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Let G be a simply connected simple algebraic group over 
C, B and B− be its two opposite Borel subgroups. For two 
elements u, v of the Weyl group W , it is known that the 
coordinate ring C[Gu,v] of the double Bruhat cell Gu,v =
BuB ∩ B−vB− is isomorphic to a cluster algebra A(i)C [2,
12]. In the case u = e, v = c2 (c is a Coxeter element), the 
algebra C[Ge,c2 ] has only finitely many cluster variables. In 
this article, for G = SLr+1(C), we obtain explicit forms of 
all the cluster variables in C[Ge,c2 ] by considering its additive 
categorification via preprojective algebras, and describe them 
in terms of monomial realizations of Demazure crystals.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A cluster algebra is a commutative ring generated by so-called “cluster variables”, 
which has been introduced in order to study certain combinatorial properties of dual 
(semi) canonical bases by Fomin and Zelevinsky ([7]). Nowadays, it has influenced to 
remarkably wide areas of mathematics and physics.
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In [2], Berenstein et al. constructed the upper cluster algebra structures on the coor-
dinate algebra C[Gu,v] of double Bruhat cell Gu,v, where G is a simply-connected simple 
algebraic group over C and u, v are elements of the associated Weyl group W . Recently, 
Goodearl and Yakimov showed that C[Gu,v] also has a cluster algebra structure ([12]). In 
[9] Geiss et al. initiated categorification of cluster algebras by considering semi-canonical 
bases.

Cluster algebras which have only finitely many cluster variables are called finite type. 
In [8], cluster algebras of finite type are studied thoroughly, and are classified by the set 
of Cartan matrices up to coefficients. For a fixed Cartan matrix, all the cluster variables 
are parametrized by the set of “almost positive roots”, which is, a union of all positive 
roots and negative simple roots corresponding to the Cartan matrix. Here, it is defined 
that the type of such cluster algebra to be the type of the corresponding Cartan matrix. 
Let c ∈ W be a Coxeter element whose length l(c) satisfies l(c2) = 2l(c) = 2rank(G). 
It is known that one can realize a cluster algebra of finite type on the coordinate ring 
C[Ge,c2 ], whose type coincides with the Cartan-Killing type of G [2].

The theory of crystal base has been invented by Kashiwara, whose basic properties 
admit several kinds of explicit descriptions. Each description provides interesting ap-
plications to combinatorics, mathematical physics, and representation theories of finite 
groups, etc. [17]. A monomial realization is one of such descriptions of crystal bases, each 
element of crystal base is described as a Laurent monomial in double-indexed variables 
{Ys,i|s ∈ Z, i ∈ {1, 2, · · · , rank(G)}} [15,20], which has been motivated by q-characters 
and then it matches to express the whole structure of crystals.

In [13,14], we showed that certain cluster variables of C[Gu,e] (u ∈ W ) become Laurent 
polynomials of {Ys,i} with positive coefficients by taking a specific transformation H ×
(C×)l(u) → Gu,e (H is a maximal torus of G), and these polynomials coincide with the 
total sums of monomial realizations of lower Demazure crystals in the case G is type A, 
B, C or D. For a reduced expression of Weyl group element w = si1 · · · sin and crystal 
base B(λ) (λ is a dominant weight), Demazure crystal B(λ)w and lower Demazure crystal 
B−(λ)w are the following subset of B(λ):

B(λ)w = {f̃a1
i1

· · · f̃an
in

bλ|a1, · · · , an ∈ Z≥0} \ {0},
B−(λ)w = {ẽa1

i1
· · · ẽan

in
b−λ |a1, · · · , an ∈ Z≥0} \ {0},

where bλ (resp. b−λ ) is the highest (resp. lowest) weight vector in B(λ). Then we treated 
only a part of the cluster variables so-called initial cluster variables. And we did not 
reveal the meaning of the highest weights of crystal bases appearing in the initial cluster 
variables. To see more universal relations between the cluster algebras and crystal bases, 
we need to treat all the cluster variables in the coordinate rings.

From this point of view, in this article, we intended to consider the coordinate ring 
C[Ge,c2 ] for G = SLr+1(C) (r ≥ 3) which has only finitely many cluster variables, 
where c is the Coxeter element such that a reduced word i of c2 can be written as 
i = (2, 4, 6, · · · , R, 1, 3, 5, · · · , R′, 2, 4, 6, · · · , R, 1, 3, 5, · · · , R′) with (R, R′) = (r, r − 1) if 
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r is even, (R, R′) = (r − 1, r) if r is odd. The aim of the article is to reveal relation 
between all the cluster variables in C[Ge,c2 ] and crystal bases. One of our main results is 
that each cluster variable in C[Ge,c2 ] becomes the total sum of monomial realization of 
Demazure crystals by applying a coordinate transformation xG

i : H × (C×)2r → Ge,c2 . 
More precisely, the initial cluster variables coincide with the sums of monomials in the 
Demazure crystals B(Λk)wk

with some k ∈ {1, 2, · · · , r} and wk ∈ W (see Proposi-
tion 6.2), where Λk is the k-th fundamental weight (1 ≤ k ≤ r). The other cluster 
variables are also obtained as the sums of monomials in the direct sum of Demazure 
crystals in the form B(

∑b
s=a Λs)w ⊕

⊕p
t=1 B(λt)wt

with some w, wt ∈ W , p, a, b ∈ Z>0
and λt ∈

∑b
s=a Λs −

∑
i∈{1,2,··· ,r} Z≥0αi, where αi is the i-th simple root. As a 

corollary of these results, we see that a natural correspondence −αk �→ B(Λk)wk
, ∑b

s=a αs → B(
∑b

s=a Λs)w ⊕
⊕p

t=1 B(λt)wt
gives a parametrization of the cluster vari-

ables in C[Ge,c2 ] by the set of almost positive roots.
As an example, let us consider the case G = SL4(C) (type A3 algebraic group). For 

the monomial realization of the crystal B(Λ2) of type A3, its crystal graph in terms of 
monomials is as follows:

Y1,2
Y1,1Y1,3

Y2,2

Y1,1
Y2,3

Y1,3
Y2,1

Y2,2
Y2,1Y2,3

1
Y3,2

2 1

3 3

1 2 (1.1)

On the other hand, taking the Coxeter element c = s2s1s3 ∈ W , specific initial cluster 
variables in C[Ge,c2 ] are given by minors D1,2, D12,24 and D123,124 (see Theorem 3.7), 
where D{1,2,··· ,k},{i1,i2,··· ,ik} denote the minor of matrices in SL4(C), whose rows are 
labelled by {1, 2, · · · , k}, columns are labelled by {i1, i2, · · · , ik}. Using the biregularly 
isomorphism xG

i : H × (C×)6 → Ge,c2 (i := (2, 1, 3, 2, 1, 3), 6 = l(c2)) in Proposition 2.4, 
we have

D12,24 ◦ xG
i (a; Y) = a1a2

(
Y1,2 + Y1,1Y1,3

Y2,2
+ Y1,3

Y2,1
+ Y2,2

Y2,1Y2,3
+ Y1,1

Y2,3

)
,

where we set a := diag(a1, a2, a3, a4) ∈ H and Y := (Y1,2, Y1,1, Y1,3, Y2,2, Y2,1, Y2,3) ∈
(C×)6. Comparing with the above crystal graph (1.1) of B(Λ2), we see that the set 
of terms {Y1,2, 

Y1,1Y1,3
Y2,2

, Y1,3
Y2,1

, Y2,2
Y2,1Y2,3

, Y1,1
Y2,3

} in D12,24 ◦ xG
i coincides with the monomial 

realization of the Demazure crystal B(Λ2)s3s1s2 (see 5.2). Similarly, we get

D1,2 ◦ xG
i (a; Y) = a1

(
Y1,1 + Y2,2

Y2,1

)
, D123,124 ◦ xG

i (a; Y) = a1a2a3

(
Y1,3 + Y2,2

Y2,3

)
,

which coincide with the total sums of monomials in Demazure crystals B(Λ1)s3s1s2 , 
B(Λ3)s3s1s2 respectively up to torus parts. All other cluster variables in C[Ge,c2 ] are 
given as
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(D12,12D13,34) ◦ xG
i = a2

1a2a3Y2,2,

D12,14 ◦ xG
i = a1a2

(
Y1,2Y2,1 + Y1,1Y1,3Y2,1

Y2,2
+ Y1,1Y2,1

Y2,3

)
,

D12,23 ◦ xG
i = a1a2

(
Y1,2Y2,3 + Y1,1Y1,3Y2,3

Y2,2
+ Y1,3Y2,3

Y2,1

)
, D1,3 ◦ xG

i = a1Y2,3,

D123,134 ◦ xG
i = a1a2a3Y2,1, D12,13 ◦ xG

i = a1a2

(
Y1,2Y2,1Y2,3 + Y1,1Y1,3Y2,1Y2,3

Y2,2

)
,

which coincide with the total sums of monomials in Demazure crystals B(Λ2)e, B(Λ1 +
Λ2)s3s2 , B(Λ2 + Λ3)s1s2 , B(Λ3)e, B(Λ1)e and B(Λ1 + Λ2 + Λ3)s2 respectively up to 
torus parts. These results imply the statement of Theorem 6.8 for r = 3. Thus, the 
correspondence −αi �→ B(Λi)s3s1s2 , αi �→ B(Λi)e (i = 1, 2, 3), α1+α2 �→ B(Λ1+Λ2)s3s2 , 
α2 +α3 �→ B(Λ2 + Λ3)s1s2 , and α1 +α2 +α3 �→ B(Λ1 + Λ2 + Λ3)s2 yields an alternative 
parametrization of all cluster variables in C[Ge,c2 ] by the set of almost positive roots. 
Here, if one takes some specific cluster as an initial cluster, the parametrization in [8]
seems to coincide with ours, which will not be discussed in this article.

For the proof of main results, we use the additive categorification of the coordinate 
ring C[Le,c2 ] which has been invented by Geiss et al. [9]. Each cluster in C[Le,c2 ] is 
associated with a cluster-tilting module of the preprojective algebra (see Sect. 4), and each 
cluster variable is associated with a direct summand of the corresponding cluster-tilting 
module. There exists a remarkable formula to calculate such cluster variables explicitly 
(Proposition 4.13) [5,9]. With the help of this formula and the additive categorification, 
we shall obtain the explicit forms of all cluster variables.

The article is organized as follows. In section 2, we recall properties of (reduced) 
double Bruhat cells Gu,v and Lu,v. In section 3, after a concise reminder on cluster al-
gebras, we review an isomorphism between the coordinate ring of a double Bruhat cell 
Ge,v and a cluster algebra A(i). In section 4, we recall the cluster algebra structure of 
C[Le,v] and basic notions of preprojective algebras. We also review the additive categori-
fications of the cluster algebras C[Le,v] following [5,9]. In section 5, we shortly review 
the definition of monomial realizations of crystal bases. Section 6 is devoted to present 
our main results, which provide a relation between all cluster variables in C[Ge,c2 ] and 
monomial realizations of Demazure crystals. In Section 7, we complete the proof of the 
main theorems.

2. Factorization theorem

In this section, we shall introduce (reduced) double Bruhat cells Gu,v, Lu,v, and their 
properties [4,6]. For l ∈ Z>0, we set [1, l] := {1, 2, · · · , l}.
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2.1. Double Bruhat cells

Let G be a simple complex algebraic group of classical type, B and B− be two opposite 
Borel subgroups in G, N ⊂ B and N− ⊂ B− be their unipotent radicals, H := B∩B− a 
maximal torus. We set g := Lie(G) with the triangular decomposition g = n−⊕h ⊕n. Let 
ei, fi (i ∈ [1, r]) be the generators of n, n− and hi be the i-th simple coroot (i ∈ [1, r]). 
For i ∈ [1, r] and t ∈ C, we set

xi(t) := exp(tei), yi(t) := exp(tfi). (2.1)

Let W := 〈si|i = 1, · · · , r〉 be the Weyl group of g, where {si} are the simple reflections. 
We identify the Weyl group W with NormG(H)/H. An element

si := xi(−1)yi(1)xi(−1) (2.2)

is in NormG(H), which is a representative of si ∈ W = NormG(H)/H [21]. For u ∈ W , 
let u = si1 · · · sin be its reduced expression. Then we write u = si1 · · · sin , call l(u) := n

the length of u. We have two kinds of Bruhat decompositions of G as follows:

G =
∐
u∈W

BuB =
∐
u∈W

B−uB−.

Then, for u, v ∈ W , we define the double Bruhat cell Gu,v as follows:

Gu,v := BuB ∩B−vB−.

We also define the reduced double Bruhat cell Lu,v as follows:

Lu,v := NuN ∩B−vB− ⊂ Gu,v.

Definition 2.1. Let v = sjn · · · sj1 be a reduced expression of v ∈ W (jn, · · · , j1 ∈ [1, r]). 
Then the finite sequence i := (jn, · · · , j1) is called a reduced word for v.

For example, the sequence (2, 1, 3, 2, 1, 3) is a reduced word of the longest element 
s2s1s3s2s1s3 of the Weyl group of type A3. In this paper, we mainly treat (reduced) 
double Bruhat cells of the form Ge,v := B ∩B−vB−, Le,v := N ∩B−vB−.

2.2. Factorization theorem

In this subsection, we shall introduce the isomorphisms between double Bruhat cell 
Ge,v and H × (C×)l(v), and between Le,v and (C×)l(v). For i ∈ [1, r] and t ∈ C×, we set 
α∨
i (t) := thi , where if t is written as t = exp(k) with some k ∈ C, we set thi := exp(khi).
For a reduced word i = (i1, · · · , in) (i1, · · · , in ∈ [1, r]), we define a map xG

i : H×Cn →
G as
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xG
i (a; t1, · · · , tn) := a · xi1(t1) · · ·xin(tn). (2.3)

Theorem 2.2. [4,6] For v ∈ W and its reduced word i, the map xG
i is a biregular isomor-

phism from H × (C×)l(v) to a Zariski open subset of Ge,v. The map (C×)l(v) → Le,v, 
(t1, · · · , tn) �→ xG

i (1; t1, · · · , tn) is a biregular isomorphism to a Zariski open subset of 
Le,v.

For i = (i1, · · · , in) (i1, · · · , in ∈ [1, r]), we define a map xG
i : H × (C×)n → Ge,v as

xG
i (a; t1, · · · , tn) = axi1(t1)α∨

i1(t1)xi2(t2)α∨
i2(t2) · · ·xin(tn)α∨

in(tn),

where a ∈ H and (t1, · · · , tn) ∈ (C×)n.
Now, let G = SLr+1(C) and c ∈ W be a Coxeter element such that a reduced word i

of c2 can be written as

i =
{

(2, 4, 6, · · · , r, 1, 3, 5, · · · , r − 1, 2, 4, 6, · · · , r, 1, 3, 5, · · · , r − 1) if r is even,
(2, 4, 6, · · · , r − 1, 1, 3, 5, · · · , r, 2, 4, 6, · · · , r − 1, 1, 3, 5, · · · , r) if r is odd.

(2.4)

Remark 2.3. In the rest of the paper, we use double indexed variables Ys,j (s ∈ Z, j ∈
[1, r]). If we see the variables Ys,0, Ys,j (r + 1 ≤ j) then we understand Ys,0 = Ys,j = 1. 
For example, if l = 1 then Ys,l−1 = 1.

Proposition 2.4. In the above setting, the map xG
i is a biregular isomorphism between 

H × (C×)2r and a Zariski open subset of Ge,c2 .

Proof. Let jk be the k-th index of i in (2.4) from the right, which means that i =
(j2r, · · · , jr+1, jr, · · · , j2, j1). Note that ji+r = ji (1 ≤ i ≤ r). In this proof, we use the 
notation

Y := (Y1,jr , · · · , Y1,j1 , Y2,jr , · · · , Y2,j2 , Y2,j1),

for variables instead of (t1, · · · , t2r) ∈ (C×)2r.
We define a map φ : H × (C×)2r → H × (C×)2r,

φ(a;Y) = (ΦH(a; Y); Φ1,jr (Y), · · · ,Φ1,j1(Y),Φ2,jr (Y), · · · ,Φ2,j2(Y),Φ2,j1(Y)),

where

ΦH(a; Y) := a ·
r∏

i=1

2∏
j=1

α∨
i (Yj,i), (2.5)

and for l ∈ {1, 2, · · · , r},
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Φ1,l(Y) :=

⎧⎨⎩
(Y1,l−1Y2,l−1)(Y1,l+1Y2,l+1)

Y1,lY 2
2,l

if l is even,
(Y2,l−1)(Y2,l+1)

Y1,lY 2
2,l

if l is odd,
(2.6)

Φ2,l(Y) :=

⎧⎨⎩
(Y2,l−1)(Y2,l+1)

Y2,l
if l is even,

1
Y2,l

if l is odd.
(2.7)

Note that φ is a biregular isomorphism since we can construct the inverse map ψ :
H × (C×)2r → H × (C×)2r,

ψ(a; Y) = (ΨH(a; Y); Ψ1,jr (Y), · · · ,Ψ1,j1(Y),Ψ2,jr (Y), · · · ,Ψ2,j1(Y))

of φ as follows:

Ψ1,l(Y) :=
{

(Y1,l−1Y1,lY1,l+1Y2,l−3Y2,l−2Y2,l+2Y2,l+3)−1 if l is even,
(Y1,lY2,l−2Y2,l−1Y2,l+1Y2,l+2)−1 if l is odd,

Ψ2,l(Y) :=
{

(Y2,l−1Y2,lY2,l+1)−1 if l is even,
1

Y2,l
if l is odd,

ΨH(a; Y) := a ·

⎛⎝ r∏
i=1

2∏
j=1

α∨
i (Ψj,i(Y))

⎞⎠−1

.

Then, the map ψ is the inverse map of φ.
Let us prove

xG
i (a; Y) = (xG

i ◦ φ)(a;Y),

which implies that xG
i : H× (C×)2r → Ge,c2 is a biregular isomorphism by Theorem 2.2. 

First, it is known that for 1 ≤ i, j ≤ r and s, t ∈ C×,

α∨
j (s)xi(t) =

⎧⎪⎪⎨⎪⎪⎩
xi(s2t)α∨

i (s) if i = j,

xi(s−1t)α∨
j (s) if |i− j| = 1,

xi(t)α∨
j (s) otherwise.

(2.8)

On the other hand, it follows from the definition (2.3) of xG
i and (2.5) that

(xG
i ◦ φ)(a;Y) = a ·

(
r∏

i=1

2∏
s=1

α∨
i (Ys,i)

)
× xjr(Φ1,jr (Y)) · · ·xj1(Φ1,j1(Y))

× xjr(Φ2,jr (Y)) · · ·xj2(Φ2,j2(Y))xj1(Φ2,j1(Y)).
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For each even l (1 ≤ l ≤ r), we can move

α∨
1 (Y1,1)α∨

3 (Y1,3) · · ·α∨
l−3(Y1,l−3)α∨

l−1(Y1,l−1)
r∏

i=l

α∨
i (Y1,i)

r∏
i=1

α∨
i (Y2,i)

to the right of xl(Φ1,l(Y)) by using the relations (2.8):

α∨
1 (Y1,1)α∨

3 (Y1,3) · · ·α∨
l−3(Y1,l−3)α∨

l−1(Y1,l−1)
(

r∏
i=l

α∨
i (Y1,i)

r∏
i=1

α∨
i (Y2,i)

)
xl(Φ1,l(Y))

= xl

(
Φ1,l(Y)

Y 2
1,lY

2
2,l

Y1,l−1Y2,l−1Y1,l+1Y2,l+1

)
α∨

1 (Y1,1) · · ·α∨
l−1(Y1,l−1)

r∏
i=l

α∨
i (Y1,i)

r∏
i=1

α∨
i (Y2,i)

= xl(Y1,l)α∨
1 (Y1,1)α∨

3 (Y1,3) · · ·α∨
l−3(Y1,l−3)α∨

l−1(Y1,l−1)
r∏

i=l

α∨
i (Y1,i)

r∏
i=1

α∨
i (Y2,i).

Similarly, we can also move α∨
1 (Y2,1)α∨

3 (Y2,3) · · ·α∨
l−1(Y2,l−1) 

∏r
i=l α

∨
i (Y2,i) to the right 

of xl(Φ2,l(Y)):

α∨
1 (Y2,1)α∨

3 (Y2,3) · · ·α∨
l−3(Y2,l−3)α∨

l−1(Y2,l−1)
(

r∏
i=l

α∨
i (Y2,i)

)
xl(Φ2,l(Y))

= xl(Y2,l)α∨
1 (Y2,1)α∨

3 (Y2,3) · · ·α∨
l−3(Y2,l−3)α∨

l−1(Y2,l−1)
r∏

i=l

α∨
i (Y2,i).

