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Birational map
Inversion factor

Introduction

Let I ⊂ R denote an ideal in a Noetherian ring and let r ≥ 0 be an integer. The rth 
symbolic power I(r) of I can be defined as the inverse image of U−1Ir under the natural 
homomorphism R → U−1R of fractions, where U is the complementary set of the union 
of the associated primes of R/I. There is a known hesitation as to whether one should 
take the whole set of associated primes of R/I or just its minimal primes or even those of 
minimal codimension or maximal dimension. In this work we need not worry about this 
dilemma because the notion will only be employed in the case of a codimension 2 perfect 
ideal in a Cohen–Macaulay ring — actually, a polynomial ring over a field. In this setup 
there is no ambiguity and I(r) is precisely the intersection of the primary components 
of the ordinary power Ir relative to the associated primes of R/I, i.e., the unmixed part 
of Ir.

A more serious problem is the characteristic of the base field. In characteristic zero, if 
I is a radical ideal, one has the celebrated Zariski–Nagata differential characterization of 
I(r) (see [9, 3.9] and the references there). The subject in positive characteristic or mixed 
characteristic gives a quite different panorama, often much harder but with different 
methods anyway. Essential parts of this work assume characteristic zero. This is not 
due to a need of using the Zariski–Nagata criterion upfront, but rather to an urge of 
dealing with Jacobian matrices and using Bertini’s theorem. Many technical results will 
be valid just over an infinite field, hence there has been an effort to convey when the 
characteristic is an issue at specific places. On the other hand, since we will draw quite 
substantially on aspects of birational maps, it may be a good idea in those instances to 
think about k as being algebraically closed.

The main object of concern is an m ×(m −1) matrix whose entries are general 1-forms 
in a polynomial ring R = k[X1, . . . , Xn] over an infinite field k — called herein general 
linear matrices. We will focus on the ideal I ⊂ R generated by the (m − 1)-minors of 
the matrix. Knowingly, the group Gl(m, k) × Gl(n, k) × Gl(m − 1, k) acts on the set of 
all linear m × (m − 1) matrices over k. An important notion regarding these matrices is 
that of being 1-generic in the sense of [8, Proposition–Definition 1.1]. Unfortunately, an 
m × (m − 1) linear matrix is 1-generic only if n ≥ 2(m − 1) [8, Proposition 1.3]. Thus, 
1-genericity covers so to say only “half” the cases. In particular, for n < 2(m − 1), the 
above triple action does not preserve the property of being general linear, as is clear 
that one may introduce a certain number of zero entries in the matrix, up to elementary 
k-linear row-column operations. The property of being a general linear matrix is however 
preserved if the action is restricted to a suitable open set of Gl(m, k) ×Gl(n, k) ×Gl(m −
1, k). As a simple example, take m = 2, n = 1. Then the 2 × 1 matrix (αx, βx)t(α �= 0)
can be converted to (αx, 0)t by the left action of the element
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g =
(

1 0
−β/α 1

)

(identified with g × 1 × 1), but not if the acting group element has general coefficients. 
This scrambling in the orbit of a general linear matrix in the present sense is often a 
root of difficulty when handling ideal theoretic properties stemming from the data.

For practical purposes, a set of general 1-forms of the sort we assume can be taken 
to be a set of random k-linear combinations of the variables. Any such set of cardinality 
m(m − 1) can be ordered as the entries of a matrix, so there are plenty of such matrices. 
However, for the sake of subsequent ideal theoretic development we introduce a more 
formal definition right at the outset (see Definition 2.1). A weaker form would require 
that the entries individually be general forms in general linear position (i.e., every subset 
of the entries of cardinality at most n be k-linearly independent). There are even weaker 
forms that have been considered in the literature. It is not clear whether all the main 
results of the paper go through in those environments. Examples are given to show that 
some of the crucial results obtained no longer subsist in a less general frame.

The idea behind the present subject is akin to other places where one introduces an 
object in terms of suitable general data — such is the case of the notion of the generic 
initial ideal of a polynomial ideal in Gröbner base theory (see, e.g., [4]). One starts out 
with some random like definition and then pursues some well-defined algebraic behavior 
for these data. If one thinks about it, the apparent difficulty surfaces at once. This often 
justifies why some of the arguments spelled in such a setup are long and detailed, whereas 
on surface they often appear nearly obvious.

Now, for a homogeneous ideal I ⊂ R generated in fixed degree, whose syzygies are 
generated by “enough” linear syzygies, its generators are very close to span a linear 
system defining a birational map from a projective space onto its image. This strategy 
has been largely explored in recent years by several authors. Thus, the details of the 
geometry of birational maps can be accommodated in terms of numerical invariants 
from commutative algebra. However, finding room in this accommodation for symbolic 
powers has not, to our knowledge, been brought up so far. This is one of our main 
observations in this work. Together with a good grip of the algebraic and homological 
properties of the base ideal I, it constitutes the main bulk of the paper.

The main results are shown in Theorems 2.2, 2.8, 2.14, 2.15, 2.19 and 2.23. A conse-
quence of Theorem 2.14 is a solution, over a field of characteristic zero, of a conjecture 
stated by Eisenbud–Mazur in [11, Section 2] — we are not aware of a previous solution 
in the literature.

We now briefly describe the contents of each section.
The first section, divided in two parts, gives an overview of the basic material on 

symbolic powers and on birational maps. The first part gives the tool used to approach 
the nature of the symbolic algebra in the present context. It is based on an idea of 
Vasconcelos that brought in the management of the ideal transform in this setup. The 
second part discusses a couple of useful facts, apparently thus far unnoticed in such 
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generality. They have to do with the so-called inversion factor of a birational map. 
These properties are proved in Lemma 1.2, Proposition 1.3 and Proposition 1.4.

The second section contains the main results of the paper. It starts with some pre-
liminaries on a perfect ideal I ⊂ R = k[X1, . . . , Xn] (n ≥ 3) of codimension 2 whose 
structural m × (m − 1) matrix is a general linear matrix. We first show that the other 
Fitting ideals attain an expected codimension and that I enjoys typical properties which 
depend on the values of m, n. Thus, for n ≥ 4, I is a normal prime ideal provided 
char(k) = 0 (and possibly in general); moreover, it is of linear type if (and only if) 
m ≤ n and it is normally torsionfree if and only if m < n. Therefore, such an ideal is 
only really of new substance in the case where m ≥ n. In the sequel we show that I sat-
isfies a generalized property of Artin–Nagata, called (Gn) and that, for any exponent r, 
the symbolic power I(r) coincides with the (X)-saturation of Ir (in other words, the 
unmixed part of Ir is its saturation). Since I is prime for n ≥ 4, the symbolic power I(r)

is just the I-primary component of Ir and the latter has at most one further associated 
prime, namely, (X). To go one step forward, we introduce certain graded pieces of the 
approximation complex, along with other techniques and a recent result of A.B. Tch-
ernev, to deduce that if I(r) �= Ir then necessarily r ≥ n − 1. This result becomes an 
important tool for the rest of the work.

So much for the main ideal theoretical and homological properties. On a second part 
of the same section, we deal with the ‘equations’ of I. Namely, we bring up the role of 
Rees algebra of I in the underlying birational map based on the linear system spanned 
by the generators of I. Specifically, we show that for m ≥ n ≥ 3 the ideal I is the base 
ideal of a birational map of Pn−1 onto the image in Pm−1. This result is based on the 
fiber type nature of I — i.e., its Rees algebra is simplest beyond the linear type situation 
— and on a special case of the criterion of birationality established in [7].

In this part we bring in detail the role of the inversion factors associated to the 
birational map in question, showing that they are natural elements in the symbolic power 
I(n−1) not belonging to the ordinary power In−1. Inversion factors have appeared before 
in the classical theory of plane Cremona maps, where they are a version of the principal 
curves (see, e.g., [1, Chapter 3]). However, to our knowledge the notion has never been 
explicitly addressed for Cremona maps in higher dimension, much less for birational maps 
onto their images (classically called “rational representations” of projective space). We 
introduce them here in this larger generality and dimension. A bit surprisingly, they keep 
in certain cases a strong relation to a Jacobian determinant — so to say, an analogue of 
the relationship between principal curves and factors of the classical Jacobian curve (see, 
e.g., Proposition 2.11). Our main interest here in these inversion factors is the significant 
role they play as regards the generation of some symbolic powers.

We succeed in going this far for general values m ≥ n ≥ 3. To thrive deeper, we 
assume that either m = n (the “Cremona case”) or m = n + 1 (the “implicitization 
case”). Our main drive is to tell the precise structure of the symbolic algebra R(I) of I. 
When m = n our main results follows by drawing upon some of the results of the earlier 
subsections and collecting various pieces throughout the previous literature. The main 
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result says that R(I) is generated in degrees 1 and n −1, with only one fresh generator in 
degree n − 1 which may be taken to be the source inversion factor of the Cremona map 
defined by the n-minors of L. Moreover, in characteristic zero, this generator coincides 
up to a scalar with the Jacobian determinant of those same minors.

The case m = n +1 requires a full tour de force across the material and does not follow 
straightforwardly from the previously stated results in the paper. First, the generation 
of R(I) is more involved, occurring in degrees 1, n −1 and n(n −1) −1. This time around, 
showing that the source inversion factors constitute a minimal set of fresh generators in 
degree n − 1 is far from straightforward. Here we resorted to local duality as applied to 
H0

(X)(R/In−1) � I(n−1)/In−1 and to a subtle result on the R-dual of the last nonfree 
syzygy module in the minimal free resolution of R/In−1. The argument here depends 
strongly on the basic assumption that I is the ideal of n-minors of a matrix whose 
entries are general linear forms — the result crumbles down for matrices with linear 
entries lacking this property.

This is the first step. In order to advance into proving the generation of the symbolic 
algebra we describe a set of generators of its defining ideal, much in the spirit of [23, 
Sections 5–8], but quite a bit more involved. Making these generators explicit forced us to 
uncover a whole world of very tight relation between the various constructs coming from 
the melange of symbolic power and birational theories. A particular aspect that makes 
a case for this assertion is the long proof required to show that a certain variable is not 
a zerodivisor modulo the ideal generated by the ‘expected’ symbolic relations (proof of 
Theorem 2.23). We have applied Gröbner basis theory via a case-by-case S-polynomial 
analysis in which the conclusions depend strongly on the theoretical material developed 
before. Thus, it is not really the algorithm that matters, but rather the use of the previous 
theory as a quality control. Due to the amount of technical passages, we refer the reader 
to the appropriate places in the paper.

1. Terminology

1.1. Generalities on symbolic powers

We will assume throughout that R = k[X1, . . . , Xn] is a standard graded polynomial 
ring over an infinite field k. Given an ideal I ⊂ R and an integer r ≥ 1, the rth symbolic 
power I(r) of I is the contraction of U−1Ir under the natural homomorphism R → U−1R

of fractions, where U is the complementary set of the union of the associated primes of 
R/I. In this work I will be a codimension 2 perfect ideal, hence R/I is Cohen–Macaulay 
and so I is a pure (unmixed) ideal. In this setup then I(r) is precisely the intersection 
of the primary components of the ordinary power Ir relative to the associated primes of 
R/I, i.e., the unmixed part of Ir.

A slightly different way to envisage symbolic powers is by noting that the (I(r) ∩
Ir−1)/Ir is the R/I-torsion of the conormal module Ir−1/Ir of order r. Taking the 
direct sum over all r ≥ 0 yields the R/I-torsion of the associated graded ring of I, hence 



158 Z. Ramos, A. Simis / Journal of Algebra 413 (2014) 153–197
the non-triviality of symbolic powers gives a measure of the torsion of the latter. In 
particular, there is no nonzero torsion if and only if I(r) = Ir for every r ≥ 0 — in which 
case one says that the ideal I is normally torsionfree. However, this information is most 
of the times pretty useless once it holds. What matters for a substantial class of ideals — 
codimension 2 perfect ones included — is to guess some sort of asymptotic behavior for 
the equality of the two powers, more like an “inf-asymptotic” such behavior in the sense 
that one has equality throughout up to a certain exponent order, thereafter comparison 
gets disorganized or even chaotic.

We observe that, like the ordinary powers, the symbolic powers constitute a decreasing 
multiplicative filtration, so one can consider the corresponding symbolic Rees algebra
R(I)

R =
⊕

r≥0 I
(r)tr ⊂ R[t]. However, unlike the ordinary Rees algebra, this algebra may 

not be finitely generated over R. Alas, there are no definite effective ways to check when 
R(I)

R is Noetherian. The necessary and sufficient conditions of Huneke [14, Theorems 3.1 
and 3.25] obtained in dimension 3 are not effective and neither is the necessary condition 
of Cowsik–Vasconcelos ([6], [20, Proposition 3.5]). Nevertheless, the latter becomes quite 
effective provided one has a good guess about what finitely generated subalgebra looks 
like a strong candidate. In a precise way, one has the following strategy.

First recall that, given an ideal I ⊂ R, where R is a Noetherian domain with field 
of fractions K, the ideal transform of R relative to I is the R-subalgebra TR(I) :=
R : KI∞ ⊂ K. We will draw on the following two fundamental facts:

• (See [23, Proposition 7.1.4].) If C ⊂ TR(I) is a finitely generated R-subalgebra such 
that depthIC(C) ≥ 2 then C = TR(I).

• (See [23, Proposition 7.2.6].) If R moreover satisfies the condition (S2) of Serre then

R(I)
R � TR(I)(J) ⊂ R[t]

as R-subalgebras of R[t] for suitable choice of the ideal J ⊂ R.

Our idea of applying these principles is summarized in the following result, of immediate 
verification:

Proposition 1.1. Let R = k[X1, . . . , Xn] denote a standard graded polynomial ring over 
an infinite field k, with irrelevant maximal ideal (X) := (X1, . . . , Xn). Let I ⊂ R stand 
for a homogeneous ideal satisfying the following properties:

(i) For every r ≥ 0, the R-module I(r)/Ir is either zero or (X)-primary.
(ii) depth(X)C(C) ≥ 2 for some finitely generated graded R-subalgebra C ⊂ R(I)

R con-
taining the Rees algebra RR(I).

Then C = R(I)
R .
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We observe that the typical graded R-subalgebra C ⊂ R(I)
R containing the Rees alge-

bra RR(I) as above has the form C = R[It, I(2)t2, . . . , I(s)ts] ⊂ R[t], for suitable s ≥ 1. 
Although the non-vanishing of certain of the R-modules I(r)/Ir gives a measure of how 
far one has to go (provided the symbolic Rees algebra is finitely generated), it is really 
the R-modules

I(r)∑
1≤j≤r−1 I

(r−j) · I(j)

that count for the search of fresh (or genuine) generators of the algebra. Although this is 
a well-known simple observation, it often encrypts some subtleties in a particular case.

1.2. Birational maps and inversion factors

Our reference for the basics in this part is [18], which contains enough of the intro-
ductory material in the form we use here (see also [7] for a more general overview).

