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The character degree graph Γ(G) of a finite group G has 
long been studied as a means of understanding the structural 
properties of G. For example, a result of Manz and Pálfy 
states that the character degree graph of a finite solvable 
group has at most two connected components. In this paper, 
we introduce the character degree simplicial complex G(G) of 
a finite group G. We provide examples justifying the study 
of this simplicial complex as opposed to Γ(G), and prove an 
analogue of Manz’s Theorem on the number of connected 
components that is dependent upon the dimension of G(G).
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1. Introduction

A valuable way of studying the structure of a finite group G is through the study 
of its irreducible characters. The value that the character takes on the identity of the 
group is called the degree of the character, and in fact, much can be said about the 
structure of the group by simply examining the irreducible character degrees of the 
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group. We write Irr(G) for the set of irreducible characters of a group G and we write 
cd(G) = {χ(1) | χ ∈ Irr(G)}.

Historically, two different graphs have been associated with the set cd(G). The first is 
called the character degree graph of cd(G), denoted by Γ(G). The vertices of this graph 
are the members of the set cd(G) \ {1}, and there is an edge connecting two vertices if 
the corresponding irreducible character degrees have a nontrivial common divisor. The 
second graph associated with cd(G) is the prime vertex graph, denoted Δ(G), which has 
the primes dividing some member of cd(G) as its vertices, and there is an edge between 
two vertices if there is a member of cd(G) divisible by the two associated primes.

A plethora of research has been conducted about the graph theoretic properties that 
must be satisfied by both Γ(G) and Δ(G) when G is a finite group. Perhaps the first 
result in this area is the following theorem of Manz [5].

Theorem 1.1 (Manz). Suppose that G is a finite solvable group. Then the number of 
connected components of Γ(G) is at most 2.

Theorem 1.1 demonstrates that not all sets of integers can appear as Γ(G) when G is 
a finite solvable group. Pálfy showed independently in [6] that when G is a finite solvable 
group, Δ(G) also has at most two connected components. These results have inspired 
many works in this area that seek to classify other constraints that can be placed upon 
both Γ(G) and Δ(G) when G is a finite solvable group; see [4] for a thorough description.

It has long been suggested that one should really consider the character degree sim-
plicial complex and the prime vertex simplicial complex of a finite group G instead of 
studying Γ(G) or Δ(G), yet this proposal has long been overlooked. In this paper, we 
introduce the character degree simplicial complex of a finite group G, denoted G(G), and 
we provide results demonstrating the necessity of this definition. We do not examine the 
prime vertex graph or the prime vertex simplicial complex any further in this work.

Although not entirely algebraic in nature, the novelty of this area of study requires 
a certain amount of topological background. We provide the topological necessities for 
this paper in Section 2. Subsections 2.1, 2.2, and 2.3 are purely topological, providing 
the definitions and machinery that will be necessary in order to study our applications. 
Subsection 2.4 introduces the common divisor and character degree simplicial complex 
in more detail, while also providing the applications of the first three subsections of 
Section 2 to our context. Subsection 2.5 discusses an analogue of Theorem 1.1 that 
becomes nontrivial with the introduction of the character degree simplicial complex.

In Section 3, we will investigate the analogue of Theorem 1.1 discussed in Subsection 
2.5. More specifically, we will obtain a bound on the rank of Π1(G(G)) in terms of the 
dimension of G(G). The primary result of Section 3 is the following.

Theorem A. Suppose G is a finite solvable group with G(G) connected and dim(G(G)) =n. 
Then rk(Π1(G(G))) ≤ n2 + n − 1.
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Finally, we will present in Section 4 some applications of Theorem A, examples of 
groups where G(G) has interesting properties, and directions for further research.

2. Calculations

2.1. Topological definitions

We begin with some basic definitions, mostly following the conventions and notations 
of [7].

Definition 2.1. An abstract simplicial complex K is a pair (V, S), where V is a finite 
set (whose elements are called vertices) and S is a set of nonempty finite subsets of V
(called simplices) such that all singleton subsets of V are in S, and, if σ ∈ S and σ′ ⊆ σ, 
then σ′ ∈ S.

If K = (V, S) is an abstract simplicial complex and σ ∈ S contains n +1 elements, then 
we say that σ has dimension n, or alternatively, that σ is an n-simplex. The dimension
of the simplicial complex K is the dimension of its largest simplex. Finally, suppose that 
n is a nonnegative integer. We define the n-skeleton of K to be the abstract simplicial 
complex Kn = (V, Sn), where Sn ⊆ S is the collection of all simplices of dimension at 
most n.

Let K = (V, S) be an abstract simplicial complex. An edge of K is an ordered pair 
of vertices 〈v0, v1〉 with v0, v1 ∈ V and where v0 and v1 are part of some simplex in S. 
Note that this allows us to have edges where v0 = v1. In the ordered pair 〈v0, v1〉, we call 
v0 the start vertex and we call v1 the end vertex. More generally, we have the following 
definition.

Definition 2.2. An edge path P of an abstract simplicial complex K is a finite nonempty 
sequence of edges e1e2 . . . en of K such that the end vertex of ei is the start vertex of 
ei+1 for all 1 ≤ i < n.

For an edge path P = e1e2 . . . en, we call the start vertex of e1 the start vertex of P
and we call the end vertex of en the end vertex of P. Note that if the paths P1 and P2
are such that the end vertex of P1 is equal to the start vertex of P2, then these paths 
can be combined via concatenation, written P1 ∗ P2.

Definition 2.3. An edge path P is called a loop if the start vertex and end vertex of P
are the same.

We now introduce the notion of a homotopy between two edge paths in an abstract 
simplicial complex. In general,it is unconventional to allow the notion of the empty path, 
but we make an exception for the following definition.
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Definition 2.4. For an abstract simplicial complex K, two edge paths P and P ′ of K are 
simply equivalent if there exists vertices v0, v1, and v2 belonging to some simplex of K so 
that the unordered pair {P, P ′} is equal to 

{
P1〈v0, v2〉P2, P1〈v0, v1〉〈v1, v2〉P2

}
, where 

P1 is a possibly empty edge path in K with end vertex v0 and P2 is a possibly empty 
edge path in K with start vertex v2.