For odd l, we obtain

α∨
l (Y1,l)α∨

l+2(Y1,l+2) · · ·α∨
j1(Y1,j1)α∨

1 (Y2,1)α∨
2 (Y2,2) · · ·α∨

r (Y2,r)xl(Φ1,l(Y))

= xl(Y1,l)α∨
l (Y1,l)α∨

l+2(Y1,l+2) · · ·α∨
j1(Y1,j1)α∨

1 (Y2,1)α∨
2 (Y2,2) · · ·α∨

r (Y2,r),

α∨
l (Y2,l)α∨

l+2(Y2,l+2) · · ·α∨
j1(Y2,j1)xl(Φ2,l(Y)) =xl(Y2,l)α∨

l (Y2,l)α∨
l+2(Y2,l+2) · · ·α∨

j1(Y2,j1).

Thus, we get

(xG
i ◦ φ)(a;Y) = a · xjr(Y1,jr)α∨

jr (Y1,jr) · · ·xj1(Y1,j1)α∨
j1(Y1,j1)

xjr(Y2,jr)α∨
jr (Y2,jr) · · ·xj2(Y2,j2)α∨

j2(Y2,j2)xj1(Y2,j1)α∨
j1(Y2,j1) = xG

i (a; Y). �
3. Cluster algebras

Following [2,6,7,11], we review the definitions of cluster algebras and their generators 
called cluster variables. It is known that any coordinate ring of double Bruhat cells 
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possesses the cluster algebra structure, and some minors play roles of the cluster variables 
[12]. We will clarify a relation between cluster variables on double Bruhat cells and crystal 
bases in Sect. 6.

We set [−1, −l] := {−1, −2, · · · , −l} for l ∈ Z>0. For n, m ∈ Z>0, let x1, · · · , xn, xn+1,

· · · , xn+m be commutative variables and F := C(x1, · · · , xn, xn+1, · · · , xn+m) be the 
field of rational functions.

3.1. Cluster algebras of geometric type

In this subsection, we recall the definitions of cluster algebras. Let B̃ =
(bij)1≤i≤n+m, 1≤j≤n be an (n + m) × n integer matrix. The principal part B of B̃ is 
obtained from B̃ by deleting the last m rows. For B̃ and k ∈ [1, n], the new (n +m) × n

integer matrix μk(B̃) = (b′ij) is defined by

b′ij :=
{
−bij if i = k or j = k,

bij + |bik|bkj+bik|bkj |
2 otherwise.

One calls μk(B̃) the matrix mutation in direction k of B̃. If there exists a positive integer 
diagonal matrix D such that DB is skew symmetric, we say B is skew symmetrizable. 
Then we also say B̃ is skew symmetrizable. It is easily verified that if B̃ is skew sym-
metrizable then μk(B̃) is also skew symmetrizable [11, Proposition 3.6]. We can also 
verify that μkμk(B̃) = B̃. If y := (y1, · · · , yn, xn+1, · · · , xn+m) is an algebraically inde-
pendent subset that generates F , we call the pair (y, B̃) seed. For 1 ≤ k ≤ n, a new 
cluster variable y′k is defined by the following exchange relation.

yky
′
k =

∏
1≤i≤n+m, bik>0

ybiki +
∏

1≤i≤n+m, bik<0

y−bik
i . (3.1)

Let μk(x) be the set of variables obtained from y by replacing yk by y′k. Ones call the pair 
(μk(y), μk(B̃)) the mutation in direction k of the seed (y, B̃) and denote by μk((y, B̃)).

Now, we can repeat this process of mutation and obtain a set of seeds inductively. 
Hence, each seed consists of an (n + m)-tuple of variables and a matrix. Ones call this 
(n +m)-tuple and matrix cluster and exchange matrix respectively. Variables in cluster 
is called cluster variables. In particular, the variables xn+1, · · · , xn+m are called frozen 
cluster variables.

Definition 3.1. [6,11] Let B̃ be an integer matrix whose principal part is skew symmetriz-
able, x = (x1, · · · , xn+m) and Σ = (x, B̃) a seed. We set A := Z[x±1

n+1, · · · , x±1
n+m]. The 

cluster algebra (of geometric type) A = A(Σ) over A associated with seed Σ is defined 
as the A-subalgebra of F generated by all cluster variables in all seeds which can be 
obtained from Σ by sequences of mutations. Then Σ is called an initial seed of A.
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3.2. Cluster algebra A(i)

In the rest of this section, let G = SLr+1(C) be the complex simple algebraic group 
of type Ar and g := Lie(G).

Let i = (j2r, · · · , j2, j1) be the reduced word for c2 ∈ W defined in (2.4). Let us define 
the cluster algebra A(i) associated with i. It satisfies that A(i) ⊗C is isomorphic to the 
coordinate ring C[Ge,c2 ] of the double Bruhat cell [2]. Let �x� denote the integer part of 
x.

Following [2], we define a quiver Γi as follows. The vertices of Γi are the variables xk

(k ∈ [−1, −r] ∪ [1, 2r]). The arrows are as follows:

x−3

x2r−� r
2 �−1

xr−� r
2 �−1

x−2

x2r

xr

x−1

x2r−� r
2 �

xr−� r
2 �

x−4

x2r−1

xr−1

· · ·

x−j1−1

xr+� r
2 �+1

x� r
2 �+1

x−j1

xr+1

x1 (3.2)

where if r is odd then j1 = r and the vertices x−j1−1, xr+� r
2 �+1, x� r

2 �+1 and arrows 
adjacent to these vertices are removed. For k (1 ≤ k ≤ � r+1

2 �), vertices and arrows 
around the vertex xk in the quiver Γi are described as

· · ·

x−jk−1

xr+� r
2 �+k

x� r
2 �+k

x−jk

xr+k

xk

x−jk+1

xr+� r
2 �+k+1

x� r
2 �+k+1

x−jk+2

xr+k+1

xk+1

· · ·

(3.3)

For k (� r+1
2 � < k ≤ r), it is described as

· · ·

x−jk−2

xr+k−1

xk−1

x−jk−1

xr+k−� r
2 �−1

xk−� r
2 �−1

x−jk

xr+k

xk

x−jk+1

xr+k−� r
2 �

xk−� r
2 �

· · ·

(3.4)

Example 3.2. Let us consider the case G = SL5(C) and i = (2, 4, 1, 3, 2, 4, 1, 3). The 
quiver Γi is described as

x−4

x7

x3

x−3

x5

x1

x−2

x8

x4

x−1

x6

x2
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Next, let us define a matrix B̃ = B̃(i).

Definition 3.3. Let B̃(i) be an integer matrix with rows labelled by all the indices in 
[−1, −r] ∪ [1, 2r] and columns labelled by all the indices in [r+ 1, 2r]. For k ∈ [−1, −r] ∪
[1, 2r] and l ∈ [r + 1, 2r], an entry bkl of B̃(i) is determined as follows:

bkl :=

⎧⎪⎪⎨⎪⎪⎩
1 if xk → xl in Γi,

−1 if xl → xk in Γi,

0 otherwise.

The principal part B(i) of B̃(i) is the submatrix (bi,j)i,j∈[r+1,2r]. We also define Σi :=
(x, B̃(i)).

Proposition 3.4. [2] B̃(i) is skew symmetric.

In general, for a family of variables y = (yi)i∈[−1,−r]∪[1,2r] and a (3r) ×r integer matrix 
B̃ = (bi,j)i∈[−1,−r]∪[1,2r],j∈[r+1,2r] whose submatrix (bi,j)i,j∈[r+1,2r] is skew symmetric, let 
Γ((y, B̃)) be a quiver whose vertices are y−r, · · · , y−1, y1 · · · , y2r, and whose arrows are 
determined as follows: For i ∈ [−1, −r] ∪ [1, 2r] and j ∈ [r + 1, 2r], there exist |bi,j |
arrows yi → yj (resp. yj → yi) if bi,j > 0 (resp. bi,j < 0). We can easily check that 
Γ((x, B̃(i))) = Γi. When there exist b arrows yi → yj , we write yi

b→ yj or yj
−b→ yi

(b ≥ 0).

Lemma 3.5. [11] Let (y, B̃) be a seed, where y = (yi)i∈[−1,−r]∪[1,2r] and B̃ = (bi,j) is a 
(3r) × r-skew symmetric matrix. For k ∈ [r + 1, 2r], the quiver Γ((μk(y), μk(B̃))) has 
vertices y−r, · · · , y−1, y1, · · · , y′k, · · · , y2r and its arrows are determined as follows:

(1) If yi
b→ yk (resp. yk

b→ yi) in Γ((y, B̃)) then y′k
b→ yi (resp. yi

b→ y′k) in 
Γ((μk(y), μk(B̃))).

(2) We suppose that there exist arrows yi
b→ yk and yk

b′→ yj in Γ((y, B̃)) with b, b′ ≥ 0
and either i ∈ [r + 1, 2r] or j ∈ [r + 1, 2r]. If yj

a→ yi in Γ((y, B̃)), then yj
a−bb′→ yi

in Γ((μk(y), μk(B̃))).
(3) The rest of the arrows are the same as the one of Γ((y, B̃)).

Definition 3.6. [2] By Definition 3.1 and Proposition 3.4, we can construct the cluster 
algebra. We denote this cluster algebra by A(i).

3.3. Cluster algebras on double Bruhat cells

For a reduced expression v = sjnsjn−1 · · · sj1 of v ∈ W , its reduced word i =
(jn, · · · , j1) and k ∈ [1, n], we set
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v>k = v>k(i) := sj1sj2 · · · sjn−k
. (3.5)

For k ∈ [1, 2r], we define Δ(k; i)(x) := D[1,jk],c2>2r−k+1(i)[1,jk](x), and for k ∈ [−1, −r], 
Δ(k; i)(x) := D[1,|k|],c−2[1,|k|](x).

Finally, we set F (i) := {Δ(k; i)(x)|k ∈ [−1, −r] ∪ [1, 2r]}. It is known that the set F (i)
is an algebraically independent generating set for the field of rational functions C(Ge,c2)
[6, Theorem 1.12]. Then, we have the following.

Theorem 3.7. [2,9,12] The isomorphism of fields ϕ : F → C(Ge,c2) defined by ϕ(xk) =
Δ(k; i) (k ∈ [−1, −r] ∪ [1, 2r]) restricts to an isomorphism of algebras A(i) ⊗ C →
C[Ge,c2 ].

For k ∈ [1, r], the correspondence of the initial cluster variables under the isomorphism 
in Theorem 3.7 are as follows:

x−jk �→ D[1,jk],c−2[1,jk] = D[1,jk],sj1sj2 ···sj2r [1,jk] = D[1,jk],sj1sj2 ···sjr+k
[1,jk]

= D[1,jk],c2>r−k[1,jk],

xr+k �→ D[1,jk],c2>r−k+1[1,jk] = D[1,jk],sj1sj2 ···sjr+k−1 [1,jk]

= D[1,jk],sj1sj2 ···sjk [1,jk] = D[1,jk],c2>2r−k[1,jk],

xk �→ D[1,jk],c2>2r−k+1[1,jk] = D[1,jk],sj1sj2 ···sjk−1 [1,jk] = D[1,jk],[1,jk].

3.4. Finite type

Let S be the set of all seeds of a cluster algebra A. If S is finite, then A is said to be 
of finite type. In this subsection, we shall review cluster algebras of finite type [8].

Let B = (bij) be an integer square matrix. The Cartan counter part of B is a gener-
alized Cartan matrix A = A(B) = (ai,j) defined as follows:

ai,j =
{

2 if i = j,

−|bi,j | if i �= j.

Theorem 3.8. [8] The cluster algebra A is of finite type if and only if there exists a seed 
Σ = (y, B̃) such that A = A(Σ) and the Cartan counter part A(B) is a Cartan matrix 
of finite type, where B is the principal part of B̃.

By this theorem, we can define the type of each cluster algebra of finite type mirroring 
the Cartan-Killing classification.
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Let Φ be the root system associated with a Cartan matrix, with the set of simple 
roots Π = {αi| i ∈ [1, r]} and the set of positive roots Φ>0. The set of almost positive 
roots Φ≥−1 is defined by Φ≥−1 := Φ>0 ∪ −Π.

Theorem 3.9. [8]

(i) For a cluster algebra A of finite type, the number of the cluster variables in A is 
equal to |Φ≥−1|, where Φ is the root system associated with the Cartan matrix of the 
same type as A.

(ii) Let c ∈ W be a Coxeter element of G whose length l(c) satisfies l(c2) = 2l(c) =
2rank(G). Then the coordinate ring C[Ge,c2 ] has a structure of cluster algebra of 
finite type under the isomorphism in Theorem 3.7, and its type is the Cartan-Killing 
type of G.

4. Additive categorifications of cluster algebras

We fix an element v ∈ W and set n := l(v). In this section, we set G = SLr+1(C) and 
review the additive categorifications of the coordinate rings C[Le,v] according to [1,5,9].

4.1. Preprojective algebras and category Cv

Let Q = (Q0, Q1, s, t) be a Dynkin quiver of type A and

Λ = CQ/(C)

the associated preprojective algebra. Here Q is the double quiver of Q:

1 2 3 · · · r ,

CQ is its path algebra, and (C) is the ideal generated by

C =
∑
a∈Q1

(a∗a− aa∗),

where if a ∈ Q1 is the arrow from i to j then a∗ is the arrow in Q from j to i Let 
Î1, · · · , Îr be the indecomposable injective Λ-modules which have the simple socle iso-
morphic to S1, · · · , Sr, respectively, where Si is the 1-dimensional simple Λ-module which 
corresponds to the vertex i in Q. The module Îj is described as follows:
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r − j + 1

r − j r − j + 2

2 r − 1

1 r

j − 1 j + 1

j − 2 j j + 2

j − 1 j + 1

j (4.1)

In (4.1), each vertex k (1 ≤ k ≤ r) means a basis of Îj , and each arrow k → k + 1
(resp. k → k − 1) means the action of the edge k → k + 1 (resp. k → k − 1) ∈ Λ on the 
basis k. The vertex ek ∈ Λ acts on each basis k′ as

ek.k
′ =

{
k′ if k = k′,

0 if k �= k′.

For example, the vertex ej ∈ Λ acts on the basis j located at the bottom of (4.1)
identically, and all other paths act trivially. Thus, 1-dimensional submodule generated 
by this basis j is isomorphic to the simple module Sj .

Let mod(Λ) be the category of finite dimensional Λ-modules. Note that though in 
[9] the category nil(Λ) is treated, we consider the category mod(Λ) instead of nil(Λ)
since mod(Λ) = nil(Λ) holds in our setting. For j ∈ Q0 and Λ-module X in mod(Λ), let 
socj(X) be the sum of all submodules U of X with U ∼= Sj . For a sequence (i1, · · · , it)
(i1, i2, · · · , it ∈ Q0), there exists a unique chain

0 = X0 ⊂ X1 ⊂ · · ·Xt ⊂ X

of submodules such that Xp/Xp−1 = socip(X/Xp−1) (p = 1, 2, · · · , t). We define 
soc(i1,··· ,it)(X) := Xt.
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Let v ∈ W and i = (jn, · · · , j1) be its reduced word. Without loss of generality, we 
may assume that for each j ∈ [1, r], there exist some k ∈ [1, n] such that jk = j. The 
Λ-modules Vk = Vi,k (k = 1, 2, · · · , n) ∈ mod(Λ) are defined as

Vk := Vi,k = soc(jk,··· ,j1)(Îjk).

Let Vi :=
⊕n

k=1 Vk and Ci be the full subcategory of mod(Λ) whose objects are factor 
modules of direct sums of finitely many copies of Vi. For j ∈ [1, r], let mj := max{1 ≤
m ≤ n|jm = j} and Ii,j := Vi,mj

. We also set Ii := Ii,1 ⊕ · · ·⊕ Ii,r. The category Ci and Ii
depend on only v, and do not depend on the choice of reduced word i. Thus, we define

Cv := Ci, Iv := Ii.

A Λ-module C in Cv is called Cv-projective (resp. Cv-injective) if Ext1Λ(C, X) = 0 (resp. 
Ext1Λ(X, C) = 0) for all X ∈ Cv. If C is Cv-projective and Cv-injective, C is said to be 
Cv-projective-injective.

Theorem 4.1. [3,9] The category Cv has r indecomposable Cv-projective-injective modules, 
which are the indecomposable direct summands of Iv.

Proposition 4.2. Let i be the sequence in (2.4), jk be the k-th index of i from the right, 
that is, i = (j2r, · · · , jr+1, jr, · · · , j1). Then Vk = Vi,k (1 ≤ k ≤ 2r) is given as follows:

Vk = Sjk , if 1 ≤ k ≤ �r + 1
2 �, (4.2)

Vk =

jk − 1 jk + 1
jk , if �r + 1

2 � + 1 ≤ k ≤ r, (4.3)

Vk =

jk − 2 jk jk + 2
jk − 1 jk + 1

jk , if r + 1 ≤ k ≤ �r + 1
2 � + r, (4.4)

Vk =

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk , if �r + 1
2 � + r + 1 ≤ k ≤ 2r. (4.5)

In this case, we have Ic2 = Ii = Vr+1 ⊕ · · · ⊕ V2r.

Proof. For k with 1 ≤ k ≤ � r+1
2 �, to calculate Vk = soc(jk,jk−1,··· ,j1)(Îjk), we consider 

the chain

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk ⊂ Îjk
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such that X1 = socjk(Îjk) = Sjk , X2/X1 = socjk−1(Îjk/X1), X3/X2 = socjk−2(Îjk/X2),
· · · , Xk/Xk−1 = socj1(Îjk/Xk−1). By (4.1), the module Îjk/Sjk has simple submodules 
isomorphic to Sjk−1 and Sjk+1. Since Îjk/Sjk has no simple submodules isomorphic to 
Sjk−1 , Sjk−2 , · · · , Sj1 , we have X1 = X2 = · · · = Xk and then

Vk = Xk = Sjk .

Next, for � r+1
2 � + 1 ≤ k ≤ r, we consider the chain

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk ⊂ Îjk

such that X1 = socjk(Îjk) = Sjk , X2/X1 = socjk−1(Îjk/X1), · · · . In the same way as in
(4.2), we get X1 = X2 = · · · = X� r

2 � = Sjk . And X� r
2 �+1/X� r

2 � = socjk−� r
2 �(Îjk/X� r

2 �) =
Sjk−1. So the module X� r

2 �+1 is described as

jk − 1
jk

Similarly, we obtain X� r
2 �+2/X� r

2 �+1 = socjk−� r
2 �−1(Îjk/X� r

2 �+1) = Sjk+1. In the same 
way as in (4.2), we have Vk = Xk = Xk−1 = · · · = X� r

2 �+2. Thus, the module Vk is 
described as

jk − 1 jk + 1
jk

Next, for r + 1 ≤ k ≤ � r+1
2 � + r, we consider the chain

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk ⊂ Îjk

such that X1 = socjk(Îjk) = Sjk , X2/X1 = socjk−1(Îjk/X1), · · · . Note that jl = jl+r

(1 ≤ l ≤ r). In the same way as in (4.2), we get X1 = X2 = · · · = X� r+1
2 �−1 = Sjk . 

And X� r+1
2 �/X� r+1

2 �−1 = socj
k−� r+1

2 �+1
(Îjk/X� r+1

2 �−1) = Sjk−1, where we set Sj := 0 for 

j ≤ 0. We also get X� r+1
2 �+1/X� r+1

2 � = socj
k−� r+1

2 �
(Îjk/X� r+1

2 �) = Sjk+1, and

X� r+1
2 �+1 = X� r+1

2 �+2 = · · · = Xr−1.

We also obtain Xr/Xr−1 = socjk−r+1(Îjk/Xr−1) = Sjk−2, Xr+1/Xr = Sjk , Xr+2/Xr+1 =
Sjk+2 and Xr+2 = Xr+3 = · · · = Xk. Therefore, the module Xk = Vk is described as

jk − 2 jk jk + 2
jk − 1 jk + 1

jk
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Finally, for � r+1
2 � + r + 1 ≤ k ≤ 2r, we can verify that the module Vk is described as:

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk

by the same argument as in (4.2), (4.3) and (4.4). �
Remark 4.3. When we see the quiver

j−3 j−1 j+1 j+3

j−2 j j+2

j−1 j+1

j

or its subquiver, if j = 1, 2 or 3, we understand it means

4

3

2

1

3 5

2 4

1 3

2

2 4 6

1 3 5

2 4

3

respectively. Similarly, if j = r, r − 1 or r − 2, we understand it means

r−3

r−2

r−1

r

r−4 r−2

r−3 r−1

r−2 r

r−1

r−5 r−3 r−1

r−4 r−2 r

r−3 r−1

r−2

4.2. Mutation

For a Λ-module T in mod(Λ), let add(T ) denote the subcategory of mod(Λ) whose 
objects are all Λ-modules which are isomorphic to finite direct sums of direct summands 
of T .

