ≤ k ≤ n−1. We
will therefore in the sequel skip the reference to En in the notation of the degree map,
and simply write Dk instead of Dn

k .

Lemma 3.6. Let En = A[ε]/(εn+1), and identify the SA(V )-modules SA(V )
⊗

A En =⊗n
i=0 SA(V ). For any F ∈ SA(V )

⊗
A En we have that

un(F ) =
n∑

k=0

Dk(F )ek,

where un: SA(V )
⊗

A En −→ En

⊗
A SA(V

⊗
A E�

n) is the universal map in Proposi-
tion 3.2. Moreover, write F =

∑n
i=0 Fiei, with Fi ∈ SA(V ), then we have that

Dk(F ) = Dk

(
n∑

i=0
Fiei

)
=

k∑
j=0

dj(Fk−j),

where (d0, . . . , dn) = ∂n is the higher order derivation introduced earlier.

Proof. As SA(V )
⊗

A En =
⊕n

i=0 SA(V )ei, we get that the universal map

un:
n⊕

i=0
SA(V )ei −→

n⊕
i=0

SA

(
V

⊗
A E�

)
ei

is n + 1-copies un = (u, . . . , u) of the universal map (2.2.1). We therefore have that
un(F ) =

∑n
i=0 u(Fi)ei. Now, using Lemma 2.6 together with the relations (2.5.1), we

get that

n∑
u(Fi)ei =

n∑(
n∑

dk(Fi)ek

)
ei =

n∑(
k∑

dj(Fk−j)
)
ek.
i=0 i=0 k=0 k=0 j=0
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We then have that
∑k

j=0 dj(Fk−j)ek is the degree k part of un(F ), and we have proven
the statements of the lemma. �
Definition 3.7. If I ⊆ SA(V )

⊗
A En is an ideal, we define the ideal ΔnI ⊆ SA(V

⊗
A E�

n)
as the ideal generated by Dk(f), with k = 0, . . . , n, for each f ∈ I.

Proposition 3.8. Let En −→ R be an A-algebra homomorphism. Write R as a quo-
tient R = SA(V )

⊗
A En/I. Then the Weil restriction REn/A(R) is represented by the

A-algebra

REn/A(R) := SA

(
V

⊗
A E�

n

)
/ΔnI.

The universal element is induced by un.

Proof. We have by Proposition 3.2, together with Proposition 2.10 that SA(V
⊗

A E�
n)

represents REn/A(SA(V )
⊗

A En). We need only to verify that ΔnI is the (n−1)-th Fit-
ting ideal of the SA(V

⊗
A E�

n)-module un(I), where un: SA(V )
⊗

A En−→SA(V
⊗

A E�
n)

is the universal map. By Lemma 3.6 we have that un(F ), for any element F , is∑n
k=0 Dk(F )ek, and the result follows. �

Example 3.9. As an example, consider the polynomial ring in two variables x and y

over E1, that is the A-algebra A[x, y, ε]/(ε2). Let V be a free A-module of rank 2, so
A[x, y, ε]/(ε2) equals SA(V )

⊗
A E1. Let F = F0 + F1 · ε be the element

F = xy + x2y · ε.

Identify, furthermore, d0x = x and d0y = y, so that SA(V
⊗

A E�
1 ) is the polynomial

ring A[x, y, d1x, d1y]. We have that D0(F ) = F0 = xy, and that

D1(F ) = d0F1 + d1F0 = x2y + 2xyd1x + x2d1y.

Then the Weil restriction of E1 −→ R = A[x, y, ε]/(ε2, xy + x2yε) is the A-algebra

RE1/A(R) = A[x, y, d1x, d1y]/
(
xy, x2y + 2xyd1x + x2d1y

)
.

4. Localization of Hasse–Schmidt derivations

We end this note by verifying that the Hasse–Schmidt derivations behave well under
localization.

Proposition 4.1. For any A-algebra R, and any multiplicatively closed subset S ⊆ R we
have that

HSn
S−1R/A = HSn

R/A

⊗
R S−1R.

In order words, the Hasse–Schmidt derivations of order n, commute with localization.
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Proof. As tensor product commutes with direct limit it suffices to show the proposition
in the particular case with S = {1, f, f2, . . . , }, that is the multiplicatively closed set
generated by an element f ∈ R. Then S−1R = R[t]/(F ), where F = ft − 1. Take a
presentation R = A[xα]/(fβ)α∈A ,β∈B, so S−1R = A[xα, t]/(fβ , F )α∈A ,β∈B. By iterative
use of Proposition 2.14 we get that the ring HSn

S−1R/A has the following presentation

S−1R[dpxα, dpt]/(dpfβ , dpF ) where p = 1, . . . , n, α ∈ A , β ∈ B.