Two edge paths P and P ′ are said to be homotopy equivalent or homotopic, denoted 
P ∼ P ′, if there is a finite sequence of edge paths P1, P2, . . . , Pn such that P = P1 and 
P ′ = Pn and we have that Pi is simply equivalent to Pi+1 for all 1 ≤ i < n. A loop with 
terminal vertex v0 is said to trivial if it is homotopic to the loop 〈v0, v0〉.

An abstract simplicial complex K = (V, S) is called connected if for every pair of 
distinct vertices v0, v1 ∈ V there exists a path P having start vertex v0 and end vertex v1. 
Having established the notions of a connected abstract simplicial complex and of a 
homotopy between two paths or loops, we can define the edge path group of a connected 
abstract simplicial complex.

Definition 2.5. Suppose K = (V, S) is a connected abstract simplicial complex with 
v0 ∈ V . The edge path group of K with basepoint v0, denoted E(K, v0), is the group 
of equivalence classes of loops with terminal vertex v0, where the equivalence classes are 
homotopy classes of loops. If L is a loop in K with terminal vertex v0, we write [L] to 
denote the equivalence class of L in E(K, v0).

The group operation in the edge path group is concatenation of paths, and we will 
also use ∗ to denote this operation. Theorem 16 of Chapter 3.6 of [7] states that if 
K is a connected abstract simplicial complex and v0 and v1 are members of V , then 
E(K, v0) ∼= E(K, v1). This means that the edge path group of K does not depend on 
the chosen basepoint, so we can simply write E(K) for the edge path group of K. It is 
also well known that if K is a finite abstract simplicial complex, then K has a geometric 
realization, denoted |K|, and that E(K) ∼= Π1(|K|). We will henceforth refer to the edge 
path group of a finite simplicial complex K as the fundamental group of K, and we will 
write Π1(K) as opposed to E(K).

One last definition of importance to us is the following.

Definition 2.6. Suppose K is a finite connected abstract simplicial complex. The rank of 
Π1(K) is the size of a minimal generating set for Π1(K).

2.2. Topological lemmas

In this subsection, we prove a handful of technical lemmas that we will need to prove 
Theorem A.

Lemma 2.7. Suppose that σ is an m-simplex and τ is an n-simplex. Assume that K =
(V, S) is a connected abstract simplicial complex with V = σ ∪ τ and σ ∩ τ = ∅. Finally, 
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suppose that a, b ∈ σ and that b is connected by an edge to x ∈ τ . Then Π1(K, a) is 
generated by loops of the form 〈a, b〉〈b, x〉〈x, y〉〈y, c〉〈c, a〉, where c ∈ σ and y ∈ τ .

Proof. We compute Π1(K, a) for a ∈ σ. We first show that Π1(K, a) is generated by 
loops of the form 〈a, b′〉〈b′, x′〉〈x′, y〉〈y, c〉〈c, a〉, where b′, c ∈ σ and x′, y ∈ τ . We will 
then establish that for b ∈ σ and x ∈ τ connected by an edge, we can generate Π1(K, a)
by loops where b and x are fixed, and only c and y are allowed to vary.

Consider a loop L = e1e2 . . . en in K based at a that includes vertices from both σ
and τ . Note that a loop containing vertices only from σ must be trivial, and therefore all 
such loops automatically belong to the group generated by any nonempty set. It follows 
that we may assume that the loop L contains at least one edge with start vertex in σ
and end vertex in τ . Since L is based at a ∈ σ and σ ∩ τ = ∅, it also follows that there 
is an edge from τ back to σ. Let i represent the smallest index for which ei is an edge 
from σ to τ , and let j represent the smallest index for which ej is an edge from τ to 
σ; note that i < j. Now let P1 be the (possibly empty) collection of edges preceding ei
in L. We define P2 to be the (possibly empty) path consisting of the edges between ei
and ej , and finally, let P3 be the (possibly empty) path consisting of the edges following 
ej in L. According to this decomposition, we have that L = P1 ∗ ei ∗ P2 ∗ ej ∗ P3.

Write b′ for the end vertex of P1, choosing b′ = a if P1 is the empty path. Write x′

for the end vertex of ei, and write y for the end vertex of P2, choosing y = x′ if P2 is 
the empty path. Write c for the end vertex of ej. If P3 is empty, then c = a, and we can 
replace the empty path of P3 by the path P3 = 〈a, a〉.

Since a and b′ belong to σ and σ is a simplex, the path P1 is homotopic to the path 
〈a, b′〉. Similarly, x′ and y belong to τ and τ is a simplex, so P2 is homotopic to the path 
〈x′, y〉. Combining these homotopies, we have that

L ∼ 〈a, b′〉 ∗ ei ∗ 〈x′, y〉 ∗ ej ∗ P3 = 〈a, b′〉〈b′, x′〉〈x′, y〉〈y, c〉 ∗ P3 .

Now P3 has start vertex c ∈ σ, and as σ is a simplex, we deduce that c is con-
nected by an edge to a. Thus P3 is simply equivalent to 〈c, a〉 ∗ 〈a, c〉 ∗ P3. Letting 
L1 = 〈a, b′〉〈b′, x′〉〈x′, y〉〈y, c〉〈c, a〉, this shows that

L ∼ L1 ∗ 〈a, c〉 ∗ P3 .

