
Journal of Algebra 432 (2015) 12–21
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A classification of primitive permutation groups 

with finite stabilizers

Simon M. Smith
Department of Mathematics, NYC College of Technology, City University of 
New York (CUNY), New York, NY, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2014
Available online 21 March 2015
Communicated by Martin Liebeck

Dedicated to the memory of Stephen 
G. Small

MSC:
primary 20B07, 20B15
secondary 20E28

Keywords:
Infinite permutation groups
Primitive permutation groups
Permutation groups

We classify all infinite primitive permutation groups pos-
sessing a finite point stabilizer, thus extending the seminal 
Aschbacher–O’Nan–Scott Theorem to all primitive permuta-
tion groups with finite point stabilizers.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recall that a transitive permutation group G on a set Ω is primitive if the only 
G-invariant partitions are {{α} : α ∈ Ω} and {Ω}. In the finite case, these groups are 
the fundamental actions from which all permutation groups are constituted.

The finite primitive permutation groups were classified by the famous Aschbacher–
O’Nan–Scott Theorem, first stated independently by O’Nan and Scott. Scott’s initial 
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statement [15] omitted the class of twisted wreath products; an extended and corrected 
version of the theorem appears in [1] and [7]. The Aschbacher–O’Nan–Scott Theorem 
describes in detail the structure of finite primitive permutation groups in terms of finite 
simple groups. A modern statement of the theorem with a self-contained proof can be 
found in [8].

Primitive permutation groups with finite point stabilizers are precisely those primi-
tive groups whose subdegrees are bounded above by a finite cardinal [14,2]. This class of 
groups also includes all infinite primitive permutation groups that act regularly on some 
finite self-paired suborbit (see [11, Problem 7.51]). Our main result is Theorem 1.1 be-
low; in conjunction with the Aschbacher–O’Nan–Scott Theorem, this yields a satisfying 
classification of all primitive permutation groups with finite point stabilizers, describing 
in detail their structure in terms of finitely generated simple groups.

Theorem 1.1. If G ≤ Sym(Ω) is an infinite primitive permutation group with a finite 
point stabilizer Gα, then G is finitely generated by elements of finite order and possesses 
a unique (non-trivial) minimal normal subgroup M ; there exists an infinite, nonabelian, 
finitely generated simple group K such that M = K1×· · ·×Km, where m ≥ 1 is finite and 
Ki

∼= K for 1 ≤ i ≤ m; the stabilizer Gα acts transitively on the components K1, . . . , Km

of M by conjugation; and G falls into precisely one of the following categories:

(i) M is simple and acts regularly on Ω, and G is equal to the split extension M.Gα for 
some α ∈ Ω, with no non-identity element of Gα inducing an inner automorphism 
of M ;

(ii) M is simple, and acts non-regularly on Ω, with M of finite index in G and M ≤
G ≤ Aut(M);

(iii) M is non-simple. In this case m > 1, and G is permutation isomorphic to a subgroup 
of the wreath product H WrΔ Sym(Δ) acting via the product action on Γm, where 
Δ = {1, . . . , m}, Γ is some infinite set and H ≤ Sym(Γ) is an infinite primitive 
group with a finite point stabilizer. Here K is the unique minimal normal subgroup 
of H. Moreover, if M is regular, then H is of type (i) and if M is non-regular then 
H is of type (ii).

For each type (i), (ii) and (iii) there exist examples of infinite primitive permutation 
groups with finite point stabilizers. We present these in Section 4.

For permutation groups which lie in classes (i) and (iii) there are known conditions 
which guarantee primitivity (Proposition 3.3 and the paragraph immediately following 
it, and Lemma 3.6).

For any group G of type (iii), an explicit permutation embedding of G into 
H Wr Sym(Δ) is described in Lemma 3.1 and its proof.