Definition 4.4. [1,5,9]

(i) A Λ-module T is rigid if Ext1Λ(T, T ) = 0.
(ii) For a rigid module T in Cv, we say T is a Cv-cluster-tilting module if Ext1Λ(T, X) = 0

with X ∈ Cv implies X ∈ add(T ).
(iii) A Λ-module T is said to be basic, if it is decomposed to a direct sum of pairwise 

non-isomorphic indecomposable modules.
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(iv) Let T , X and Y ∈ mod(Λ). A morphism f ∈ HomΛ(X, Y ) (resp. f ∈ HomΛ(Y, X)) 
is said to be a left (resp. right) add(T)-approximation of X if Y ∈ add(T ) and for 
an arbitrary Y ′ ∈ add(T ) and f ′ ∈ HomΛ(X, Y ′) (resp. f ′ ∈ HomΛ(Y ′, X)), there 
exists g ∈ HomΛ(Y, Y ′) (resp. g ∈ HomΛ(Y ′, Y )) and f ′ = g ◦ f (resp. f ′ = f ◦ g).

(v) For V , W ∈ mod(Λ), a morphism f ∈ HomΛ(V, W ) is said to be left (resp. right) 
minimal if every endomorphism g ∈ EndΛ(W ) (resp. g ∈ EndΛ(V )) such that 
g ◦ f = f (resp. f ◦ g = f) is an isomorphism.

Proposition 4.5. [5,9,10] Let T = T1⊕T2⊕· · ·⊕Tn be a basic Cv-cluster-tilting object. We 
suppose that the {Ti}i=1,2,··· ,n are indecomposable summands of T and Tn−r+1, · · · , Tn

are the Cv-projective-injective modules. Then for k ∈ {1, 2, · · · , n − r}, there is a short 
exact sequence

0 → Tk
f→ Tk

g→ T ∗
k → 0 (4.6)

such that

(i) f is a left minimal left add(T/Tk)-approximation,
(ii) g is a right minimal right add(T/Tk)-approximation,
(iii) T ∗

k is an indecomposable Λ-module,
(iv) T ∗

k /∈ add(T ),
(v) T/Tk ⊕ T ∗

k is a basic Cv-cluster-tilting object.

Definition 4.6. [5,9] In the setting of the previous proposition, the mutation μTk
(T ) of T

in direction Tk is defined as

μTk
(T ) := T/Tk ⊕ T ∗

k . (4.7)

We call the short exact sequence (4.6) in Proposition 4.5 the exchange sequence associated 
to the direct summand Tk of T .

For a basic module T = T1 ⊕ · · · ⊕ Tn in Cv, let ΓT be the quiver of EndΛ(T )op, that 
is, EndΛ(T )op ∼= CΓT /(R) with an admissible ideal (R) [1]. Setting

Rad(Ti, Tj) =
{

HomΛ(Ti, Tj) if i �= j,

{nilpotent elements of EndΛ(Ti)} if i = j,

we have the following:

Lemma 4.7. [1,5] The quiver ΓT has n vertices indexed by {1, 2, · · · , n}, and for 1 ≤
i, j ≤ n, the number of arrows j → i is equal to the dimension of the space

Rad(Ti, Tj)∑n .

k=1 Rad(Tk, Tj) ◦ Rad(Ti, Tk)
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Definition 4.8. Let T = T1 ⊕ · · · ⊕ Tn be a basic module in Cv. For i, j ∈ [1, n] and a 
non-zero homomorphism f ∈ HomΛ(Ti, Tj), it is said that f is factorizable in the direct 
summands of T if it belongs to 

∑n
k=1 Rad(Tk, Tj) ◦ Rad(Ti, Tk).

Let B(ΓT ) = (bi,j) denote n × (n − r)-matrix defined by

bi,j = (number of arrows j → i in ΓT ) − (number of arrows i → j in ΓT ).

For i = (jn, · · · , j1) ∈ Qn
0 , we define a quiver Γi as follows: For k ∈ [1, n], we use the 

notation

k− := max{0, 1 ≤ s ≤ k − 1|is = ik},

k+ := min{k + 1 ≤ s ≤ n, n + 1|is = ik}.

The vertices of Γi are 1, 2, · · · , n. For two vertices k, l ∈ [1, n] with l < k, there exists 
an arrow k → l (resp. l → k) if and only if l = k− (resp. k < l+ ≤ k+ and aik,il < 0).

Theorem 4.9. [3,9,10] Let n = l(v) and i = (jn, · · · , j1) be a reduced word of v.

(i) The module Vi defined in 4.1 is a basic Cv-cluster-tilting object and ΓVi
= Γi.

(ii) Let T = T1 ⊕ T2 ⊕ · · · ⊕ Tn be a basic Cv-cluster-tilting object. For 1 ≤ k ≤ n − r, 
we have B(ΓμTk

(T )) = μk(B(ΓT )).
(iii) For a basic Cv-cluster-tilting object T = T1 ⊕ T2 ⊕ · · · ⊕ Tn and 1 ≤ k ≤ n − r, the 

exchange sequence associated to the direct summand Tk of T is

0 → Tk →
⊕

i→k in ΓT

Ti → T ∗
k → 0.

Example 4.10. Let i be the reduced word in (2.4). By Theorem 4.9 (i), for 1 ≤ k ≤ � r+1
2 �, 

the quiver ΓVi
is described as

· · ·
r + � r

2� + k

� r
2� + k

r + k

k

r + � r
2� + k + 1

� r
2� + k + 1

r + k + 1

k + 1
· · ·

(4.8)

Proposition 4.11. In the setting of Proposition 4.2, let

0 → Vk → Vk → V ∗
k → 0

be the exchange sequence associated to the direct summand Vk of Vi (1 ≤ k ≤ r). Then 
the indecomposable module V ∗

k is given as follows:
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(1) For k with 1 ≤ k < � r+1
2 �, the modules V ∗

k and V ∗
� r+1

2 � are given as

jk−2 jk jk+2

jk−1 jk+1 ,

3

2 (4.9)

respectively.
(2) For k with � r+1

2 � + 1 ≤ k ≤ r, the module V ∗
k is given as

jk − 3 jk − 1 jk + 1 jk + 3

jk − 2 jk jk + 2

jk − 1 jk + 1 (4.10)

Proof. (1) For 1 ≤ k ≤ � r+1
2 �, recall that Vk = Sjk . In {Vi| 1 ≤ i ≤ 2r, i �= k}, the 

module Vr+k has the simple socle isomorphic to Sjk and the others do not so since their 
simple socles are Sl (l �= jk) by (4.3), (4.4), (4.5). The module Vr+k is described as

jk − 2 jk jk + 2
jk − 1 jk + 1

jk

and bottom jk means a basis generating the simple socle isomorphic to Sjk ((4.1), (4.4)). 
Hence, there exists an injective homomorphism Vk → Vr+k, and its image is the simple 
socle. By the above argument, we have HomΛ(Vk, Vr+k) ∼= C and Rad(Vk, Vt) = {0} for 
t �= r + k. We get Vk = Vr+k by Lemma 4.7 and Theorem 4.9 (iii), which yields that V ∗

k

(1 ≤ k < � r+1
2 �) and V ∗

� r+1
2 � are described as

jk−2 jk jk+2

jk−1 jk+1 ,

3

2

respectively.
(2) Next, for � r+1

2 � + 1 ≤ k ≤ r, the module Vk is given as (4.3). The module Vr+k

is described as (4.5) and it has the submodule isomorphic to Vk, which is generated by 
the basis jk − 1, jk and jk + 1 lower one in (4.5). Let cjk−1, cjk and cjk+1 denote these 
three bases. Thus, there exists an injective homomorphism Vk → Vr+k. Since Vk has 
the simple quotients isomorphic to Sjk−1, Sjk+1, there exist surjective homomorphisms 
Vk → Vk−� r

2 � = Sjk−1 and Vk → Vk−� r
2 �−1 = Sjk+1 (note that jk−� r

2 � = jk − 1 and 
jk−� r

2 �−1 = jk +1). The modules Vr+k−� r
2 � and Vr+k−� r

2 �−1 have the simple submodules 
isomorphic to Sjk−1 and Sjk+1 respectively. However, homomorphisms Vk → Vr+k−� r

2 �
and Vk → Vr+k−� r �−1 are factorizable in the direct summands of Vi since they are equal 
2
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to the composite maps Vk → Vk−� r
2 � → Vr+k−� r

2 � and Vk → Vk−� r
2 �−1 → Vr+k−� r

2 �−1
respectively. Moreover, we see that Rad(Vk, Vt) = 0 for t �= r + k, k − � r

2�, k − � r
2� − 1

since Vt does not have submodule isomorphic to Vk, Sjk−1 and Sjk+1. From this, the 
homomorphisms Vk → Vr+k, Vk → Vk−� r

2 � and Vk → Vk−� r
2 �−1 are not factorizable in 

the direct summands of Vi. Therefore, the exchange sequence associated to the direct 
summand Vk of Vi is

0 → Vk → Vr+k ⊕ Sjk−1 ⊕ Sjk+1 → V ∗
k → 0

by Lemma 4.7 and Theorem 4.9 (iii). The image of the homomorphism Vk → Vr+k ⊕
Sjk−1 ⊕ Sjk+1 is 3-dimensional and it can be explicitly written as C(cjk−1 + djk−1) ⊕
C(cjk) ⊕ C(cjk+1 + ejk+1) with some non-zero elements djk−1 ∈ Sjk−1, ejk+1 ∈ Sjk+1. 
By the above argument, the module V ∗

k = (Vr+k ⊕ Sjk−1 ⊕ Sjk+1)/(C(cjk−1 ⊕ djk−1 ⊕
ejk+1) ⊕C(cjk ⊕ djk−1 ⊕ ejk+1) ⊕C(cjk+1 ⊕ djk−1 ⊕ ejk+1)) is described as follows:

jk − 3 jk − 1 jk + 1 jk + 3

jk − 2 jk jk + 2

jk − 1 jk + 1 �
Proposition 4.12. The modules (μVr

μV� r+1
2 �

Vi)r and (μVk−� r
2 �−1μVk

Vi)k−� r
2 �−1 (� r+1

2 � +
2 ≤ k ≤ r) are described as

3 5

2 4

3 ,

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1

respectively. Note that j� r+1
2 � = 1.

4.3. Cluster algebra structure of C[Le,v]

For a Λ-module X and a sequence k = (k1, · · · , ks) (kt ∈ [1, r]), let Fk,X denote the 
projective variety of composition series of X:

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xs = X,

such that each subfactor Xt/Xt−1 is isomorphic to the simple Λ-module Skt
(1 ≤ t ≤ s). 

Recall that we set xi(t) := exp(tei) in (2.1).

Proposition 4.13. [5,9] For each Λ-module X in mod(Λ), there exists a unique function 
ϕX ∈ C[N ] such that for any sequence i = (i1, · · · , ik) (1 ≤ i1, · · · , ik ≤ r),
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ϕX(xi1(t1)xi2(t2) · · ·xik(tk)) =
∑

a=(a1,··· ,ak)∈(Z≥0)k
χc(Fia,X)

ta1
1 · · · tak

k

a1! · · · ak!
,

where χc is the Euler characteristic, and for a = (a1, a2, · · · , ak),

ia := (i1, · · · , i1︸ ︷︷ ︸
a1

, i2, · · · , i2︸ ︷︷ ︸
a2

, · · · , ik, · · · , ik︸ ︷︷ ︸
ak

).

Note that we can write xi1(t1)xi2(t2) · · ·xik(tk) = xG
i (1; t1, · · · , tk), where 1 is the 

identity element of H and xG
i is defined in (2.3).

For a Λ-module X in mod(Λ) and i = (i1, · · · , ik), a = (a1, a2, · · · , ak) ∈ (Z≥0)k, let 
Fi,a,X be the projective variety of partial composition series of X

0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk = X

such that each subfactor Xt/Xt−1 is isomorphic to Sat
it

for all 1 ≤ t ≤ k. Then we have 
χc(Fia,X) = χc(Fi,a,X)a1!a2! · · · ak! [9]. Therefore, in the setting of Proposition 4.13,

ϕX(xi1(t1)xi2(t2) · · ·xik(tk)) =
∑

a=(a1,··· ,ak)∈(Z≥0)k
χc(Fi,a,X)ta1

1 · · · tak

k . (4.11)

Example 4.14. In the setting of Proposition 4.2 and 4.11, let us calculate ϕVk
(1 ≤ k ≤ r)

and ϕ(μkVi)k (1 ≤ k ≤ r). We set Y := (Y1,jr , · · · , Y1,j1 , Y2,jr , · · · , Y2,j2 , Y2,j1).
For i in (2.4), let us consider the variety of flags Fia,Vk

. Let jk be the k-th index of i
from the right. We write a ∈ (Z≥0)2r as follows:

a = (a1,jr , · · · , a1,j2 , a1,j1 , a2,jr , · · · , a2,j2 , a2,j1).

By Proposition 4.2, for 1 ≤ k ≤ � r+1
2 �, since Vk = Sjk , if Fia,Vk

�= φ then ia = (jk), 
which implies a1,jk = 1 and other a1,j , a2,j are equal to 0, or a2,jk = 1 and other a1,j , a2,j
are equal to 0. In this case, Fia,Vk

is a point (= (0 ⊂ Sjk = Vk)). Thus, Proposition 4.13
means that

ϕVk
(xG

i (1; Y)) = Y1,jk + Y2,jk .

Next, for � r+1
2 � + 1 ≤ k ≤ r, the module Vk is described as (4.3). If Fia,Vk

�= φ then 
ia = (jk, jk − 1, jk + 1) or ia = (jk, jk + 1, jk − 1), which implies

a1,jk = a1,jk−1 = a1,jk+1 = 1, or a1,jk = a1,jk−1 = a2,jk+1 = 1,

or a1,jk = a2,jk−1 = a2,jk+1 = 1, or a2,jk = a2,jk−1 = a2,jk+1 = 1,

or a1,jk = a1,jk+1 = a2,jk−1 = 1,

and the all others are equal to 0. Thus, by Proposition 4.13,
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ϕVk
(xG

i (1; Y)) = Y1,jkY1,jk−1Y1,jk+1 + Y1,jkY1,jk−1Y2,jk+1 + Y1,jkY2,jk−1Y2,jk+1

+Y2,jkY2,jk−1Y2,jk+1 + Y1,jkY2,jk−1Y1,jk+1. (4.12)

Similarly, it follows from (4.9) that for 1 ≤ k < � r+1
2 �,

ϕ(μkV )k(xG
i (1; Y)) =

∑
(∗)

Ya,jk−1Yb,jk+1Yc,jk−2Yd,jkYe,jk+2, (4.13)

where (∗) is condition for a, b, c, d and e : 1 ≤ a ≤ c ≤ 2, 1 ≤ b ≤ d ≤ 2, 1 ≤ a ≤ d ≤ 2
and 1 ≤ b ≤ e ≤ 2. And

ϕ(μ� r+1
2 �V )� r+1

2 �
(xG

i (1; Y)) =
∑

1≤a≤b≤2

Ya,2Yb,3. (4.14)

For � r+1
2 � + 1 ≤ k ≤ r, it follows from (4.10) that

ϕ(μkV )k(xG
i (1; Y))

= Y1,jk−1Y1,jk+1Y2,jk−2Y2,jkY2,jk+2Y2,jk−3Y2,jk−1Y2,jk+1Y2,jk+3. (4.15)

For two basic Cv-cluster-tilting modules R, R′, we denote R ∼ R′ if R is obtained 
from R′ by a sequence of mutations (4.7).

For v ∈ W , let L(Cv) := L(Cv, Vi) be the subalgebra of C[N ] generated by 
{ϕR1 , ϕR2 , · · · , ϕRn

|R1 ⊕ R2 ⊕ · · · ⊕ Rn ∈ Ob(Cv) ∼ Vi}. Let L̃(Cv) be the algebra 
obtained from L(Cv) by formally inverting the elements ϕP for all Cv-projective-injective 
module P . That is, L̃(Cv) is the localization of the ring L(Cv) with respect to ϕP . It 
follows by Theorem 4.9 that L̃(Cv) has a cluster algebra structure.

Theorem 4.15. [9] For v ∈ W , the coordinate ring C[Le,v] has a cluster algebra structure. 
For each reduced word i = (jn, · · · , j1) of v, the pair ((ϕVi,n

, · · · , ϕVi,1), B(ΓVi
)) provides 

an initial seed of the cluster algebra. Moreover, the restriction to Le,v gives a natural 
isomorphism of cluster algebras

L̃(Cv) ∼= C[Le,v].

Furthermore, using the notation as in (3.5), we have ϕVi,k
= D[1,jk],v>n−k[1,jk]|Le,v .

5. Monomial realizations and Demazure crystals

In Sect. 6, we shall describe cluster variables in a cluster algebra of finite type in terms 
of the monomial realizations of Demazure crystals. Let us recall the notion of crystal 
base and its monomial realization in this section. Let g be a complex simple Lie algebra 
with an index set I = {1, 2, · · · , r}, a Cartan matrix A = (ai,j), and the weight lattice 
P . We take ei, fi, hi as in Sect. 2.1.
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5.1. Monomial realizations of crystals

In this subsection, we shall review the monomial realizations of crystals [15,17,20].

Definition 5.1. [16,18] A crystal associated with a Cartan matrix A is a set B together 
with the maps wt : B → P , ẽi, f̃i : B ∪ {0} → B ∪ {0} and εi, ϕi : B → Z ∪ {−∞}, 
i ∈ I, satisfying some properties ((7.1)-(7.5) in [18]).

We call ẽi and f̃i (i ∈ I) the Kashiwara operators. Let Uq(g) be the quantum enveloping 
algebra [16] associated with the Cartan matrix A with an indeterminate q. Let V (λ)
(λ ∈ P+ = ⊕i∈IZ≥0Λi) be the finite dimensional irreducible representation of Uq(g)
which has the highest weight vector vλ, and B(λ) be the crystal base of V (λ). The 
crystal base B(λ) has a crystal structure.

Let us introduce the monomial realization [15,20] which realizes each element of 
B(λ) as a certain Laurent monomial. First, fix a cyclic sequence of the indices 
· · · (i1, i2, · · · , ir)(i1, i2, · · · , ir) · · · such that {i1, i2, · · · , ir} = I. And we can associate 
this sequence with a family of integers p = (pj,i)j,i∈I, j �=i such that

pia,ib =
{

1 if a < b,

0 if a > b.

Second, for the doubly-indexed variables {Ys,i | i ∈ I, s ∈ Z}, we define the set of 
monomials

Y :=

⎧⎨⎩Y =
∏

s∈Z, i∈I

Y
ζs,i
s,i

∣∣∣∣∣ ζs,i ∈ Z, ζs,i = 0 except for finitely many (s, i)

⎫⎬⎭ .

Finally, we define maps wt : Y → P , εi, ϕi : Y → Z, i ∈ I as follows. For Y =∏
s∈Z, i∈I

Y
ζs,i
s,i ∈ Y, set

wt(Y ) :=
∑
i,s

ζs,iΛi, ϕi(Y ) := max

⎧⎨⎩∑
k≤s

ζk,i | s ∈ Z

⎫⎬⎭ , εi(Y ) := ϕi(Y ) − wt(Y )(hi).

(5.1)

We set

As,i := Ys,iYs+1,i
∏
j �=i

Y
aj,i

s+pj,i,j
(5.2)

and define the Kashiwara operators as follows
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f̃iY =
{
A−1

nfi
,iY if ϕi(Y ) > 0,

0 if ϕi(Y ) = 0,
ẽiY =

{
Anei

,iY if εi(Y ) > 0,
0 if εi(Y ) = 0,

where

nfi := min

⎧⎨⎩n

∣∣∣∣∣ϕi(Y ) =
∑
k≤n

ζk,i

⎫⎬⎭ , nei := max

⎧⎨⎩n

∣∣∣∣∣ϕi(Y ) =
∑
k≤n

ζk,i

⎫⎬⎭ .

Then the following theorem holds:

Theorem 5.2. [15,20]

(i) For the set p = (pj,i) as above, (Y, wt, ϕi, εi, f̃i, ̃ei)i∈I is a crystal. When we empha-
size p, we write Y as Y(p).