In other words, we have shown that an arbitrary loop L is homotopic to the concate-
nation of L1, a loop of the desired form, and another loop, namely 〈a, c〉 ∗P3. Recall that 
L = e1e2 . . . en. We now claim that either 〈a, c〉 ∗ P3 consists of fewer edges than L or is 
trivial. To see this, first suppose that P3 was initially nonempty. Then since ei and ej
were nonempty, P3 consists of at most n −2 edges, and therefore 〈a, c〉 ∗P3 consists of at 
most n −1 edges. In this case, we have that 〈a, c〉 ∗P3 consists of fewer edges than L, and 
we can apply an inductive argument. Second, suppose that P3 was initially empty. Then 
we had c = a and altered P3 = 〈a, a〉. Then 〈a, c〉 ∗ P3 is precisely the loop 〈a, a〉〈a, a〉. 
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This loop is obviously simply equivalent to the loop 〈a, a〉, so we have the result in this 
case as well. This establishes the first claim that Π1(K, a) is generated by loops having 
the same form as L1.

Now let b ∈ σ and x ∈ τ , where b and x are connected by an edge. Suppose that L0 =
〈a, b′〉〈b′, x′〉〈x′, y′〉〈y′, c′〉〈c′, a〉 is a loop with b′ and c′ in σ and x′ and y′ in τ . We will 
show that L0 can be generated by loops of the desired form with initial edges 〈a, b〉〈b, x〉. 
Let L1 = 〈a, b〉〈b, x〉〈x, x′〉〈x′, b′〉〈b′, a〉 and L2 = 〈a, b〉〈b, x〉〈x, y′〉〈y′, c′〉〈c′, a〉, and con-
sider L−1

1 ∗L2. Since the path 〈x, b〉〈b, a〉〈a, b〉〈b, x〉 is homotopic to the constant path at 
x, we have that

L−1
1 ∗ L2 ∼ 〈a, b′〉〈b′, x′〉〈x′, x〉〈x, y′〉〈y′, c′〉〈c′, a〉 . (1)

Now x, x′, and y′ are all contained in the simplex τ , so the path 〈x′, x〉〈x, y′〉 is simply 
equivalent to the path 〈x′, y′〉. Making this substitution in Equation (1), we find that 
L−1

1 ∗L2 is homotopic to L0. The loops L1 and L2 are of the proper form and begin with 
the path 〈a, b〉〈b, x〉, and we have shown that L0 belongs to the group generated by L−1

1
and L2. Since the group generated by L−1

1 and L2 is the same as the group generated 
by L1 and L2, the result holds. �
Corollary 2.8. Suppose that σ is an m-simplex and τ is an n-simplex. Assume that 
K = (V, S) is a connected simplicial complex where V = σ ∪ τ and σ ∩ τ = ∅. Then the 
rank of Π1(K) is at most nm + n + m.

Proof. Fix a ∈ σ. By Lemma 2.7, we know that if b ∈ σ and x ∈ τ are connected by an 
edge, then Π1(K, a) is generated by loops of the form 〈a, b〉〈b, x〉〈x, y〉〈y, c〉〈c, a〉 for c ∈ σ

and y ∈ τ . As b and x can be taken to be fixed, we can bound the rank of Π1(K, a) by 
counting the maximum number of loops of this form. Since y ∈ τ and τ has dimension 
n, we know that there are at most n + 1 possible choices for y. Similarly, c ∈ σ and σ
has dimension m, so there are at most m + 1 possible choices for c. This means that 
there are (n + 1)(m + 1) = nm + n + m + 1 total loops of this form. However, one of 
these loops corresponds to choosing y = x and c = b, and this loop is trivial. Hence there 
are a maximum of nm + n + m nontrivial loops of the form described in Lemma 2.7, 
establishing the claim. �
2.3. Induced maps

We now introduce a few more topological concepts of importance and derive a crucial 
theorem.

Definition 2.9. Suppose that K = (V, S) and K ′ = (V ′, S′) are abstract simplicial com-
plexes. A map f : V → V ′ is a simplicial map if it sends the vertices of each simplex of 
K to the vertices of some simplex of K ′. That is, f is a simplicial map if for all σ ∈ S, 
we have that f(σ) ∈ S′.
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Suppose that K and K ′ are connected abstract simplicial complexes and f : K → K ′

is a simplicial map. Since the definition of an edge between two vertices is defined in 
terms of simplices and the definition of homotopic paths is defined in terms of simplices, 
it follows that f preserves edges, loops, and homotopies between loops. Thus there is an 
induced map, denoted by f�, on the fundamental groups of K and K ′. That is, we have 
an induced map f� : Π1(K) → Π1(K ′) defined by f�([L]) = [f(L)]. Many intuitive and 
basic properties are satisfied by simplicial maps and their corresponding induced maps. 
For a fairly complete list of these properties and their proofs, see [2].

Lemma 2.10. Suppose that K = (V, S) is an abstract simplicial complex. Suppose that 
{x, y} ⊆ V , and that for all σ ∈ S with x ∈ σ, we have that σ∪{y} ∈ S. Let V ′ = V \{x}, 
let S′ = {σ \ {x} | σ ∈ S}, and let K ′ = (V ′, S′). Then the map r : V → V ′ via r(x) = y

and r(z) = z for all z 
= x in V is a simplicial map from K to K ′.

Proof. Say σ ⊆ S is a simplex, so that σ is a set of vertices of V . If x /∈ σ, then r is 
the identity on the members of σ, and every member of σ belongs to V \ {x} = V ′; 
thus r(σ) = σ is still a simplex in S′. Now suppose that x ∈ σ. We must argue that 
r(σ) = (σ \ {x}) ∪ {y} is a simplex in S′. By hypothesis, we know that σ ∪ {y} is a 
simplex in S. As all subsets of simplices are simplices, this means that (σ \ {x}) ∪ {y} is 
a simplex in S. That is (σ \ {x}) ∪ {y} is a simplex not involving x, so (σ \ {x}) ∪ {y} is 
a simplex in S′. �

Using the properties of induced maps and Lemma 2.10, we obtain the following very 
important theorem.