Let k denote an arbitrary infinite field — further assumed to be algebraically closed 
in a geometric discussion. A rational map G : Pn−1 ��� Pm−1 is defined by m forms 
g = {g1, . . . , gm} ⊂ R := k[X] = k[X1, . . . , Xn] of the same degree d ≥ 1, not all null. 
We naturally assume throughout that n ≥ 2. We often write G = (g1 : · · · : gm) to 
underscore the projective setup and assume that gcd{g1, · · · , gm} = 1 (in the geometric 
terminology, the linear system defining G “has no fixed part”), in which case we call d
the degree of G.

Although the definition of the rational map G depends on the linear system spanned 
by the defining coordinates, its scheme theoretic indeterminacy locus is defined by the 
ideal of R generated by the members of this system. For convenience, this ideal will 
slightly improperly be referred to as the base ideal of G.

The image of G is the projective subvariety W ⊂ Pm−1 whose homogeneous coordinate 
ring is the k-subalgebra k[g] ⊂ R after degree renormalization. Write k[g] � k[Y]/I(W ), 
where I(W ) ⊂ k[Y] = k[Y1, . . . , Ym] is the homogeneous defining ideal of the image in 
the embedding W ⊂ Pm−1.

We say that G is birational onto the image if there is a rational map Pm−1 ��� Pn−1

with defining coordinate forms f = {f1, . . . , fn} ⊂ k[Y] (not simultaneously vanishing 
modulo I(W )) satisfying the relations(

f1(g) : · · · : fn(g)
)

= (X1 : · · · : Xn),(
g1(f) : · · · : gm(f)

)
≡ (Y1 : · · · : Ym) (mod I(W )).

Let K denote the field of fractions of k[g]. The coordinates {f1, · · · , fn} defining the 
“inverse” map are not uniquely defined; any other set {f ′

1, · · · , f ′
n} inducing the same 

element of the projective space Pn−1
K = Pn

k ⊗k Spec(K) will do as well — both tuples are 
called representatives of the rational map. Furthermore, one can choose a finite minimal 
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set f1, . . . , fs of these representatives such that any other representative belongs to the 
k[Y]/I(W )-submodule generated by f1, . . . , fs. More exactly, any such a minimal repre-
sentative is the transpose of a minimal generator of the syzygy module of the so-named 
weak Jacobian dual matrix (for complete details see [18], particularly Proposition 1.1 and 
[7, Section 2]). Such a set will be referred to in the sequel as a complete set of minimal 
representatives of the inverse map.

Having information about the inverse map — e.g., about its degree — will be quite 
relevant in the sequel. For instance, the first of the above structural congruences(

f1(g1, . . . , gm), . . . , fn(g1, . . . , gm)
)
≡ (X1, . . . , Xn) (1)

involving the inverse map, in terms of a given representative lifted to k[y], yields a 
uniquely defined form D ∈ R up to a nonzero scalar in k, such that fi(g1, . . . , gm) = XiD, 
for every i = 1, . . . , n. This is merely a consequence of factoriality. Indeed, the congruence 
means that there are forms D, D′ such that D′fi(g) = Dxi for every 1 ≤ i ≤ n. Now, 
a prime factor of D′ that does not divide D would have to divide all n ≥ 2 variables, 
which is only possible if D′ ∈ k. Otherwise, necessarily D′ divides D; in any case we are 
through.

We call D the source inversion factor of G associated to the given representative. 
There is a counterpart target inversion factor, defined in a parallel way by exchanging 
the roles of f and g in (1). However, for that to be seen one has to be slightly more 
careful, as we now explain. For convenience we state the result in the form of a lemma.

Lemma 1.2. Let G : Pn−1 ��� Pm−1 be a rational map defined by forms g =
{g1, . . . , gm} ⊂ R := k[X] = k[X1, . . . , Xn] of the same degree. Suppose that G is bi-
rational onto a non-degenerate subvariety W ⊂ Pm−1. Then the inverse map admits a 
representative by forms f = {f1, . . . , fn} ⊂ k[Y] of the same degree such that there exists 
a uniquely defined form E ⊂ k[Y] modulo I(W ) satisfying the congruences(

g1(f), · · · , gm(f)
)
≡ E · (Y1, · · · , Ym) (mod I(W )).

Proof. The proof is strongly based on the results and proof of [7, Theorem 2.18]. We 
follow verbatim the line of argument of the proof of [7, Theorem 2.18, Supplement, 
(ii)]. First, a representative of the inverse map f = {f1, . . . , fn} can be taken in which 
fi denotes a signed (n − 1)th order minor of an (n − 1) × n submatrix of the weak 
Jacobian dual matrix of G. Next, drawing upon the so-called Koszul–Hilbert Lemma [7, 
Proposition 2.1] one derives a set of simpler congruences:

gm(f)Yj = gj(f)Ym (mod I(W )), 1 ≤ j ≤ m. (2)

Since W ⊂ Pm−1 is non-degenerate, the ideal (Ym, I(W )) ⊂ k[Y] is prime. We read the 
above congruences as gm(f)Yj ∈ (Ym, I(W )), for 1 ≤ j ≤ m. If gm(f) /∈ (Yn, I(W )) then 
Yj ∈ (Ym, I(W )) for 1 ≤ j ≤ m. This gives (Y1, . . . , Ym) ⊂ (Yn, I(W )) which implies 
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that I(W ) has codimension m − 1, hence dimW = 0. But this is impossible since the 
map is birational and n ≥ 2. Therefore, one must conclude that gm(f) ∈ (Ym, I(W )), 
and hence Ym is cancellable in (2). �

We remark that E depends on the choice of the forms {f1, . . . , fn} representing the 
inverse map, which is by no means uniquely given (see [7] for the details of this nature).

A fundamental property of the inversion factor of a Cremona map in characteristic zero 
does not seem to have been observed before in the following generality and explicitness. 
We give a neat algebraic proof.

Proposition 1.3. (char(k) = 0) Let G denote a Cremona map of Pn−1 defined by forms 
g : {g1, . . . , gn} in R without fixed part and let Θ(g) denote the Jacobian matrix of g. 
Then det(Θ(g)) divides a power of the source inversion factor G of G. In particular, if 
det(Θ(g)) is reduced then it divides G.

Proof. Let f : {f1, . . . , fn} define the inverse map. Applying the chain rule of derivatives 
to the structural equation f(g) = G · (X), it obtains

Θ(f)(g) ·Θ(g) = G · I + (X)t · Grad(G) (3)

where I is the identity matrix and Grad(G) = (∂G/∂X1 . . . ∂G/∂Xn). Note that the 
right side of (3) is the result of evaluating λ �→ G in the characteristic matrix λI − A, 
where A = −(X)t · Grad(G).

Recall that, quite generally the coefficients of the characteristic polynomial p(λ) =
λn + a1λ

n−1 + . . . + an−1λ + an of A can be recursively computed as:

−a1 = s1

−rar = sr +
r−1∑
i=1

siar−i (4)

where sr is the trace of the matrix Ar, for 1 ≤ r ≤ n.
Now, one has

Trace
(
(X)t · Grad(G)

)
=

n∑
i=1

Xi
∂G

∂Xi
= dG, (5)

where d = deg(G). On the other hand, a calculation yields the equality A2 = (dG)A. By 
an immediate recursion it follows that(

(X)t · Grad(G)
)r =

(
dr−1Gr−1)(X)t · Grad(G). (6)

From this, applying (4) recursively yields a2 = a3 = · · · = an = 0, hence p(t) =
tn + (d G)tn−1. Evaluating λ �→ G yields p(G) = Gn + (d G)Gn−1 = (d + 1)Gn. But this 
is (detG · I + (X)t · Grad(G)), hence (3) gives
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det
(
Θ(f)(g)

)
· det

(
Θ(g)

)
= (d + 1)Gn. (7)

Therefore, det(Θ(g)) indeed divides Gn. �
From the other end, the basic result relating inversion factors to symbolic powers 

is the following proposition showing how the former become genuine generators of the 
latter. We are not aware of this result having been explicitly pointed out in the previous 
literature.

Proposition 1.4. Let F : Pn−1 ��� Pm−1 be a rational map of degree d ≥ 2 and let 
I ⊂ R = k[x] denote its base ideal. Assume that F is birational onto the image and let 
D ⊂ R denote the source inversion factor relative to a given representative of the inverse 
map.

Suppose that I is saturated. Then:

(a) D is an element of the symbolic power I(d′), where d′ is the degree of the coordinates 
of the representative. In particular, I(d′) �= Id

′ .
(b) If, moreover, I(�) = I�, � ≤ d′−1, then D is a genuine symbolic element of order d′.
(c) Moreover, if I(d′) is generated in standard degree ≥ dd′ − 1, where d is the common 

degree of F, then D is a homogeneous minimal generator of the symbolic Rees algebra.

Proof. (a) The characteristic property of D is that f ′
i(f0, . . . , fn) = xiD, for every i =

0, . . . , n. In particular, D ∈ Id
′ : (x). We may assume that F is not the identity map of Pn. 

By assumption, every associated prime of R/I has codimension at most dimR−1; hence, 
there is a form h ∈ (x) \ P , for every associated prime P of R/I, such that hD ∈ Id

′ . 
This means that D ∈ I(d′).

The additional assertion follows from a degree counting, since deg(D) = dd′−1, while 
Id

′ is generated in degree dd′.
(b) This follows straightforwardly from (a) because, under the hypothesis that 

I(�) = I�, � ≤ d′ − 1, being genuine just means not belonging to the ordinary power Ir.
(c) This is clear since deg(D) = dd′ − 1. �

2. Ideals of general linear forms

2.1. Arithmetic and homological properties

Let k stand for an infinite field and let R = k[X1, . . . , Xn] denote a standard graded 
polynomial ring over k. We will often require that char(k) = 0, but some of the results 
will be valid in any characteristic. Our basic object is an m × (m − 1) matrix of general 
linear forms over R. For the sake of subsequent ideal theoretic properties, we introduce 
our main notion in a more formal way, by emphasizing its nature as a specialization out 
of a generic m × (m − 1) matrix over a larger polynomial ring.
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Definition 2.1. Let m, n be given positive integers such that m(m −1) ≥ n. Let Z = (Zi,j)
denote an m × (m − 1) generic matrix over k. Write S := k[Z] = k[Zi,j | 1 ≤ i ≤ m, 1 ≤
j ≤ m − 1] for the corresponding polynomial ring over k. Setting s := m(m − 1) − n, let 
L := (L1, . . . , Ls) ⊂ S denote a regular sequence of general 1-forms (i.e., the entire set 
of coefficients is random) — such regular sequences abound by taking regular sequences 
of s forms of degree 1 with indeterminate coefficients (see, e.g., [15, Proposition 4.3])
and then randomly evaluating these indeterminates to elements of k. Denote R := S/(L)
and let L stand for the m × (m − 1) matrix over R whose entries are the images of the 
variables Zij under the surjection of k-algebras S � R.

The setup is the same as that of [8], where one thinks of L as a subspace of Hom(V, W ), 
where V and W are k-vector spaces of dimensions m and m −1, respectively. In the nota-
tion there, the integer s is the dimension of the ortogonal space to the space represented 
by L. For lack of better terminology, we call L a general linear matrix of size m ×(m −1).

Clearly then R is isomorphic to the ring of polynomials over k on n variables. For 
the sake of subsequent development, we make this setup more explicit in the following 
way. Namely, consider the revlex monomial order of S with the following ordering of the 
variables: Z1,1 > · · · > Z1,m−1 > Z2,1 > · · · > Zm,m−1. It is a simple inductive argument 
on s using elementary operations on the generators to see that the first s = m(m −1) −n

variables in this order generate an ideal contained in the initial ideal of L. But since the 
former is a prime ideal of codimension s it must coincide with the latter. Likewise, the 
inductive procedure used also gives that L is generated by 1-forms Li,j := Zi,j − λi,j , 
where {i, j} runs through the first m(m − 1) − n entry indices and the corresponding 
λi,j is a 1-form depending only on the last n variables. One notes that the entire set of 
coefficients of the set {λi,j | i, j} of 1-forms is a result of simple operations on the original 
coefficients of the set {L1, . . . , Ls}, hence is itself general, if not strictly random. Then R
is isomorphic to the ring of polynomials over k on these variables. We now rename these 
variables to X1, . . . , Xn, and henceforth write R = k[X1, . . . , Xn]. With this proviso, the 
matrix L is an m × (m − 1) matrix over R where the first m(m − 1) − n entries (in 
the entry ordering as above) are the forms �ij obtained by evaluating the forms λi,j on 
X1, . . . , Xn and the last n entries are the variables X1, . . . , Xn themselves.

One can harmlessly trade the last n entries for n additional random linear forms in 
X1, . . . , Xn. We emphasize once more that the entire set of the forms �i,j appearing as 
entries of the matrix is general, i.e., the totality of all coefficients is random.

Following common usage, one denotes by It(Ψ) ⊂ R the ideal generated by the t × t

minors of a matrix Ψ . In the present setup, one has It(L) = (It(Z), L)/(L).
Our first basic result is about the codimension of these ideals of minors.

Theorem 2.2. Let L denote an m × (m −1) general linear matrix over R = k[X1, . . . , Xn]
as above, with n ≥ 3 and m ≥ 2. Then, for every 1 ≤ t ≤ m − 1, one has

ht
(
It(L)

)
= min

{
n, (m− t + 1)(m− t)

}
.
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Proof. Because S/(It(Z), L) � R/It(L), the assertion is equivalent to the following one

dimS/
(
It(Z),L

)
= max

{
0, n− (m− t + 1)(m− t)

}
. (8)

More precisely, we will now show that, for 1 ≤ t ≤ m − 1 and 1 ≤ r ≤ s = m(m − 1) −n:

dimS/
(
It(Z), L1, . . . , Lr

)
=

{
0 if D < r

D − r if D ≥ r

where D := dimS/It(Z) = m(m − 1) − (m − t + 1)(m − t).
We proceed by induction on r. Obviously, D > 0 if and only if t ≥ 2. Now, for every t

in this range, clearly L1 is a non-zero-divisor on S/It(Z) since L1 is a linear form and all 
the associated primes are contained in the one single prime I2(Z) generated in degree 2. 
Therefore, one has

dimS/
(
It(Z), L1

)
=

{
0 if D = 0,
D − 1 if D ≥ 1.

Let now m(m − 1) − n ≥ j ≥ 2. By the inductive hypothesis, one has

dimS/
(
It(Z), L1, . . . , Lj−1

)
=

{
0 if D < j − 1,
D − (j − 1) if D ≥ j − 1.

Now consider the set Ass(S/It(Z), L1, . . . , Lj−1), with t in the range for which D ≥ j−1. 
This is a finite set of primes. Let J[1] denote the part of degree 1 of a homogeneous ideal 
J in R. Since Lj is a general form and randomly chosen with respect to the forms 
L1, . . . , Lj−1, we have Lj /∈ P[1] for every prime P ∈

⋃
t Ass(S/It(Z), L1, . . . , Lj−1).