(ii) If a monomial Y ∈ Y(p) satisfies εi(Y ) = 0 for all i ∈ I, then the connected 
component in the sense of crystal graph containing Y is isomorphic to B(wt(Y )).

5.2. Demazure crystals

The crystal B(λ) (λ ∈ P+) has the unique element uλ which satisfies wt(uλ) = λ and 
eiuλ = 0 for all i ∈ I. We call uλ the highest weight vector of B(λ). For w ∈ W , the 
Demazure crystal B(λ)w ⊂ B(λ) is inductively defined as follows.

Definition 5.3. Let uλ be the highest weight vector of B(λ). For the identity element e
of W , we set B(λ)e := {uλ}. For w ∈ W , if siw < w,

B(λ)w := {f̃k
i b | k ≥ 0, b ∈ B(λ)siw, ẽib = 0} \ {0}.

Theorem 5.4. [19] For w ∈ W , let w = si1 · · · sin be an arbitrary reduced expression. Let 
uλ be the highest weight vector of B(λ). Then

B(λ)w = {f̃a(1)
i1

· · · f̃a(n)
in

uλ|a(1), · · · , a(n) ∈ Z≥0} \ {0}.

Lemma 5.5. Let us consider the case of type Ar and the cyclic sequence is{
(2, 4, · · · , r, 1, 3, 5, · · · , r − 1) if r is even,
(2, 4, · · · , r − 1, 1, 3, 5, · · · , r) if r is odd.

In this case, (5.2) is written

A1,i =

⎧⎨⎩
Y1,iY2,i

Y1,i−1Y1,i+1
if i is even,

Y1,iY2,i if i is odd.
(5.3)
Y2,i−1Y2,i+1
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In general, if each factor of a monomial Y ∈ Y has non-negative degree, then εi(Y ) = 0
for all i ∈ I. In particular, we have εi(Y1,j) = 0 for j ∈ I. Thus, we can consider 
the monomial realization of crystal base B(Λj) with the highest weight vector Y1,j. The 
following is its partial crystal graph:

Y1,j Y1,jA
−1
1,j

Y1,jA
−1
1,jA

−1
1,j−1

Y1,jA
−1
1,jA

−1
1,j+1

Y1,jA
−1
1,jA

−1
1,j+1A

−1
1,j−1

· · ·

· · ·

f̃j f̃j+1

f̃j−1 f̃j−1

f̃j+1

6. Cluster variables and crystals

In the rest of the article, we set G = SLr+1(C) (r ≥ 3) and only treat the Coxeter 
element c ∈ W such that a reduced word i of c2 can be written as (2.4). Let jk be 
the k-th index of i from the right, and we consider the monomial realization associated 
with the sequence (jr, · · · , j2, j1) (Sect. 5.1). Thus, the setting below is the same as in 
Lemma 5.5. For a, b ∈ Z≥0 with a ≤ b, we set [a, b] := {a, a + 1, · · · , b}. In this section, 
we describe the cluster variables on the double Bruhat cell Ge,c2 as the total sum of 
monomial realizations of Demazure crystals.

Let V := ((ϕV )2r, · · · , (ϕV )r+1, (ϕV )r, · · · , (ϕV )1, (ϕV )−r, · · · , (ϕV )−1), where
(ϕV )k ∈ C[Ge,c2 ] are defined as follows:

(ϕV )k =
{
D[1,jk],c2>2r−k[1,jk] if 1 ≤ k ≤ 2r,
D[1,|k|],[1,|k|] if − r ≤ k ≤ −1.

By Theorem 3.7 and Theorem 3.9, we can regard C[Ge,c2 ] as a cluster algebra of finite 
type and V as its initial cluster. Moreover, (ϕV )2r, · · · , (ϕV )r+1 and (ϕV )−r, · · · , (ϕV )−1

are frozen. From Theorem 4.15, for k ∈ [1, 2r],

(ϕV )k|Le,c2 = ϕVk
. (6.1)

Thus, we can rewrite (3.3) as

· · ·

(ϕV )r+� r
2 �+k

(ϕV )� r
2 �+k

(ϕV )−jk−1

(ϕV )r+k

(ϕV )k

(ϕV )−jk

(ϕV )r+� r
2 �+k+1

(ϕV )� r
2 �+k+1

(ϕV )−jk+1

(ϕV )r+k+1

(ϕV )k+1

(ϕV )−jk+2

· · ·

(6.2)
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Comparing with (4.8), we see that the matrix B(ΓVi
) is a submatrix of −B̃(i), which 

is obtained by deleting rows labelled by (ϕV )−r, · · · , (ϕV )−1 (note that - sign of −B̃(i)
is needed to match the setting of [2] and [9]). Note also that there are some differences 
between the quiver ΓVi in (4.8) and the quiver obtained from Γi by deleting the bottom 
row, that is, the arrows between the frozen cluster variables such as r + � r

2� + k + 1, 
r + k, r + � r

2� + k in (4.8).
In the rest of the paper, for simplicity, we will drop frozen variables from a clus-

ter in C[Ge,c2 ], e.g., V = ((ϕV )r, · · · , (ϕV )1). We will order the cluster variables 
(ϕV )1, · · · , (ϕV )r from the right in V as above, and let μk denote the mutation of the 
k-th cluster variable from the right. For a cluster T in C[Ge,c2 ], let (ϕT )k denote the 
k-th (non-frozen) cluster variable from the right:

T := ((ϕT )r, · · · , (ϕT )1).

Each cluster variable is a regular function on Ge,c2 , and by Proposition 2.4, it can be 
seen as a function on H×(C×)2r. Then, let us consider the following change of variables:

Definition 6.1. Along with (2.4), we set the variables Y ∈ (C×)2r as

Y :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Y1,2, Y1,4, · · · , Y1,r, Y1,1, Y1,3, · · · , Y1,r−1, Y2,2, · · · , Y2,r, Y2,1, · · · , Y2,r−1)

r is even,
(Y1,2, Y1,4, · · · , Y1,r−1, Y1,1, Y1,3, · · · , Y1,r, Y2,2, · · · , Y2,r−1, Y2,1, · · · , Y2,r)

r is odd.
(6.3)

Then for a ∈ H and cluster T in C[Ge,c2 ], we define

(ϕG
T )k(a; Y) := (ϕT )k ◦ xG

i (a; Y), (1 ≤ k ≤ r),

where xG
i is as in 2.2.

Due to the property of minors, for a ∈ H, x ∈ G, w ∈ W , i, j ∈ I and t ∈ C, we get

D[1,i],w[1,i](ax) = aΛiD[1,i],w[1,i](x), D[1,i],[1,i](xxj(t)) = D[1,i],[1,i](x), (6.4)

where xj(t) ∈ N is the one in (2.1) and if a = Th (T ∈ C×, h ∈ Lie(H)), then 
aΛi := tΛi(h).

Proposition 6.2. (1) For k (1 ≤ k ≤ � r+1
2 �),

(ϕG
V )k(a; Y) = aΛjkY1,jk(1 + A−1

1,jk),

and for k (� r+1� + 1 ≤ k ≤ r),
2
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(ϕG
V )k(a; Y) = aΛjkY1,jk(1 +A−1

1,jk +A−1
1,jkA

−1
1,jk−1 +A−1

1,jkA
−1
1,jk+1 +A−1

1,jkA
−1
1,jk−1A

−1
1,jk+1).

For each k (1 ≤ k ≤ r), there exists a monomial realization μ of the crystal base B(Λjk)
such that (ϕG

V )k(a; Y) = aΛjk

∑
b∈B(Λjk

)c2
>2r−k

μ(b).

(2) For k (1 ≤ k < � r+1
2 �), putting J := jk = 2� r+1

2 � − 2k + 1,

(ϕG
(μkV ))k(a; Y) = aΛJ−1+ΛJ+1(Y1,J−2Y1,JY1,J+2(1 + A−1

1,J−2)(1 + A−1
1,J+2)

+ Y1,J−1Y2,JY1,J+1(1 + A−1
1,J−1 + A−1

1,J−1A
−1
1,J−2)(1 + A−1

1,J+1 + A−1
1,J+1A

−1
1,J+2)),

(ϕG
(μ� r+1

2 �V ))� r+1
2 �(a; Y) = aΛ2Y1,2Y2,1(1 + A−1

1,2 + A−1
1,2A

−1
1,3).

There exist monomial realizations of μ and μ′ of B(ΛJ−1 +ΛJ +ΛJ+1) ⊕B(ΛJ−2 +ΛJ +
ΛJ+2) and B(Λ1 + Λ2) such that

(ϕG
(μkV ))k(a; Y) = aΛJ−1+ΛJ+1

∑
b∈BJ

μ(b),

(ϕG
(μ� r+1

2 �V ))� r+1
2 �(a; Y) = aΛ2

∑
b∈B(Λ1+Λ2)s3s2

μ′(b),

where BJ := B(ΛJ−1 + ΛJ + ΛJ+1)sJ−2sJ−1sJ+2sJ+1 ⊕ B(ΛJ−2 + ΛJ + ΛJ+2)sJ−2sJ+2 . 
For � r+1

2 � < k ≤ r, we have (ϕG
(μkV ))k(a; Y) = aΛjk−1+Λjk+1Y2,jk = aΛ2r−2k+1+Λ2r−2k+3 ×

Y2,2r−2k+2. The set {Y2,jk} is a monomial realization of the Demazure crystal B(Λjk)e =
B(Λ2r−2k+2)e.

Proof. In the above setting,

(ϕG
V )k(a; Y) = (ϕV )k ◦ xG

i ◦ φ(a;Y),

where φ : H × (C×)2r → H × (C×)2r,

φ(a;Y) = (ΦH(a; Y); Φ1,jr (Y), · · · ,Φ1,j1(Y),Φ2,jr (Y), · · · ,Φ2,j2(Y),Φ2,j1(Y))

is the map in the proof of Proposition 2.4. Since (ϕV )k is the minor D[1,jk],c2>2r−k[1,jk]
(Theorem 3.7), we have

(ϕV )k ◦ xG
i (a; Y) = aΛjk (ϕV )k ◦ xG

i (1; Y), (6.5)

where Y := (Y1,j2r , · · · , Y1,jr+1 , Y2,jr , · · · , Y2,j1) and 1 is the identity element of H. By
(6.1), we obtain (ϕV )k ◦xG

i (1; Y) = ϕVk
◦xG

i (1; Y). In Example 4.14, we have calculated 
ϕVk

◦ xG
i (1; Y).

If 1 ≤ k ≤ � r+1
2 �, jk is odd. By the fact ϕVk

◦ xG
i (1; Y) = Y1,jk + Y2,jk , (2.5), (2.6)

and (2.7), we get
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(ϕG
V )k(a; Y) = (ΦH(a; Y))Λjk (Φ1,jk(a; Y) + Φ2,jk(a; Y))

= aΛjk (Y1,jkY2,jk)
(
Y2,jk−1Y2,jk+1

Y1,jkY
2
2,jk

+ 1
Y2,jk

)
= aΛjkY1,jk(1 + A−1

1,jk),

where A1,j is given in (5.3). By Theorem 5.4 and Lemma 5.5, the set of monomi-
als {Y1,jk , Y1,jkA

−1
1,jk} coincides with the monomial realization of Demazure crystal 

B(Λjk)sjk , where the monomial corresponding to the highest weight vector is Y1,jk .
For � r+1

2 � + 1 ≤ k ≤ r, jk is even. In this case, we have calculated ϕVk
◦ xG

i (1; Y) in
(4.12). Thus, using (2.5), (2.6) and (2.7), one has

(ϕG
V )k(a; Y) = aΛjk (Y1,jkY2,jk)

×
(

Y2,jk−2Y2,jk+2

Y1,jkY2,jk−1Y2,jk+1
+ Y1,jk+1Y2,jk−2

Y1,jkY2,jkY2,jk−1
+ Y1,jk−1Y1,jk+1

Y1,jkY
2
2,jk

+ 1
Y2,jk

+ Y1,jk−1Y2,jk+2

Y1,jkY2,jkY2,jk+1

)

= aΛjk

(
Y1,jk + Y1,jk−1Y1,jk+1

Y2,jk
+ Y1,jk+1Y2,jk−2

Y2,jk−1
+ Y1,jk−1Y2,jk+2

Y2,jk+1

+Y2,jk−2Y2,jkY2,jk+2

Y2,jk−1Y2,jk+1

)
= aΛjkY1,jk(1 + A−1

1,jk + A−1
1,jkA

−1
1,jk−1 + A−1

1,jkA
−1
1,jk+1 + A−1

1,jkA
−1
1,jk−1A

−1
1,jk+1).

By Theorem 5.4 and Lemma 5.5, the set of monomials {Y1,jk , 
Y1,jk−1Y1,jk+1

Y2,jk
, 
Y1,jk+1Y2,jk−2

Y2,jk−1
, 

Y1,jk−1Y2,jk+2
Y2,jk+1

, 
Y2,jk−2Y2,jkY2,jk+2

Y2,jk−1Y2,jk+1
} coincides with the monomial realization of Demazure 

crystal B(Λjk)sjk+1sjk−1sjk
, where the corresponding highest weight vector is Y1,jk .

Next, let us consider the mutation in direction k of V by calculating (ϕG
(μkV ))k(a; Y)

(1 ≤ k ≤ r). If 1 ≤ k ≤ � r+1
2 �, by (4.8) and (6.2),

(ϕ(μkV ))k ◦ xG
i (a; Y)

=
( (ϕV )r+k(ϕV )−jk+1(ϕV )−jk−1 + (ϕV )−jk(ϕV )� r

2 �+k(ϕV )� r
2 �+k+1

(ϕV )k

)
◦ xG

i (a; Y)

= aΛjk−1aΛjkaΛjk+1

aΛjk

·
(ϕVr+k

+ ϕV� r
2 �+k

ϕV� r
2 �+k+1

ϕVk

)
◦ xG

i (1; Y)

= aΛjk−1aΛjk+1 · (ϕ(μkV )k) ◦ xG
i (1; Y), (6.6)

where we use (6.4). From (4.13), for 1 ≤ k < � r+1
2 � we get

(ϕG
(μkV ))k(a; Y) = (ϕ(μkV ))k ◦ xG

i ◦ φ(a;Y)

= ΦH
Λjk−1ΦH

Λjk+1 ·
∑

Φb1,jk−1Φb2,jk+1Φb3,jk−2Φb4,jkΦb5,jk+2,

(∗)
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where (∗) is the condition for b1, b2, b3, b4 and b5 : 1 ≤ b1 ≤ b3 ≤ 2, 1 ≤ b2 ≤ b4 ≤ 2, 
1 ≤ b1 ≤ b4 ≤ 2 and 1 ≤ b2 ≤ b5 ≤ 2. We can easily verify that if b4 = 2, then 
1 ≤ b1 ≤ b3 ≤ 2 and 1 ≤ b2 ≤ b5 ≤ 2. If b4 = 1, then b1 = b2 = 1 and 1 ≤ b3, b5 ≤ 2. By
(2.6) and (2.7), we see that

Φ1,j = A−1
1,jΦ2,j (6.7)

for j ∈ [1, r]. Thus,

∑
(∗), b4=2

Φb1,jk−1Φb2,jk+1Φb3,jk−2Φb4,jkΦb5,jk+2 =

Φ2,jk−1Φ2,jk+1Φ2,jk−2Φ2,jkΦ2,jk+2(1 + A−1
1,jk−1 + A−1

1,jk−1A
−1
1,jk−2)

× (1 + A−1
1,jk+1 + A−1

1,jk+1A
−1
1,jk+2)

= Y2,jk
Y2,jk−1Y2,jk+1

(1 + A−1
1,jk−1 + A−1

1,jk−1A
−1
1,jk−2)(1 + A−1

1,jk+1 + A−1
1,jk+1A

−1
1,jk+2) ,∑

(∗), b4=1

Φb1,jk−1Φb2,jk+1Φb3,jk−2Φb4,jkΦb5,jk+2

= Φ1,jk−1Φ1,jk+1Φ2,jk−2Φ1,jkΦ2,jk+2(1 + A−1
1,jk−2)(1 + A−1

1,jk+2)

= Y1,jk−2Y1,jkY1,jk+2

Y1,jk−1Y2,jk−1Y1jk+1Y2,jk+1
(1 + A−1

1,jk−2)(1 + A−1
1,jk+2).

By the above argument, we get

(ϕG
(μkV ))k(a; Y) = aΛjk−1aΛjk+1(Y1,jk−2Y1,jkY1,jk+2(1 + A−1

1,jk−2)(1 + A−1
1,jk+2)

+ Y1,jk−1Y2,jkY1,jk+1(1 + A−1
1,jk−1 + A−1

1,jk−1A
−1
1,jk−2)(1 + A−1

1,jk+1 + A−1
1,jk+1A

−1
1,jk+2)).

By the definition of Kashiwara operators in 5.1, we see that Y1,jk−2Y1,jkY1,jk+2(1 +
A−1

1,jk−2)(1 + A−1
1,jk+2) are the total sum of μ(B(Λjk−2 + Λjk + Λjk+2)sjk−2sjk+2), and 

Y1,jk−1Y2,jkY1,jk+1(1 +A−1
1,jk−1+A−1

1,jk−1A
−1
1,jk−2)(1 +A−1

1,jk+1+A−1
1,jk+1A

−1
1,jk+2) is the total 

sum of μ(B(Λjk−1 + Λjk + Λjk+1)sjk−2sjk−1sjk+2sjk+1). Note that Λjk−2 + Λjk + Λjk+2 =
(Λjk−1 + Λjk + Λjk+1) − αjk−1 − αjk − αjk+1.

Arguing similarly, we obtain

(ϕG
(μ� r+1

2 �V ))� r+1
2 �(a; Y) = aΛ2Y1,2Y2,1(1 + A−1

1,2 + A−1
1,2A

−1
1,3).

The polynomial Y1,2Y2,1(1 +A−1
1,2+A−1

1,2A
−1
1,3) is the total sum of the monomial realization 

of the Demazure crystal μ′(B(Λ1 + Λ2)s3s2).
Similarly, for � r+1

2 � < k ≤ r, it follows from (3.4) and (4.15) that

(ϕG
(μkV ))k(a; Y) = ΦH

Λjk−1ΦH
Λjk+1 × Φ1,jk−1Φ1,jk+1Φ2,jk−2Φ2,jkΦ2,jk+2

×Φ2,jk−3Φ2,jk−1Φ2,jk+1Φ2,jk+3 = aΛjk−1aΛjk+1Y2,jk .
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The monomial Y2,jk is the monomial realization of the Demazure crystal B(Λjk)e. �
We obtain the following Proposition 6.3 by Proposition 4.12 and the same argument 

in the above example.

Proposition 6.3. We have the cluster variable

(ϕG
(μrμ� r+1

2 �V ))r(a; Y) = aΛ3Y2,1,

and the set {Y2,1} is a monomial realization of the Demazure crystal B(Λ1)e. For � r
2� +

2 ≤ k ≤ r, we obtain

(ϕG
(μk−� r

2 �−1μkV ))k−� r
2 �−1(a; Y)

= aΛ2r−2k+1+Λ2r−2k+4Y2,2r−2k+3Y1,2r−2k+4(1 + A−1
1,2r−2k+4 + A−1

1,2r−2k+4A
−1
1,2r−2k+5),

and the set {Y2,2r−2k+3Y1,2r−2k+4, Y2,2r−2k+3Y1,2r−2k+4A
−1
1,2r−2k+4, Y2,2r−2k+3 ×

Y1,2r−2k+4A
−1
1,2r−2k+4A

−1
1,2r−2k+5} coincides with the monomial realization of the De-

mazure crystal B(Λ2r−2k+3 + Λ2r−2k+4)s2r−2k+5s2r−2k+4 , where Y2,2r−2k+3Y1,2r−2k+4 is 
the corresponding highest weight vector in B(Λ2r−2k+3 + Λ2r−2k+4).

In the following Proposition 6.4, 6.6 and 6.7, we shall give the explicit expressions of all 
the other cluster variables in C[Ge,c2 ]. We use the notation as in (2.5), (2.6), (2.7) and 
(5.3), and set φ(Y) := (Φ1,jr (Y), · · · , Φ1,j1(Y), Φ2,jr (Y), · · · , Φ2,j1(Y)). We abbreviate 
ΦH(a; Y) to ΦH . For the integers b, c (b < c) and x, we set

A[b, c;x] :=
(

c−1∏
s=b

A1,x−2s−2A1,x−2s−3

)−1

A−1
1,x−2c−2 =

x−2b−2∏
s=x−2c−2

A−1
1,s.