Theorem 2.11. Suppose that K = (V, S) is a connected abstract simplicial complex. Sup-
pose that {x, y} ⊆ V , and that for all σ ∈ S with x ∈ σ, we have that σ ∪ {y} ∈ S. 
Let V ′ = V \ {x}, let S′ = {σ \ {x} | σ ∈ S}, and let K ′ = (V ′, S′). Then the induced 
inclusion map i� : Π1(K ′) → Π1(K) is an isomorphism.

Proof. First, we show that if a, b ∈ V ′ and P is a path in K from a to b that P is 
homotopic to a path in K ′ from a to b. We proceed by induction by the number of 
occurrences of x in P. If P does not involve x, then P is a path in K ′, and the base case 
of our induction holds. Now suppose that at least one edge in P involves x, and write 
P = P1 ∗ eiej ∗ P2, where eiej = 〈c, x〉〈x, d〉 for some c, d ∈ V . Since 〈c, x〉 is an edge, c
and x are contained in some simplex in S. By hypothesis, c, x, and y are contained in a 
simplex in S; therefore 〈c, x〉 is simply equivalent to the path 〈c, y〉〈y, x〉. Similarly, d and 
x are contained in a simplex in S, so d, x, and y are contained in a simplex in S. Thus 
〈x, d〉 is simply equivalent to 〈x, y〉〈y, d〉. Combining these simple homotopies, we obtain 
〈c, x〉〈x, d〉 ∼ 〈c, y〉〈y, x〉〈x, y〉〈y, d〉. Since 〈y, x〉〈x, y〉 is homotopic to the constant path 
at y, we see that 〈c, x〉〈x, d〉 is homotopic to the path 〈c, y〉〈y, d〉. That is, P = P1∗eiej∗P2
is homotopic to P0 = P1 ∗ 〈c, y〉〈y, d〉 ∗ P2. Now P0 involves fewer occurrences of x, so 
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by induction, P0 is homotopic to a path contained in K ′. As P and P0 are homotopic, 
the claim holds by the transitivity of homotopies, and it follows that K ′ is connected.

In fact, we have shown more with this argument; let i : K ′ → K be the inclusion map 
from K ′ to K. If we compute Π1(K ′) and Π1(K) with basepoint y, then all loops in K ′

and K are paths having terminal vertices in V ′. Thus the above argument shows that 
every homotopy class of loops in Π1(K, y) contains a loop only involving vertices in K ′, 
showing that the induced inclusion map i� : Π1(K ′) → Π1(K) is surjective.

To finish the proof, we must show that i� is also injective. Define r : V → V ′ via 
r(x) = y and r(z) = z for all z 
= x in V . Now r is a simplicial map by Lemma 2.10, and 
we therefore have induced maps i� : Π1(K ′) → Π1(K) and r� : Π1(K) → Π1(K ′). It is 
clear that the composition r ◦ i is the identity map on K ′, and therefore the composition 
of the induced maps r� ◦ i� : Π1(K ′) → Π1(K ′) is also the identity map. Suppose that 
L and L′ are loops in K ′ with i�([L]) = i�([L′]). Then r�(i�([L])) = r�(i�([L′])). Since 
r� ◦ i� = (r ◦ i)� is the identity map on K ′, we have that [L] = [L′], showing that i� is 
injective. �

A stronger version of Theorem 2.11 is in fact true; if K and K ′ are abstract simplicial 
complexes as in Theorem 2.11, then K ′ is a deformation retract of K. This stronger 
version of Theorem 2.11 can be proven using the geometric realizations of K and K ′. 
As such an argument is not truly algebraic in nature and is not necessary for the work 
presented here, we omit the proof.

2.4. The common divisor and character degree simplicial complexes

Definition 2.12. The common divisor (abstract) simplicial complex of a set of integers X
has vertex set X and simplices all subsets X0 ⊆ X satisfying gcd(X0) > 1. We denote 
this simplicial complex by G(X).

Suppose that X is a set of integers. If x ∈ X, we write π(x) for the set of primes 
dividing x. If k 
= 0 is an integer, we write Xk to denote the set of integers in X divisible 
by k and Xk′ to denote the set of integers in X prime to k. Note that when k is a prime 
number, X is a disjoint union of Xk and Xk′ .

To keep notation less cluttered, we will abbreviate Π1(G(X)) by Π1(X). Another 
definition of great importance to us is the following.

Definition 2.13. Suppose that X is a set of integers. We say that x ∈ X is prime divisor 
maximal, abbreviated pd-maximal, if π(x) is a maximal element in X = {π(x) | x ∈ X}.

For a set of integers X, the collection of pd-maximal elements of X can be partitioned 
by an equivalence relation, where two pd-maximal elements are equivalent if they have 
the same set of prime divisors. In the remainder of this paper, we occasionally make use 
of this equivalence relation by selecting one representative from each equivalence class.
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With these definitions in hand, we now apply some of the results in previous subsec-
tions to the common divisor simplicial complex of a set of integers X.

Lemma 2.14. Suppose that X is a set of integers and that {x, y} ⊆ X with π(x) 
= ∅
and π(x) ⊆ π(y). Then the map r : X → (X \ {x}) via r(x) = y and r(z) = z for all 
z ∈ (X \ {x}) is a simplicial map from G(X) to G(X \ {x}).

Proof. We begin by showing that whenever σ is a simplex in G(X) containing x then 
σ∪{y} is also a simplex in G(X). Let p be a prime dividing all members of the simplex σ. 
Since x ∈ σ, we see that p divides x, and as π(x) ⊆ π(y), we conclude that p also divides y. 
Therefore p divides all members of the set σ ∪ {y}, and σ ∪ {y} is a simplex in G(X). It 
follows by Lemma 2.10 that r is a simplicial map from G(X) to G(X \ {x}). �

The next result can be viewed as a corollary of Theorem 2.11.

Corollary 2.15. Suppose that X is a finite set of integers with G(X) connected and Ω ⊆ X

contains a representative of every class of pd-maximal elements in X. Then the induced 
inclusion map i� : Π1(Ω) → Π1(X) is an isomorphism.