Again, using S−1R = R[t]/(F ) and the presentation given in Proposition 2.14, we see
that we can re-arrange the presentation of HSn

S−1R/A as

(
HSn

R/A

⊗
R S−1R[d1t, . . . dnt]

)
/(d1F, . . . , dnF ). (4.1.1)

A property of a higher order derivation (d0, . . . , dn) is that for each 1 ≤ p ≤ n we have
that dp(xy) =

∑
i+j=p di(x)dj(y). Applying this property, and that the map dp is linear,

to F = ft− 1 gives us for each p = 1, . . . , n that dp(ft − 1) =
∑p

i=0 difdp−it. We have
that t = f−1, so in the quotient ring (4.1.1) we have the identity

dpt = t(−t · dpf − d1t · dp−1f − · · · − dp−1t · d1f). (4.1.2)

Since f ∈ R, we have that dpf ∈ HSn
R/A for all p = 1, . . . , n. We claim that we can

eliminate the variables d1t, . . . , dnt, starting with the lowest. We have, for p = 1, that
d1t = −t2 · d1f , and therefore we can eliminate the variable d1t, expressing it as an
element of HSn

R/A

⊗
R S−1R. By induction we carry on this elimination. In the elimina-

tion process we see that for each p = 1, . . . , n, all the terms on the right hand side of
Eq. (4.1.2) are elements of the ring HSn

R/A

⊗
R S−1R. That is, the two rings HSn

S−1R/A

and HSn
R/A

⊗
R S−1R are naturally isomorphic. �

4.2. Hasse–Schmidt derivations

Having the A-algebra R fixed, a Hasse–Schmidt derivation is an A-algebra homomor-
phism R −→ A[[t]], where A[[t]] denotes the formal power series ring in one variable t

over A. This notion is naturally made functorial in the following way. For any A-algebra
A′ we consider the set of A-algebra homomorphisms

HS∞
R/A

(
A′) = HomA-alg

(
R,A′[[t]]

)
.

For any element ϕ in HS∞
R/AA

′, and any A-algebra homomorphism A′ −→ A′′, we com-
pose the map ϕ⊗ 1 with the natural map

A′[[t]]
⊗

A A′′ −→ A′′[[t]].

Then HS∞
R/A(−) becomes a functor.
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Remark 4.3. Note that the functor HS∞
R/A is not the inverse limit of the Hasse–Schmidt

derivations of finite order. There exists no natural map HSn+1
R/A −→ HSn

R/A, so the notion
of inverse limit does not naturally arise.

4.4. Direct limit

The natural map corresponding to truncating an order (n+1)-derivation, that is send-
ing (d0, d1, . . . , dn+1) to (d0, d1, . . . , dn) gives an A-algebra homomorphism HSn

R/A −→
HSn+1

R/A. In fact, truncating the universal derivation corresponds to the natural map

ϕn: HSn
R/A −→ HSn

R/A[dn+1xα]/(dn+1fβ) = HSn+1
R/A

described in Proposition 2.14. Any morphism from HSn+1
R/A corresponds to a derivation of

length n + 1. Composing that given morphism with the natural map HSn
R/A −→ HSn+1

R/A

corresponds to truncating that particular derivation.

Proposition 4.5. For any A-algebra R we have that the direct limit

lim
n→∞

{
HSn

R/A, ϕn

}
is the A-algebra representing the Hasse–Schmidt derivations HS∞

R/A. In particular we
have that HS∞

R/A commutes with localization.

Proof. Let H denote the direct limit limn→∞{HSn
R/A}, and let A′ be an A-algebra.

Then, by definition, an A′-valued point of H is a collection of A-algebra homomorphisms
un: HSn

R/A −→ A′ such that un = un+1◦ϕn. By the defining properties of HSn
R/A we have

that each un corresponds to an A-algebra homomorphism δn:R −→ A′ ⊗
A A[t]/(tn),

where δn+1 composed with the projection A′[t]/(tn+1) −→ A′[t]/(tn) equals δn, for all n.
In other words we have commutative diagrams

R
δn+1

δn
δn−1

A′[t]/(tn+1) A′[t]/(tn) A′[t]/(tn−1)

(4.5.1)

That is an A-algebra homomorphism from R to the inverse limit of the horizontal arrows
of the diagram (4.5.1) above, that is A′[[t]] = lim←{A′[t]/(tn)}. Thus any A′-valued point
of H gives naturally an A′ valued point of the Hasse–Schmidt derivations HS∞

R/A. But
also conversely; an A′-valued point of HS∞

R/A is given by a diagram (4.5.1), which gives
an A′-valued point of H. The last statement about localization follows as direct limits
commute with tensor product, combined with Proposition 4.1. �
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Remark 4.6. The localization conjecture was stated by Traves [9], who verified it for
monomial rings. The conjecture was stated for finite type algebras, but holds without
finiteness assumptions.