For p ∈ Z>0 and b = (bi)pi=1 ∈ (Z≥0)p, c = (ci)pi=1 ∈ (Z≥0)p such that bi < ci
(1 ≤ i ≤ p), we also set

α[b, c;x] :=
x−2b1−2∑

t=x−2c1−2
αt + · · · +

x−2bp−2∑
t=x−2cp−2

αt,

where when s ≤ 0, we understand A1,s = 1, αs = 0. For l ∈ Z≥0, we define

Rp
l := {(b, c) ∈ (Z≥0)p × (Z≥0)p| b = (bi)pi=1, c = (ci)pi=1,

0 ≤ b1 < c1 < · · · < bp < cp ≤ l}.

For (b, c) ∈ Rp
l , we define [b, c] := [b1, c1] ∪ · · · ∪ [bp, cp].



180 Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149–206
Proposition 6.4. For k ∈ [� r+1
2 � + 1, r− 1] and l ∈ [0, r− k − 1], let μ[l] be the following 

iteration of mutations

μ[l] := (μk−� r
2 �+lμk+l+1μk+l) · · · (μk−� r

2 �+1μk+2μk+1)(μk−� r
2 �μk+1μk).

(a) We have the cluster variable

(ϕG
(μ[l]V ))k−� r

2 �+l(a; Y)

= Φ(
∑l+2

s=0 Λjk−2s+1)+(
∑l−1

s=0 Λjk−2s−2)
H ϕ(μ[l]V )k−� r

2 �+l
◦ xG

i (1;φ(Y))

= a(
∑l+2

s=0 Λjk−2s+1)+(
∑l−1

s=0 Λjk−2s−2)H1

⎛⎝ ∏
q∈[0,l−1]

(1 + A−1
1,jk−2q−2)

+
∑
p>0

∑
(b,c)∈Rp

l−1

p∏
i=1

A[bi, ci; jk]
∏

q∈[0,l−1]\[b,c]
(1 + A−1

1,jk−2q−2)

⎞⎠ .

(b) We also obtain the cluster variable

(ϕG
(μk+l+1μ[l]V ))k+l+1(a; Y)

= Φ
∑l

s=0(Λjk−2s+1+Λjk−2s−2)
H ϕ(μk+l+1μ[l]V )k+l+1 ◦ xG

i (1;φ(Y))

= a
∑l

s=0(Λjk−2s+1+Λjk−2s−2)H2

×

⎛⎝(1 + A−1
1,jk−2l−2 + A−1

1,jk−2l−2A
−1
1,jk−2l−3)

∏
q∈[0,l−1]

(1 + A−1
1,jk−2q−2)

+
∑
p>0

∑
(b,c)∈Rp

l

(1 − δcp,l + A
−1+δcp,l

1,jk−2l−2(1 + A−1
1,jk−2l−3))

×
p∏

i=1
A[bi, ci; jk]

∏
q∈[0,l−1]\[b,c]

(1 + A−1
1,jk−2q−2)

⎞⎠ ,

where

H1 :=
(

l−1∏
t=0

Y1,jk−2t−2

)(
l∏

t=0
Y2,jk−2t−1

)
, H2 :=

(
l∏

t=0
Y1,jk−2t−2Y2,jk−2t−1

)
.

Example 6.5. If r = 10, k = 6 and l = 2, then μ[2] = μ3μ9μ8μ2μ8μ7μ1μ7μ6, j6 = 10 and 
H1 = Y2,5Y1,6Y2,7Y1,8Y2,9 in the notation of Proposition 6.4. Note that

Rp
1 =

{
{(0, 1)} if p = 1,
φ otherwise.
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It follows from Proposition 6.4 (a) that

(ϕG
(μ[2]V ))3(a; Y) = aΛ3+Λ5+Λ6+Λ7+Λ8+Λ9Y2,5Y1,6Y2,7Y1,8Y2,9(1 + A−1

1,8)(1 + A−1
1,6)

+aΛ3+Λ5+Λ6+Λ7+Λ8+Λ9Y2,5Y1,6Y2,7Y1,8Y2,9A[0, 1; 10]

= aΛ3+Λ5+Λ6+Λ7+Λ8+Λ9Y2,5Y1,6Y2,7Y1,8Y2,9(1 + A−1
1,8 + A−1

1,6 + A−1
1,6A

−1
1,8)

+aΛ3+Λ5+Λ6+Λ7+Λ8+Λ9Y1,5Y2,5Y1,7Y1,9Y2,9. (6.8)

In the same setting, let us calculate (ϕG
(μ9μ[2]V ))9(a; Y). Note that

Rp
2 =

{
{(0, 1), (0, 2), (1, 2)} if p = 1,
φ otherwise,

and H2 = Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9. Thus, by Proposition 6.4 (b),

a−(Λ4+Λ6+Λ7+Λ8+Λ9)(ϕG
(μ9μ[2]V ))9(a; Y)

= Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9(1 + A−1
1,8)(1 + A−1

1,6)(1 + A−1
1,4 + A−1

1,4A
−1
1,3)

+Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9A[0, 1; 10](1 + A−1
1,4 + A−1

1,4A
−1
1,3)

+Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9A[0, 2; 10](1 + A−1
1,3)

+Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9A[1, 2; 10](1 + A−1
1,3)

= Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9(1 + A−1
1,6 + A−1

1,8 + A−1
1,6A

−1
1,8)(1 + A−1

1,4 + A−1
1,4A

−1
1,3)

+Y1,4Y1,5Y2,5Y1,7Y1,9Y2,9(1 + A−1
1,4 + A−1

1,4A
−1
1,3)

+Y1,3Y1,5Y2,6Y1,7Y1,9Y2,9(1 + A−1
1,3) (6.9)

+Y1,3Y1,5Y1,7Y2,7Y1,8Y2,9(1 + A−1
1,3).

Proposition 6.6. For k ∈ [1, � r+1
2 � −2] and l ∈ [0, � r+1

2 � −k−2], let μ′[l] be the following 
iteration of mutations

μ′[l] := (μk+l+1μ� r
2 �+k+l+2μ� r

2 �+k+l+1) · · · (μk+2μ� r
2 �+k+3μ� r

2 �+k+2)

× (μk+1μ� r
2 �+k+2μ� r

2 �+k+1)μk.

(a) If jk < r, we have the cluster variable

(ϕG
(μ′[l]V ))k+l+1(a; Y) = a

∑l+1
s=0 Λjk−2s−2+Λjk−2s+1H3

×

⎛⎝(1 + A−1
1,jk+1 + A−1

1,jk+1A
−1
1,jk+2)

∏
(1 + A−1

1,jk−2q+1)

q∈[1,l+1]
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+
∑
p>0

∑
(b,c)∈Rp

l+1

(1 − δb1,0 + A
−1+δb1,0
1,jk+1 (1 + A−1

1,jk+2))

×
p∏

i=1
A[bi, ci; jk + 3]

∏
q∈[1,l+1]\([b,c])

(1 + A−1
1,jk−2q+1)

⎞⎠ ,

and if jk = r, we have

(ϕG
(μ′[l]V ))k+l+1(a; Y) = a

∑l+1
s=0 Λr−2s−2+Λr−2s+1H3

⎛⎝ ∏
q∈[1,l+1]

(1 + A−1
1,r−2q+1)

+
∑
p>0

∑
(b,c)∈Rp

l+1,b1>0

p∏
i=1

A[bi, ci; r + 3]
∏

q∈[1,l+1]\([b,c])
(1 + A−1

1,r−2q+1)

⎞⎠ .

(b) If jk < r, we also obtain the cluster variable

(ϕG
(μ� r

2 �+k+l+2μ
′[l]V ))� r

2 �+k+l+2(a; Y) = a
∑l−1

s=0 Λjk−2s−2+
∑l+2

s=0 Λjk−2s+1H4

×

⎛⎝ ∏
q∈[1,l+1]

(1 + A−1
1,jk−2q+1)(1 + A−1

1,jk−2l−3 + A−1
1,jk−2l−3A

−1
1,jk−2l−4)

×(1 + A−1
1,jk+1 + A−1

1,jk+1A
−1
1,jk+2) +

∑
p>0

∑
(b,c)∈Rp

l+2

(1 − δb1,0 + A
−1+δb1,0
1,jk+1 (1 + A−1

1,jk+2))

×(1 − δcp,l+2 + A
−1+δcp,l+2
1,jk−2l−3 (1 + A−1

1,jk−2l−4))

×
p∏

i=1
A[bi, ci; jk + 3]

∏
q∈[1,l+1]\([b,c])

(1 + A−1
1,jk−2q+1)

⎞⎠ ,

and if jk = r, we have

(ϕG
(μ� r

2 �+k+l+2μ
′[l]V ))� r

2 �+k+l+2(a; Y) = a
∑l−1

s=0 Λr−2s−2+
∑l+2

s=0 Λr−2s+1H4

×

⎛⎝(1 + A−1
1,r−2l−3 + A−1

1,r−2l−3A
−1
1,r−2l−4)

∏
q∈[1,l+1]

(1 + A−1
1,r−2q+1)

+
∑
p>0

∑
(b,c)∈Rp

l+2, b1>0

p∏
i=1

A[bi, ci; r + 3]

× (1 − δcp,l+2 + A
−1+δcp,l+2
1,r−2l−3 (1 + A−1

1,r−2l−4))
∏

(1 + A−1
1,r−2q+1)

⎞⎠ ,

q∈[1,l+1]\([b,c])
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where H3 :=
(∏l+1

t=0 Y1,jk−2t+1Y2,jk−2t

)
, H4 :=

(∏l+2
t=0 Y1,jk−2t+1

)(∏l+1
t=0 Y2,jk−2t

)
=

H3 × Y1,jk−2l−3. If jk = r, then we understand Y1,jk+1 = 1 and Λjk+1 = 0.

Proposition 6.7. For l ∈ [0, � r
2� − 2], let μ′′[l] be the following iteration of mutations

μ′′[l] := (μ� r+1
2 �−l−1μr−l−1μr−l) · · · (μ� r+1

2 �−2μr−2μr−1)(μ� r+1
2 �−1μr−1μr)μ� r+1

2 �.

(a) We have the cluster variable

(ϕG
(μ′′[l]V ))� r+1

2 �−l−1(a; Y) = a
∑l+1

s=0 Λ2s+3+
∑l

s=0 Λ2s+2 ·H5

⎛⎝ ∏
q∈[1,l+1]

(1 + A−1
1,2q)

+
∑
p>0

∑
(b,c)∈Rp

l+1,b1>0

p∏
i=1

A[−ci,−bi; 2]
∏

q∈[1,l+1]\[b,c]
(1 + A−1

1,2q)

⎞⎠ .

(b) We also obtain the cluster variable

(ϕG
(μr−l−1μ′′[l]V ))r−l−1(a; Y) = a

∑l−1
s=0 Λ2s+3+

∑l+1
s=0 Λ2s+2H6

×

⎛⎝(1 + A−1
1,2l+4 + A−1

1,2l+4A
−1
2l+5))

∏
q∈[1,l+1]

(1 + A−1
1,2q)

+
∑
p>0

∑
(b,c)∈Rp

l+2,b1>0

(1 − δcp,l+2 + A
−1+δcp,l+2
1,2l+4 (1 + A−1

2l+5))

×
p∏

i=1
A[−ci,−bi; 2]

∏
q∈[1,l+1]\[b,c]

(1 + A−1
1,2q)

⎞⎠ ,

where H5 :=
(∏l

t=0 Y1,2t+2

)(∏l+1
t=0 Y2,2t+1

)
, H6 :=

(∏l+1
t=0 Y1,2t+2Y2,2t+1

)
= H5 ×

Y1,2t+4.

Furthermore, if r is odd, then we get the cluster variable

(ϕG
(μ1μ r+3

2
μ′′[ r−1

2 −2]V ))1(a; Y)

= a
∑ r−5

2
s=0 Λ2s+3+

∑ r−3
2

s=0 Λ2s+2

⎛⎝ r−3
2∏

t=0
Y1,2t+2

⎞⎠⎛⎝ r−1
2∏

t=0
Y2,2t+1

⎞⎠⎛⎝ ∏
q∈[1, r−1

2 ]

(1 + A−1
1,2q)

+
∑
p>0

∑
(b,c)∈Rp

r−1
2

, b1>0

p∏
i=1

A[−ci,−bi; 2]
∏

q∈[1, r−1
2 ]\[b,c]

(1 + A−1
1,2q)

⎞⎟⎠ ,

where we set μ′′[−1] := μ2 when r = 3.
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The following theorem is the main result, which describes all the cluster variables in 
C[Ge,c2 ] in terms of the monomials in Demazure crystals. We use the notation as in 
Proposition 6.4, 6.6 and 6.7.

Theorem 6.8. There exist certain Demazure crystals such that each cluster variable in 
C[Ge,c2 ] is the total sum of their monomial realizations. More precisely, it is given by 
Proposition 6.2, 6.3 and the following:

(1) Let k ∈ [� r+1
2 � + 1, r − 1], l ∈ [0, r − k − 1] and J := jk = 2r − 2k + 2.

(a) The cluster variable (ϕG
(μ[l]V ))k−� r

2 �+l(a; Y) is the total sum of monomials in

B

( 2r−2k+1∑
s=2r−2k+1−2l

Λs

)
w1

⊕
⊕
p>0

(b,c)∈Rp
l−1

B

(( 2r−2k+1∑
s=2r−2k+1−2l

Λs

)
− α[b, c; J ]

)
w1(b,c)

.

(b) The cluster variable (ϕG
(μk+l+1μ[l]V ))k+l+1(a; Y) is the total sum of monomials in

B

( 2r−2k+1∑
s=2r−2k−2l

Λs

)
w2

⊕
⊕
p>0

(b,c)∈Rp
l

B

(( 2r−2k+1∑
s=2r−2k−2l

Λs

)
− α[b, c; J ]

)
w2(b,c)

.

(2) Let k ∈ [1, � r+1
2 � − 2], l ∈ [0, � r+1

2 � − k − 2] and J := jk = 2�r + 1/2� − 2k + 1.
(a) The cluster variable (ϕG

(μ′[l]V ))k+l+1(a; Y) is the total sum of monomials in

B

⎛⎝ 2� r+1
2 �−2k+2∑

s=2� r+1
2 �−2k−2l−1

Λs

⎞⎠
w3

⊕
⊕
p>0

(b,c)∈Rp
l+1

if jk=r⇒b1>0

B

⎛⎝⎛⎝ 2� r+1
2 �−2k+2∑

s=2� r+1
2 �−2k−2l−1

Λs

⎞⎠

− α[b, c; J + 3]

⎞⎠
w3(b,c)

,

(b) (ϕG
(μ� r

2 �+k+l+2μ
′[l]V ))� r

2 �+k+l+2(a; Y) is the total sum of monomials in

B

⎛⎝ 2� r+1
2 �−2k+2∑

s=2� r+1
2 �−2k−2l−2

Λs

⎞⎠
w4

⊕
⊕
p>0

(b,c)∈Rp
l+2

if jk=r⇒b1>0

B

⎛⎝⎛⎝ 2� r+1
2 �−2k+2∑

s=2� r+1
2 �−2k−2l−2

Λs

⎞⎠

− α[b, c; J + 3]

⎞⎠ .
w4(b,c)
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(3) Let l ∈ [0, � r
2� − 2].

(a) The cluster variable (ϕG
(μ′′[l]V ))� r+1

2 �−l−1(a; Y) is the total sum of monomials in

B

(2l+3∑
s=1

Λs

)
w5

⊕
⊕
p>0

(b,c)∈Rp
l+1,b1>0

B

((2l+3∑
s=1

Λs

)
− α[−c,−b; 2]

)
w5(b,c)

.

(b) The variable (ϕG
(μr−l−1μ′′[l]V ))r−l−1(a; Y) is the total sum of monomials in

B

(2l+4∑
s=1

Λs

)
w6

⊕
⊕
p>0

(b,c)∈Rp
l+2,b1>0

B

((2l+4∑
s=1

Λs

)
− α[−c,−b; 2]

)
w6(b,c)

.

If r is odd, then (ϕG
(μ1μ r+3

2
μ′′[ r−1

2 −2]V ))1(a; Y) is the total sum of monomials in

B

(
r∑

s=1
Λs

)
∏

q∈[1, r−1
2 ] s2q

⊕
⊕
p>0

(b,c)∈Rp
r−1
2

,b1>0

B

((
r∑

s=1
Λs

)
− α[−c,−b; 2]

)
∏

q∈[1, r−1
2 ]\[b,c] s2q

.

The explicit forms of the Weyl group elements in the above formula will be given in the 
next section.

We obtain the following corollary from Proposition 6.2, Proposition 6.3 and Theo-
rem 6.8. Let Ξ be the set of the non-frozen cluster variables in C[Ge,c2 ].

Corollary 6.9. (1) Each initial cluster variable ϕVk
in C[Ge,c2 ] is the total sum of mono-

mials in the Demazure crystal B(Λjk)c2>2r−k
, where we use the notation as in (3.5).

(2) For b, b′ ∈ I with b ≤ b′, there uniquely exists a non-initial cluster variable ϕ[b, b′]
which is given as the total sum of monomials in

B(
b′∑

j=b

Λj)w ⊕
p⊕

i=1
B(λi)wi

,

with some p ∈ Z≥0, w, wi ∈ W and λi ∈ P+ such that 
(∑b′

j=b Λj

)
− λi ∈

⊕
i Z≥0αi. 

Thus, the map Φ≥−1 → Ξ defined by

−αjk �→ ϕVk
,

b′∑
j=b

αj �→ ϕ[b, b′]

is a bijection between the almost positive roots Φ≥−1 and Ξ.
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Proof. Let us show (2) since the case (1) is immediate from Proposition 6.2 (1). We 
consider the following 6 cases.
(i-1) We suppose that b′ and b are odd, and 3 ≤ b ≤ b′ < r. In this case, putting 
k := 2r−b′+1

2 and l := b′−b
2 , it follows � r+1

2 � + 1 ≤ k ≤ r− 1 and 0 ≤ l ≤ r− k− 1. Using 
Theorem 6.8 (1)(a), we obtain ϕ[b, b′] = (ϕ(μ[l]V ))k−� r

2 �+l.
(i-2) In the case b and r are odd, and 3 ≤ b ≤ r − 2, putting k := 1 and l := r−b−2

2 , we 
obtain 0 ≤ l ≤ r+1

2 − 3 and j1 = r. It follows from Theorem 6.8 (2)(a) that ϕ[b, r] =
(ϕ(μ′[l]V ))l+2.

(ii-1) We suppose that b′ is odd and b is even, and 2 ≤ b < b′ < r. In this case, putting 
k := 2r−b′+1

2 and l := b′−b−1
2 , it follows � r+1

2 � + 1 ≤ k ≤ r − 1 and 0 ≤ l ≤ r − k − 1. 
Hence, we get ϕ[b, b′] = (ϕ(μk+l+1μ[l]V ))k+l+1 by Theorem 6.8 (1)(b).
(ii-2) In the case r is odd, b is even and 2 ≤ b ≤ r − 3, putting k := 1 and l :=
r−b−3

2 , we obtain 0 ≤ l ≤ r+1
2 − 3 and j1 = r. So Theorem 6.8 (2)(b) says ϕ[b, r] =

(ϕ(μ� r
2 �+l+3μ

′[l]V ))� r
2 �+l+3.

(iii) We suppose that b′ is even and b is odd, and 6 ≤ b′ ≤ r, 3 ≤ b ≤ b′ − 3. In this 
setting, putting k := � r+1

2 � + 1 − b′

2 and l := b′−b−3
2 , we have 1 ≤ k ≤ � r+1

2 � − 2 and 
0 ≤ l ≤ � r+1

2 � − k − 2. Therefore, we can verify ϕ[b, b′] = (ϕ(μ′[l]V ))k+l+1 by using 
Theorem 6.8 (2)(a).

(iv) We suppose that b′ and b are even, and 6 ≤ b′ ≤ r, 2 ≤ b ≤ b′ − 4. We set 
k := � r+1

2 � + 1 − b′

2 and l := b′−b−4
2 . Then k and l satisfy 1 ≤ k ≤ � r+1

2 � − 2 and 
0 ≤ l ≤ � r+1

2 � − k − 2. Thus, the conclusion ϕ[b, b′] = (ϕ(μ� r
2 �+k+l+2μ

′[l]V ))� r
2 �+k+l+2

follows from Theorem 6.8 (2)(b).