This paper is not the first to extend the Aschbacher–O’Nan–Scott Theorem to specific 
classes of infinite groups. In [9], a version of the Aschbacher–O’Nan–Scott Theorem for
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definably primitive permutation groups of finite Morley rank is proved, while [5] and [6]
contain Aschbacher–O’Nan–Scott-style classifications for several classes of countably in-
finite primitive permutation groups in geometric settings. Macpherson and Praeger [10]
extend the Aschbacher–O’Nan–Scott Theorem to infinite primitive permutation groups 
acting on countably infinite sets that posses a minimal closed (in the topology of point-
wise convergence) normal subgroup which itself has a minimal closed normal subgroup. 
Much of our proof of Theorem 1.1 involves establishing that an infinite primitive per-
mutation group with a finite point stabilizer has a unique minimal normal subgroup 
which itself has a minimal normal subgroup. Having shown this, we could then apply 
[10, Theorem 1.1] to obtain a classification. However, the result one obtains with this 
approach is weaker than Theorem 1.1 above, because of the more general situation that 
is considered in [10].

Of course it must also be mentioned that much of the strength of original Aschbacher–
O’Nan–Scott Theorem derives from the classification of the finite simple groups; nothing 
similar exists for finitely generated simple groups.

2. The socle

We use Sym(Ω) to denote the full symmetric group of a set Ω and will write Kg

to mean g−1Kg throughout. In fact, we will always write group actions in this way, 
with αg representing the image of α ∈ Ω under g ∈ G whenever G acts on Ω. The orbits 
of a normal subgroup of a group G ≤ Sym(Ω) form a G-invariant partition of Ω; thus, 
every non-trivial normal subgroup of a primitive permutation group G acts transitively 
on Ω. A transitive group G is primitive if and only if for all α ∈ Ω the point stabilizer Gα

is a maximal subgroup of G. Note that if G is transitive and Gα is finite for some α ∈ Ω, 
then Gα is finite for all α ∈ Ω. We say a group G is almost simple if there exists a normal 
nonabelian simple subgroup N such that N ≤ G ≤ Aut(N).

A minimal normal subgroup of a non-trivial group G is a non-trivial normal sub-
group of G that does not properly contain any other non-trivial normal subgroup of G. 
The socle of G, denoted by soc(G), is the subgroup generated by the set of all minimal 
normal subgroups of G. If G has no minimal normal subgroup then soc(G) is taken 
to be 〈1〉. Non-trivial finite permutation groups always have a minimal normal sub-
group, so their socle is non-trivial; this is not true in general for infinite permutation 
groups.

In this section we show that every infinite primitive permutation group G with finite 
point stabilizers has a unique minimal normal subgroup M , and M is characteristically 
simple, finitely generated, and of finite index in G. Furthermore, M is equal to the direct 
product of finitely many of its simple subgroups. Since M is the only minimal normal 
subgroup of G, it is necessarily equal to the socle of G.

Lemma 2.1. If G ≤ Sym(Ω) is primitive, then |G : N | ≤ |Gα| for all non-trivial normal 
subgroups N � G and all α ∈ Ω.
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Proof. Let G ≤ Sym(Ω) be primitive. If N � G is non-trivial, then it is transitive, and 
so for all α ∈ Ω we have G = NGα. But this implies that Gα contains a right transversal 
of N in G, and therefore |G : N | ≤ |Gα|. �

If G is a primitive group of permutations of a set Ω, and some point stabilizer Gα

of G is finite, it is simple to see that G is finitely generated by elements of finite order: 
the group Gα is a maximal subgroup of G, and for β ∈ Ω \ {α} we have 〈Gα, Gβ〉 = G

or Gα. Because G is primitive, the latter occurs only if G is regular, but infinite primi-
tive permutation groups are never regular. Hence G is countable (or finite). Since G is 
transitive, Ω is also countable.

Theorem 2.2. If G ≤ Sym(Ω) is primitive and infinite, and Gα is finite for some α ∈ Ω, 
then G has a unique minimal normal subgroup M , and

(i) |G : M | ≤ |Gα|; and
(ii) M is finitely generated and characteristically simple.