Then the dimension again drops by 1, i.e., we get

dimS/
(
It(Z), L1, . . . , Lj

)
=

{
0 if D < j,

D − j if D ≥ j.

Applying with j = m(m − 1) − n yields

dimS/
(
It(Z),L

)
=

{
0 if D < m(m− 1) − n,

D −m(m− 1) + n if D ≥ m(m− 1) − n.

Substituting for the value of D yields the required result. �
Next is the first basic structural result.

Proposition 2.3. Let L denote an m × (m − 1) general linear matrix over R =
k[X1, . . . , Xn], with n ≥ 3 and m ≥ 2. Set I = Im−1(L) ⊂ R. Then:
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(i) I has codimension 2 and Im−2(L) ⊂ R has codimension min{6, n}.
(ii) (char(k) = 0) R/I satisfies the condition (Rr) of Serre, with r = min{3, n − 2 − 1}; 

in particular, if n ≥ 4 then R/I is normal and I is a prime ideal.
(iii) I is of linear type if and only if m ≤ n.
(iv) (char(k) = 0) I is normally torsionfree if and only if m < n.

Proof. (i) This follows from Theorem 2.2.
(ii) Since Z is a generic matrix, the Jacobian ideal of S/Im−1(Z) is Im−2(Z)/Im−1(Z). 

Applying Bertini’s theorem [12] gives that the singular scheme of the scheme-theoretic 
general hyperplane section S/(Im−1(Z), L1) is the scheme associated to S/(Im−2(Z), L1). 
Inducting on the number m(m − 1) − n of general hyperplane sections yields that the 
singular scheme of the scheme-theoretic linear section S/(Im−1(Z), L) � R/I is the 
scheme associated to S/(Im−2(Z), L) � R/Im−2(L). By Theorem 2.2, the latter has 
codimension at least min{6, n} on R. Since I = Im−1(L) has codimension 2, R/I satisfies 
the Serre condition (Rmin{3,n−2−1}). Thus, if n ≥ 4 then R/I satisfies (R1). At the other 
end, R/I is Cohen–Macaulay. It follows that, for n ≥ 4, R/I is normal and, since I is 
homogeneous, R/I must be a domain. (If n = 3 then I is still a radical ideal.)

(iii) Let us apply the result of Theorem 2.2 in this case. We claim that

min
{
n, (m− t + 1)(m− t)

}
≥ m− t + 1, for 1 ≤ t ≤ m− 1.

This is obvious if the minimum is attained by (m − t + 1)(m − t); if the minimum is n
instead then m ≤ n certainly implies m − t + 1 ≤ n.

This shows that I satisfies the property (F1), hence it is an ideal of linear type in 
this case (see [13]). The converse is evident since the linear type property implies the 
inequality μ(I) ≤ dimR.

(iv) Suppose first that m < n. By part (iii), I is of linear type. Since I is strongly 
Cohen–Macaulay [3, Theorem 2.1(a)] then the Rees algebra of I is Cohen–Macaulay [13, 
Theorem 9.1], and hence so is the associated graded ring of I. On the other hand, we may 
assume that n ≥ 4 given that for n = 3 the ideal I is generated by a regular sequence of 
two elements. Therefore, by part (ii), the ideal I is prime. By [10, Proposition 3.2(1)], 
the assertion is equivalent to having

�P (I) ≤ max{htP − 1, ht I},

for every prime ideal P ⊃ I. We may assume that htP ≥ 3 since I is a height 2 prime. 
Therefore, we have to show that �P (I) ≤ htP − 1. If P = (X) the result is clear since 
�(X) ≤ μ(I) = m ≤ n − 1 = ht(X) − 1. Therefore, we may assume that P � (X), hence 
htP ≤ n − 1.

Set t0 := max{1 ≤ s ≤ m − 2 | Is(L) �⊂ P}. Therefore, It0+1(L) ⊂ P , hence 
ht It0+1(L) ≤ htP ≤ n − 1. By Theorem 2.2 one must have ht It0+1(L) = (m − t0)(m −
t0 − 1). Pick a t0-minor Δ of L not contained in P , so that, in particular, RP is a 
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localization of the ring of fractions RΔ = R[Δ−1] ⊂ k(X). By a standard row-column 
elementary operation procedure, there is an (m − t0) × (m − t0 − 1) matrix L̃ over RP

such that

IP = Im−1−t0(L̃).

Assume first that t0 ≤ m −3. Then (m −t0) ≤ (m −t0)(m −t0−1) −1 = ht It0+1(L) −1 ≤
htP − 1. Therefore

�P (I) = �
(
Im−1−t0(L̃)

)
≤ min

{
μ
(
Im−1−t0(L̃)

)
, htP

}
= min{m− t0, htP} ≤ htP − 1.

If t0 = m − 2, one gets �P (I) = min{2, htP} = 2 ≤ htP − 1 since it has been assumed 
that htP ≥ 3.

Therefore, I is normally torsionfree. The converse will follow from Theorem 2.10 which 
has an independent proof. �

The proof of the main theorem stated further down will draw upon several results of 
independent interest.

Recall the following notation: for a given integer s ≥ 1, one says that the ideal I ⊂ R

satisfies condition (Gs) if μ(IP ) ≤ htP , for every prime ideal P such that htP ≤ s − 1.

Proposition 2.4. Let L denote an m × (m − 1) general linear matrix over R =
k[X1, . . . , Xn], with m ≥ 2 and n ≥ 3. Set I := Im−1(ϕ). Then

(i) I satisfies condition (Gn).
(ii) (char(k) = 0) Given an integer r ≥ 0 such that I(r)/Ir �= {0} then I(r)/Ir is an 

(X)-primary R-module (in other words, I(r) is the saturation of Ir).

Proof. (i) Let P ⊂ R be a prime of height ≤ n − 1. Set

t∞ := min
{
1 ≤ t ≤ m− 1

∣∣ It(L ⊂ P )
}
.

Then ht It∞(L) ≤ n − 1, hence ht It∞(L) = (m − t∞ + 1)(m − t∞) by Proposition 2.3(i). 
Inverting a (t∞ − 1)-minor of L in RP we get IP = Im−t∞(L̃) for a suitable (m − t∞ +
1)(m − t∞) matrix L̃ over RP . Collecting the information yields

μ(IP ) = μ
(
Im−t∞(L̃)

)
= m− t∞ + 1 ≤ (m− t∞ + 1)(m− t∞) = ht It∞(L) ≤ ht(P ).

(ii) Fixing an r ≥ 0, suppose that I(r)/Ir �= {0}. By Proposition 2.3(iv), we have 
m ≥ n. The assertion is equivalent to saying that a power of (X) annihilates I(r)/Ir i.e., 
that I(r)

P = IrP for every prime P �= (X). Letting r ≥ 0 run, this is in turn equivalent 
to claiming that the associated graded ring grI(R) is torsionfree over R/I locally on the 
punctured spectrum Spec(R) \ (X).
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Thus, let P �= (X) be a prime containing I. Then the condition (Gn) of part (i) 
implies that IP satisfies the condition (F1) (same as (G∞)) as an ideal of RP . As in 
the proof of Proposition 2.3(iv), we know that the associated graded ring grIP (RP ) is 
Cohen–Macaulay. Therefore, by the same token and since ht I = 2, one has to show the 
local estimates

�Q(I) = �QP
(IP ) ≤ ht(QP ) − 1 = htQ− 1,

for every prime Q ⊂ P .
Fixing such a prime Q, set t0 := max{1 ≤ s ≤ m − 2 | Is(L) �⊂ Q}. The argument is 

now the same as the one in the proof of Proposition 2.3(iv). �
Corollary 2.5. Let L denote an m ×(m −1) general linear matrix over R = k[X1, . . . , Xn], 
with m ≥ 2 and n ≥ 3. Set I := Im−1(ϕ). Then Sr(I) � Ir in the range 1 ≤ r ≤ n − 1.

Proof. This follows from Proposition 2.4(i) as applied through the result of [22, Theo-
rem 5.1]. �

For an integer in the range 1 ≤ r ≤ n − 3, recall the rth approximation complex 
associated to the ideal I (see [23, Section 3]):

Mr : 0 → Hr → Hr−1 ⊗ S1 → · · · → H1 ⊗ Sr−1 → Sr. (9)

Here Hi stands for the ith Koszul homology module on the generators of I and Si

denotes the ith homogeneous part of the polynomial ring S := R/I[Y1, . . . , Ym]. One has 
H0(Mr) � Sr(I/I2).

Proposition 2.6. The approximation complex Mr is acyclic in the range 1 ≤ r ≤ n − 3.

Proof. We show that the complex is acyclic locally everywhere. Suppose first that P �=
(X) is a non-irrelevant prime. In this case, using Corollary 2.5, the result is contained in 
[13, Theorem 5.1].

Thus, we can assume that P = (X) and that Mr is acyclic locally at any prime 
properly contained in (X). We show acyclicity stepwise from the left. Thus, suppose the 
partial complex

0 → Hr → · · · → Hk+2⊗r−k−2 → Hk+1 ⊗ Sr−k−1
↘
Bk

↘
0
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is exact. Since I is a strongly Cohen–Macaulay ideal [3, Theorem 2.1(a)], one has 
depth(Hi) = n − 2 for every 1 ≤ i ≤ r. Chasing depths from left to right, one gets 
depth(Bk) ≥ n − (r − k + 1) = (n − r) + k − 1 ≥ 3 + k − 1 = k + 2 ≥ 2.

Now, letting Zk ⊂ Hk ⊗ Sr−k denote the subsequent module of cycles, write Dk :=
Zk/Bk. Suppose Dk �= 0 and take Q ∈ Ass(Dk). Since the entire complex is acyclic off 
(X), we must have Q = (X). Applying HomR(R/(X), −) yields the exact sequence

0 = HomR

(
R/(X), Zk

)
→ HomR

(
R/(X), Dk

)
→ Ext1R

(
R/(X), Bk

)
.

The rightmost term of this sequence vanishes as well since the depth of Bk is at least 2, 
hence also does the middle term; this is absurd since (X) is an associated prime of Dk. 
Therefore, we conclude that Dk = 0. �

Denote by pdR(M) the projective dimension of a finitely generated R-module M .

Corollary 2.7. pdR(Ir/Ir+1) ≤ r+2 for 1 ≤ r ≤ n −3. In particular, (X) /∈ Ass(Ir/Ir+1).

Proof. Since (9) is acyclic by Proposition 2.6, depth chasing all the way to the right yields 
depthSr(I/I2) ≥ n − (r+2). Therefore, pdR(Sr(I/I2)) ≤ r+2. But Sr(I/I2) � Ir/Ir+1

by Corollary 2.5. �
Theorem 2.8. (char(k) = 0) Ass(R/Ir) = Ass(R/I) for 1 ≤ r ≤ n − 2.

Proof. By Proposition 2.4(ii), Ass(R/Ir) ⊂ Ass(R/I) ∪ {(X)} — note that the assump-
tion that I is prime holds for n ≥ 4; for n = 3, I is still radical, hence the statement is 
obvious directly.

Proceed by induction on r. It is clear for r = 1 since I is a radical unmixed ideal for 
n ≥ 3 and ht(I) = 2 < n.

Supposing (X) ∈ Ass(R/Ir), the exact sequence 0 → Ir−1/Ir → R/Ir → R/Ir−1 → 0
and the inductive hypothesis force us to conclude that (X) ∈ Ass(Ir−1/Ir). But since 
r + 1 ≤ n − 1, the latter is forbidden by Corollary 2.7. �
2.2. The role of the inversion factor

An ideal I ⊂ R generated by m forms of the same degree is of fiber type if the 
bihomogeneous defining ideal J ⊂ R[Y] = R[Y1, . . . , Ym] of the Rees algebra R(I) is gen-
erated by its Y-linear forms and the defining equations of the special fiber R(I)/(X)R(I).

Proposition 2.9. Let L denote an m × (m − 1) general linear matrix over R =
k[X1, . . . , Xn], with m ≥ n ≥ 3. Setting I := Im−1(L) ⊂ R, one has:

(a) The rational map G : Pn−1 ��� Pm−1 defined by the (m − 1)-minors is birational 
onto its image.
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(b) I is an ideal of fiber type and the Rees algebra R(I) is a Cohen–Macaulay domain.
(c) The map G admits 

(
m−1
n−1

)
source inversion factors, each associated to a minimal rep-

resentative of the inverse map; moreover, any of them is an element of the symbolic 
power I(n−1) of degree (m − 1)(n − 1) − 1.

Proof. (a) By [7, Theorem 3.2], it suffices to prove that the dimension of the k-subalgebra 
of R generated by the minors has dimension n, i.e., that I has maximal analytic spread. 
The case where m = n follows from Proposition 2.3(iii). Now assume that m > n. Since 
R/I is Cohen–Macaulay and satisfies μP (I) ≤ htP , for htP ≤ n −1 (Proposition 2.4(i)), 
the result follows from [21, Theorem 4.3].

(b) For m = n there is nothing to prove regarding the fiber type property, while the 
symmetric algebra is even a complete intersection. Thus, assume that m > n. In this 
case the result follows from [16, Theorem 1.3]. In addition, the defining ideal of the Rees 
algebra R(I) is (I1(X ·B), In(B)), where B denotes the Jacobian dual matrix of L.

(c) Since I is of fiber type, a weak Jacobian dual matrix of I as in [7] coincides with 
the transpose Bt of the matrix introduced in the previous item; Bt is an (m − 1) × n

matrix of linear forms in the Y-variables, whose rank over the special fiber of I is n − 1. 
By part (a) and [7], any (n −1) ×n submatrix has rank n −1 and its n (ordered, signed) 
maximal minors are the coordinates of a representative of the inverse map; thus, there 
are 

(
m−1
n−1

)
such representatives.

By construction, the degree of any one of these representatives (i.e., of its coordinates 
as elements of the special fiber) is exactly n − 1. It follows from Proposition 1.4 that 
each such representative gives rise to a source inversion factor that is an element of the 
symbolic power I(n−1) and has degree (m − 1)(n − 1) − 1. �

One gets immediately the following preamble to the subsequent main results.

Proposition 2.10. Let L denote an m × (m − 1) general linear matrix over R =
k[X1, . . . , Xn], with m ≥ n ≥ 3. Set I = Im−1(L) ⊂ R. Then I(r) = Ir for 1 ≤ r ≤ n −2, 
and Dj ∈ I(n−1) \ In−1, where Dj (j = 1, . . . , 

(
m−1
n−1

)
) are the source inversion factors 

associated to a complete set of minimal representatives of the inverse map.