(v) Let b′ be an odd number (3 ≤ b′ < r). Setting l := b′−3
2 , we see that 0 ≤ l ≤ � r

2� − 2. 
Using Theorem 6.8 (3)(a), we have ϕ[1, b′] = (ϕ(μ′′[l]V ))� r+1

2 �−l−1. Similarly, in the case b′

is an even number (4 ≤ b′ ≤ r), putting l := b′−4
2 , we get ϕ[1, b′] = (ϕ(μr−l−1μ′′[l]V ))r−l−1. 

In particular, if r is odd, then Theorem 6.8 (3) implies ϕ[1, r] = (ϕ(μ1μ r+3
2

μ′′[ r−1
2 −2]V ))1.

(vi) The remaining cluster variables are ϕ[b′ − 2, b′] (b′ is even, 4 ≤ b′ ≤ r), ϕ[b′ − 1, b′], 
ϕ[b′, b′] (b′ is even, 2 ≤ b′ ≤ r) and ϕ[1, 1], and if r is odd, ϕ[r − 1, r] and ϕ[r, r].

Putting k := � r+1
2 � +1 − b′

2 , we have 1 ≤ k ≤ � r+1
2 �. By Proposition 6.2 (2), it follows 

ϕ[b′ − 2, b′] = (ϕ(μkV ))k. In the case r is odd, we have ϕ[r − 1, r] = (ϕ(μ1V ))1. Similarly, 
we have ϕ[b′, b′] = (ϕ(μ

r+1− b′
2
V ))r+1− b′

2
and ϕ[1, 2] = (ϕ(μ� r+1

2 �V ))� r+1
2 �.

From Proposition 6.3, setting K := r + 2 − b′

2 for 4 ≤ b′, we obtain ϕ[b′ − 1, b′] =
(ϕ(μK−� r

2 �−1μKV ))K−� r
2 �−1. In the case r is odd then we have ϕ[r, r] = (ϕ(μ1μ r−1

2 +2V ))1.
The same proposition means ϕ[1, 1] = (ϕ(μrμ� r+1

2 �V ))r. �

Example 6.10. We consider the same setting as in Example 6.5. Let μ (resp. μ′) de-
note the monomial realization of crystal B(Λ5 + Λ6 + Λ7 + Λ8 + Λ9) (resp. B(2Λ5 +
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Λ7 + 2Λ9)) such that the highest weight vector is realized as Y2,5Y1,6Y2,7Y1,8Y2,9 (resp. 
Y1,5Y2,5Y1,7Y1,9Y2,9). It follows from Theorem 5.2, 5.4 and (6.8) that

(ϕG
(μ[2]V ))3(a; Y)

= aΛ3+Λ5+Λ6+Λ7+Λ8+Λ9

⎛⎝ ∑
b∈B(Λ5+Λ6+Λ7+Λ8+Λ9)s6s8

μ(b) +
∑

b∈B(2Λ5+Λ7+2Λ9)e

μ′(b)

⎞⎠ .

Similarly, using (6.9),

a−(Λ4+Λ6+Λ7+Λ8+Λ9)(ϕG
(μ9μ[2]V ))9(a; Y)

=
∑

b∈B(Λ4+Λ5+Λ6+Λ7+Λ8+Λ9)s3s4s6s8

μ(b) +
∑

b∈B(Λ4+2Λ5+Λ7+2Λ9)s3s4

μ′(b)

+
∑

b∈B(Λ3+Λ5+Λ6+Λ7+2Λ9)s3

μ′′(b) +
∑

b∈B(Λ3+Λ5+2Λ7+Λ8+Λ9)s3

μ′′′(b),

where μ, μ′, μ′′ and μ′′′ are the monomial realizations such that the highest weight vectors 
are realized by Y1,4Y2,5Y1,6Y2,7Y1,8Y2,9, Y1,4Y1,5Y2,5Y1,7Y1,9Y2,9, Y1,3Y1,5Y2,6Y1,7Y1,9Y2,9
and Y1,3Y1,5Y1,7Y2,7Y1,8Y2,9, respectively.

Example 6.11. Let G = SL5(C) and c = s2s4s1s3. The all cluster variables in C[Ge,c2 ]
are

(ϕG
V )k, (ϕG

(μkV ))k (1 ≤ k ≤ 4), (ϕG
(μ1μ4V ))1, (ϕG

(μ4μ2V ))4,

(ϕG
(μ[0]V ))1, (ϕG

(μ4μ[0]V ))4, (ϕG
(μ′′[0]V ))1, (ϕG

(μ3μ′′[0]V ))3,

where μ[0] = μ1μ4μ3, μ′′[0] = μ1μ3μ4μ2, and these are described as the total sums of 
monomials in the following Demazure crystals up to torus parts and parametrized by 
the almost positive roots as follows:

(ϕG
V )k B(Λjk)c2>8−k

−αjk

(ϕG
(μ1V ))1 B(Λ2 + Λ3 + Λ4)s1s2s4 ⊕B(Λ1 + Λ3)s1 α2 + α3 + α4

(ϕG
(μ2V ))2 B(Λ1 + Λ2)s3s2 α1 + α2

(ϕG
(μ3V ))3 B(Λ4)e α4

(ϕG
(μ4V ))4 B(Λ2)e α2

(ϕG
(μ1μ4V ))1 B(Λ3 + Λ4)s4 α3 + α4

(ϕG
(μ4μ2V ))4 B(Λ1)e α1

(ϕG
(μ[0]V ))1 B(Λ3)e α3

(ϕG
(μ4μ[0]V ))4 B(Λ2 + Λ3)s1s2 α2 + α3

(ϕG
(μ′′[0]V ))1 B(Λ1 + Λ2 + Λ3)s2 α1 + α2 + α3

(ϕG
(μ3μ′′[0]V ))3 B(Λ1 + Λ2 + Λ3 + Λ4)s2s4 ⊕B(2Λ1 + Λ3)e α1 + α2 + α3 + α4
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7. Proof of the main theorem

In this section, we prove Proposition 6.4, 6.6, 6.7 and then finally Theorem 6.8. 
For k1, · · · , ks ∈ [1, r], let μk1 · · ·μks

Γi be the quiver of the seed (μk1 · · ·μks
(V ), μk1 · · ·

μks
(B̃i)) (Sect. 3).

Lemma 7.1. In the setting of Proposition 6.4, we have

(ϕG
(μk+l+2μk+l+1μ[l]V ))k+l+2(a; Y) = (ϕG

(μk+l+2V ))k+l+2(a; Y).

Proof. In the quiver Γi, by (6.2), the below is around (ϕV )k+l+2:

· · ·

(ϕV )r+k+l+1

(ϕV )k+l+1

(ϕV )−jk−2l−2

(ϕV )r+k−� r
2 �+l+1

(ϕV )k−� r
2 �+l+1

(ϕV )−jk−2l−3

(ϕV )r+k+l+2

(ϕV )k+l+2

(ϕV )−jk−2l−4

(ϕV )r+k−� r
2 �+l+2

(ϕV )k−� r
2 �+l+2

(ϕV )−jk−2l−5

· · ·

The initial cluster variables changed by μk+l+1μ[l] are (ϕV )k, (ϕV )k+1, · · · , (ϕV )k+l+1
and (ϕV )k−� r

2 �, (ϕV )k−� r
2 �+1, · · · , (ϕV )k−� r

2 �+l, which are not connected with (ϕV )k+l+2

directly in the above quiver. Hence, Lemma 3.5 says that the arrows incident to 
(ϕV )k+l+2 in Γi coincide with the ones in μk+l+1μ[l]Γi. Thus, we get

(ϕG
(μk+l+2μk+l+1μ[l]V ))k+l+2

= 1
(ϕG

V )k+l+2

(
(ϕG

V )r+k−� r
2 �+l+1(ϕG

V )r+k−� r
2 �+l+2(ϕG

V )−jk−2l−4

+(ϕG
V )k−� r

2 �+l+1(ϕG
V )k−� r

2 �+l+2(ϕG
V )r+k+l+2

)
= (ϕG

(μk+l+2V ))k+l+2. �
Next, we will order the indecomposable direct summands V1, · · · , V2r of Vi from the 

right:

Vi = V2r ⊕ · · · ⊕ V1.

For a basic Cc2-cluster-tilting Λ-module T = T2r ⊕ · · · ⊕ T1, we write

μk(T ) := μTk
(T ) = T2r ⊕ · · · ⊕ Tk+1 ⊕ T ∗

k ⊕ Tk−1 ⊕ · · · ⊕ T1,

for k ∈ [1, r]. Let (μk(T ))l denote the l-th indecomposable direct summand of μk(T )
from the right.

In the following Lemma 7.2-7.4, the notations in Remark 4.3 are applied.
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Lemma 7.2. We use the notation as in Proposition 6.4 and let jk be the k-th index of i
in (2.4) from the right.

(a) The module (μ[l](Vi))k−� r
2 �+l is described as follows:

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk−5 jk−3 jk−1 jk+1

jk−4 jk−2 jk

jk−3

jk+l−5 jk+l−3 jk+l−1 jk+l+1

jk+l−4 jk+l−2 jk+l

jk+l−3 jk+l−1

· · ·

(7.1)

Note that we have jk+l = jk − 2l from (2.4).
(b) The module (μk+l+1μ[l](Vi))k+l+1 is described as follows:

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk−5 jk−3 jk−1 jk+1

jk−4 jk−2 jk

jk−3

jk+l−3 jk+l−1 jk+l+1 jk+l+3

jk+l−2 jk+l jk+l+2

jk+l+1

· · ·

(7.2)

Proof. Using the induction on l, we shall prove (a) and (b) simultaneously.
First, let us prove (a) and (b) for l = 0. As have seen in Proposition 4.2 (4.2), 

(μk+1μk(Vi))k−� r
2 � = (Vi)k−� r

2 � = Sjk−1. We have already obtained (μk(Vi))k = V ∗
k in 

Example 4.11 (4.10). Similarly, (μk+1μk(Vi))k+1 is

jk − 5 jk − 3 jk − 1 jk + 1
jk − 4 jk − 2 jk

jk − 3 jk − 1 (7.3)

Hence, the modules (μk(Vi))k and (μk+1μk(Vi))k+1 have the simple submodule iso-
morphic to Sjk−1. So there exist injective homomorphisms

(μk+1μk(Vi))k−� r
2 � = Sjk−1 → (μk(Vi))k, (μk+1μk(Vi))k−� r

2 � → (μk+1μk(Vi))k+1.

Let ejk−1 denote a basis vector in (μk+1μk(Vi))k−� r
2 � = Sjk−1, and let e′jk−1 ∈ (μk(Vi))k

and e′′jk−1 ∈ (μk+1μk(Vi))k+1 be the images of ejk−1 respectively. Note that since 
jr+k−� r

2 � = jk−� r
2 � = jk − 1, the module Vr+k−� r

2 � is described as

jk − 3 jk − 1 jk + 1
jk − 2 jk

jk − 1 (7.4)



190 Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149–206
and has the simple socle isomorphic to Sjk−1 (4.4). So there exists an injective homomor-
phism Sjk−1 → Vr+k−� r

2 �. However, this map is factorizable in the direct summands of 
μk+1μk(Vi) since it is the same composite map as Sjk−1 → (μk+1μk(Vi))k = (μk(Vi))k →
Vr+k−� r

2 �. Moreover, we can verify that Hom(Sjk−1, Vt) = {0} for t �= r+k−� r
2�, k−� r

2�, 
k, k + 1. From Lemma 4.7 and Theorem 4.9 (iii), the exchange sequence associated to 
the direct summand Sjk−1 of μk+1μk(Vi) is as follows:

0 → Sjk−1 → (μk(Vi))k ⊕ (μk+1μk(Vi))k+1 → (μk−� r
2 �μk+1μk(Vi))k−� r

2 � → 0,

where the image of the injective homomorphism Sjk−1 → (μk(Vi))k ⊕ (μk+1μk(Vi))k+1
is C(e′jk−1 + e′′jk−1). Therefore, the module

(μk−� r
2 �μk+1μk(Vi))k−� r

2 � = ((μk(Vi))k ⊕ (μk+1μk(Vi))k+1)/C(e′jk−1 + e′′jk−1) (7.5)

is described as follows:

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk−5 jk−3 jk−1 jk+1

jk−4 jk−2 jk

jk−3 (7.6)

Since jk+1 = jk − 2, we have the claim (a) for l = 0.
Next, let us prove the claim (b) for l = 0. We have seen that (μk−� r

2 �μk+1μk(Vi))k+1 =
(μk+1μk(Vi))k+1 is described as (7.3). It follows from (7.6) that (μk−� r

2 �μk+1μk(Vi))k−� r
2 �

has the submodule isomorphic to (μk+1μk(Vi))k+1. Hence, we can find an injective ho-
momorphism

(μk+1μk(Vi))k+1 → (μk−� r
2 �μk+1μk(Vi))k−� r

2 �. (7.7)

Note that the homomorphism (7.7) is not factorizable in the direct summands of 
(μk−� r

2 �μk+1μk(Vi)) since no direct summand in (μk−� r
2 �μk+1μk(Vi)) has submodules iso-

morphic to (μk+1μk(Vi))k+1. By (7.3) and (7.4), we see that the module (μk+1μk(Vi))k+1
has the quotient isomorphic to Vr+k−� r

2 �. Then, we have a surjective homomorphism 
(μk+1μk(Vi))k+1 → Vr+k−� r

2 �, which is, indeed, factorizable in the direct summands of 
(μk−� r

2 �μk+1μk(Vi)) since it can be written as the composite map as follows: We label 
each basis of Vr+k−� r

2 � (7.4) as

c
(3)
jk−3 c

(3)
jk−1 c

(3)
jk+1

c
(2)
jk−2 c

(2)
jk

c
(1)
jk−1

and each basis of (μk−� r �μk+1μk(Vi))k−� r � (7.6) as

2 2
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e
(3)
jk−3 e

(3)
jk−1 e

(3)
jk+1 e

(3)
jk+3

e
(2)
jk−2 e

(2)
jk

e
(2)
jk+2

e
(1)
jk−1 e

(1)
jk+1

d
(3)
jk−5 d

(3)
jk−3 d

(3)
jk−1 d

(3)
jk+1

d
(2)
jk−4 d

(2)
jk−2 d

(2)
jk

d
(1)
jk−3

Then we can define the surjective homomorphism (μk−� r
2 �μk+1μk(Vi))k−� r

2 � → Vr+k−� r
2 �

by e(1)
jk−1 �→ c

(1)
jk−1, d

(2)
j and e(2)

j �→ c
(2)
j (j = jk, jk − 2), d(3)

j and e(3)
j �→ c

(3)
j (j = jk + 1, 

jk−1, jk−3) and mapping all others to 0. Then the homomorphism (μk+1μk(Vi))k+1 →
Vr+k−� r

2 � coincides with the composite map

(μk+1μk(Vi))k+1 → (μk−� r
2 �μk+1μk(Vi))k−� r

2 � → Vr+k−� r
2 �,

where the first map is the one in (7.7).
The other non-zero homomorphisms from (μk−� r

2 �μk+1μk(Vi))k+1 = (μk+1μk(Vi))k+1

to the direct summands of (μk−� r
2 �μk+1μk(Vi)) are factored through (μk−� r

2 �μk+1 ×
μk(Vi))k−� r

2 �. Thus, the exchange sequence associated to the direct summand (μk−� r
2 � ×

μk+1μk(Vi))k+1 = (μk+1μk(Vi))k+1 of μk−� r
2 �μk+1μk(Vi) is as follows:

0 → (μk+1μk(Vi))k+1 → (μk−� r
2 �μk+1μk(Vi))k−� r

2 � → (μk+1μk−� r
2 �μk+1μk(Vi))k+1 → 0.

By the above argument, we see that the module (μk+1μk−� r
2 �μk+1μk(Vi))k+1 is described 

as

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk+1 (7.8)

which means the claim (b) for l = 0.
Next, we assume that the claims (a) and (b) are shown for 0, 1, · · · , l. Let us con-

sider the claim (a) for l + 1, and then construct the exchange sequence associated 
to the direct summand (μk+l+2μk+l+1μ[l](Vi))k−� r

2 �+l+1 of μk+l+2μk+l+1μ[l](Vi) as in 
(7.10) below. Since the mutation μk−� r

2 �+l+1 does not appear in μk+l+2μk+l+1μ[l], we 
have (μk+l+2μk+l+1μ[l](Vi))k−� r

2 �+l+1 = (Vi)k−� r
2 �+l+1 = Sjk−2l−3 (see (4.2)). By the 

induction hypothesis, the module (μk+l+2μk+l+1μ[l](Vi))k−� r
2 �+l = (μ[l](Vi))k−� r

2 �+l is 
described as (7.1), and it has the simple submodule isomorphic to Sjk−2l−3. It follows 
from Theorem 4.9 and a similar argument to the proof of Lemma 7.1 that the mod-
ule (μk+l+2μk+l+1μ[l](Vi))k+l+2 is the same as (μk+l+2(Vi))k+l+2, and is described as 
follows:
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jk−2l−7 jk−2l−5 jk−2l−3 jk−2l−1

jk−2l−6 jk−2l−4 jk−2l−2

jk−2l−5 jk−2l−3 (7.9)

Hence, this module (μk+l+2(Vi))k+l+2 has the simple submodule isomorphic to Sjk−2l−3. 
It follows from (4.4) and jr+k−� r

2 �+l+1 = jk−� r
2 �+l+1 = jk − 2l − 3 that the module 

(μk+l+2μk+l+1μ[l](Vi))r+k−� r
2 �+l+1 = (Vi)r+k−� r

2 �+l+1 is described as

jk − 2l − 5 jk − 2l − 3 jk − 2l − 1

jk − 2l − 4 jk − 2l − 2

jk − 2l − 3

and there exists an injective homomorphism Sjk−2l−3 → (Vi)r+k−� r
2 �+l+1. But, this 

map is factorizable since it can be written as the composite map Sjk−2l−3 →
(μk+l+2(Vi))k+l+2 → (Vi)r+k−� r

2 �+l+1. By the induction hypothesis, the other di-
rect summands of μk+l+2μk+l+1μ[l](Vi) do not have the simple submodule isomor-
phic to Sjk−2l−3. Thus, the exchange sequence associated to the direct summand 
(μk+l+2μk+l+1μ[l](Vi))k−� r

2 �+l+1 = Sjk−2l−3 of μk+l+2μk+l+1μ[l](Vi) is

0 → Sjk−2l−3 → (μk+l+2(Vi))k+l+2 ⊕ (μ[l](Vi))k−� r
2 �+l → (7.10)

(μk−� r
2 �+l+1μk+l+2μk+l+1μ[l](Vi))k−� r

2 �+l+1 → 0.

The module (μ[l + 1](Vi))k−� r
2 �+l+1 = (μk−� r

2 �+l+1μk+l+2μk+l+1μ[l](Vi))k−� r
2 �+l+1 is 

described as

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk−5 jk−3 jk−1 jk+1

jk−4 jk−2 jk

jk−3

jk+l−7 jk+l−5 jk+l−3 jk+l−1

jk+l−6 jk+l−4 jk+l−2

jk+l−5 jk+l−3

· · ·

(7.11)

Taking jk+l = jk − 2l into account, we get (a) for l + 1.
Next, we consider the claim (b) for l + 1. The module (μ[l + 1](Vi))k+l+2 =

(μk+l+2μk+l+1μ[l](Vi))k+l+2 is described as (7.9). By the description (7.11) of the module 
(μ[l+1](Vi))k−� r

2 �+l+1, it has the submodule isomorphic to (μk+l+2μk+l+1μ[l](Vi))k+l+2. 
Using the same argument in the proof of claim (b) for l = 0, there exists an injective 
homomorphism (μk+l+2μk+l+1μ[l](Vi))k+l+2 → (μ[l+1](Vi))k−� r

2 �+l+1, which is not fac-
torizable in the direct summands of (μ[l+1](Vi)), and the other non-zero homomorphisms 
from (μk+l+2μk+l+1μ[l](Vi))k+l+2 to the direct summands of (μ[l + 1](Vi)) are factored 
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through (μ[l + 1](Vi))k−� r
2 �+l+1. Thus, the exchange sequence associated to the direct 

summand (μ[l + 1](Vi))k+l+2 of (μ[l + 1](Vi)) is

0 → (μ[l + 1](Vi))k+l+2 → (μ[l + 1](Vi))k−� r
2 �+l+1 → (μk+l+2μ[l + 1](Vi))k+l+2 → 0,

(7.12)

which yields the following description of the module (μk+l+2μ[l + 1](Vi))k+l+2:

jk−3 jk−1 jk+1 jk+3

jk−2 jk jk+2

jk−1 jk+1

jk−5 jk−3 jk−1 jk+1

jk−4 jk−2 jk

jk−3

jk+l−5 jk+l−3 jk+l−1 jk+l+1

jk+l−4 jk+l−2 jk+l

jk+l−1

· · ·

(7.13)

Because of jk+l+1 = jk+l − 2, we get (b) for l + 1. �
We can similarly verify the following two lemmas.