Proof. Fix α ∈ Ω. By Lemma 2.1, all non-trivial normal subgroups of G are of index 
at most |Gα|. Thus, we may choose a non-trivial normal subgroup M of G whose index 
in G is greatest. If N is any non-trivial normal subgroup of G, then M ∩ N has finite 
index in G because |G : N | and |G : M | are finite. Therefore, M ∩ N is a non-trivial 
normal subgroup of G satisfying |G : M ∩N | ≥ |G : M |, and so |G : M ∩N | = |G : M |
by our choice of M . Hence M ∩N = M . Thus M is the unique minimal normal subgroup 
of G.

Since G is finitely generated and M has finite index in G, it follows from Schreier’s 
Lemma (see [3, Theorem 1.12] for example) that M must also be finitely generated. Fur-
thermore, a characteristic subgroup of M is normal in G, so M must be characteristically 
simple. �
Theorem 2.3. Let G ≤ Sym(Ω) be primitive and infinite, with a finite point stabilizer Gα, 
and let M be its unique minimal normal subgroup. Then M is a direct product

M =
∏

(Kg : g ∈ T ),

where K ≤ M is some infinite nonabelian finitely generated simple group and T is any 
right transversal of the normalizer NG(K) in G. Furthermore, Gα acts transitively on 
the components {Kg : g ∈ T} of M by conjugation.

Proof. The group M is finitely generated, so it contains a maximal proper normal sub-
group N (which may be trivial). Since G = MGα, the number of G-conjugates of N is 
equal to the number of Gα-conjugates of N , which is finite. Let {N1, . . . , N�} be the set 
of all G-conjugates of N , and for i = 1, . . . , �, write Ki := M/Ni. The groups K1, . . . , K�

are pairwise isomorphic and simple. The natural homomorphism ψ : M → K1 ×· · ·×K�
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given by h 
→ (N1h, . . . , N�h) is injective, because ∩�
i=1Ni is normal in G and is a proper 

subgroup of M . The projection of ψ(M) onto each component Ki is clearly surjective, so 
ψ(M) is a subdirect product of K1×· · ·×K�. Since M is infinite, the groups K1, . . . , K�

are infinite, and therefore nonabelian. A subdirect product of finitely many nonabelian 
simple groups is isomorphic to a direct product of some of them (this is sometimes known 
as Scott’s Lemma, see [15], but is in fact a special case of a theorem of universal algebra). 
Thus, M ∼= K1 × · · · ×Km for some m ≤ �.

Identifying Ki with its isomorphic image in M for 1 ≤ i ≤ m, we have M = K1 ×
· · ·×Km. Since they are simple, the subgroups K1, . . . , Km are the only minimal normal 
subgroups of M and therefore conjugation by elements of G permutes them amongst 
themselves. If {Ki : i ∈ I} is any orbit of Gα on {Ki : 1 ≤ i ≤ m}, then 

∏
i∈I Ki is 

a normal subgroup of G, and therefore must equal M . Therefore Gα acts transitively on 
{K1, . . . , Km} by conjugation, and if T is any right transversal of NG(K1) in G, then 
{K1, . . . , Km} = {Kg

1 : g ∈ T}.
Finally we note that since M is finitely generated, K1 is finitely generated and be-

cause K1 is nonabelian, M is nonabelian. �
3. Proof of Theorem 1.1

The following lemma applies to all permutation groups G ≤ Sym(Ω), not just to 
those which are primitive. It is a technical lemma that complements Theorem 1.1 by 
describing an explicit permutation embedding of a group of type (iii) into a wreath 
product in product action.