Proof. The first assertion follows immediately from Theorem 2.8 and the second assertion 
stems from Proposition 1.4. �

Thus far, the available features of the theory work for m ≥ n. In the subsequent 
part we come to grips with a richer amount of information, by focusing on the cases 
where m = n or m = n + 1. We will have to go a long way to obtain the nature of the 
corresponding symbolic Rees algebras. Structure theorems for m ≥ n + 2 are this far 
unknown (see Remark 2.25).
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2.3. The symbolic algebra: Cremona case m = n

The classical theory of plane Cremona maps in characteristic zero relates the Jacobian 
of a homaloidal net with the principal curves of the corresponding Cremona map. Our 
first proposition for this part is a far-fetched analogue of this result.

Proposition 2.11. (char(k) = 0) Let R = k[X1, . . . , Xn] be a polynomial ring over a field 
k of characteristic zero, with its standard grading and let L = (�ij) be an n × (n − 1)
matrix whose entries are linear forms in R. For every i = 1, . . . , n write Δi for the 
signed (n − 1)-minor of L obtained by omitting the i-th row and let Θ = Θ(Δ) denote 
the Jacobian matrix of Δ := {Δ1, . . . , Δn}.

If the ideal In−1(L) := (Δ) ⊂ R is of linear type then the rational map Pn−1 ��� Pn−1

defined by Δ is a Cremona map and the associated source inversion factor is 1
n−1 det(Θ).

Proof. The first assertion to the effect that the map is birational is [17, Examples 2.4]
(also [18, Theorem 3.12]).

We proceed to determine the source inversion factor. Consider the Jacobian dual 
matrix of [18] which is the Jacobian matrix with respect to X1, . . . , Xn of the linear 
forms in the target variables Y1, . . . , Yn induced by the columns of L. This is the following 
matrix: ⎛⎜⎝

∑n
r=1

∂�r1
∂X1

Yr . . .
∑n

r=1
∂�r1
∂Xn

Yr

...
...∑n

r=1
∂�rn−1
∂X1

Yr . . .
∑n

r=1
∂�rn−1
∂Xn

Yr

⎞⎟⎠ .

Now, by [17, Examples 2.4] the inverse map is defined by the (signed) maximal minors 
of this matrix. Therefore, letting di denote the signed (n − 1)-minor of this matrix 
omitting the ith row, by definition of the source inversion factor we are to show that the 
outcome of evaluating di via the map Yi �→ Δi is 1

n−1 det(Θ)Xi.
To this purpose, we first note the following equality, where now Δi denotes the re-

spective non-signed minor:

n∑
r=1

(−1)n+r ∂�rj
∂Xk

Δr =
∑

(−1)n+r+1�rj
∂Δr

∂Xk
, for 1 ≤ k ≤ n, 1 ≤ j ≤ n− 1,

from which we gather:

di(Δ) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

r=1(−1)n+r+1�r1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Δr

∂X1
...

∂Δr

∂Xi−1
∂Δr

∂Xi+1

...
∂Δr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . .

∑n
r=1(−1)m+r+1�rn−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Δr

∂X1
...

∂Δr

∂Xr−1
∂Δi

∂Xr+1

...
∂Δr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

∂Xn ∂Xn
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Write [r1 . . . rn−1] for the (n −1)-minor of L with rows r1, . . . , rn−1 and let αr1...rn−1 :=
(n +1)(n −1) +

∑n
s=1 rs. By the multi-linearity of determinants, the result of evaluating 

di is then

∑
1≤r1<...<rn−1≤n

(
(−1)αr1...rn−1

∑
σ

(−1)σ�σ(r1)1 · · · �σ(rn−1)n−1

)

× det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Δr1
∂X1

. . .
∂Δrn−1
∂X1

...
. . .

...
∂Δr1
∂Xi−1

. . .
∂Δrn−1
∂Xi−1

∂Δr1
∂Xi+1

. . .
∂Δrn−1
∂Xi+1

...
. . .

...
∂Δr1
∂Xn

. . .
∂Δrn−1
∂Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

1≤r1<...<rn−1≤n

(−1)αr1...rn−1 [r1 . . . rn−1] det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Δr1
∂X1

. . .
∂Δrn−1
∂X1

...
. . .

...
∂Δr1
∂Xi−1

. . .
∂Δrn−1
∂Xi−1

∂Δr1
∂Xi+1

. . .
∂Δrn−1
∂Xi+1

...
. . .

...
∂Δr1
∂Xn

. . .
∂Δrn−1
∂Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Δ1
∂X1

. . . ∂Δn

∂X1
...

. . .
...

∂Δ1
∂Xi−1

. . . ∂Δn

∂Xi−1

Δ1 . . . Δn
∂Δ1

∂Xi+1
. . . ∂Δn

∂Xi+1

...
. . .

...
∂Δ1
∂Xn

. . . ∂Δn

∂Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Xi

n− 1 detΘ

where we have expanded the determinant by Laplace according to the ith row and used 
Euler’s formula. �
Corollary 2.12. (char(k) = 0) Let R = k[X1, . . . , Xn] be a polynomial ring over a field 
k of characteristic zero, with its standard grading and let L be an n × (n − 1) general 
linear matrix. Then In−1(L) is the base ideal of a Cremona map of Pn−1 and the associ-
ated source inversion factor is 1

n−1 det(Θ), where Θ denotes the Jacobian matrix of the 
(n − 1)-minors of L.

Proof. The first assertion follows from Proposition 2.3. The second assertion is a conse-
quence of Proposition 2.11. �
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Remark 2.13. An alternative to prove the second assertion of the previous corollary would 
come out of Proposition 1.3 by noticing that the inversion factor and det(Θ) have the 
same degree. Then it would suffice to argue that the latter is an irreducible polynomial 
since the (n − 1)-minors of L are sufficiently general forms.

Here is the main theorem in the case m = n:

Theorem 2.14. Let L denote an n ×(n −1) general linear matrix over R = k[X1, . . . , Xn], 
with n ≥ 3. Set I := In−1(L) ⊂ R and let R(I) denote its symbolic Rees algebra. Then

(a) R(I) is a Gorenstein normal domain.
(b) (char(k) = 0) R(I) is generated by the (n − 1)-minors of L, viewed in degree 1 and 

by the source inversion factor of the Cremona map defined by these minors, viewed 
in degree n − 1.
Moreover, this inversion factor coincides with a nonzero scalar multiple of the Jaco-
bian determinant of the very minors.

Proof. (a) The symbolic Rees algebra R(I) of I is a Gorenstein ring; indeed, it is 
a quasi-Gorenstein Krull domain since I is a radical ideal of codimension 2 [19]. 
On the other hand, by the proof of [20, Corollary 2.4(b)], one has an isomorphism 
R(I) � R(I)[t−1] = R[It, t−1], hence R(I) is finitely generated. Moreover, the latter is 
Cohen–Macaulay since R(I) is Cohen–Macaulay by Proposition 2.9(b). It follows that 
R(I) is a Gorenstein normal domain.

(b) To get the explicit generation, let d1, . . . , dn ∈ k[Y] be forms of the same degree, 
with gcd = 1, defining the inverse map and let D ∈ R denote the corresponding source 
inversion factor. Write J = (d1, . . . , dn) ⊂ k[Y]. By definition, one has

D = di(Δ1, . . . ,Δn)/Xi, 1 ≤ i ≤ n,

where Δ := {Δ1, . . . , Δn} are the (signed) minors generating I. Identifying the two Rees 
algebras RR(I) = R[It] ⊂ R[t] and Rk[Y](J) = k[Y][Ju] ⊂ k[Y][u] by a k-isomorphism 
that maps Yi �→ Δit and Xi �→ diu, then D is identified with d1/X1 in the common field 
of fractions. Drawing on Proposition 2.4(ii) (here we need char(k) = 0), then the symbolic 
algebra is generated by It and Dtn−1 as a consequence of [23, Corollary 7.4.3(b)] (note 
that the notation for the two ideals is reversed in the latter).

The additional statement follows from Corollary 2.12 (again in characteristic zero). �
As an application of the results so far in the case m = n, we give an affirmative 

solution, in characteristic zero, of the following conjecture stated in [11, Section 2]:

Conjecture. If I is the ideal of minors of a “generic” (that is, random) 2 × 3 matrix 
of linear forms in 3 variables, then the annihilator of I(d)/Id is F1(I)e, where e is the 
greatest integer ≤ d/2.
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There is certainly a misprint in this statement since by definition the Fitting ideal 
F1(I)e is the ideal of 2-minors of the matrix, which is the ideal I itself. The correct 
Fitting should be F2(I)e, the ideal of 1-minors of the matrix. We will assume this change 
in the conjecture statement. Since the entries are general linear forms, F2(I)e is the 
irrelevant ideal m := (x, y, z) ⊂ R := k[x, y, z] with k a field.

Proof of the conjecture. Let ϕ denote the given matrix. A consequence of Theo-
rem 2.14(b) above is that I(2) = (I2, D), where D ∈ R is the inversion factor of the 
Cremona map defined by the 2-minors of ϕ, and, moreover, for every d ≥ 1 the following 
equalities hold

I(d) =
{

(I(2)) d
2 if d is even,

I (I(2)) d−1
2 if d is odd.

By definition of the inversion factor, one has Dm ∈ I2. It follows that the annihilator 
of I(2)/I2 is m. We also know that deg(D) = 3 since the inverse map to the Cremona map 
defined by the 2-minors is also defined by forms of degree 2, and so deg(D) = 2.2 −1 = 3.

Consider separately the even and the odd cases.
d even.
One has md/2I(d) = md/2(I(2))d/2 = (mI(2))d/2 ⊂ (I2)d/2 = Id.
Conversely, let f ∈ m be a form such that fI(d) ⊂ Id. Since the annihilator of I(2)/I2

is the entire maximal ideal m, it suffices to show that deg(f) ≥ d/2. Since I(d) = (I(2))d/2
and I(2) = (I2, D), in particular we get fDd/2 ∈ Id. Reading degrees on both sides one 
has that deg(f) + 3d/2 ≥ 2d. Therefore, deg(f) ≥ d/2, hence f ∈ md/2 as required.

d odd.
One has

m(d−1)/2I(d) = m(d−1)/2I
(
I(2))(d−1)/2 = I

(
mI(2))(d−1)/2 ⊂ I

(
I2)(d−1)/2 = IId−1 = Id.

The hypothesis is that fD(d−1)/2I ⊂ Id. In particular, taking a minor Δ among the 
generators of I, we find fD(d−1)/Δ ⊂ Id. Again, reading degrees, we get the inequality 
deg(f) + 3((d − 1)/2) + 2 ≥ 2d, from which follows that deg(f) ≥ (d − 1)/2.

We conclude as before. Since in the odd case, (d − 1)/2 = �d/2�, we are done. �
2.4. The symbolic algebra: Implicitization case m = n + 1

We will now assume that m = n + 1.

2.4.1. Homological prelims
The arguments in this part will draw on the following results of independent interest. 

To describe their contents, recall that Sn−1(I) � In−1 by Corollary 2.5. Therefore, by 
[2,22,25] one has a free resolution of In−1
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Kn−1 : 0 → Fn−1 → Fn−2 → . . . → F1 → F0 → 0

where

Fi :=
i∧
Rn ⊗R S(n−1)−i

(
Rn+1)

and d : Fi → Fi−1 is given by

d(e1 ∧ . . . ∧ ei ⊗ g) :=
i∑

l=1

e1 ∧ . . . ∧ êl ∧ . . . ∧ ei ⊗ ϕ(el)g,

with {e1, . . . , en} denoting a basis of Rn and ϕ : Rn → Rn+1 standing for the map 
defined by the (n + 1) × n presentation matrix L = (�ij) of the ideal I.

Consider the R-dual map to dn−1 : Fn−1 → Fn−2. Since In−1 is generated in (stan-
dard) degree n(n − 1), after identification and taking in account the degrees shift, the 
dual map is of the form

η := d∗n−1 : RN
(
(n + 1)(n− 1) − 1

)
→ Rn

(
(n + 1)(n− 1)

)
, (10)

where N = (n + 1)
(
n
2
)
. Let M denote the cokernel of η. Shifting by −((n + 1)(n − 1)), 

we get a homogeneous presentation

RN (−1) η→ Rn → M
(
−(n + 1)(n− 1)

)
→ 0.

Theorem 2.15. With the above notation, there is a homogeneous isomorphism

M
(
−(n + 1)(n− 1)

)
� Rn/(X)Rn = kn.

Proof. Picking up from the above preliminaries, let us make explicit the dual map to 
dn−1 : Fn−1 → Fn−2. Note that

Fn−1 =
n−1∧

Rn ⊗R S0
(
Rn+1) � Rn,

Fn−2 =
n−2∧

Rn ⊗R S1
(
Rn+1) � R

( n
n−2

)
⊗R Rn+1.

Applying these identifications, the basis vector e1∧ · · · ∧ êk ∧ · · · ∧ en gets identified with 
ek and we write a1,...,k̂,...,l̂,...,n for a basis vector of R

( n
n−2

)
corresponding to e1 ∧ · · · ∧

êj ∧ · · · ∧ êl ∧ · · · ∧ en. Further, let {b1, . . . , bn+1} stand for a basis of Rn+1 With this 
notation, for k = 1, . . . , n, the map is quite simply
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ek �→
n−1∑
l=1

a1,...,k̂,...,l̂,...,n ⊗ ϕ(el) =
n−1∑
l=1

a1,...,k̂,...,l̂,...,n ⊗
n+1∑
i=1

�ilbi

=
n+1∑
i=1

n−1∑
l=1

�ila1,...,k̂,...,l̂,...,n ⊗ bi,

where L = (�ij) is as above.
From this the transposed matrix has the following block shape

η = (Mn−1,n| . . . |M1,n| . . . |Mj−1,j | . . . |M1,j | . . . |M1,2),

where, for 1 ≤ i ≤ j ≤ n, Mij is the following n × (n + 1) matrix up to signs

Mi,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
...

... . . .
...

�1i �2i . . . �(n+1)i
...

... . . .
...

�1j �2j . . . �(n+1)j
...

... . . .
...

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← (n + 1 − j)th row

← (n + 1 − i)th row

Next let M̃i,j denote the submatrix of Mi,j consisting of the first n columns and consider 
the following block submatrix of η

(M̃n−1,n| . . . |M̃1,n | ˜Mn−2,n−1),

consisting of n square blocks of order n each; in particular, the matrix has n2 columns.
We claim that the R-submodule of Rn generated by the columns of the above matrix 

coincides with (X)Rn. For this, since the columns have standard degree 1, it suffices 
to show that the columns are k-linearly independent as elements of the k-vector space 
((X)R)1.