Remark 4.7. One could be tempted to look at the set

F
(
A′) = HomA-alg

(
R,A[[t]]

⊗
A A′),

of A-algebra homomorphisms from R to the ring A[[t]]
⊗

A A′, for any given A-algebra A′.
That does not appear to be a good functor to consider, for example when R is the
polynomial ring A[X], then the functor F is not representable: Assume conversely, that
F is represented by the pair (H,u), where u:A[X] −→ A[[t]]

⊗
A H is the universal

element. Then

u(X) =
N∑
i=1

fi
⊗

A xi

is a finite sum, with fi ∈ A[[t]] and xi ∈ H. Let F ∈ A[[t]] be a power series which is
not a linear combination of the fi’s, that is an element F 	=

∑N
i=1 aifi, with ai ∈ A.

Such elements exist. Then we have an A-valued point of F , namely the A-algebra homo-
morphism A[X] −→ A[[t]] determined by sending X 
→ F . However, by our assumption
on F the element will not be a specialization of u(X), and in particular there exists no
A-algebra homomorphism ϕ:H −→ A that specializes to the one constructed. So, the
functor F is not representable.

4.8. Infinite tensor products and Hasse–Schmidt derivations

In this last section, we will take a closer look at the A-algebra that represents HS∞
R/A,

and in particular give another proof of the localization conjecture.

Lemma 4.9. Let Ei be finitely generated and projective A-modules (i ∈ I ). Denote by
Ei

� = HomA(Ei, A) their duals, and E =
∏

i Ei the direct product. For any A-module V

we have natural isomorphisms

HomA(V,E) =
∏
i∈I

(
V

⊗
A Ei

�
)� =

(⊕
i∈I

V
⊗

A Ei
�

)�

.

Proof. Since E is the direct product, we have that HomA(V,E) equals the direct product∏
i HomA(V,Ei). As Ei is finitely generated and projective, we have HomA(V,Ei) =

HomA(V
⊗

A Ei
�, A), proving the first identity. The second identity follows from the

general fact that the dual of a direct sum, is the direct product of the duals of all the
components in the direct sum. �
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Proposition 4.10. Let V be an A-module, and let SA(V ) denote the symmetric tensor al-
gebra. Then the A-algebra SA(

⊕
i≥1 V ) represents the functor HS∞

SA(V )/A. The universal
family

u: SA(V ) −→ SA

(⊕
i≥1

V

)
[[t]],

is the algebra homomorphism u = (u1, u2, . . . , ) that on each degree i is the map ui

induced by identifying V as the degree i component of
⊕

i≥1 V .

Proof. Let A′ be an A-algebra, and let ϕ′: SA(V ) −→ A′[[t]] be an A′-valued point. Such
an A-algebra homomorphism is the same as an A′-module map ϕ:V

⊗
A A′ −→

∏
i≥1 A

′.
By Lemma 4.9 such a map equals a collection of A′-module maps {ϕi:V

⊗
A A′ −→ A′}.

That is, a collection of A-algebra homomorphisms u′
i: SA(V )

⊗
A A′ −→ A′, or equiva-

lently an A-algebra homomorphism

u′: SA

(⊕
i≥1

V

)
−→ A′.

It is clear that such an element is the specialization of the morphism u described in
the proposition. So, u is the universal element, and SA(

⊕
i≥1 V ) is the representing

object. �
Corollary 4.11. For any A-algebra R, the functor HS∞

R/A is represented by the infinite
tensor product

⊗∞
A R = lim

n→∞

(⊗n
AR

)
.

Proof. Write R = SA(V )/I for some ideal I, and some A-module V . Write H =
SA(

⊕
i≥1 V ), then H is the infinite tensor product H =

⊗∞
A SA(V ). Let u: SA(V ) −→

H[[t]] denote the universal map described in the proposition. It is clear that H/u(f), for
all f ∈ I, will be the representing object of HS∞

R/A, where the map induced by u will
be the universal element. We have furthermore that the map u = (u1, u2, . . .), where
ui: SA(V ) −→ H is the i’th co-projection map that identifies SA(V ) with the i factor
of H. It follows that SA(V )/ui(f) = SA(V )/f , and that H/u(I) =

⊗∞
A R. �

Corollary 4.12. The Hasse–Schmidt derivations commute with localization, that is

HS∞
R/A

⊗
R S−1R = HS∞

S−1R/A,

for any multiplicatively closed subset S ⊆ R.
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Proof. The direct product of rings is the direct product of the underlying modules, and
the algebra structure is naturally induced. Since tensor product commutes with direct
limit of modules, we get that (

⊗∞
A R)

⊗
R S−1R is the direct limit

lim
n→∞

(⊗n
AR

⊗
R S−1R

)
= lim

n→∞

(⊗n
AS

−1R
)
.

Hence the localization HS∞
R/A

⊗
R S−1R equals the infinite tensor product

⊗∞
A S−1R,

which by the corollary above is HS∞
S−1R/A. �
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