Lemma 3.1. Let m be a positive integer. Suppose M = K1×· · ·×Km�G ≤ Sym(Ω), such 
that M is transitive and some point stabilizer Gα transitively permutes the components 
{K1, . . . , Km} of M by conjugation. Suppose further that Mα = π1(Mα) ×· · ·×πm(Mα), 
where each πi is the projection of M onto Ki. If K := K1 acts faithfully and transitively 
on a set Γ such that π1(Mα) = Kγ for some γ ∈ Γ, then there exists a homomorphism 
ψ : NGα

(K) → NSym(Γ)γ (K) and a permutational embedding (φ̂, θ) of G into Sym(Γm), 
where θ : Ω → Γm is a bijection such that θ(α) = (γ, . . . , γ), and φ̂ : G → Sym(Γm) is 
a monomorphism such that φ̂(M) = Km and φ̂(Gα) ≤ ψ(NGα

(K)) WrSm acting with 
its product action on Γm.

Proof. Choose a set T := {g1, . . . , gm} ⊆ Gα such that Ki = Kgi for i = 1, . . . , m, 
with g1 = 1. The action of any g ∈ Gα on {K1, . . . , Km} induces a permutation σ(g) ∈
Sym(m) so that Kg

i = Kiσ(g) for all i. Notice that for all i ∈ {1, . . . , m} and g ∈ Gα the 
element hi := gigg

−1
iσ(g) lies in N := NGα

(T ), so for all x = (x1, . . . , xm) ∈ M we have

πi(x)g = xg
i =

(
x
g−1
i hi

i

)g
iσ(g)

= πiσ(g)(xg). (1)

We consider Km ≤ Sym(Γm) via the product action. Let γ := (γ, . . . , γ) ∈ Γm. Now 
N normalizes K and Mα, so it normalizes Kγ = π1(Mα). For h ∈ N let ψ(h) be the 
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map which sends γk to γh−1kh for all k ∈ K. It is not difficult to check that ψ(h) is 
a permutation of Γ. The map ψ : N → Sym(Γ)γ is a homomorphism. By considering 
the action of K on Γ, we see that conjugation by h ∈ N and by ψ(h) induce the same 
automorphism of K.

We begin by constructing a permutation isomorphism (φ, θ) between M and Km. 
Define φ : M → Km by φ(x) := (π1(x)g−1

1 , . . . , πm(x)g−1
m ). One may easily verify that φ is 

an isomorphism between M and Km. Moreover, for each i we have πi(Mα)g−1
i = π1(Mα), 

and so φ(Mα) = (Kγ)m. Let θ : Ω → Γm be the map with θ(αx) := γφ(x) for all x ∈ M . 
This map is well-defined, because if αx = αy for some x, y ∈ M , then xy−1 ∈ Mα, and 
so φ(xy−1) fixes γ. Hence θ(αx) = γφ(x) = γφ(y) = θ(αy). It is now easily checked that 
the pair (φ, θ) is indeed a permutation isomorphism.

We now extend (φ, θ) to a permutation isomorphism (φ̂, θ) between Sym(Ω) and 
Sym(Γm) in the following way. Given f ∈ Sym(Ω), let φ̂(f) be the permutation of Γm

which maps each δ ∈ Γm to θ(θ−1(δ)f ). It is easily seen that the map φ̂ : Sym(Ω) →
Sym(Γm) is an isomorphism, and (φ̂, θ) is a permutation isomorphism from Sym(Ω) to 
Sym(Γm). Moreover, if δ ∈ Γm and x ∈ M then write β := θ−1(δ) ∈ Ω and observe that 
δφ̂(x) = θ(θ−1(δ)x) = θ(βx) = θ(β)φ(x) = δφ(x). Hence the restriction of φ̂ to M is φ, and 
φ̂(M) = Km.

It remains to show that φ̂(Gα) ≤ ψ(N) WrSm, where ψ(N) WrSm is a subgroup of 
Sym(Γm) via its product action. Fix g ∈ Gα and write σ := σ(g). For i = 1, . . . , m define 
hi := gigg

−1
iσ . Note that each hi lies in N . Let z := (ψ(h1), . . . , ψ(hm))σ ∈ ψ(N) WrSm. 