Suppose that a nontrivial k-linear combination of these columns vanishes, with co-
efficients α1, . . . , αn2 ∈ k. Grouping the coefficients corresponding to the variables 
X1, . . . , Xn one gets an n ×n linear system with coefficients in k such that {X1, . . . , Xn}
is a nonzero solution. But then every row of the system gives a k-linear relation of these 
variables. Clearly this is only possible if all the coefficients of this system vanish. Writing 
this condition as a new square linear system, this time around of order n2 with solution 
{α1, . . . , αn2} and appropriate coefficients in k. Since the latter coefficients are nothing 
but the coefficients of all linear forms �ij , they can be expressed as partial derivatives of 
these forms, so the corresponding n2 × n2 matrix has the following form (up to signs)
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Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θn−1 Θn−2 Θn−3 . . . Θ2 Θ1 0
Θn 0 0 . . . 0 0 Θn−2
0 Θn 0 . . . 0 0 Θn−1
0 0 Θn . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . Θn 0 0
0 0 0 . . . 0 Θn 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Θi is the transpose of the Jacobian matrix of {�i1, . . . , �in} and 0 denotes the 
null matrix of order n. We note that Θi is non-singular since {�i1, . . . , �in} is a set of 
k-linearly independent 1-forms. The system has only the trivial solution if and only if 
the determinant of this matrix does not vanish. One can see that, after appropriate 
elementary row operations, the above determinant is non-vanishing if and only if the 
following matrix has nonzero determinant⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 . . . 0 0 Θn−2
0 I 0 . . . 0 0 Θn−1
0 0 I . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . I 0 0
0 0 0 . . . 0 I 0
0 0 0 . . . 0 0 Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where I stands for the n × n identity matrix and Ω = Θn−1Θn−2 − Θn−2Θn−1. Thus, 
det(Θ) �= 0 if and only if det(Ω) �= 0. Now, the entries of the matrices Θn−1, Θn−2 are 
among the coefficients of the entries of the matrix L = (�ij). Since these are random, 
det(Ω) �= 0.

Now, to conclude, we have shown that the image of the map η in (10) is the 
R-submodule (X)Rn. Therefore, M(−(n + 1)(n − 1)) � Rn/(X)Rn as required. �
Example 2.16. The above discussion has many common points with [23, Section 8.2]
which treats the case of linearly presented perfect ideals in dimension n = 3. However, 
the above proof draws on the hypothesis that L is a general linear matrix — and, in fact, 
it may be false for other linearly presented ideals. We are indebted to A. Tchernev for 
having provided us with the following counter-example to Theorem 2.15 in the context 
of arbitrary linearly presented ideals:

ϕ =

⎛⎜⎜⎝
X1 X2 X3
X2 X3 0
X3 0 X1
0 X1 X2

⎞⎟⎟⎠ (11)

Here the vector space dimension of the linear forms in Im(η) is 8, where η denotes the 
correspondingly defined matrix as in the proposition. We note that by changing 6 out of 
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the 9 nonzero entries of the Tchernev matrix into general 1-forms, the resulting matrix 
gives the maximal value 9 for the vector space dimension of the linear forms in Im(η).

Proposition 2.17. Let L denote an (n + 1) × n general linear matrix over R =
k[X1, . . . , Xn], with n ≥ 3. Set I = In(L) ⊂ R. Then

I(n−1)/In−1 � kn
(
−
(
n(n− 1) − 1

))
,

as graded R-modules.

Proof. By Theorem 2.15, one has a (shifted) homogeneous isomorphism

M(−n) � kn
(
n(n− 1) − 1

)
.

On the other hand, by definition there is a homogeneous isomorphism

M � ExtnR
(
R/In−1, R

)
.

Therefore, it obtains

I(n−1)/In−1 � H0
(X)

(
R/In−1) (

since I(n−1)/In−1 has finite length
)

� HomR

(
ExtnR

(
R/In−1, R(−n)

)
, E(k)

)
(by graded local duality)

� HomR

(
M(−n), E(k)

)
� HomR

(
kn

(
n(n− 1) − 1

)
, E(k)

)
� HomR

(
k,E(k)

)⊕n(−(
n(n− 1) − 1

))
� kn

(
−
(
n(n− 1) − 1

))
,

where the last isomorphism is given in [5, Lemma 3.2.7(b)]. �
Example 2.18. Corollary 2.17 fails for arbitrary perfect ideals of codimension 2 admitting 
linear presentation. For n = 3, Example 2.16 is a counter-example. Letting I ⊂ R =
k[X1, X2, X3] denote the ideal of 3-minors, then I(2)/I2 is a cyclic R-module generated 
by the residue class of a form F ∈ I(2) of degree 4 < n(n − 1) − 1 = 5. The map defined 
by the minors is still birational onto the image, with inversion factors X1F, X2F, X3F . 
In particular, the latter are not minimal generators of I(2). Even if we slightly ‘perturb’ 
Tchernev’s matrix the result equally fails, such as in the following matrix

⎛⎜⎜⎝
X1 X2 X3
X2 X3 0
X3 0 X1 −X2
0 X1 −X3 X2 −X3

⎞⎟⎟⎠ .

Perturbing more entries, such as in the following matrix
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⎛⎜⎜⎝
X1 X2 X3
X2 X3 X1 −X2
X3 X1 −X3 X2 −X3

X1 + X2 X2 + X3 X1 + X3

⎞⎟⎟⎠ ,

the result of Proposition 2.17 still holds true — and so does the one of Theorem 2.15. 
However, now the statement in Theorem 2.19(i) fails as those generators have a nontrivial 
common divisor. Cooking up some of these examples require some extra care to make sure 
that I is a radical ideal, otherwise a whole repository of symbolic power theory crumbles 
down. Therefore, slightly perturbing a linear (n +1) ×n matrix whose n-minors generate 
a radical ideal may lead us astray. As an example, changing the lower right corner entry 
of the first of the above matrices into X1 −X2 + X3 gives a non-radical ideal.

2.4.2. The trick of the transposed Jacobian dual
A good deal of the subsequent development rests on a simple construction.
Namely, let Δ = {Δ, . . . , Δn+1} denote the signed maximal minors of L. Let B

denote the Jacobian dual matrix of L, whose entries belong to the polynomial ring 
k[Y] = k[Y1, . . . , Yn, Yn+1]. By definition, one has an equality Y · L = X ·Bt, where the 
superscript t denotes transpose. We can similarly write an equality Y · L′ = Z ·B, for a 
unique matrix L′ whose entries are linear forms in a set of duplicate variables Z of X.

We observe that L′ only differs from L by the rearrangement of the (same) coefficients 
of the linear forms. Since the notion of general linear forms is dictated by the randomness 
of the total set of coefficients, it follows that L′ it too is a matrix whose entries are 
general linear forms in the variables Z. Therefore, by Proposition 2.9(a), its n-minors 
δ = {δ1, . . . , δn+1} define a birational map onto the image, with Bt as its Jacobian dual 
matrix and corresponding set {d1(Z), . . . , dn(Z)} of source inversion factors associated 
to a complete set of minimal representatives of the corresponding inverse map.

As usual, the set of n-minors is taken with the correct signs. Keeping the above 
notation, one has the following basic structural result:

Theorem 2.19. (char(k) = 0) Let L denote an (n + 1) × n (n ≥ 3) general linear matrix 
over R = k[X] = k[X1, . . . , Xn] with n-minors Δ = {Δ1, . . . , Δn+1}, let {D1, . . . , Dn}
be as in Proposition 2.10, and {d1(Z), . . . , dn(Z)} as above. Then:

(i) {D1, . . . , Dn} ⊂ R and {d1(Z), . . . , dn(Z)} ⊂ k[Z] both generate ideals of codimen-
sion 2.

(ii) {D1, . . . , Dn} defines a Cremona map D of Pn−1 whose inverse map is (d1(Z) :
· · · : dn(Z)).

(iii) Writing I := (Δ1, . . . , Δn+1), the R-module I(n−1)/In−1 is minimally generated 
by the classes of D1, . . . , Dn; in particular, the symbolic power I(n−1) is minimally 
generated by D1, . . . , Dn and by the minimal generators of In−1 which are not of 
the form XiDj, 1 ≤ i, j ≤ n.
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(iv) The source inversion factor of D is the (n − 1)th power of an element E ∈
I(n(n−1)−1).
Supplement: Moreover, E coincides with the Jacobian determinant of D1, . . . , Dn

whenever the latter is irreducible.
(v) The minimal graded resolution of the ideal (D1, . . . , Dn) ⊂ R is

0 → R
(
−n2) Xt

→ R
(
−
(
n2 − 1

))n Ψ→ R
(
−
(
n(n− 1) − 1

))n → R, (12)

where Ψ denotes the Jacobian dual matrix of the signed n-minors of L evaluated 
orderly on these signed minors, while Xt stands for the transpose of the vector of 
the source variables.

Proof. (i) We only discuss the ideal (D1, . . . , Dn) since the line of argument is analogous 
for (d1(Z), . . . , dn(Z)).

Being a subideal of I := (Δ1, . . . , Δn+1), the codimension of (D1, . . . , Dn) is at most 2. 
Thus, it suffices to show that it is at least 2. Start from scratch by observing that 
k[Δ] � k[Y]/(β), where β := det(B) and B stands for the Jacobian dual matrix of Δ. 
Since β(Δ) = 0, the chain rule of derivatives gives the short polarization complex

R
∂−→ Rn+1 Θ−→ Rn, (13)

where Θ denotes the transposed Jacobian matrix of Δ and ∂ is the transpose of[
∂β

∂Y1
(Δ) . . . ∂β

∂Yn+1
(Δ)

]
.

On the other hand, since dim k[Δ] = n, the rank of Θ is n (since char(k) = 0), hence 
ker(Θ) is generated by the single (column) vector whose jth coordinate is the n-minor of 
Θ omitting the jth column of Θ further divided by the gcd of all the n-minors. Since Δ
are maximal minors of a general linear matrix, they are sufficiently general n-forms, and 
so are any of their derivatives (the entries of Θ). Since having a proper common divisor 
is a closed condition on the coefficients while the coefficients of the entries are products 
and sums of random coefficients, then the ideal In(Θ) generated by the maximal minors 
of Θ has codimension 2.

This implies that ker(Θ) is generated by a single vector in degree (n − 1)n (the 
degree of an n-minor of Θ). On the other hand, a simple calculation shows that the 
coordinates of ∂ are also of degree n(n − 1). Since by (13) the jth coordinate of ∂ is a 
multiple of the n-minor of Θ omitting the jth column, we must conclude that the ideals 
( ∂β
∂Y1

(Δ), . . . , ∂β
∂Yn+1

(Δ)) and In(Θ) coincide.
In particular, the first of these ideals has codimension 2. We proceed to show that it is 

further contained in the ideal (D1, . . . , Dn), thus showing that the latter has codimension 
at least 2.
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Let L = (�ij) denote the given general linear (n + 1) × n matrix. Then

Bt =

⎛⎜⎜⎜⎜⎝
∑n+1

r=1
∂�r,1
∂X1

Yr

∑n+1
r=1

∂�r,2
∂X1

Yr . . .
∑n+1

r=1
∂�r,n
∂X1

Yr∑n+1
r=1

∂�r,1
∂X2

Yr

∑n+1
r=1

∂�r,2
∂X2

Yr . . .
∑n+1

r=1
∂�r,n
∂X2

Yr

...
...

. . .
...∑n+1

r=1
∂�r,1
∂Xn

Yr

∑n+1
r=1

∂�r,2
∂Xn

Yr . . .
∑n+1

r=1
∂�r,n
∂Xn

Yr

⎞⎟⎟⎟⎟⎠ .

Expanding the determinant of B, it obtains (up to signs)

β =
∑

1≤j1≤···≤jn≤n

[(
n+1∑
r=1

∂�r,j1
∂X1

Yr

)
· · ·

(
n+1∑
r=1

∂�r,jn
∂X1

Yr

)]
.

Taking the kth derivative yields

∂β

∂Xk
=

∑
1≤j1≤···≤jn≤n

[ ∑
1≤s≤n

(
n+1∑
r=1

∂�r,j1
∂X1

Yr

)
· · ·

(
∂�k,js
∂Xs

)
· · ·

(
n+1∑
r=1

∂�r,jn
∂X1

Yr

)]

=
∑

1≤s≤n

[ ∑
1≤j1≤···≤jn≤n

(
n+1∑
r=1

∂�r,j1
∂X1

Yr

)
· · ·

(
∂�k,js
∂Xs

)
· · ·

(
n+1∑
r=1

∂�r,jn
∂X1

Yr

)]

Note that for any given 1 ≤ s ≤ n, the expression inside the square brackets in the last 
line above is (up to signs) the determinant of the matrix

Bs :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑n+1
r=1

∂�r,1
∂X1

Yr

∑n+1
r=1

∂�r,2
∂X1

Yr . . .
∑n+1

r=1
∂�r,n
∂X1

Yr

...
...

. . .
...

∂�k,1
∂Xs

∂�k,2
∂Xs

. . .
∂�k,n

∂Xs

...
...

. . .
...∑n+1

r=1
∂�r,1
∂Xn

Yr

∑n+1
r=1

∂�r,2
∂Xn

Yr . . .
∑n+1

r=1
∂�r,n
∂Xn

Yr

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Expanding this determinant once again, this item around by Laplace along the ith row 
of Bs, gives det(Bs) =

∑n
t=1

∂�k,t

∂Xs
σ

[s]
t , where σ[s]

t denotes the (n −1)-minor of Bs omitting 

the sth row and the tth column. Coming from the other end, for given s, (σ[s]
1 : · · · :

σ
[s]
n ) is a representative of the inverse map to the map defined by Δ [7, Theorem 2.18, 

Supplement]. By definition, say, Ds is the source inversion factor corresponding to this 
representative, hence σ[s]

t (Δ) = XtDs, for 1 ≤ s, t ≤ n. Assembling the information, we 
get

∂β

∂Xk
(Δ) = det(B1)(Δ) + · · · + det(Bn)(Δ)

=
n∑ ∂�k,t

∂X1
σ

[1]
t (Δ) + · · · +

n∑ ∂�k,t
∂Xn

σ
[n]
t (Δ)
t=1 t=1
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=
(

n∑
t=1

∂�k,t
∂X1

Xt

)
D1 + · · · +

(
n∑

t=1

∂�k,t
∂Xn

Xt

)
Dn,

which proves our contention.
(ii) Let δ = {δ1, . . . , δn+1} ⊂ k[Z] stand for the n-minors of the general linear matrix 

L′ as explained above. We have seen in the preliminaries of this section that they define 
a birational map onto the image, with Bt as its Jacobian dual matrix. Thus, for any 
j ∈ {1, . . . , n}, the (i, j)-cofactors of Bt

{
Bt

j1, . . . , B
t
jn

}
taken modulo det(B) define an inverse to the map defined by δ. By Lemma 1.2 this 
yields the following structural congruencies

δi
(
Bt

j1, . . . , B
t
jn

)
≡ EjYi mod

(
detBt

)
, (14)

where Ej denote the corresponding target inversion factor.

Claim. I1(X ·Bt(δ)) is contained in the presentation ideal of the Rees algebra of the ideal 
(D1, . . . , Dn) ⊂ k[X], defined over the ring k[X, Z].