Proof. We begin by noting that since G(X) is connected, we either have that 1 /∈ X or 
else X = {1}. In the latter situation, Ω = X, and the result follows trivially. We may 
therefore assume that 1 /∈ X, so that π(x) 
= ∅ for all x ∈ X.

Let Y = X \ Ω, so that X is the disjoint union of Ω and Y ; let x ∈ Y . Since Ω
contains a representative of all pd-maximal elements of X, we know that there exists 
y ∈ Ω with π(x) ⊆ π(y). By Lemma 2.14, we may apply Theorem 2.11 to conclude that 
i� : Π1(X \ {x}) → Π1(X) is an isomorphism. More generally, suppose that |Y | = n. 
Write Y = {xi}ni=1 and define Xi = Xi−1 \ {xi} for 1 ≤ i ≤ n, viewing X as X0. 
Applying Theorem 2.11 n times, we have isomorphisms i� : Π1(Xi) → Π1(Xi−1) for 
all 1 ≤ i ≤ n. That is, we have a chain of isomorphisms from Π1(Ω) to Π1(Xn−1) and 
so on all the way until Π1(X), and each one of these isomorphisms is induced by the 
corresponding inclusion map. As including first into an intermediate subspace and then 
including into the full space is the same as directly including into the full space, we see 
that the composition of these inclusion maps is equal to the map i� : Π1(Ω) → Π1(X). 
Thus i� : Π1(Ω) → Π1(X) is an isomorphism, as claimed. �

Finally, we introduce the main application of this topological framework to our con-
text.

For a finite group G, recall that we denote the irreducible characters of G by Irr(G)
and we write cd(G) = {χ(1) | χ ∈ Irr(G)}. Since 1 ∈ cd(G), G(cd(G)) is never connected 
unless G is abelian. We write cd(G)∗ = cd(G) \ {1}.
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Definition 2.16. The character degree simplicial complex of a finite group G is the com-
mon divisor simplicial complex on the set cd(G)∗. We use the shortened G(G) to denote 
G(cd(G)∗) and Π1(G) for Π1(G(G)).

2.5. An analogue of Theorem 1.1

For a topological space X, the number of connected components of X is the rank of the 
0-dimensional homology group and the 0-dimensional homotopy group of X; we denote 
these groups by H0(X) and Π0(X), respectively. One way of restating Theorem 1.1 is 
that if G is a solvable group, then the rank of H0(Γ(G)) and the rank of Π0(Γ(G)) is at 
most 2. As the number of connected components of Γ(G) and the number of connected 
components of G(G) is the same, we see that Theorem 1.1 states that the number of 
connected components of G(G) is at most 2.

One way we could seek to generalize Manz’s Theorem 1.1 is to ask if there are bounds 
on the ranks of Hn(Γ(G)) for n > 0. If we continue to study Γ(G), however, this is 
not a very interesting question. Lemma 2.34 (b) of [2] tells us that if X is a simplicial 
complex of dimension n, then Hk(X) = 0 for all k > n. Since Γ(G) is a graph, it 
has dimension 1, and therefore Hk(Γ(G)) = 0 for all k ≥ 2. If k = 1, it is easy to 
show that there is no bound on the rank of H1(Γ(G)). Let P be a nonabelian group of 
order p3, and let Gn be the direct product of P with itself n times, so that the irreducible 
character degrees of Gn are the prime powers pi for 0 ≤ i ≤ n. It is easy to see that 
Γ(G) is a complete graph with n vertices, which has fundamental group isomorphic to 

the free product of (n− 1)(n− 2)
2 copies of Z. For a topological space X, H1(X) is the 

abelianization of Π1(X), and therefore these groups have equal rank. As the rank of 

Π1(Γ(Gn)) = (n− 1)(n− 2)
2 for all n ≥ 2, the rank of H1(Γ(G)) is unbounded.

If we study G(G) as opposed to Γ(G), however, the idea of studying Hn(G(G)) or 
Πn(G(G)) is no longer trivial. For instance, the example built in the previous paragraph 
to show that the rank of H1(Γ(G)) is unbounded no longer serves as an example to show 
that the rank of H1(G(G)) is unbounded. The remainder of this paper will be devoted 
to finding a bound on the rank of Π1(G(G)) in terms of the dimension of G(G).

3. A bound on rk(Π1(G)) in terms of dim(G(G))

Perhaps the only work to previously address the full character degree simplicial com-
plex of a finite solvable group is that of Benjamin [1], although it should be noted that 
Benjamin did not think about her work this way. The main result of [1] can be interpreted 
in terms of the character degree simplicial complex as follows.

Theorem 3.1 (Benjamin). Let G be a nonabelian finite solvable group with dim(G(G)) =n. 
Then
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|cd(G)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 if n = 0
6 if n = 1
9 if n = 2
n2 + n + 2 if n ≥ 3

.

It is straightforward to see that if G is a nonabelian finite solvable group with G(G)
connected of dimension n, then Theorem 3.1 implies that a bound exists on the rank 
of Π1(G) in terms of n; when n ≥ 3, this bound is on the order of n4. A natural next 
question is to find the best possible bound on the rank of Π1(G) in terms of dim(G(G)). 
Our main theorem in this section demonstrates that we can improve the bound implied 
by Benjamin’s result to a quadratic bound in terms of the dimension of G(G), and this 
theorem is independent of Benjamin’s work.

We introduce two more pieces of notation. Suppose that N � G and θ ∈ Irr(N). We 
denote the collection of irreducible characters of G lying over θ by Irr(G|θ), and similarly, 
we write cd(G|θ) = {χ(1) | χ ∈ Irr(G|θ)}. We also remind the reader that an element 
y ∈ cd(G) is pd-maximal if π(y) is maximal in the set X = {π(x) | x ∈ cd(G)}.

Our first result in this section determines the structure of G(G) in the case where G
has a nonabelian quotient that is a p-group for some prime p, and this result does not 
require that the group G be solvable.