We will show that φ̂(g) = z, from which our lemma follows. Indeed, suppose we are given 
k = (k1, . . . , km) ∈ Km. Write x := φ−1(k) ∈ M , so πi(x) = kgii . Since the restriction 
of φ̂ to M is φ,

kφ̂(g) = φ̂(φ̂−1(k))φ̂(g) = φ̂(φ−1(k))φ̂(g) = φ̂(x)φ̂(g) = φ̂(xg) = φ(xg). (2)

Hence for all i we have πiσ(kφ̂(g)) = πiσ (φ(xg)), which by the definition of φ is equal to 
πiσ (xg)g−1

iσ ; by (1) this equals πi(x)gg−1
iσ . Thus πiσ(kφ̂(g)) = khi

i . Now πiσ(kz) = k
ψ(hi)
i , 

and since conjugation by ψ(hi) and hi induce the same automorphism of K, it follows 
that πiσ(kz) = khi

i . Therefore kφ̂(g) = kz. Since k was chosen arbitrarily from Km, it 
must be that φ̂(g)z−1 ∈ CSym(Γm)(Km). But the full centralizer of Km is semi-regular 
because Km is transitive (see [4, Theorem 4.2A] for example) and φ̂(g) and z fix γ, so 

φ̂(g)z−1 must be trivial. �
Henceforth, G ≤ Sym(Ω) will be an infinite primitive permutation group with a finite 

point stabilizer Gα, and M the unique minimal normal subgroup of G. By Theorem 2.3, 
M = K1 × · · · × Km, with Ki

∼= K1 for 1 ≤ i ≤ m, for some infinite nonabelian 
finitely generated simple group K := K1 and some finite m ≥ 1. Let T ⊆ Gα be a right 
transversal {g1, . . . , gm} of NG(K) in G, with g1 = 1, whose elements are labeled in such 
a way that Ki = Kgi for 1 ≤ i ≤ m. Recall that M is nonabelian.



18 S.M. Smith / Journal of Algebra 432 (2015) 12–21
We examine separately the cases where M is simple and acts regularly on Ω, where M

is simple and non-regular, and where M is non-simple; these cases will correspond respec-
tively to G being of type (i), (ii) or (iii) in Theorem 1.1. Since the descriptions of M are 
mutually exclusive, the same is true for the cases described in the theorem. Theorem 1.1
follows immediately from Theorem 2.3, Proposition 3.2, Remark 3.4 and Theorem 3.5, 
given below.

Proposition 3.2. If M acts regularly on Ω, then G is equal to the split extension 
M.Gα. Furthermore, no non-identity element of Gα induces an inner automorphism 
of M .

Proof. Since Gα ∩M = Mα = 〈1〉, the extension G = M.Gα splits. Moreover, CG(M) is 
normal in NG(M) = G and M is the unique minimal normal subgroup of G, so either 
CG(M) contains M or it is trivial. Since M is nonabelian, CG(M) must be trivial, and 
no non-identity element of Gα induces an inner automorphism of M . �

In this case, we can identify Ω with M , and the natural action of Gα on Ω is permu-
tation equivalent to the conjugation action of Gα on M . Primitive permutation groups 
with this structure have the following well-known characterization.

Proposition 3.3. (See [4, Exercise 2.5.8].) If H ≤ Sym(Ω) and N �H acts regularly on Ω
and α ∈ Ω, then H is primitive on Ω if and only if no non-trivial proper subgroup of N
is normalized by Hα. �

Peter Neumann has pointed out that under the conditions of Proposition 3.2 we 
can say a little more: there are no non-trivial proper NGα

(K1)-invariant subgroups 
of K1. Indeed, suppose Y1 < K1 is such a group, and let Yi := Y gi

1 . Define N :=
Y1 × · · · × Ym, a non-trivial proper subgroup of M . Since Gα permutes elements of the 
set {Ki : 1 ≤ i ≤ m} transitively by conjugation, for each g ∈ Gα there exists a permu-
tation σ ∈ Sm such that for all integers i satisfying 1 ≤ i ≤ m we have gig = hgiσ for 
some h ∈ NGα

(K1). Hence Y g
i = Y gig

1 = Y hgiσ
1 = Yiσ . Thus Gα normalizes N and so G

is not primitive by Proposition 3.3.
We now turn our attention to the case when M does not act regularly on Ω.