To see this it suffices to prove that the entries of X · Bt vanish by evaluat-
ing Yk �→ δk(D1, . . . , Dn), k = 1, . . . , n + 1, or, equivalently, by evaluating Yk �→
δk(XnD1, . . . , XnDn), k = 1, . . . , n + 1. Letting, as previously, Δ = {Δ1, . . . , Δn+1}
denote the signed n-minors of L, one has the relations

XnDi = Bin(Δ1, . . . ,Δn+1) = Bt
ni(Δ1, . . . ,Δn+1), (15)

since Di is inversion factor for Δ, where Bij is the cofactor of B corresponding to the 
entry indexed by (i, j) and Bin(Δ1, . . . , Δn+1) is the result of evaluating this cofactor 
on Δ. Since Bij = Bt

ji, one gets

X ·Bt
(
δ(XnD1, . . . , XnDn)

)
= X ·

⎛⎜⎝
∑n+1

i=1
∂�i1
∂X1

δi(XnD) . . .
∑n+1

i=1
∂�in
∂X1

δi(XnD)
...

. . .
...∑n+1

i=1
∂�i1
∂X3

δi(XnD) . . .
∑n+1

i=1
∂�in
∂Xn

δi(XnD)

⎞⎟⎠
(16)

=
(

n+1∑
i=1

�i1δi(XnD), . . . ,
n+1∑
i=1

�inδi(XnD)
)

(17)

= En(Δ)
(∑

�i1Δi, . . . ,
∑

�inΔi

)
(18)

= (0, . . . , 0) (19)
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where equality (18) follows from (14), (15) and (17) — keep in mind that the result of 
evaluating det(Bt) by YK �→ Δk is zero. As to equality (19), it is a consequence of (18)
using that L is a syzygy matrix of Δ. This proves the claim.

As a consequence, the matrix B(δ) is a submatrix of the full Jacobian dual ma-
trix of D := {D1, . . . , Dn}. On the other hand, we have det(B(δ)) = (det(B))(δ) =
(det(Bt))(δ) = 0 since det(Bt) is a polynomial relation of δ. Therefore, B(δ) has rank 
≤ n − 1. But since δ defines a birational map, not all (n − 1)-minors vanish modulo 
det(Bt). Thus, B(δ) has rank n − 1. For even more reason, the rank of the Jacobian 
dual matrix of D is ≥ n − 1 (hence = n − 1, its maximal possible value). Using again 
the criterion of [7] we derive that D defines a Cremona map.

Now, we prove the additional statement of this item. Let s denote the minimal number 
of generators of the Rees ideal of D of bidegree (1, ∗), with ∗ representing any value ≥ 1. 
Then the full Jacobian dual matrix of D is an s ×n matrix over k[Y] of rank n −1 which, as 
we have just shown, contains the n ×n submatrix B(δ). By [7, Theorem 2.18, Supplement]
we know that the inverse map to the Cremona map defined by D takes as its coordinate 
functions the (n −1)-minors of any (n −1) ×n submatrix of rank n −1 of the Jacobian dual 
matrix of D, further divided by their gcd. Since B(δ) has rank n −1, one can take, say, the 
submatrix of B(δ) formed with the first n −1 rows of B(δ). Write ∂i(Z) for the (n −1)th 
minor omitting the ith column. Then we get ∂i(Z) = Bni(δ) = Bt

ni(δ) = Xndi(Z), where 
di(Z) as before denotes the corresponding source inversion factor of the birational map 
defined by δ. It follows that (d1(Z) : · · · : dn(Z)) defines the inverse map to D.

(iii) By Proposition 2.9, one has (In−1, D1, . . . , Dn) ⊂ I(n−1). On the other hand, by 
Proposition 2.17, I(n−1)/In−1 is minimally generated by n elements of degree n(n −1) −1. 
To conclude that the residues of D1, . . . , Dn on I(n−1)/In−1 form a set of minimal gen-
erators of the latter it suffices to show that they are k-linearly independent. By part (i) 
they are even k-algebraically independent.

(iv) By (i) and (ii), {d1 = d1(Z), . . . , dn = dn(Z)} generate an ideal of codimension 2
defining the inverse map to D. Write

hi = hi(Z1, . . . , Zn) := Zidi
(
= Bt

ii(δ)
)
, i = 1, . . . , n

Evaluate hi on XiD = (XiD1, . . . , XiDn) (i.e., through Zj �→ XiDj):

hi(XiD1, . . . , XiDn) = XiDidi(XiD1, . . . , XiDn)

= X
n(n−1)
i Didi(D1, . . . , Dn)

= X
n(n−1)+1
i DiG

where G := X−1
i di(D1, . . . , Dn) is the source inversion factor of the Cremona map defined 

by D.
On the other hand, one has

hi(XiD1, . . . , XiDn) = Bt
i,i

(
δ1(XiD), . . . , δn(XiD)

)
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= Bt
i,i

(
Ei(Δ)Δ1, . . . , Ei(Δ)Δn+1

)
= Ei(Δ)n−1Bt

i,i(Δ1, . . . ,Δn)

= Ei(Δ)n−1XiDi,

where Ei, i = 1, . . . , n are a complete set of target inversion factors of the birational map 
defined by δ, as in (14). This implies the relation

X
n(n−1)
i G = Ei(Δ)n−1. (20)

Extracting (n − 1)th roots yields

Xn
i G

1/n−1 = Ei(Δ). (21)

Since Ei has degree n(n − 1) − 1 then (Xn
1 , . . . , X

n
n )G1/n−1 ⊂ In(n−1)−1, from which 

follows E := G1/n−1 ∈ I(n(n−1)−1).
The supplementary statement follows from Proposition 1.3 by admitting the irre-

ducibility of det(Θ(D)). This is because as it divides a power of E then it will divide 
E itself, and since deg(det(Θ(D))) = deg(E), they coincide up to a nonzero scalar. (To 
hypothetically argue for the irreducibility of det(Θ(D)), note that each Di is an inversion 
factor of a Cremona map whose defining coordinates Δ are sufficiently general forms; 
for such a reason one can expect that it too be a sufficiently general polynomial (e.g., 
because in characteristic zero it corresponds to a “general contracted divisor”). But then 
also its partial derivatives are sufficiently general forms, hence det(Θ(D)) is an irre-
ducible polynomial, since having a proper factor is a closed condition on the coefficients 
and these are products and sums out of a set of general coefficients.)

(v) We first check that (12) is indeed a complex. For this, using that {D1, . . . , Dn}
is a complete set of inversion factors of the birational map defined by Δ, the cofactor 
matrix of Ψ is

adj(Ψ) =

⎛⎜⎜⎜⎝
X1D1 X1D2 . . . X1Dn

X2D1 X2D2 . . . X2Dn
...

... . . .
...

XnD1 XnD2 . . . XnDn

⎞⎟⎟⎟⎠ . (22)

Since Ψ has rank n − 1, the cofactor equation gives

adj(Ψ) · Ψ = 0 (23)

and

Ψ · adj(Ψ) = 0. (24)
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From (22), (23) implies that Ψ is a matrix of syzygies of D, while (24) gives that Xt is 
a second syzygy thereof. This shows that one has indeed a complex. To finish we check 
the required Fitting codimension by the Buchsbaum–Eisenbud acyclicity criterion. The 
verification at the tail of the complex is immediate, while at the middle the codimension 
of

In−1(Ψ) = I1
(
adj(Ψ)

)
= (X)(D1, . . . , Dn)

is 2 because (i) showed that the ideal (D1, . . . , Dn) has codimension 2. �
Remark 2.20. Assertion (i) in the last theorem depends once more on the general linear 
assumption; thus, in Example 2.18 the polarization complex is not exact and, in fact, 
{D1, D2, D3} admit a proper common factor.

2.4.3. The structure of the symbolic algebra
Here is the degree numerology so far:

• deg(di) = deg(Di) = n(n − 1) − 1, for i = 1, . . . , n.
• deg(G) = (n(n − 1) − 1)n(n − 1) − n(n − 1) = (n − 1)n(n(n − 1) − 2) — from (20).
• deg(E) = deg(G)/(n − 1) = n(n(n − 1) − 2).

Further consideration is given in the following strategic lemma:

Lemma 2.21. Let L denote an (n + 1) ×n general linear matrix over R = k[X1, . . . , Xn], 
with n ≥ 3. Set I := In−1(L) ⊂ R and let R(I) denote its symbolic Rees algebra. 
Let D1, . . . , Dn ∈ I(n−1) and E ∈ I(n(n−1)−1) be as above. Let X = {X1, . . . , Xn}, 
Y = {Y1, . . . , Yn+1}, Z = {Z1, . . . , Zn}, W denote mutually independents sets of inde-
terminates. Consider the surjective homomorphism of R-algebras:

π : k[X,Y,Z,W ] � R
[
It,D1t

n−1, . . . , Dnt
n−1, Etn(n−1)−1]

such that Xi �→ Xi, Yj �→ Δjt, Zr �→ Drt
n−1 and W �→ Etn(n−1)−1. Then ker(π)

contains the following polynomials:

(1) The entries of X ·Bt (n such polynomials)
(2) The entries of Z ·B (n such polynomials)
(3) The entries of Xt · Z − adj(B) (n2 such polynomials)
(4) The polynomials of the shape {X1W

n−1 − d1(Z), . . . , XnW
n−1 − dn(Z)}, where 

d1, . . . , dn are forms defining the inverse of D1, . . . , Dn (n such polynomials)
(5) The polynomials of the shape {Y1W − δ1(Z), . . . , Yn+1W − δn+1(Z)}, coming from

(26) below (n + 1 such polynomials).
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Proof. The first four blocks were discussed before, namely:
(1) These are equations defining the Rees algebra R[It] of I on the polynomial ring 

k[X, Y]. Since R[It] is a subalgebra of R[It, D1t
n−1, . . . , Dnt

n−1, Etn(n−1)−1], then the 
equations obviously vanish under π.

(2) Note that the matrix B evaluated by Yj �→ Δjt is a syzygy matrix of {D1, . . . , Dn}
by Theorem 2.19(iv). Since Zi maps to Dit

n−1 the vanishing of I1(Z ·B) is clear as well 
by the same token.

(3) One argues as in the previous item based on the proof of Theorem 2.19(iv).
(4) These equations under π just express the fact that G = En−1 is inversion factor 

of the Cremona map defined by {D1, . . . , Dn}.
(5) To discuss these equations, recall the relation obtained in (14):

δj
(
Bt

n1(Δ), . . . , Bt
nn(Δ)

)
= En(Δ)Δj . (25)

On the other hand, we have

δj
(
Bt

n1(Δ), . . . , Bt
nn(Δ)

)
= δj

(
Bn1(Δ), . . . , Bnn(Δ)

)
= δj(XnD1, . . . , XnDn)

= Xn
nδj(D1, . . . , Dn).

Therefore,

En(Δ)Δj = Xn
nδj(D).

Collecting the two resulting expressions yields

Xn
nΔjE = Xn

nδj(D)

and hence

ΔjE = δj(D) (26)

as was to be shown. �
We note that the intended generator of symbolic order n(n − 1) − 1 is E and not 

its (n − 1)th power G; this raises a suspicion as to whether the polynomials of type (4) 
above are minimal generators of ker(π). And indeed, we have the following tightening 
result:

Proposition 2.22. Keeping the notation of the previous lemma, in the generation of the 
ideal ker(π) one may replace the n equations of the form XiW

n−1−di(Z) by n equations 
of the form XiW −Qi(Y, Z), where Qi(Y, Z) is a polynomial in k[Y, Z] of the shape
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Qi(Y,Z) =
∑

{j1,...,jn−2}⊂{1,...,n+1}
t1+...+tn−2=n−2

Y t1
j1
Y t2
j2

· · ·Y tn−2
jn−2

Pt1,...,tn−2(Z). (27)

In particular, (X)E ⊂ In−2(I(n−1))n−1.

Proof. Let as above δ1 = δ1(Z), . . . , δn+1 = δn+1(Z) denote the n-minors of the matrix 
L′ and let π as be as given.

We claim that for any collection of non-negative integers t1, . . . , ts, with s ≤ n + 1, 
and for every subset {j1, . . . , js} ⊂ {1, . . . , n + 1}, the polynomials

Y t1
j1

· · ·Y ts
js
W t1+...+ts − δj1(Z)t1 · · · δjs(Z)ts ∈ ker(π)

belong to the ideal generated by the polynomials from block (5) in the statement of the 
previous lemma.

We proceed by induction on s.
The result is clear for s = 1 because YjW − δj ∈ ker(π) by the previous lemma and is 

a factor of Y t
j W

t − δj
t, for any t.

Thus, assume that s > 1 and that, without loss of generality, t1 �= 0 (the result is 
trivially satisfied if all t’s are null). Write(

Y t1
j1
W t1 − δt1j1

)
Y t2
j2

· · ·Y ts
js
W t2+...+ts

= Y t1
j1
Y t2
j2

· · ·Y ts
js
W t1+...+ts − δt1j1Y

t2
j2

· · ·Y ts
js
W t2+...+ts

= Y t1
j1
Y t2
j2

· · ·Y ts
js
W t1+...+ts − δt1j1 · · · δ

ts
js

+ δt1j1 · · · δ
ts
js
− δt1j1Y

t2
j2

· · ·Y ts
js
W t2+...+ts

=
(
Y t1
j1
Y t2
j2

· · ·Y ts
js
W t1+...+ts − δt1j1 · · · δ

ts
js

)
− δt1j1

(
Y t2
j2

· · ·Y ts
js
W t2+...+ts − δt2j2 · · · δ

ts
js

)
.

Applying the inductive hypothesis on the two ends of this strand of inequalities shows 
that the polynomial

Y t1
j1
Y t2
j2

· · ·Y ts
js
W t1+...+ts − δj1(Z)t1 · · · δjs(Z)ts

also belongs to ker(π). In particular, taking s = n − 2 and t1, . . . , tn−2 any partition of 
n − 2, the polynomial

Y t1
j1
Y t2
j2

· · ·Y tn−2
jn−2

Wn−2 − δj1(Z)t1 · · · δjn−2(Z)tn−2 (28)

belongs to ker(π).
On the other hand, as seen in Theorem 2.19(ii), the coordinate forms {d1 =

d1(Z), . . . , dn = dn(Z)} defining the inverse of the Cremona map defined by {D1, . . . , Dn}
also constitute a complete set of source inversion factors of the birational map defined by 
the n-minors δ1, . . . , δn of the general linear matrix L′. Therefore, Proposition 2.9 gives

(d1, . . . , dn) ⊂ (δ1, . . . , δn+1)(n−1)
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and, for even more reason

(d1, . . . , dn) ⊂ (δ1, . . . , δn+1)(n−2) = (δ1, . . . , δn+1)n−2. (29)

Fixing i ∈ {1, . . . , n} we can write

di(Z) =
∑

t1+...+tn−2=n−2
Pt1,...,tn−2(Z)δj1(Z)t1 · · · δjn−2(Z)tn−2 . (30)

Thus, one gets that the polynomial

XiW
n−1 − di(Z)

−
∑

t1+...+tn−2=n−2
Pt1,...,tn−2(Z)

(
Y t1
j1
Y t2
j2

· · ·Y tn−2
jn−2

Wn−2 − δj1(Z)t1 · · · δjn−2(Z)tn−2
)

= Wn−2
(
XiW −

∑
t1+...+tn−2=n−2

Pt1,...,tn−2(Z)Y t1
j1
Y t2
j2

· · ·Y tn−2
jn−2

)
,

for arbitrary subsets {j1, . . . , jn−2} ⊂ {1, . . . , n + 1}, belongs to ker(π). Since ker(π) is a 
prime ideal and W /∈ ker(π), we conclude that

XiW −
∑

t1+...+tn−2=n−2
Pt1,...,tn−2(Z)Y t1

j1
Y t2
j2

· · ·Y tn−2
jn−2

∈ ker(π)

as was to be shown.
The second statement is clear. �
We now come to the main result of this part.