Lemma 7.3. We use the notation as in Proposition 6.6 and let jk be the k-th index of i
(2.4) from the right.

(a) The module (μ′[l](Vi))k+l+1 is described as follows:

jk−4 jk−2 jk jk+2

jk−3 jk−1 jk+1

jk−2

jk−6 jk−4 jk−2 jk

jk−5 jk−3 jk−1

jk−4

jk+l−6 jk+l−4 jk+l−2 jk+l

jk+l−5 jk+l−3 jk+l−1

jk+l−4 jk+l−2

· · ·

(7.14)

Note that jk+l = jk − 2l from (2.4).
(b) The module (μ� r

2 �+k+l+2μ
′[l](Vi))� r

2 �+k+l+2 is described as follows:

jk−4 jk−2 jk jk+2

jk−3 jk−1 jk+1

jk−2

jk−6 jk−4 jk−2 jk

jk−5 jk−3 jk−1

jk−4

jk+l−4 jk+l−2 jk+l jk+l+2

jk+l−3 jk+l−1 jk+l+1

jk+l

· · ·

(7.15)

Lemma 7.4. We use the notation as in Proposition 6.7.
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(a) The module (μ′′[l](Vi))� r+1
2 �−l−1 is described as follows:

2l+1 2l+3 2l+5 2l+7

2l+2 2l+4 2l+6

2l+3 2l+5

1 3 5 7

2 4 6

3 5

· · ·

3 5

2 4

(7.16)

(b) The module (μr−l−1μ
′′[l](Vi))r−l−1 is described as follows:

2l−1 2l+1 2l+3 2l+5

2l 2l+2 2l+4

2l+1

1 3 5 7

2 4 6

3 5

· · ·

3 5

2 4

(7.17)

Furthermore, if r is odd, then the module (μ1μ r+3
2
μ′′[ r−1

2 − 2](Vi))1 is described as

r−4 r−2

r−3 r−1

r−2

1 3 5 7

2 4 6

3 5

· · ·

3 5

2 4

(7.18)

Next, let us prove Proposition 6.4. The following is an overview of the proof: 
We will use the induction on l. Using the exchange relation (3.1), Theorem 4.9(ii), 
(6.4), (6.5) and the induction hypothesis, calculations of (ϕG

(μ[l+1]V ))k−� r
2 �+l+1(a; Y), 

(ϕG
(μk+l+2μ[l]V ))k+l+2(a; Y) are reduced to those of ϕ(μ[l+1]V )k−� r

2 �+l+1
◦ xG

i (1; φ(Y)), 
ϕ(μk+l+2μ[l+1]V )k+l+2◦xG

i (1; φ(Y)), respectively. Then we can calculate ϕ(μ[l+1]V )k−� r
2 �+l+1

◦
xG
i (1; φ(Y)) and ϕ(μk+l+2μ[l+1]V )k+l+2 ◦ xG

i (1; φ(Y)) by the explicit forms of the modules 
(μ[l + 1]V )k−� r

2 �+l+1, (μk+l+2μ[l + 1]V )k+l+2 in Lemma 7.2, Proposition 4.13, the for-
mulas (4.11) and (6.7).

Proof of Proposition 6.4. For any cluster T = ((ϕT )j)j∈[1,2r]∪[−r,−1], (ϕT )s (s ∈ [r +
1, 2r] ∪ [−r, −1]) is frozen, then we have (ϕT )s = (ϕV )s. Using the induction on l, 
let us prove Proposition 6.4 (a) and (b) simultaneously. For l = 0, let us calculate 
(ϕG

(μ[0]V ))k−� r
2 �. In Sect. 6, we see that the vertices and the arrows around the vertex 

(ϕV )k in the quiver Γi are described as follows:

· · ·

(ϕV )r+k−� r
2 �−1

(ϕV )k−� r
2 �−1

(ϕV )−jk−1

(ϕV )r+k

(ϕV )k

(ϕV )−jk

(ϕV )r+k−� r
2 �

(ϕV )k−� r
2 �

(ϕV )−jk+1

(ϕV )r+k+1

(ϕV )k+1

(ϕV )−jk+2

· · ·
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Applying the mutation μk+1μk to this quiver, the arrows between (ϕV )k−� r
2 � and (ϕV )−s

(1 ≤ s ≤ r)

(ϕV )k

(ϕV )−jk

(ϕV )k−� r
2 �

(ϕV )−jk+1

(ϕV )k+1

(ϕV )−jk+2

are transformed to

(ϕμk(V ))k

(ϕV )−jk

(ϕV )k−� r
2 �

(ϕV )−jk+1

(ϕμk+1μk(V ))k+1

(ϕV )−jk+2

by Lemma 3.5. Similarly, the arrows between (ϕ(μk+1μkV ))k−� r
2 � = (ϕV )k−� r

2 � and 
(ϕμk+1μkV )s (1 ≤ s ≤ 2r) in μk+1μk(Γi) are

(ϕV )r+k−� r
2 �−1

(ϕ(μkV ))k

(ϕV )r+k−� r
2 �

(ϕV )k−� r
2 �(ϕ(μk+1μkV ))k+1

(ϕV )r+k−� r
2 �+1

Thus, by the exchange relation (3.1),

(ϕG
(μ[0]V ))k−� r

2 �

=
(ϕG

(μkV ))k(ϕG
(μk+1μkV ))k+1 + (ϕG

V )−jk+1(ϕG
V )r+k−� r

2 �−1(ϕG
V )r+k−� r

2 �(ϕ
G
V )r+k−� r

2 �+1

(ϕG
V )k−� r

2 �
.

By (6.6) in the proof of Proposition 6.2, we can write

(ϕG
(μkV ))k = (ϕ(μkV )k) ◦ xG

i (ΦH ;φ(Y))

= (ΦH(Y))Λjk−1(ΦH(Y))Λjk+1 · (ϕ(μkV )k) ◦ xG
i (1;φ(Y)). (7.19)

Similarly, we have

(ϕG
(μk+1μkV ))k+1 = (ϕG

(μk+1V ))k+1

= (ΦH(Y))Λjk−3(ΦH(Y))Λjk−1 · (ϕ(μk+1V )k+1) ◦ xG
i (1;φ(Y)). (7.20)

Therefore, using (6.4), (6.5), (7.19), (7.20) and Theorem 4.9 (ii), we obtain

(ϕG
(μ[0]V ))k−� r

2 �(a; Y) = (ΦH(Y))2Λjk−1+Λjk−3+Λjk+1

(ΦH(Y))Λjk−1

×
(ϕ(μkV )k)(ϕ(μk+1μkV )k+1) + (ϕVr+k−� r

2 �−1)(ϕVr+k−� r
2 �)(ϕVr+k−� r

2 �+1)
(ϕV r ) ◦ xG

i (1;φ(Y))

k−� 2 �
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= (ΦH(Y))Λjk−1+Λjk−3+Λjk+1 × (ϕ(μ[0]V )k−� r
2 �) ◦ x

G
i (1;φ(Y)) (7.21)

= aΛjk−1+Λjk−3+Λjk+1Y1,jk−1Y2,jk−1Y1,jk−3Y2,jk−3Y1,jk+1Y2,jk+1 ×

(ϕ(μ[0]V )k−� r
2 �) ◦ x

G
i (1;φ(Y)).

The module (μ[0]V )k−� r
2 � is described as (7.6). Using Proposition 4.13 and (4.11), let 

us calculate (ϕ(μ[0]V )k−� r
2 �) ◦ xG

i (1; φ(Y)). To do that we will find

a = (a1,jr , · · · , a1,j2 , a1,j1 , a2,jr , · · · , a2,j2 , a2,j1) ∈ (Z≥0)2r

satisfying Fia,(μ[0]V )k−� r
2 � �= φ (or equivalently, Fi,a,(μ[0]V )k−� r

2 � �= φ). If Fia,(μ[0]V )k−� r
2 � �=

φ, by counting the number of the bases in (7.6) and the fact that the dimension at jk +1
is 3, we have a1,jk+1 + a2,jk+1 = 3. Considering similarly,

a1,jk+1 + a2,jk+1 = a1,jk−1 + a2,jk−1 = a1,jk−3 + a2,jk−3 = 3,

a1,jk + a2,jk = a1,jk−2 + a2,jk−2 = 2, (7.22)

a1,jk+3 + a2,jk+3 = a1,jk+2 + a2,jk+2 = a1,jk−4 + a2,jk−4 = a1,jk−5 + a2,jk−5 = 1.

Since the module (μ[0]V )k−� r
2 � does not have the simple submodules isomorphic to 

Sjr , Sjr−1 , · · · , Sj� r+1
2 �+1

, we have a1,jr = a1,jr−1 = · · · = a1,j� r+1
2 �+1

= 0, which yields 
a2,jk−4 = 1, a2,jk−2 = 2, a2,jk = 2 and a2,jk+2 = 1. We can also check that a1,jk−3 =
a1,jk−1 = a1,jk+1 = 1. Thus, Fia,(μ[0]V )k−� r

2 � �= φ if and only if

ia = (jk − 3, jk − 1, jk + 1, jk − 4, jk − 2, jk − 2, jk, jk, jk + 2,

jk − 5, jk − 3, jk − 3, jk − 1, jk − 1, jk + 1, jk + 1, jk + 3). (7.23)

Then we show that Fi,a,(μ[0]V )k−� r
2 � is a point. Here, we use the notation as in (4.11). 

By the above argument and (2.5), (2.6), (2.7), we have

(ϕG
(μ[0]V ))k−� r

2 �(a; Y) = aΛjk−1+Λjk−3+Λjk+1Y1,jk−1Y2,jk−1Y1,jk−3Y2,jk−3Y1,jk+1Y2,jk+1

×Φ1,jk−3(Y)Φ1,jk−1(Y)Φ1,jk+1(Y)Φ2,jk−4(Y)Φ2
2,jk−2(Y)Φ2

2,jk(Y)Φ2
2,jk(Y)

×Φ2,jk+2(Y)Φ2,jk−5(Y)Φ2
2,jk−3(Y)Φ2

2,jk−1(Y)Φ2
2,jk+1(Y)Φ2,jk+3(Y)

= aΛjk−1+Λjk−3+Λjk+1Y2,jk−1,

which implies the claim (a) for l = 0.
Next, let us consider the claim (b) for l = 0. By Lemma 3.5, the arrows between 

(ϕ(μ[0]V ))k+1 = (ϕ(μk+1V ))k+1 and (ϕ(μ[0]V ))s (s ∈ [−r, −1] ∪ [1, 2r]) in μ[0](Γi), are
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(ϕV )r+k−� r
2 �−1(ϕV )r+k+1

(ϕV )k−� r
2 �+1 (ϕ(μ[0]V ))k−� r

2 �(ϕ(μk+1V ))k+1

(ϕV )−jk+2 (ϕV )−jk+1

Thus,

(ϕG
(μk+1μ[0]V ))k+1(a; Y)

=
(ϕG

(μ[0]V ))k−� r
2 �(ϕ

G
V )−jk+2 + (ϕG

V )r+k−� r
2 �−1(ϕG

V )r+k+1(ϕG
V )k−� r

2 �+1(ϕG
V )−jk+1

(ϕG
(μk+1V ))k+1

.

Using (6.4), (6.5), (7.20), (7.21) and Theorem 4.9 (ii), we obtain

(ϕG
(μk+1μ[0]V ))k+1(a; Y) = (ΦH(a; Y))Λjk−2+Λjk+1

×
(ϕ(μ[0]V )k−� r

2 �) + (ϕVr+k−� r
2 �−1)(ϕVr+k+1)(ϕVk−� r

2 �+1)
(ϕ(μk+1V )k+1)

◦ xG
i (1;φ(Y))

= aΛjk−2+Λjk+1Y1,jk−2Y2,jk−2Y1,jk+1Y2,jk+1 × (ϕ(μk+1μ[0]V )k+1) ◦ xG
i (1;φ(Y)). (7.24)

Applying a similar argument as in (7.23) to the module (μk+1μ[0]V )k+1 in (7.8), for 
a ∈ (Z≥0)2r, we find that Fia,(μk+1μ[0]V )k+1 �= φ if and only if

ia = (jk + 1, jk − 2, jk, jk + 2, jk − 3, jk − 1, jk + 1, jk + 3),

(jk − 2, jk + 1, jk, jk + 2, jk − 3, jk − 1, jk + 1, jk + 3),

(jk − 2, jk − 3, jk + 1, jk, jk + 2, jk − 1, jk + 1, jk + 3).

Therefore, it follows from (6.7) and Proposition 4.13 that

(ϕ(μk+1μ[0]V )k+1) ◦ xG
i (1;φ(Y))

= Φ1,jk+1Φ2,jk−2Φ2,jkΦ2,jk+2Φ2,jk−3Φ2,jk−1Φ2,jk+1Φ2,jk+3

+Φ1,jk−2Φ1,jk+1Φ2,jkΦ2,jk+2Φ2,jk−3Φ2,jk−1Φ2,jk+1Φ2,jk+3

+Φ1,jk−2Φ1,jk−3Φ1,jk+1Φ2,jkΦ2,jk+2Φ2,jk−1Φ2,jk+1Φ2,jk+3

= Φ1,jk+1Φ2,jk−2Φ2,jkΦ2,jk+2Φ2,jk−3Φ2,jk−1Φ2,jk+1

×Φ2,jk+3(1 + A−1
1,jk−2 + A−1

1,jk−2A
−1
1,jk−3)

= Y2,jk−1

Y2,jk−2Y1,jk+1Y2,jk+1
(1 + A−1

1,jk−2 + A−1
1,jk−2A

−1
1,jk−3). (7.25)

Substituting (7.25) for (7.24), we obtain

(ϕG
(μ μ[0]V ))k+1(a; Y) = aΛjk−2+Λjk+1Y1,jk−2Y2,jk−1(1 + A−1

1,j −2 + A−1
1,j −2A

−1
1,j −3),
k+1 k k k



198 Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149–206
which means the claim (b) for l = 0.
Next, assuming that the claims (a) and (b) for 0, 1, · · · , l, let us prove the claims for 

l + 1. Using Lemma 7.1, we have (ϕ(μk+l+2μk+l+1μ[l]V ))k+l+2 = (ϕ(μk+l+2V ))k+l+2. By 
Lemma 3.5, we see that the arrows between (ϕV )k−� r

2 �+l+1 and (ϕV )−s (s ∈ [1, r]) in 
μk+l+2μk+l+1μ[l]Γi are as follows:

(ϕV )−(jk−2l−2)

(ϕV )k−� r
2 �+l+1

(ϕV )−(jk−2l−3)

It follows from the exchange sequence (7.10), Lemma 4.7 and Theorem 4.9 that the 
arrows from (ϕ(μk+l+2μk+l+1μ[l]V ))s (1 ≤ s ≤ 2r) to (ϕV )k−� r

2 �+l+1 are

(ϕ(μk+l+2V ))k+l+2 → (ϕV )k−� r
2 �+l+1, (ϕ(μ[l]V ))k−� r

2 �+l → (ϕV )k−� r
2 �+l+1.

Similarly, since there exist non-factorizable homomorphisms in the direct summands 
of (μk+l+2μk+l+1μ[l]V ) from (μk+l+1μ[l]V )k+l+1, Vr+k−� r

2 �+l+2, Vr+k−� r
2 �+l+1 and 

Vr+k−� r
2 �+l to Vk−� r

2 �+l+1 = Sjk−2l−3, we see that the arrows in (μk+l+2μk+l+1μ[l]Γi)
from (ϕV )k−� r

2 �+l+1 to (ϕ(μk+l+2μk+l+1μ[l]V ))s (1 ≤ s ≤ 2r) are

(ϕV )k−� r
2 �+l+1 → (ϕ(μk+l+1μ[l]V ))k+l+1, (ϕV )k−� r

2 �+l+1 → (ϕV )r+k−� r
2 �+l+2,

(ϕV )k−� r
2 �+l+1 → (ϕV )r+k−� r

2 �+l+1, (ϕV )k−� r
2 �+l+1 → (ϕV )r+k−� r

2 �+l.

Hence, by the induction hypothesis of the claim (b) and the same way as in (7.21), we 
obtain the following:

(ϕG
(μ[l+1]V ))k−� r

2 �+l+1 = (ΦH(a; Y))(
∑l+3

s=0 Λjk−2s+1)+(
∑l

s=0 Λjk−2s−2)

× ϕ(μ[l+1]V )k−� r
2 �+l+1

◦ xG
i (1;φ(Y)). (7.26)

The module (μ[l + 1]V )k−� r
2 �+l+1 is described as (7.11). Using Proposition 4.13, let 

us calculate ϕ(μ[l+1]V )k−� r
2 �+l+1

◦ xG
i (1; φ(Y)):

For a = (a1,jr , · · · , a1,j1 , a2,jr , · · · , a1,j1) ∈ (Z≥0)2r, if the variety Fi,a,(μ[l+1]V )k−� r
2 �+l+1

is non-empty, we have

a1,jk+1 = a2,jk+2 = a2,jk+3 = 1, a1,jk−1 = 1, a2,jk = 2, a2,jk+1 = 2, a2,jk−1 = 3,

a1,jk+l−5 = a2,jk+l−6 = a2,jk+l−7 = 1,

a1,jk+l−3 = 1, a2,jk+l−4 = 2, a2,jk+l−5 = 2, a2,jk+l−3 = 3, (7.27)

a1,jk−2t−3 + a2,jk−2t−3 = 5 (0 ≤ t ≤ l − 1),

a1,jk−2t−2 + a2,jk−2t−2 = 3 (0 ≤ t ≤ l),
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by the same argument in the proof of the claim (a) for l = 0. Denoting the bases in
(7.11) by

e
(1)
jk−3 e

′ (1)
jk−1 e

′ (1)
jk+1 e

(1)
jk+3

e
(1)
jk−2 e

(1)
jk

e
(1)
jk+2

e
(1)
jk−1 e

(1)
jk+1

e
(2)
jk−5 e

′ (2)
jk−3 e

′ (2)
jk−1 e

(2)
jk+1

e
(2)
jk−4 e

(2)
jk−2 e

(2)
jk

e
(2)
jk−3

e
(l+3)
jk+l−7 e

′ (l+3)
jk+l−5 e

′ (l+3)
jk+l−3 e

(l+3)
jk+l−1

e
(l+3)
jk+l−6 e

(l+3)
jk+l−4 e

(l+3)
jk+l−2

e
(l+3)
jk+l−5 e

(l+2)
jk+l−3

· · ·

we see that all 1-dimensional simple submodules of (μ[l + 1]V )k−� r
2 �+l+1 are Ce

(t)
jk−2t+1

(1 ≤ t ≤ l + 3), Ce
(1)
jk+1 and C(e(t+1)

jk−2t−2 − e
(t+2)
jk−2t−2 + e

(t+3)
jk−2t−2) (0 ≤ t ≤ l), which 

are isomorphic to Sjk−2t+1, Sjk+1 and Sjk−2t−2, respectively. We can also see that all 
1-dimensional simple submodules isomorphic to one of {Sjk−2t−3|0 ≤ t ≤ l − 1} of the 
quotient module

(μ[l + 1]V )k−� r
2 �+l+1

(C(e(t+1)
jk−2t−2 − e

(t+2)
jk−2t−2 + e

(t+3)
jk−2t−2) ⊕C(e(t+2)

jk−2t−4 − e
(t+3)
jk−2t−4 + e

(t+4)
jk−2t−4))

are Ce
(t+2)
jk−2t−3 and C(e(t+1)

jk−2t−3 − e
′ (t+2)
jk−2t−3 + e

′ (t+3)
jk−2t−3 − e

(t+4)
jk−2t−3) (0 ≤ t ≤ l − 1). Thus, 

Fi,a,(μ[l+1]V )k−� r
2 �+l+1

�= φ if and only if a satisfies the following in addition to (7.27): 
For each t ∈ [0, l − 1],

(a1,jk−2t−2, a1,jk−2t−3, a1,jk−2t−4) = (1, 2, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0) or (1, 1, 1)

and all other a1,i, a2,i = 0.