Remark 3.4. The group G acts on M by conjugation. Since CG(M) is trivial, this action 
is faithful, and so if M is simple then

M ≤ G ≤ Aut(M),

where M is a finitely generated, simple and nonabelian group of finite index in G. In 
particular, G is almost simple.



S.M. Smith / Journal of Algebra 432 (2015) 12–21 19
Theorem 3.5. Suppose M is not simple. Then G is permutation isomorphic to a subgroup 
of H WrΔ Sym(Δ), acting via the product action on Γm, where Δ = {1, . . . , m} and 
H ≤ Sym(Γ) is an infinite primitive group with finite point stabilizers, the minimal 
normal subgroup of which is K := K1.

Proof. We have m > 1. Let Ri := πi(Mα) and R := R1 × · · · × Rm ≤ M . Clearly, 
Mα ≤ R. Since Gα normalizes R, we have GαR ≤ G. Now Gα is maximal (because G is 
primitive) and GαR is finite. Hence R ≤ Gα, and from this it follows immediately that 
R = Mα. Let Γ be the set of right cosets of R1 in K, with γ representing the coset R1. 
The simple group K has a faithful, transitive action on Γ by right multiplication, with 
Kγ = R1.

Applying Lemma 3.1, we have that there exists a permutational embedding (φ̂, θ) of G
into H Wr Sym(Γm), where H = Kψ(NGα

(K)) for some homomorphism ψ : NGα
(K) →

NSym(Γ)γ (K). Hence Hγ = Kγψ(NGα
(K)), and so all point stabilizers in H are finite. 

Since G is primitive on Ω, its image φ̂(G) is primitive on Γm, and so H WrSm is primitive. 
It is well-known (see Lemma 3.6) that H must be primitive and not regular on Γ. By 
Theorem 2.2, H has a minimal normal subgroup which is unique, and this must obviously 
be K. �

Note that if M is not regular, then R is non-trivial and therefore K is not regular; 
hence H is of type (ii). On the other hand, if M is regular then K is regular and hence 
H is of type (i). This concludes our proof of Theorem 1.1.

We remark briefly why types of groups present in the classification in [10] do not 
occur in Theorem 1.1. Groups of affine type (Type 1 in [10]) require K to be finite. 
Groups with a simple diagonal action (Type 4(a) in [10]) require K to be isomorphic to 
a point stabilizer in soc(G), impossible in our case because any stabilizer is finite. Groups 
satisfying soc(G) = M with a product action in which H is diagonal (Type 4(b)(ii) 
in [10]) appear when the possibility that Rg

1 = Kg for all g ∈ T is explored [10, p. 531], 
but this cannot occur in our case because K is infinite and R1 is finite. Finally we repeat 
the remark in [10, p. 534], that the situation which leads to the twisted wreath product 
case in [8] occurs only if T is infinite. Since T is always finite, twisted wreath products 
do not appear in our classification.

Conditions guaranteeing the primitivity of full wreath products acting in product 
action are known for both unrestricted wreath products [4, Lemma 2.7A] and restricted 
wreath products [10, Lemma 3.1]. Of course in class (iii) of Theorem 1.1, no distinction 
between the restricted and unrestricted wreath product need be made.