Lemma 3.2. Suppose G is a finite group and that K � G is maximal so that G/K is 
nonabelian. If G/K is a p-group for some prime p, then every pd-maximal character 
degree is divisible by p. In particular, G(G) is connected and Π1(G) is trivial.

Proof. To establish this result, we prove that if x ∈ cd(G)∗ is prime to p, then x is 
connected by an edge to a member of cd(G)∗ divisible by p and that x is not a pd-maximal 
element of cd(G). As G/K is solvable, we may apply Lemma 12.3 of [3] to conclude 
that G/K has a unique nontrivial irreducible character degree. Write f for this unique 
nontrivial irreducible character degree. Let χ ∈ Irr(G) with χ(1) = x, where x is prime 
to p, and let θ ∈ Irr(K) be a constituent of χK . By Problem 6.7 of [3], we know that 
χ(1)
θ(1) divides |G : K|. Since χ(1) is prime to p and |G : K| is a p-power, we find that χ(1)

θ(1)
must equal 1, so that χ restricts irreducibly to K. Now χ ∈ Irr(G) is an extension of θ, 
so we see that θ is invariant in G, and by Gallagher’s Theorem, we have that Irr(G|θ) =
{χψ | ψ ∈ Irr(G/K)}. We conclude that cd(G|θ) = {θ(1)a | a ∈ cd(G/K)} = {x, xf}.

Clearly x and xf are connected by an edge in G(G). This shows that every member 
of cd(G)∗ that is prime to p is connected to a member of cd(G)∗ divisible by p. The 
members of cd(G)∗ divisible by p form a simplex, and are therefore connected, showing 
that G(G) is connected. We also see that since f > 1 is a p-power and x is prime to p that 
π(x) is a proper subset of π(xf), which means that x is not pd-maximal. If Ω ⊆ cd(G)∗
is the collection of pd-maximal elements, it follows that G(Ω) forms a simplex, and is 
therefore contractible and has trivial fundamental group. By Corollary 2.15, the map 
i� : Π1(Ω) → Π1(G) is an isomorphism, and therefore Π1(G) is also trivial. �
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Corollary 3.3. Suppose that G is a finite group and that G has a nonabelian nilpotent 
factor group. Then G(G) is connected and Π1(G) is trivial.

Proof. If G has a nonabelian nilpotent factor group, it follows that there exists K � G

with G/K a p-group for some prime p and where K is maximal so that G/K is non-
abelian. The result then follows by Lemma 3.2. �

We now proceed to our main result, the proof of Theorem A, which we restate here 
for convenience. We recall that if X is any set of integers and k 
= 0 is an integer, we 
write Xk and Xk′ for the set of integers in X divisible by k and prime to k, respectively.

Theorem 3.4. Suppose G is a finite solvable group with G(G) connected and
dim(G(G)) = n. Then rk(Π1(G)) ≤ n2 + n − 1.

Proof. Suppose that K�G is maximal so that G/K is nonabelian. By Lemma 12.3 of [3], 
we know that G/K has a unique nontrivial irreducible character degree, which we denote 
by f . If G/K is a p-group for some prime p, then Lemma 3.2 gives us that Π1(G) = 1. 
Then rk(Π1(G)) = 0, which is certainly less than the proposed bound. We may therefore 
assume by Lemma 12.3 of [3] that G/K is a Frobenius group with Frobenius kernel N/K. 
Furthermore, this lemma states that |G : N | = f and that N/K is an elementary abelian 
p-group for some prime p.

Let Ω ⊆ cd(G) be a collection of representatives of the pd-maximal elements of cd(G), 
so that i� : Π1(Ω) → Π1(G) is an isomorphism by Corollary 2.15. To bound the rank 
of Π1(G) in terms of dim(G(G)), we first aim to determine the structure of G(Ω). Since 
dim(G(G)) = n, we know that dim(G(Ω)) ≤ n, and we conclude that |Ωp| ≤ n + 1. That 
is, Ωp is a simplex of G(Ω), and it follows that Ωp has dimension at most n. We must 
therefore determine the structure of G(Ωp′) to determine the structure of G(Ω).

Let x ∈ Ωp′ , and choose χ ∈ Irr(G) with χ(1) = x. Suppose that ψ ∈ Irr(N) is 
a constituent of χN . By Theorem 12.4 of [3], either |G : N |ψ(1) ∈ cd(G) or else p
divides ψ(1). As ψ(1) divides χ(1) = x and x is prime to p, we see that we must have 
|G : N |ψ(1) = fψ(1) ∈ cd(G). Now χ(1) divides |G : N |ψ(1) by Problem 6.7 of [3], and 
|G : N |ψ(1) ∈ cd(G). This means that π(x) ⊆ π(|G : N |ψ(1)), and by the pd-maximality 
of x, we must have π(x) = π(|G : N |ψ(1)) = π(fψ(1)). In particular, this implies that 
π(f) ⊆ π(x). Since x ∈ Ωp′ is arbitrary, we have that π(f) is a subset of the set of prime 
divisors of all members of Ωp′ ; hence Ωp′ forms a simplex in G(Ω). As the dimension of 
G(G) is n, it follows that Ωp′ is a simplex of dimension at most n.

In fact, we can do slightly better; if f is not pd-maximal, then we know that f ∈ cd(G)
but f /∈ Ω, and therefore Ωp′ is a simplex of dimension at most n −1. We have just shown 
that if x ∈ Ωp′ , then π(f) ⊆ π(x). If f is pd-maximal, then we must have π(f) = π(x), 
and as we have selected only one representative of each class of pd-maximal element, 
we have |Ωp′ | = 1 in this case. That is, Ωp′ = {x}, and in either case, we see that we 
actually have a bound of n − 1 on the dimension of Ωp′ .
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Fig. 1. A graph containing four vertices.

Fig. 2. Three simplicial complexes, each having Fig. 1 as its 1-skeleton.