Let us calculate the monomial M corresponding to (a1,jk−2t−2, a1,jk−2t−3, a1,jk−2t−4) =
(0, 1, 0) for all t ∈ [0, l − 1], which means that a1,jk−2s+1 = 1 (0 ≤ s ≤ l + 3) and 
a1,jk−2s+2 = 0 (0 ≤ s ≤ l + 4). Thus, it is calculated as

M = Φ1,jk+1 ×
l+2∏
s=0

(Φ1,jk−2s−1Φ2,jk−2s−2Φ2,jk−2s−3

Φ2,jk−2sΦ2,jk−2s−1Φ2,jk−2s+2Φ2,jk−2s+1Φ2,jk−2s+3)

= Y2,jkY2,jk+2

Y1,jk+1Y 2
2,jk+1

l+2∏
s=0

Y2,jk−2s+1

Y1,jk−2s−1Y2,jk−2s−1Y2,jk−2s+2
. (7.28)

For p ≥ 1 and (b, c) ∈ Rp
l (b = {bi}pi=1, c = {ci}pi=1), the monomial corresponding to 

a1,jk−2t−3 = 2, a1,jk−2t−2 = a1,jk−2t−4 = 1 for t ∈ [b1, c1 − 1] ∪ · · · ∪ [bp, cp − 1], and 
a1,jk−2t−3 = 1 for t ∈ [1, l − 1] \ ([b1, c1 − 1] ∪ · · · ∪ [bp, cp − 1]), and a1,jk−2t−2 = 0
for t ∈ [0, l] \ [b, c] is M ×A[b1, c1; jk] · · ·A[bp, cp; jk] by (6.7). Using (6.7) again, we see 
that the partial sum of ϕ(μ[l+1]V ) r ◦ xG

i (1; φ(Y)) corresponding to a1,jk−2t−3 =

k−� 2 �+l+1
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2, a1,jk−2t−2 = a1,jk−2t−4 = 1 for t ∈ [b1, c1 − 1] ∪ · · · ∪ [bp, cp − 1] and a1,jk−2t−2 = 0 or 
1 for t ∈ [0, l] \ [b, c] is

M ×A[b1, c1; jk] · · ·A[bp, cp; jk]
∏

t∈[0,l]\([b1,c1]∪···∪[bp,cp])

(1 + A−1
1,jk−2t−2).

On the other hand, by (2.5) and (7.28),

(ΦH(a; Y))(
∑l+3

s=0 Λjk−2s+1)+(
∑l

s=0 Λjk−2s−2) ×M

= a(
∑l+3

s=0 Λjk−2s+1)+(
∑l

s=0 Λjk−2s−2)
l∏

s=0
Y1,jk−2s−2

l+1∏
s=0

Y2,jk−2s−1.

Hence, by (7.26), we have

(ϕG
(μ[l+1]V ))k−� r

2 �+l+1 = a(
∑l+3

s=0 Λjk−2s+1)+(
∑l

s=0 Λjk−2s−2)
l∏

s=0
Y1,jk−2s−2

l+1∏
s=0

Y2,jk−2s−1

×
∑

p≥0, (b,c)∈Rp
l

A[b1, c1; jk] · · ·A[bp, cp; jk]
∏

t∈[0,l]\([b1,c1]∪···∪[bp,cp])

(1 + A−1
1,jk−2t−2),

which implies the claim (a) for l + 1.
Finally, let us prove the claim (b) for l + 1. By the direct calculation, the arrows 

between (ϕ(μk+l+2μk+l+1μ[l]V ))k+l+2 = (ϕ(μk+l+2V ))k+l+2 and (ϕV )−s (s ∈ [1, r]) in μ[l +
1]Γi are as follows:

(ϕV )−(jk−2l−3)

(ϕ(μk+l+2V ))k+l+2

(ϕV )−(jk−2l−4)

The exchange sequence (7.12), Lemma 4.7 and Theorem 4.9 imply that the arrows from 
(ϕ(μ[l+1]V ))s (1 ≤ s ≤ 2r) to (ϕ(μk+l+2V ))k+l+2 are

(ϕ(μ[l+1]V ))k−� r
2 �+l+1 → (ϕ(μk+l+2V ))k+l+2.

The arrows from (ϕ(μk+l+2V ))k+l+2 to (ϕ(μ[l+1]V ))s (1 ≤ s ≤ 2r) are

(ϕ(μk+l+2V ))k+l+2 → (ϕ(μk+l+1μ[l]V ))k+l+1, (ϕ(μk+l+2V ))k+l+2 → (ϕV )r+k+l−� r
2 �,

(ϕ(μk+l+2V ))k+l+2 → (ϕV )r+k+l+2, (ϕ(μk+l+2V ))k+l+2 → (ϕV )k+l−� r
2 �+2.

By the same way as in (7.26), we have

(ϕG
(μk+l+2μ[l+1]V ))k+l+2 = (ΦH(a; Y))(

∑l+1
s=0 Λjk−2s+1+Λjk−2s−2)

× ϕ(μk+l+2μ[l+1]V )k+l+2 ◦ xG
i (1;φ(Y)). (7.29)
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The module (μk+l+2μ[l + 1]V )k+l+2 is described as (7.13), and it has the sim-
ple submodules S′

jk−2t isomorphic to Sjk−2t (1 ≤ t ≤ l + 2). The quotient modules 
(μk+l+2μ[l+1]V )k+l+2/(S′

jk−2t⊕S′
jk−2t−2) and (μk+l+2μ[l+1]V )k+l+2/(S′

jk−2l−4) have 
the simple submodules isomorphic Sjk−2t−1 and Sjk−2l−5 respectively. Therefore, for 
a = (a1,jr , · · · , a1,j1 , a2,jr , · · · , a1,j1) ∈ (Z≥0)2r, the variety Fi,a,(μk+l+2μ[l+1]V )k+l+2 is 
non-empty if and only if

a1,jk+1 = a2,jk+2 = a2,jk+3 = 1, a1,jk−1 = 1, a2,jk = a2,jk+1 = 2, a2,jk−1 = 3,

a1,jk−2t−3 + a2,jk−2t−3 = 5 (0 ≤ t ≤ l − 2),

a1,jk−2t−2 + a2,jk−2t−2 = 3 (0 ≤ t ≤ l − 1),

a1,jk−2l−1 + a2,jk−2l−1 = 4, a1,jk−2l−3 + a2,jk−2l−3 = 2,

a1,jk−2l−5 + a2,jk−2l−5 = 1, a1,jk−2l−2 + a2,jk−2l−2 = 2,

a1,jk−2l−4 + a2,jk−2l−4 = 1,

and for each t ∈ [0, l − 1],

(a1,jk−2t−2, a1,jk−2t−3, a1,jk−2t−4) = (1, 2, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0) or (1, 1, 1)

(a1,jk−2l−2, a1,jk−2l−3, a1,jk−2l−4) = (1, 1, 1), (0, 0, 0), (0, 0, 1), (1, 0, 0) or (1, 0, 1)

0 ≤ a1,jk−2l−5 ≤ a1,jk−2l−4 ≤ 1, all other a1,i, a2,i = 0.

Let us calculate the monomial M ′ corresponding to (a1,jk−2t−2, a1,jk−2t−3, a1,jk−2t−4) =
(0, 1, 0) for all t ∈ [0, l − 1] and a1,jk−2l−3 = a1,jk−2l−4 = a1,jk−2l−5 = 0. It is calculated 
as

M ′ =
l+1∏
s=0

(Φ1,jk−2s+1Φ2,jk−2s−2Φ2,jk−2s−3

Φ2,jk−2sΦ2,jk−2s−1Φ2,jk−2s+2Φ2,jk−2s+1Φ2,jk−2s+3)

=
l+1∏
s=0

Y2,jk−2s−1

Y1,jk−2s+1Y2,jk−2s+1Y2,jk−2s−2
. (7.30)

For p ≥ 1 and (b, c) ∈ Rp
l+1 (b = {bi}pi=1, c = {ci}pi=1) such that cp < l + 1, 

the monomial corresponding to a1,jk−2t−3 = 2, a1,jk−2t−2 = a1,jk−2t−4 = 1 for 
t ∈ [b1, c1 − 1] ∪ · · · ∪ [bp, cp − 1], a1,jk−2t−3 = 1 for t ∈ [1, l − 1] \ ([b1, c1 − 1] ∪ · · · ∪
[bp, cp − 1]), a1,jk−2l−3 = a1,jk−2l−5 = 0 and a1,jk−2t−2 = 0 for t ∈ [0, l + 1] \ [b, c]
is M ′ × A[b1, c1; jk] · · ·A[bp, cp; jk] by (6.7). Using (6.7) again, we see that the partial 
sum of ϕ(μk+l+2μ[l+1]V )k+l+2 ◦ xG

i (1; φ(Y)) corresponding to a1,jk−2t−3 = 2, a1,jk−2t−2 =
a1,jk−2t−4 = 1 (t ∈ [b1, c1 − 1] ∪ · · · ∪ [bp, cp − 1]) and a1,jk−2t−2 = 1 or 0 for 
t ∈ [0, l + 1] \ [b, c] and 0 ≤ a1,jk−2l−5 ≤ a1,jk−2l−4 ≤ 1 is
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M ′ ×A[b1, c1; jk] · · ·A[bp, cp; jk]
∏

t∈[0,l+1]\([b1,c1]∪···∪[bp,cp])

(1 + A−1
1,jk−2t−2)

× (1 + A−1
1,jk−2l−4 + A−1

1,jk−2l−4A
−1
1,jk−2l−5).

Similarly, for p ≥ 1 and (b, c) ∈ Rp
l+1 (b = {bi}pi=1, c = {ci}pi=1) such that cp =

l + 1, the monomial corresponding to a1,jk−2t−3 = 2, a1,jk−2t−2 = a1,jk−2t−4 = 1 for 
t ∈ [b1, c1 − 1] ∪ · · · ∪ [bp, l], a1,jk−2t−3 = 1 for t ∈ [1, l] \ ([b1, c1 − 1] ∪ · · · ∪ [bp, l − 1]), 
a1,jk−2l−3 = a1,jk−2l−4 = 1, a1,jk−2l−5 = 0 and a1,jk−2t−2 = 0 for t ∈ [0, l + 1] \
([b1, c1] ∪ · · · ∪ [bp, l + 1]) is M ′ × A[b1, c1; jk] · · ·A[bp, cp; jk]. We see that the partial 
sum of ϕ(μk+l+2μ[l+1]V )k+l+2 ◦ xG

i (1; φ(Y)) corresponding to a1,jk−2t−3 = 2, a1,jk−2t−2 =
a1,jk−2t−4 = 1 (t ∈ [b1, c1−1] ∪· · ·∪ [bp, l−1]) and a1,jk−2l−2 = a1,jk−2l−3 = a1,jk−2l−4 =
1 is M ′ × (1 + A−1

1,jk−2l−5) × A[b1, c1; jk] · · ·A[bp, cp; jk] 
∏

t∈[0,l+1]\([b1,c1]∪···∪[bp,l+1])(1 +
A−1

1,jk−2t−2). On the other hand, by (2.5) and (7.30),

(ΦH(a; Y))(
∑l+1

s=0 Λjk−2s+1+Λjk−2s−2) ×M ′

= a(
∑l+1

s=0 Λjk−2s+1+Λjk−2s−2)
l+1∏
s=0

Y1,jk−2s−2

l+1∏
s=0

Y2,jk−2s−1.

Hence, by (7.29), we have

(ϕG
(μk+l+2μ[l+1]V ))k+l+2 = a(

∑l+1
s=0 Λjk−2s+1+Λjk−2s−2)

l+1∏
s=0

Y1,jk−2s−2

l+1∏
s=0

Y2,jk−2s−1

×
∑

p≥0, (b,c)∈Rp
l+1

A[b1, c1; jk] · · ·A[bp, cp; jk](1 − δcp,l+1 + A
−1+δcp,l+1
1,jk−2l−4 (1 + A−1

1,jk−2l−5))

×
∏

t∈[0,l+1]\([b,c])
(1 + A−1

1,jk−2t−2),

which implies the claim (b) for l + 1. �
The proofs for Proposition 6.6 and 6.7 are similar to the one for Proposition 6.4.

Proof of Theorem 6.8. Let us set wi, wi(b, c) in our claim as

w1 :=
∏

q∈[0,l−1]

sjk−2q−2, w1(b, c) :=
∏

q∈[0,l−1]\[b,c]
sjk−2q−2,

w2 := sjk−2l−3sjk−2l−2
∏

q∈[0,l−1]

sjk−2q−2,

w2(b, c) := sjk−2l−3s
1−δcp,l

jk−2l−2

∏
sjk−2q−2,
q∈[0,l−1]\[b,c]
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w3 := sjk+2sjk+1
∏

q∈[1,l+1]

sjk−2q+1,

w3(b, c) := sjk+2s
1−δb1,0
jk+1

∏
q∈[1,l+1]\[b,c]

sjk−2q+1,

w4 := sjk+2sjk+1sjk−2l−4sjk−2l−3
∏

q∈[1,l+1]

sjk−2q+1,

w4(b, c) := sjk+2s
1−δb1,0
jk+1 sjk−2l−4s

1−δcp,l+2
jk−2l−3

∏
q∈[1,l+1]\[b,c]

sjk−2q+1,

w5 :=
∏

q∈[1,l+1]

s2q, w5(b, c) :=
∏

q∈[1,l+1]\[b,c]
s2q,

w6 := s2l+5s2l+4
∏

q∈[1,l+1]

s2q, w6(b, c) := s2l+5s
1−δcp,l+2
2l+4

∏
q∈[1,l+1]\[b,c]

s2q

and prove only (1) since (2) and (3) are proven in the same way as (1).
(a) For p ≥ 0 and (b, c) ∈ Rp

l−1 (b = {bi}pi=1, c = {ci}pi=1), let μ1 : B
((∑jk−1

s=jk−2l−1 Λs

)
−

α[b, c; jk]
)

→ Y be the monomial realization which maps the highest weight vector 

in B
((∑jk−1

s=jk−2l−1 Λs

)
− α[b, c; jk]

)
to the monomial H1[b, c] := H1 · A[b1, c1; jk] · · ·

A[bp, cp; jk], where Y is defined in 5.1. By Proposition 6.4, we need show that 
H1[b, c] 

∏
q∈[0,l−1]\[b,c](1 + A−1

1,jk−2q−2) coincides with

∑
b∈B

((∑jk−1
s=jk−2l−1 Λs

)
−α[b,c;jk]

)∏
q∈[0,l−1]\[b,c] sjk−2q−2

μ1(b). (7.31)

First, let us show that each factor in the monomial H1[b, c] has non-negative degree. 
For 1 ≤ i ≤ p, we can easily see that

A[bi, ci; jk] =
(

ci−1∏
s=bi

A−1
1,jk−2s−2A

−1
1,jk−2s−3

)
A−1

1,jk−2ci−2

=
(

ci−1∏
s=bi

Y1,jk−2s−1Y2,jk−2s−4

Y1,jk−2s−2Y2,jk−2s−3

)
Y1,jk−2ci−3Y1,jk−2ci−1

Y1,jk−2ci−2Y2,jk−2ci−2

=
∏ci+1

s=bi
Y1,jk−2s−1

∏ci−1
s=bi+1 Y2,jk−2s−2∏ci

s=bi
Y1,jk−2s−2

∏ci
s=bi+1 Y2,jk−2s−1

. (7.32)

Hence, each factor in the monomial H1[b, c] has non-negative degree. Since the mono-
mial A1,i has the weight αi (see (5.1), (5.3)), the monomial H1[b, c] has the weight (∑jk−1

s=jk−2l−1 Λs

)
− α[b, c; jk]. Furthermore, by (7.32), we can verify that for q ∈

[1, l − 1] \ [b, c], in the monomial H1[b, c], the factor Y1,jk−2q−2 has the degree 1, and 
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the factor Y2,jk−2q−2 does not appear. Thus, the definition of Kashiwara operators in 5.1
implies that

f̃jk−2q−2H1[b, c] = H1[b, c] ·A−1
1,jk−2q−2,

and f̃2
jk−2q−2H1[b, c] = 0. More generally, by the definition of the monomials A1,i (i ∈

[1, r]) in (5.3), for q1, · · · , qm ∈ [1, l − 1] \ [b, c] (m ∈ Z≥0), if q ∈ [1, l − 1] \ [b, c] and 
q �= q1, · · · , qm, then in the monomial H1[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2, the factor Y1,jk−2q−2

has the degree 1, and factors Y ±1
2,jk−2q−2 do not appear. Hence,

f̃jk−2q−2(H1[b, c]
m∏
s=1

A−1
1,jk−2qs−2) = (H1[b, c]

m∏
s=1

A−1
1,jk−2qs−2) ·A−1

1,jk−2q−2,

and f̃2
jk−2q−2(H1[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2) = 0.

Let idY be the identity map on the set Y. By the above argument, we obtain

H1[b, c]
∏

q∈[0,l−1]\[b,c]
(1 + A−1

1,jk−2q−2) =

⎛⎝ ∏
q∈[0,l−1]\[b,c]

(idY + f̃1,jk−2q−2)

⎞⎠H1[b, c],

and from Theorem 5.4, it coincides with (7.31). Now, the proof of Theorem 6.8 (1)(a) 
has been completed.

Finally, let us show (b). For p ≥ 0 and (b, c) ∈ Rp
l (b = {bi}pi=1, c = {ci}pi=1), let

μ2 : B

⎛⎝⎛⎝ jk−1∑
s=jk−2l−2

Λs

⎞⎠− α[b, c; jk]

⎞⎠ → Y

be the monomial realization which maps the highest weight vector to the monomial 
H2[b, c] := H2 ·A[b1, c1; jk] · · ·A[bp, cp; jk]. By Proposition 6.4, we need show that

H2[b, c] · (1 − δcp,l + A
−1+δcp,l

1,jk−2l−2(1 + A−1
1,jk−2l−3))

∏
q∈[0,l−1]\[b,c]

(1 + A−1
1,jk−2q−2) (7.33)

coincides with ∑
b∈B(b,c)

μ2(b), (7.34)

where B(b, c) = B
((∑jk−1

s=jk−2l−2 Λs

)
− α[b, c; jk]

)
sjk−2l−3s

1−δcp,l

jk−2l−2
∏

q∈[0,l−1]\[b,c] sjk−2q−2
. 

In the same way as (a), we see that each factor in the monomial H2[b, c] has non-negative 

power, and it has the weight 
(∑jk−1

s=jk−2l−2 Λs

)
− α[b, c; jk]. For q1, · · · , qm ∈ [0, l − 1] \

[b, c] (m ∈ Z≥0), if q ∈ [0, l − 1] \ [b, c] and q �= q1, · · · , qm, then in the monomial 
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H2[b, c] 
∏m

s=1 A
−1
1,jk−2qs−2, the factor Y1,jk−2q−2 has the degree 1, and factors Y ±1

2,jk−2q−2
do not appear. Hence,

f̃jk−2q−2(H2[b, c]
m∏
s=1

A−1
1,jk−2qs−2) = (H2[b, c]

m∏
s=1

A−1
1,jk−2qs−2) ·A−1

1,jk−2q−2,

and f̃2
jk−2q−2(H2[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2) = 0. Moreover, if cp < l, we have

f̃jk−2l−2(H2[b, c]
m∏
s=1

A−1
1,jk−2qs−2) = (H2[b, c]

m∏
s=1

A−1
1,jk−2qs−2) ·A−1

1,jk−2l−2 (7.35)

and f̃2
jk−2l−2(H2[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2) = 0. It follows from the explicit forms of H2[b, c]

and A−1
1,jk−2qs−2 that in the monomial (7.35), the factor Y1,jk−2l−3 has the degree 1, and 

factors Y ±1
2,jk−2l−3 do not appear. Hence, the definition of Kashiwara operators in 5.1

implies that

f̃jk−2l−3((H2[b, c]
m∏
s=1

A−1
1,jk−2qs−2)A

−1
1,jk−2l−2)

= ((H2[b, c]
m∏
s=1

A−1
1,jk−2qs−2)A

−1
1,jk−2l−2) ·A−1

1,jk−2l−3,

and f̃2
jk−2l−3((H2[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2)A

−1
1,jk−2l−2) = 0. Similarly, if cp = l, we ob-

tain f̃jk−2l−3(H2[b, c] 
∏m

s=1 A
−1
1,jk−2qs−2) = (H2[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2)A

−1
1,jk−2l−3, and 

f̃2
jk−2l−3(H2[b, c] 

∏m
s=1 A

−1
1,jk−2qs−2) = 0. By the above argument, the sum in (7.33) is 

the same as

((1 − δcp,l)idY + f̃
−1+δcp,l

jk−2l−2 (idY + f̃jk−2l−3))

⎛⎝ ∏
q∈[0,l−1]\[b,c]

(idY + f̃1,jk−2q−2)

⎞⎠H2[b, c],

and from Theorem 5.4, it coincides with (7.34). �
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