Theorem 2.23. (char(k) = 0) Let L denote an (n + 1) × n general linear matrix over 
R = k[X1, . . . , Xn], with n ≥ 3. Set I := In−1(L) ⊂ R and let R(I) denote its symbolic 
Rees algebra. Let π : R[Y, Z, W ] � R[It, D1t

n−1, . . . , Dnt
n−1, Etn(n−1)−1] stand for the 

R-algebra homomorphism as defined in Lemma 2.21. Then

(a) The kernel of π is the ideal P generated by the polynomials

I1
(
X ·Bt

)
, I1(Z ·B), I1

(
Xt · Z − adj(B)

)
, YjW − δj(Z) (1 ≤ j ≤ n + 1),

XiW −Qi(Y,Z) (1 ≤ i ≤ n),

where Qi(Y, Z) is described in Proposition 2.22.
(b) R(I) = R[It, D1t

n−1, . . . , Dnt
n−1, Etn(n−1)−1].

Proof. We first claim that W is a non-zero-divisor on R[Y, Z, W ]/P. For this, we will 
use Gröbner basis theory. Namely, consider the degrevlex order with Z > Y > X > W . 
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As is well-known, it suffices to show that W is not a factor of a minimal generator of 
in(P). Now, none of the monomials YjW (1 ≤ j ≤ n + 1), XiW (1 ≤ i ≤ n) is a 
minimal generator of in(P) since the order first breaks a tie by the degree, while both 
δj(Z), Qi(Y, Z) have degree at least n ≥ 3. However, a multiple thereof could be a fresh 
generator of in(P). We must exclude this possibility.

For subsequent frequent use, we single out the following fact: any δj = δj(Z) is an 
irreducible polynomial. For n ≥ 4 this follows from the fact that δj is a minimal generator 
of the prime ideal In(L′) (Proposition 2.3 and the general linear nature of L′). For n = 3, 
the ideal In(L′) is only radical, hence one needs a more direct approach. We may assume 
that L′ — just as L — being a general linear matrix, up to sufficiently general elementary 
row operations, has the form ⎛⎜⎜⎝

0 �1 �2
�4 0 �3
�5 �6 0
X1 X2 X3

⎞⎟⎟⎠ ,

where the six �i’s constitute mutually general 1-forms. Since the �i’s are general 1-forms 
and the minors involving the last row have a similar shape, it suffices to consider the 
minors of the first 3 rows and the one of the last 3 rows. These are, respectively:

δ1 = X1�3�6 −X2�3�5 + X3�4�6, δ4 = �1�3�5 + �2�4�6. (31)

Now replacing every �i by a new variable Yi, the corresponding minors become

(X1Y6 −X2Y5)Y3 + X3Y4Y6, Y1Y3Y5 + Y2Y4Y6,

respectively. The first polynomial is irreducible since it is a primitive polynomial with 
respect to the variable Y3. The second is irreducible since it is a binomial whose terms 
have gcd = 1. Since the �i’s are general then mapping Yi �→ �i shows that the polynomials 
(31) are irreducible as well.

We note en passant that if the �i’s are not general, some minor may have proper 
factors — see, e.g, the matrix (11).

We now proceed to the Gröbner base argument. Any fresh initial generator is found by 
an iteration of the so-called S-polynomials [24, Section 1.2] associated to pairs of elements 
of P starting out with pairs of the given set of generators thereof. Since any generator 
coming from the part I1(X ·Bt), I1(Z ·B), I1(Xt · Z − adj(B)) does not involve W , we 
must use at least one among the equations YjW (1 ≤ j ≤ n + 1), XiW (1 ≤ i ≤ n). We 
now analyze the nature of such S-polynomials and their iterations stemming from the 
given starting pair of generators of P.

(1) Starting pair {YjW − δj(Z), YkW − δk(Z)} (j �= k).
Consider the respective initial terms, which are pure monomials in Z — this is because, 

as already remarked, deg(δj(Z)) = n > 2. Say, Mj = Mj(Z), Mk = Mk(Z) are the 
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respective initial terms and set H := gcd(Mj , Mk), so Mj = NjH, Mk = NkH, with 
gcd(Nj , Nk) = 1. Then the associated S-polynomial has the shape

S := (NkYj −NjYk)W −
(
Nkδ

′
j −Njδ

′
k

)
, (32)

where δj = Mj + δ′j , δk = Mk + δ′k. By a similar token, deg(Nkδ
′
j) = deg(Njδ

′
k) >

deg(NkYjW ) = deg(NjYkW ), and hence the initial term of (32) has to come from either 
Nkδ

′
j or Njδ

′
k, provided we make sure that the Nkδ

′
j −Njδ

′
k does not vanish. But since 

NjMk − NkMj = 0 by construction, this vanishing would imply the relation Nkδj −
Njδk = 0. However, δj , δk are non-associate irreducible polynomials, hence are relatively 
prime. This would force a trivial relation, hence Nj would be multiples of δj — this is 
absurd since Nj is a monomial.

Repeat the S-polynomial procedure using (32) and any other equation of type YpW −
δp obtaining a new S-polynomial. To make it explicit, say, the initial term of old S comes 
from Nkδ

′
j ; then write δ′j = M ′

j + δ′′j , where M ′
j is the initial term. Also write, as above, 

δp = Mp + δ′p, with Mp its initial term. Finally, set M ′
j = N ′

jH, Mp = N ′
pH, where 

gcd(N ′
j , N

′
p) = 1. Then the updated S-polynomial is

S′ :=
(
N ′

p(NkYj −NjYk) −NkN
′
jYp

)
W

−
(
N ′

p

(
Nkδ

′′
j

)
−N ′

p

(
Njδ

′
k

)
−Nk

(
N ′

jδ
′
p

))
.

Counting degrees as before, we see that the degree of the top part is lower than that of 
the bottom part. Therefore, the initial term of S′ will come off the bottom part provided 
we show it does not vanish. Supposing this were the case, using the basic S-pair relation 
N ′

p(NkM
′
j) − (NkN

′
j)Mp, we get the relation N ′

p(Nkδ
′
j − Njδ

′
k) − NkN

′
jδp = 0. Since 

gcd(N ′
j , N

′
p) = 1, we see that N ′p divides Nkδp. But δp is an irreducible, hence N ′

p

divides Nk. Substituting in the previous relation and simplifying yields Nkδ
′
j −Njδ

′
k =

Nδp, for some monomial N ∈ k[Z]. But this implies that our initial S-polynomial in (32)
has the form (NkYj−NjYk)W−Nδp. Using Yp−δp, one gets (NkYj−NjYk−NYp)W = 0
and hence NkYj − NjYk − NYp = 0. This is nonsense since Nk, Nj , N are polynomials 
in k[Z].

Now the general iterated step is clear, therefore the iteration of S-polynomials using 
only this packet of equations gives fresh initial generators which are monomials in Z
exclusively.

(2) Starting pair {XiW −Qi(Y, Z), XlW −Ql(Y, Z)} (i �= l).
The argumentative strategy is analogous to the one in the previous case: write{

Qi = Mi + Q′
i, Ql = Ml + Q′

l

Mi = M ′
iH, Ml = M ′

lH,

where Mi = in(Qi), Ml = in(Ql) and gcd(M ′
i , M

′
l ) = 1. Note that, from (30) and since 

deg(di(Z)) = n(n − 1) − 1 and deg(δ(Z)) = n(n − 2), one has deg(Qi) = 2n − 3. Then 
the resulting polynomial is the sum of two homogeneous polynomials
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S :=
(
M ′

lXi −M ′
iXl

)
W −

(
M ′

lQ
′
i −M ′

iQ
′
l

)
,

where deg(M ′
lXiW ) = 2n − 3 − h + 2 = 2n − 1 − h, deg(M ′

lQ
′
i) = 2n − 3 − h + 2n − 3 =

4n − 6 − h, with h = deg(H). Again, we have the strict inequality 4n − 6 > 2n − 1, for 
n ≥ 3. To show that the initial term of the above polynomial belongs to the rightmost 
polynomial we need to know that the latter does not vanish. But if it did, then we would 
have the equality M ′

lQi = M ′
iQl, where gcd(M ′

i , M
′
l ) = 1. Now, since the multipliers 

M ′
i , M

′
l are relatively prime then M ′

i is a factor of Qi. By (30), evaluating we would get 
that di has a monomial factor in k[Z]; this is ruled out by fact that di is a coordinate 
function of the inverse map to the Cremona map defined by {D1, . . . , Dn} which are 
sufficiently general forms.

We can now iterate as in case (1). Thus, let

SX =
(∑

i

Ni(Y,Z)Xi

)
W − P (Y,Z) (33)

stand for an iterated S-polynomial out of the “XiW” packet, with M = M(Y, Z) de-
noting the corresponding initial term. By induction, we have deg(Ni) + 2 < deg(P ). 
Write P = M + P ′ =: in(P ) + P ′ and Qr = Mr + Q′

r := in(Qr) + Q′
r. Then the new 

S-polynomial has the shape

∑
i

M ′
rNiXiW −M ′XrW −

(
M ′

rP
′ −M ′Q′

r

)
,

where M = M ′H, Mr = M ′
rH, with gcd(M ′, M ′

r) = 1. We assume that deg(H) > 0
as otherwise there is nothing to prove by [24, Exercise 1.2.2]. Then deg(M ′

rNiXiW ) =
2n −3 +deg(Ni) +2 −h < 2n −2 +deg(P ) −h = deg(M ′

rP
′) and, similarly, deg(M ′XrW ) =

deg(M) + 2 − h = deg(P ) + 2 − h < deg(P ) + 2n − 3 − h = deg(M ′
rP

′). Moreover, if 
M ′

rP
′ = M ′Q′

r then M ′
rP = M ′Qr as well. If gcd(P, Qr) = 1 then M ′

r must be a multiple 
of Qr, which is impossible since deg(M ′

r) < deg(Qr) by hypothesis. Then P and Qr must 
have a proper common factor. Now, since the multipliers M ′

r, M
′ are relatively prime 

then M ′
r is a factor of Qr. Under Yj �→ δj(Z) we would get that dr has a monomial factor 

in k[Z]; this is again ruled out as above.
Thus, the initial term of an S-polynomial from pairs consisting of any previous 

S-polynomial obtained and any other equation XrW − Qr(Y, Z) is a monomial in Y
and Z alone.

(3) (Mixed starting pair.) One of the pairs

{
YjW − δj(Z), SX

}
or

{
XiW −Qi(Y,Z), SY

}
,

for some 1 ≤ j ≤ n + 1 and some 1 ≤ i ≤ n, where SY (respectively, SX) is any 
S-polynomial from the “YW” packet (respectively, from the “XW” packet).
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Let us deal with these pairs separately. For the first pair, let SX have the expression 
as in (33). Then the new S-polynomial has the form

∑
i

M ′
jNiXiW −M ′YjW −

(
M ′

jP
′ −M ′δ′j

)
,

where gcd(M ′, M ′
j) = 1. Degree counting gives deg(M ′

jNiXiW ) = n + deg(Ni) + 2 −
h < n + deg(P ) − h. Moreover, vanishing of the rightmost polynomials would lead to 
M ′

jP = M ′δj . As before, we are forced to conclude that δj has a factor which is a 
monomial. But this is impossible since δj is irreducible.

For the pair of the second kind, let

SY =
(∑

j

NjYj

)
W −

∑
j

Njδ
〈sj〉
j

denote an S-polynomial as iterated from the “YjW” packet. Here δ〈sj〉j denotes a suitable 
summand of δj and the initial term of SY . Form the S-polynomial with some XiW −Qi, 
Qi = Qi(Y, Z), getting:

M ′
i

(∑
j

NjYj

)
W −M ′

j0XiW −
(
M ′

i

∑
j

Njδ
〈s′j〉
j −M ′

j0Q
′
i

)
,

where

{
Mj0 = in

(
δ
〈sj0 〉
j

)
Mi = in(Qi)

and
{
Nj0Mj0 = M ′

j0
H

Mi = M ′
iH

with gcd(M ′
j0
, M ′

i) = 1 and δ
〈s′j〉
j are the updated summands of δj . Once again, an 

immediate degree count tells us that the initial term of the new S-polynomial comes 
from the right most difference above, as long as the latter does not vanish. Supposing 
it did, we would as before get the relation M ′

i

∑
j Njδ

〈sj〉
j = M ′

j0
Qi, with monomial 

multipliers relatively prime. This implies that M ′
i is a factor of Qi, which leads to a 

relation 
∑

j Njδ
〈sj〉
j = M ′

j0
Q′′

i with, say, Qi = MiQ
′′
i . Substituting back in SY gives SY =

(
∑

j NjYj)W −M ′
j0
Q′′

i . Multiplying SY by Mi and XiW −Qi by M ′
j0

, and subtracting 
yields (

∑
j M

′
iNjYj − M ′

j0
Xi)W = 0. Therefore, 

∑
j M

′
iNjYj = M ′

j0
Xi, which implies 

that M ′
j0

belong to the ideal generated by a nonempty subset of the Y variables; this is 
absurd since M ′

j0
∈ k[Z].

To conclude these cases, note that iterating these two types of S-polynomials, we 
obtain similarly that any pair {SY , SX} yields an S-polynomial whose initial term is not 
divisible by W .
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(4) Starting pair {YjW − δj(Z), q}.
Here q is a generator out of I1(X ·Bt), I1(Z ·B), I1(Xt · Z − adj(B)).
Let q come from I1(X ·Bt). Then its initial term is of the form αYkXi. Since the initial 

term of YjW −δj(Z) is a monomial in Z alone, these two monomials are relatively prime. 
Therefore, the resulting S-polynomial reduces to zero relative to the pair {YjW−δj(Z), q}
[24, Exercise 1.2.2] and hence, produces no fresh initial generator.