Finally, we compute an upper bound on the rank of Π1(Ω). Write σ for the simplex in 
G(Ω) formed by Ωp′ and τ for the simplex formed by Ωp. Of course, Ω is the disjoint union 
of σ and τ , where σ has dimension at most (n − 1) and τ has dimension at most n. It 
follows from Corollary 2.8 that Π1(Ω) has rank at most (n −1)n +n +(n −1) = n2+n −1, 
the bound we desire. �
4. Applications and future research

4.1. Applications

We begin by presenting an example with two purposes. First, this example will demon-
strate the need to consider the full structure of the character degree simplicial complex 
G(G) as opposed to just the character degree graph Γ(G). Second, this example will 
show us how Theorem A can be used to exclude certain lists of positive integers as the 
irreducible character degrees of a finite solvable group.

Fig. 1 gives a graph containing four vertices. Fig. 2 shows the three different simplicial 
complexes that each have Fig. 1 as a 1-skeleton.

We first claim that Fig. 2(a) does not appear as the character degree simplicial complex 
of any finite solvable group. Suppose G is a finite solvable group having Fig. 2(a) as G(G). 
Then dim(G(G)) = 1 and |cd(G)| = 5. Solvable groups with a connected character degree 
simplicial complex of dimension 1 have at most 6 vertices by Theorem 3.1, so we see that 
Theorem 3.1 does not exclude Fig. 2(a) as a character degree simplicial complex of a 
finite solvable group. However, the fundamental group of G(G) is isomorphic to the free 
product of two copies of Z, and thus has rank 2. By Theorem A, the character degree 
simplicial complex of a finite solvable group of dimension 1 has rank at most 1, and 
therefore Fig. 2(a) cannot occur as the character degree simplicial complex of any finite 
solvable group.

To see that Fig. 2(c) does appear as the character degree simplicial complex of some 
finite solvable group, we construct an example. Suppose p and q are primes with p ≡ 1
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(mod q). Let P be an extraspecial p-group of order p3 of exponent p, so that P has the 
presentation P = 〈a, b, c | ap, bp, cp, [a, b] = c, [a, c], [b, c]〉. Let σ be an automorphism of 
P that fixes a and sends b to bn, where n is an element of order q in U(Z/pZ). When 
we consider the group N = P � 〈σ〉, it follows that N is a group of order p3q with 
cd(N) = {1, q, pq}. Finally, set G = N × P . Then cd(G) = {1, p, q, pq, p2q}, and G(G) is 
Fig. 2(c).

Finally, we construct a more complicated example to show that Fig. 2(b) also appears 
as the character degree simplicial complex of a finite solvable group. Let A be an elemen-
tary abelian group of order p3 where p is a prime congruent to 1 modulo 6. We then select 

σ, τ ∈ Aut(A) ∼= GL3(Z/pZ) where σ =

⎛
⎜⎝

1 1 0
0 1 1
0 0 1

⎞
⎟⎠ and τ =

⎛
⎜⎝

n2 0 0
0 n3 n2(n

2
)

0 0 n4

⎞
⎟⎠, 

where n is an element of order 6 in U(Z/pZ). Last, set G = A � 〈σ, τ〉. We claim that G
is a solvable group with |G| = 6p4 and cd(G) = {1, 3, 6, 2p, 3p}.

First, note that for every positive integer m,

σm =

⎛
⎜⎝

1 m
(
m
2
)

0 1 m

0 0 1

⎞
⎟⎠ (2)

and

τm =

⎛
⎜⎝

n2m 0 0
0 n3m n2(n

2
)
nm−1(1 + n + . . . + nm−1)

0 0 n4m

⎞
⎟⎠ . (3)

One can verify from Equations (2) and (3) that σ has order p, τ has order 6, and 
στ = τσn, or alternatively, τ−1στ = σn. That is, 〈σ, τ〉 is a Frobenius group of order 6p. 
It follows that P = A � 〈σ〉 is a normal Sylow p-subgroup of G of order p4 and that G
modulo P is cyclic of order 6. We conclude both that G is solvable of order 6p4 and that 
6 ∈ cd(〈σ, τ〉) ⊆ cd(G).

Let a, b, and c be generators for A that correspond to the basis vectors in rows 1, 2, 
and 3, respectively, of the matrices for σ and τ . Notice that 〈c〉 is normal in G and that 
〈c〉 = Z(P ). Similarly, 〈b, c〉 � G and modulo 〈c〉, 〈b, c〉 is the center of P/〈c〉. Finally, 
note that the members of cd(G) are squarefree because A is an abelian normal subgroup 
of P of index p; this implies that cd(P ) = {1, p}, thus the p-part of every member of 
cd(G) is at most p.

Suppose χ ∈ Irr(G) and χ(1) > 1; let N = P ∩ ker(χ). As χ is nonlinear and G/P is 
abelian, we conclude that N < P . We will study the various options for N to show that 
χ(1) ∈ {3, 6, 2p, 3p} and that each of these numbers is in fact an irreducible character 
degree of G.

If A ⊆ N , then as G/A ∼= 〈σ, τ〉, we conclude that χ(1) = 6. We may therefore assume 
that A � N . Next, suppose 〈b, c〉 ⊆ N , so that χ ∈ Irr(G/〈b, c〉). As A � N , we can 
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choose λ ∈ Irr(A/〈b, c〉) nonprincipal with χ ∈ Irr(G|λ). Since aτ = an
2 , a has order p, 

and n2 has order 3 in U(Z/pZ), we conclude that a is in a G-orbit of size 3. Now A/〈b, c〉
is cyclic, hence the size of the G-orbit of a is equal to the size of the G-orbit of a nontrivial 
member of Irr(A/〈b, c〉) by Theorem 6.32 of [3]. We conclude that λ is in a G/〈b, c〉-orbit 
of size 3, and therefore 3 divides χ(1). This gives us that χ(1) ∈ {3, 6}, and to show that 
there exists an irreducible character of G of degree 3, note that λ is a linear character 
that extends to its stabilizer.