Lemma 3.6. (See [4, Lemma 2.7A].) Suppose that H and S are non-trivial groups acting 
on the sets Γ and Δ, respectively. The (unrestricted) wreath product H WrΔ S is primitive 
in its product action on Γ|Δ| if and only if:
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(i) H acts primitively but not regularly on Γ; and
(ii) Δ is finite and S acts transitively on Δ. �

Notice that in class (iii) of Theorem 1.1, Δ is always finite.

4. Examples

Given a prime p > 1075, there exists a group Tp, often called a Tarski–Ol’Shanskĭı 
Monster, such that every proper non-trivial subgroup of Tp has order p [13, Theo-
rem 28.1]. Any group Tp can be considered to be an infinite primitive permutation group 
with finite point stabilizers of type (ii). Indeed, let H be a proper non-trivial subgroup 
of Tp, and let Γ be the set (Tp : H) of right cosets of H in Tp. Then Tp acts transitively 
and faithfully, but not regularly, on Γ by right multiplication. Any point stabilizer is 
isomorphic to H, a finite and maximal subgroup of Tp.

Constructing an example of type (iii) is trivial: let (Tp; Γ) be as above, and let Δ =
{1, . . . , m} for some m ≥ 2. The wreath product Tp WrΓ Sym(Δ) acting on Γm via the 
product action is primitive, and the point stabilizers are all finite.

The following result of V.N. Obraztsov can be used to construct examples of type (i). 
In what follows, an automorphism σ of a group G is regular if gσ �= g for all g ∈ G \ 〈1〉.

Theorem 4.1. (See [12, Theorem C, abridged].) Let {Gi}i∈I be a countable set of non-
trivial countable groups containing either three groups or two groups of which one has 
order at least 3, and let H be an arbitrary countable group. There exists a group G which 
contains an infinite simple normal subgroup L and satisfies:

(i) G is the semi-direct product of H and L;
(ii) for each h ∈ H \ 〈1〉, h is a regular automorphism of L;
(iii) every proper subgroup of L is either infinite cyclic, or infinite dihedral (if one of 

the groups Gi, i ∈ I, or H has involutions), or contained in a subgroup conjugate 
in G to some Gi, i ∈ I. �

For example, choose distinct odd primes p1, p2, q such that q � (p1−1) and q � (p2−1), 
and take G1 := Cp1 , G2 := Cp2 , and H := Cq. By Theorem 4.1, we obtain a group G
and an infinite simple normal subgroup L which satisfies (i)–(iii) above. Let Ω be the 
set of right cosets of H in G and let α be the coset H.1 ∈ Ω. The kernel of the action 
of G on Ω is contained in Gα = H = Cq. If G is not faithful then H � G, and so G
(being the semi-direct product of H and L) is in fact the direct product of H and L; this 
is impossible, because every non-trivial element in H is a regular automorphism of L. 
Hence G acts faithfully on Ω, and we may consider G to be a transitive subgroup of 
Sym(Ω).

Clearly L � G is regular on Ω. We claim that Gα normalizes no proper non-trivial 
subgroup of L. From this it will follow from Proposition 3.3 that G is primitive. Since 
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Gα = H, there exists h ∈ Gα \〈1〉. Let K be a proper non-trivial subgroup of L. Then K
is isomorphic to C∞, Cp1 or Cp2 . Suppose, for a contradiction, that Kh = K. Since h has 
order q, it is easy to see that K cannot be infinite and cyclic, so it is isomorphic to Cp for 
some p ∈ {p1, p2}. Fix k ∈ K \〈1〉. Then kh �= 1 and there exists i ∈ Z such that kh = ki. 
Now p | (ip − i), so ki

p = ki. But khp = ki
p , so ki is fixed by hp−1. Since hp−1 ∈ H \ 〈1〉

is a regular automorphism of L, and ki is non-trivial, we have a contradiction. Hence 
Gα normalizes no proper non-trivial subgroup of L, and it follows that G is an infinite 
primitive permutation group, with a finite stabilizer, of type (i).
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