Assume now that q comes from the packet I1(Z · B). By a similar token, the initial 
term of q has the form βZiYk. Since the initial term of YjW − δj(Z) is a monomial in 
Z alone, the only way to get away from reducing to zero as before is that βZi divide 
this Z-monomial. Thus, let M(Z)Zi denote the initial term of δj(Z) and write δj =
βM(Z)Zi + P (Z). Then the resulting polynomial is

S := YkYjW − YkP (Z) + M(Z)q(Z,Y),

where q(Z, Y) is a 2-form of bidegree (1, 1) in Z, Y. Clearly, 3 = deg(YkYjW ) < 1 +n =
deg(YkP (Z)) = deg(M(Z)q(Z, Y)), hence the initial term of S involves only Z and Y
variables provided we show that −YkP (Z) +M(Z)q(Z, Y) does not vanish. Now, a similar 
reasoning as employed at the end of the argument of (1), shows that this vanishing entails 
a monomial syzygy between δj(Z) and the quadric q with relatively prime multipliers. 
This then forces δj(Z) and q to have a common factor. But q is bihomogeneous, so a 
common factor would have to be a variable Zl. On the other hand, δj(Z) is irreducible, 
so cannot admit such a factor.

Keeping the essential shape of the S-polynomial obtained, namely, S = YkYj −
P (Y, Z), with P (Y, Z) homogeneous of degree n + 1 involving effectively both Y and Z
variables, let us iterate with the pair {S, YrW − δr(Z)}, for given 1 ≤ r ≤ n + 1. Write 
P (Y, Z) = M(Y, Z) +P ′(Y, Z), δr(Z) = N(Z) +δ′r(Z), where M = M(Y, Z), N = N(Z)
are the respective initial terms, and M = M ′H, N = N ′H, with gcd(M ′, N ′) = 1. Then 
the new S-polynomial is(

N ′YkYj −M ′Yr

)
W −

(
N ′P ′ −M ′δ′r

)
,

where the leftmost polynomial is homogeneous of degree n + 3 − h, with h = deg(H), 
while the rightmost polynomial has degree 2n + 1 − h > n + 3 − h, for n ≥ 3. On the 
other hand, the rightmost polynomial is nonzero because, otherwise, it would imply that 
N ′P = M ′δr. Since N ′, M ′ are relatively prime, δr would be a multiple of P = P (Y, Z). 
But this is absurd since δr ∈ k[Z] while P /∈ k[Z]. Therefore, the initial term of the 
updated S-polynomial comes from the rightmost polynomial and does not involve W . The 
inductive procedure is now clear: the “new” S-polynomial is a sum of two polynomials, 
the first involving W and degree growing like (s − 1)n + 3 − t, for s ≥ 2 and some t ≥ 0, 
the second a nonzero polynomial involving effectively the variables Y, Z and with degree 
growing like sn + 1 − t > (s − 1)n + 3 − t (for n ≥ 3).

Finally, consider the case where q comes from the packet I1(Xt ·Z −adj(B)). If n ≥ 4, 
the initial term is decided by degree and has to come from some cofactor of B — the 
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latter having degree n − 1 ≥ 3 > 2 = deg(XiZl), for any choice of i, l. In this case, once 
again, the S-polynomial reduces to zero. Finally, let n = 3. Since we are assuming the 
revlex order upon monomials of same degree, the initial term of P comes from a cofactor 
of B, so we are done again.

Remark 2.24. To close this case, we ought to consider the S-polynomial from the pair 
consisting of a polynomial of the “YjW” packet and some previous S-polynomial among 
one of the three kinds. But, as we have seen, the only iterated S-polynomials that play 
any role come from the pairs

{
YjW − δj(Z), q ∈ I1(Z ·B)

}
.

One can see that this iteration follows a pattern analogous to the first iterate, in which 
the initial term lives in k[Y, Z].

(5) Starting pair {XiW −Qi(Y, Z), q}.
Here q is again a generator out of I1(X ·Bt), I1(Z ·B), I1(Xt · Z − adj(B)).
The initial term of XiW−Qi(Y, Z) involves both Y and Z. This breaks the symmetry 

with respect to the discussion in case (4).
Let first q come from I1(X · Bt). Then q = αYjXl + q′, where in(q) = αYjXl. Note 

that q′ �= 0 — i.e., q is not a monomial — since the entries of a column of Bt are partial 
X-derivatives of minors of a general linear matrix. Write as before Qi = Mi +Q′

i, where 
in(Qi) = Mi = Ni · αYj . Clearly, Xl does not divide Ni. The resulting S-polynomial is 
XlXiW − (XlQ

′
i − Niq

′). One has deg(XlQ
′
i − Niq

′) = 1 + 2n − 3 = 2n − 3 − 1 + 2 =
2n − 2 > 3, for n ≥ 3. Moreover, if XlQ

′
i = Niq

′ then XlQi = Niq. This forces Xl to be 
a factor of q, which implies that q is monomial, contradicting its nature as pointed out.

Now assume that q come from I1(Z ·B). Then q = βZkYj + q′, where in(q) = βZkYj . 
The same remarks about the nature of q hold as above. Keeping the same notation, 
Qi = Mi + Q′

i, where in(Qi) = Mi. If ZkYj divides Mi altogether, then the resulting 
polynomial is of the form XiW − (Q′

i − Piq
′), for suitable Pi ∈ k[Y, Z] homogeneous of 

degree 2n − 3 − 2 + 2 = 2n − 3 > 2. Thus, we may assume that either Zk divides Mi

and Yj does not divide Mi, or vice versa. Although the role of Y and Z are not quite 
symmetric in the data, the pattern is pretty much the same (and much the same as the 
previous case). Say, Mi = Ni ·βZk, with Yj not dividing Mi. The resulting S-polynomial 
is YjXi − (YjQ

′
i − Niq

′). Again the inequality 2n − 2 > 3 says that the initial term 
is part of YjQ

′
i − Niq

′. Moreover, YjQi = Niq would imply that Yj divide q, again a 
contradiction.

Finally, we settle the last case where q comes from the packet I1(Xt · Z − adj(B)). If 
n ≥ 4, the initial term is decided by degree and has to come from some cofactor of B — 
the latter having degree n −1 ≥ 3 > 2 = deg(XiZl), for any i, l. Say, q = C(Y) +q′, with 
in(q) = C = C(Y) of degree n −1. As before, Qi = Mi+Q′

i, where in(Qi) = Mi. Set C =
C ′H, Mi = NiH, gcd(C ′, Ni) = 1. The resulting S-polynomial is C ′XiW−(C ′Q′

i−Niq
′), 
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where deg(C ′Q′
i−Niq

′) = n −1 +2n −3 = 3n −4 > n +1 = deg(C ′XiW ). Furthermore, 
if C ′Qi = Niq would imply that C ′ divide q; this is absurd since q is of the form 
XiZl − p(Y).

At last, let n = 3. Since we are assuming the revlex order upon monomials of same 
degree, the initial term of P comes from a cofactor of B, so we are done again.

To close this item, we refer to Remark 2.24, noting that here one has to consider 
iterated S-polynomials form all three kinds, as none reduces to zero right at the outset.

(a) Let P ⊂ R[Y, Z, W ] denote the ideal generated by those many equations in the 
statement. By Lemma 2.21 and Proposition 2.22, we have P ⊂ ker(π). The two ideals 
have same codimension: 2n + 1. Indeed, the algebra A := R[It, D1t

n−1, . . . , Dnt
n−1,

Etn(n−1)−1] has the same dimension as the Rees algebra R[It], which is n +1; this shows 
that ker(π) has codimension 2n + 1. As for P, we localize at the powers of W . Then 
P and P[W−1] ⊂ k[X, Y, Z, W, W−1] have the same codimension. But in the latter the 
generators{

Yj −W−1δj(Z), Xi −W−1Qi(Y,Z)
∣∣ 1 ≤ j ≤ n + 1, 1 ≤ i ≤ n

}
form a regular sequence of length n + 1 + n = 2n + 1.

Therefore, to show that P = ker(π) it suffices to prove that P is a prime ideal. By 
localizing at the powers of W , one gets an isomorphism of k-algebras

k
[
X,Y,Z,W,W−1]/P[

W−1] � k
[
Z,W,W−1]/ ˜P

[
W−1

]
(34)

by mapping Xi �→ W−1Qi(Y, Z) and subsequently Yj �→ W−1δj(Z). Since k[Z, W, W−1]
has dimension n +1, we must conclude that P̃[W−1] = 0. (As a control of quality one has 
that, e.g., I1(X ·Bt) maps to I1(d1(Z) · · · dn(Z)) ·Bt(δ1(Z), . . . , δn+1(Z)), which vanishes 
as seen in the proof of Theorem 2.19(ii).)

Therefore, P[W−1] is a prime ideal, and hence so is P.
(b) We apply to the algebra A the criterion of Vasconcelos [23, Propositions 7.1.4 

and 10.5.1] mentioned in the first section of this paper (Proposition 1.1). By Proposi-
tion 2.4(ii) the required hypothesis is satisfied — note the need for characteristic zero at 
this point. Therefore, it suffices to prove that the grade of the extended ideal (X)A is at 
least 2. For this we claim that the grade of (X)A is the same as the grade of its extension 
to the localization Aw at the powers of the image w of W . To see this it is enough to show 
that w avoids some associated prime ℘ of A/(X)A such that grade((X)A) = grade(℘). 
We show more, namely:

Claim. w is regular on A/(X)A.

Proof. Now, by (a) we know that ker(π) = P. Thus, we have to show that W is a 
non-zero-divisor modulo the larger ideal

(X,P) =
(
X, I1(Z ·B), In−1(B), Qi(Y,Z) (1 ≤ i ≤ n), YjW − δj(Z) (1 ≤ j ≤ n + 1)

)
.
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We follow the same Gröbner basis line of argument as before to show that W does not 
divide any generator of in(X, P). Note that we can overlook the pairs {YjW − δj(Z), q}, 
with q ∈ In−1(B). Indeed, this is clear since the initial degree of the first of these 
polynomials comes from δj(Z) due to its degree being n ≥ 3. The only remaining relevant 
pairs are then {YjW − δj(Z), q}, with q ∈ I1(Z ·B), and {YjW − δj(Z), Qi(Y, Z)}. The 
first kind, as well as its descendants, have been dealt with in part (4) and Remark 2.24.

Consider the pair {YjW − δj(Z), Qi(Y, Z)}. Say, Mj = Mj(Z), Mi = Mi(Z) are the 
respective initial terms of δj = δj(Z) and Qi = Qi(Y, Z); set H := gcd(Mj , Mi), so 
Mj = NjH, Mi = NiH, with gcd(Nj , Ni) = 1. Then the associated S-polynomial has 
the shape S := NiYjW − (Nkδ

′
j − NjQ

′
i), where δj = Mj + δ′j , Qi = Mi + Q′

i. By a 
similar token, deg(Niδ

′
j) = deg(NjQ

′
i) > deg(NiYjW ), and hence the initial term of S

has to come from either Niδ
′
j or NjQ

′
i, provided we make sure that the Niδ

′
j−NjQ

′
i does 

not vanish. But since NjMi − NiMj = 0 by construction, this vanishing would imply 
the relation Niδj = NjQi. Evaluating Yl �→ δl for all l and using that δj is irreducible 
implies that δj divide di. But this is impossible because, as was already remarked, di is 
a general form.

This analysis is repeated with a pair {N iYjW −Nkδ
′
j−NjQ

′
i, Qi(Y, Z)} and so forth, 

by an obvious recursion. So much for the proof that W is a non-zero-divisor on A/(X)A.
We are now left with computing grade((X)Aw). By (34), Aw � k[Z, W, W−1], which 

is a Cohen–Macaulay graded ring. Since the image of (X)Aw is a graded ideal, its grade 
coincides with its codimension. Now, the image of (X)Aw by the isomorphism is the 
ideal

(
Q1

(
W−1δj(Z),Z

)
, . . . , Qn

(
W−1δj(Z),Z

))
⊂ k

[
Z,W,W−1].

By homogeneity we can pull out W−1. Then (30) shows that this ideal is generated by 
the coordinate functions {d1, . . . , dn} of the inverse map of the Cremona map defined by 
D1, . . . , Dn. By construction, these forms have trivial gcd, hence the ideal they generate 
has indeed codimension at least 2. �
Remark 2.25. (1) Note that in the proof of part (b) of the theorem it would suffice to 
show that A satisfies the Serre property (S2). As a matter of fact, one wonders if the 
symbolic algebra is Cohen–Macaulay, in which case it would be a Gorenstein normal 
domain by [19]. We have verified this in the case n = 3 by writing an explicit regular 
sequence of length n +1 = 4. The terms of the sequence can actually be taken to be linear 
forms involving only the X and Z variables and W — this exploits the fact that in this 
dimension one can change to a grading where the X, Y, Z part is standard and the variable 
W has weight 2. In this grading the Hilbert series is (1 + 7t + 13t2 + 7t3 + t4)/(1 − t)4. 
For n ≥ 4 some of such facilitating features are not available. On the other hand, even 
for n = 3, the property that W is a non-zero-divisor on A/(X)A is really on the edge as 
the ideal (X, Y, Z)A is an associated prime ideal of A/(X)A.



196 Z. Ramos, A. Simis / Journal of Algebra 413 (2014) 153–197
(2) In the case m ≥ n +2 it may happen that elements of I(n−1) have standard degree 
less than (m − 1)(n − 1) − 1. The simplest such situation occurs with n = 3 and m = 7, 
in which case I(2) admits 3 minimal generators of degree 10. This implies that, in this 
range, the inclusion (X)I(r) ⊂ Ir for every r ≥ 0 fails. This is an indication that, for 
general values of m, n, it may be difficult to guess bounds for the value of the saturation 
exponent, so as to have Proposition 2.4(ii) become more precise.

(3) Computational evidence showed that in the smallest possible numerology (n = 3, 
m = 5) the behavior of the symbolic powers is quite erratic: in the range 2 ≤ r ≤ 5 there 
are genuine generators in I(r). The subsequent symbolic powers have an unpredictable 
behavior with genuine generators creeping up on irregular intervals; we found new sym-
bolic generators even in I(23). It seems reasonable to wonder whether for m > n + 1 ≥ 4
the symbolic Rees algebra R(I) of I is finitely generated.

We close with a couple of more general questions.

Question 2.26. (1) It would be interesting to describe classes of (characteristic free) 
perfect, codimension 2, homogeneous, prime ideals I ⊂ R = k[X1, . . . , Xn], generated in 
fixed degree such that R/I is normal and I admits non-ordinary symbolic powers I(m)

of order m ≤ n − 2.
(2) Note that in the setup of this paper, the two alternatives in [24, Proposition 3.5.13]

coincide set-theoretically, namely, the radical of the Jacobian ideal is read off the free 
presentation of the ideal. This phenomenon played a central role in the preliminaries 
of this work. It seems appropriate to ask when this is the case beyond the present 
assumptions.
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