We may now assume that 〈b, c〉 � N , and we consider the case where 〈c〉 ⊆ N . 
Notationally, we will write Tθ for the stabilizer of θ in G. Let λ ∈ Irr(〈b, c〉/〈c〉) with 
χ ∈ Irr(G|λ); note that λ is nonprincipal. Let η ∈ Irr(A) lie over λ and under χ. Since 
η〈b,c〉 = λ, we have that Tη ⊆ Tλ. By considering the action of τ on 〈b, c〉 we see that, 
modulo 〈c〉, every nontrivial member of 〈b, c〉 is in a G-orbit of size 2. As 〈b, c〉/〈c〉 is 
cyclic, we conclude that the G-orbit of λ has size 2. Hence 2 divides the size of the 
G-orbit of η. Additionally, we claim that p divides the size of the G-orbit of η. Because 
Irr(A/〈c〉) is an elementary abelian group of order p2 on which P/A acts nontrivially and 
P/A does act trivially on Irr(A/〈b, c〉), we conclude that P/A must act nontrivially on 
every member of Irr(A/〈c〉) that does not have 〈b, c〉/〈c〉 in its kernel. Thus 2p divides 
the size of the G-orbit of η. Last, we claim that the G-orbit of η has size exactly equal 
to 2p and that χ(1) = 2p. To see this, note that if χ(1) = 6p, then as the G-orbit of λ
has size 2, taking degrees gives us that [χ〈b,c〉, λ] = 3p. Using Frobenius reciprocity and 
taking degrees, we conclude that λG(1), which should be |G : 〈b, c〉| = 6p2, is equal to at 
least [χ〈b,c〉, λ]χ(1) = 18p2, which cannot hold. Since 2p must divide χ(1), the members 
of cd(G) are squarefree, and we have shown that χ(1) cannot be 6p, we deduce that the 
G-orbit of η has size exactly 2p and that χ(1) must also be equal to 2p.

Lastly, we assume that N = 1, and we let λ ∈ Irr(〈c〉) with χ ∈ Irr(G|λ), where λ
is nonprincipal. Similar to the previous paragraph, we fix η ∈ 〈b, c〉 lying over λ and 
under χ. Using an argument analogous to the previous paragraph, we find that λ is in a 
G-orbit of size 3 and η is in a G-orbit of size divisible by 3p. What remains to be shown 
is that η is in a G-orbit of size 3p and that χ(1) = 3p. If η is in a G-orbit of size 6p, then 
A = Tη. As A is abelian, η extends to A; it follows from Gallagher’s Theorem, that there 
exists p distinct members of Irr(A|η). We also have a correspondence between Irr(A|η)
and Irr(G|η) via induction, hence there are p members of Irr(G|η), each having degree 
6p. It follows that there are at least p irreducible characters of G of degree 6p lying over 
λ. Since λ is in a G-orbit of size 3, any irreducible character ψ of G of degree 6p lying 
over λ will satisfy [ψ〈c〉, λ] = 2p. Now λG(1) = 6p3, and yet Frobenius reciprocity gives us 
that λG(1) =

∑
ψ∈Irr(G|λ)

[ψ〈c〉, λ]ψ(1) ≥ p(2p)(6p) = 12p3. This is a contradiction, hence 

we cannot have η in a G-orbit of size 6p. Finally, we use this information to argue that 
χ(1) = 3p. Now A = Tη ∩ P , and as A is abelian, we know that η extends to A. Since 
o(η) is a p-power, it follows that η extends to Tη, and we have a correspondence between 
Irr(Tη|η) and Irr(Tη/〈b, c〉) by Gallagher’s Theorem. It can be seen by looking at the 
matrix τ that the nontrivial members of A/〈b, c〉 are in G-orbits of size 3, thus the group 
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Tη/A acts trivially on A/〈b, c〉. That is, Tη/〈b, c〉 is abelian, and therefore every member 
of Irr(Tη/〈b, c〉) has degree 1. We conclude that every member of cd(G|η) has degree 3p. 
In summary, we have created a solvable group G with cd(G) = {1, 3, 6, 2p, 3p} and G(G)
is Fig. 2(b). This example has been verified with the prime p = 7 in Magma.

In conclusion, we have established that we can create examples of solvable groups G
having G(G) as Fig. 2(b) and Fig. 2(c), but there is no solvable group G having G(G) as 
Fig. 2(a). This proves that the character degree simplicial complex is able to distinguish 
an ambiguity present in the character degree graph of a finite solvable group, and serves 
as justification that we should study the full structure provided by G(G) as opposed to 
Γ(G) in this field of research.

4.2. Future research

When G(G) is connected, Theorem A gives a bound on the rank of Π1(G) in terms 
of the dimension of G(G) that is on the order of n2, a significant improvement over the 
bound on the order of n4 implied by Theorem 3.1. Theorem A is also independent of 
Benjamin’s work, and can be used to show that certain simplicial complexes do not occur 
as the character degree simplicial complex of any finite solvable group. The question that 
remains is what is the best possible bound we can acquire on the rank of Π1(G) when 
G is a finite solvable group? Although Subsection 4.1 gives an example of a solvable 
group G having G(G) connected with Π1(G) of rank 1, the author is unaware of any 
examples of solvable groups having a connected character degree simplicial complex and 
a fundamental group not isomorphic to Z or the trivial group. That is, it may be the 
case that there is a universal bound on the rank of Π1(G) when G(G) is connected 
and G is a finite solvable group, independent of the dimension of G(G). It would be 
interesting, therefore, to either construct a sequence {Gi} of finite solvable groups where 
the dimension of G(Gi) increases with i, as does the rank of Π1(Gi). Similarly, it would 
be interesting to prove that no such sequence exists, and that the rank of Π1(G) is 
independent of the dimension of G(G).
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