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Let G be a simply connected simple algebraic group over
C, B and B_ be its two opposite Borel subgroups. For two
elements u, v of the Weyl group W, it is known that the
coordinate ring C[G™"] of the double Bruhat cell G¥%v =
BuB N B_vB_ is isomorphic to a cluster algebra A(i)c [2,
12]. In the case u = e, v = c? (c is a Coxeter element), the
algebra C[Ge*c2} has only finitely many cluster variables. In
this article, for G = SL,+1(C), we obtain explicit forms of
all the cluster variables in C[G®<’] by considering its additive
categorification via preprojective algebras, and describe them
in terms of monomial realizations of Demazure crystals.
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1. Introduction

A cluster algebra is a commutative ring generated by so-called “cluster variables”,

which has been introduced in order to study certain combinatorial properties of dual

(semi) canonical bases by Fomin and Zelevinsky ([7]). Nowadays, it has influenced to

remarkably wide areas of mathematics and physics.
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In [2], Berenstein et al. constructed the upper cluster algebra structures on the coor-
dinate algebra C[G™"] of double Bruhat cell G*¥, where G is a simply-connected simple
algebraic group over C and u, v are elements of the associated Weyl group W. Recently,
Goodearl and Yakimov showed that C[G""] also has a cluster algebra structure ([12]). In
[9] Geiss et al. initiated categorification of cluster algebras by considering semi-canonical
bases.

Cluster algebras which have only finitely many cluster variables are called finite type.
In [8], cluster algebras of finite type are studied thoroughly, and are classified by the set
of Cartan matrices up to coefficients. For a fixed Cartan matrix, all the cluster variables
are parametrized by the set of “almost positive roots”, which is, a union of all positive
roots and negative simple roots corresponding to the Cartan matrix. Here, it is defined
that the type of such cluster algebra to be the type of the corresponding Cartan matrix.
Let ¢ € W be a Coxeter element whose length [(c) satisfies I(c?) = 2I(c) = 2rank(G).
It is known that one can realize a cluster algebra of finite type on the coordinate ring
C[GE*CQ}, whose type coincides with the Cartan-Killing type of G [2].

The theory of crystal base has been invented by Kashiwara, whose basic properties
admit several kinds of explicit descriptions. Each description provides interesting ap-
plications to combinatorics, mathematical physics, and representation theories of finite
groups, etc. [17]. A monomial realization is one of such descriptions of crystal bases, each
element of crystal base is described as a Laurent monomial in double-indexed variables
{Ysils € Z,i € {1,2,--- ,rank(G)}} [15,20], which has been motivated by g-characters
and then it matches to express the whole structure of crystals.

In [13,14], we showed that certain cluster variables of C[G™¢] (v € W) become Laurent
polynomials of {Y;;} with positive coeflicients by taking a specific transformation H X
(C*)Hw) — G®e (H is a maximal torus of G), and these polynomials coincide with the
total sums of monomial realizations of lower Demazure crystals in the case G is type A,
B, C or D. For a reduced expression of Weyl group element w = s;, ---s;, and crystal
base B(\) (A is a dominant weight), Demazure crystal B()),, and lower Demazure crystal
B~ (\)y are the following subset of B(\):

B(Nw = {fi) - firbalar, -+ an € Zzo} \ {0},
B™(Nw = {& - &by a1, san € Z0} \ {0},

where by (resp. by ) is the highest (resp. lowest) weight vector in B(\). Then we treated
only a part of the cluster variables so-called initial cluster variables. And we did not
reveal the meaning of the highest weights of crystal bases appearing in the initial cluster
variables. To see more universal relations between the cluster algebras and crystal bases,
we need to treat all the cluster variables in the coordinate rings.

From this point of view, in this article, we intended to consider the coordinate ring
C[G=<"] for G = SL,1(C) (r > 3) which has only finitely many cluster variables,
where ¢ is the Coxeter element such that a reduced word i of ¢? can be written as
i=(2,4,6,---,R,1,3,5,---,R,2,4,6,--- ,R,1,3,5,--- ,R') with (R,R’) = (r,r — 1) if
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r is even, (R,R') = (r — 1,r) if r is odd. The aim of the article is to reveal relation
between all the cluster variables in C [Ge,&} and crystal bases. One of our main results is
that each cluster variable in C[G*¢’] becomes the total sum of monomial realization of
Demagzure crystals by applying a coordinate transformation 7& : H x (C*)?" — G’
More precisely, the initial cluster variables coincide with the sums of monomials in the
Demazure crystals B(Ag)y, with some & € {1,2,---,r} and wy, € W (see Proposi-
tion 6.2), where Ay is the k-th fundamental weight (1 < k < r). The other cluster
variables are also obtained as the sums of monomials in the direct sum of Demazure
crystals in the form B(Zzza Ag)w ® B_; B(At)w, with some w,wy € W, p,a,b € Zsg
and \; € ZZ:aAs - Zie{1,2,~~,r} Z>ooay, where «; is the i-th simple root. As a
corollary of these results, we see that a natural correspondence —ay — B(Ag)w,,
Zl;:a as — B(Zgza Ag)w ® BY_; B(M)w, gives a parametrization of the cluster vari-
ables in C[G%<"] by the set of almost positive roots.

As an example, let us consider the case G = SL4(C) (type As algebraic group). For
the monomial realization of the crystal B(Ay) of type As, its crystal graph in terms of
monomials is as follows:

Y. 2 Yiavis 1 Yi3
17 Y2,2 Y2,1
3l l?’
Y11 Y22

Y23 1 YaaYas o Y32

(1.1)

On the other hand, taking the Coxeter element ¢ = s9s153 € W, specific initial cluster
variables in (C[Ge’c2] are given by minors Dy 2, D12 24 and Dias 124 (see Theorem 3.7),
where Dy 5. k} {i1,is, ,ir} denote the minor of matrices in SLy(C), whose rows are
labelled by {1,2,---,k}, columns are labelled by {i1,i2, -+ ,ix}. Using the biregularly
isomorphism & : H x (C*)6 — Ge<’ (i:=(2,1,3,2,1,3), 6 = I(c?)) in Proposition 2.4,
we have

_|__

_ Yi1Yi3  Yigs Yo Yia1
D G -Y) = Y, ) B -1,3 > >
1224075 (a;Y) = arap ( 1,2 + Yoo Yoi  YorYos  Yas)'

where we set a := diag(al,ag,ag,a4) € Hand Y := (Y172,Ylvl,Y1,3,Y2_’2,Y211,}/273) €
(C*)8. Comparing with the above crystal graph (1.1) of B(A3), we see that the set

Yi.Yis Yis Y Yiaq _ Ny . .
of terms {Yi o, 1},/12121‘3,7 Y;j’ Y2’12‘i/22’3, Y;;} in Dyg4 0 mlG coincides with the monomial
realization of the Demazure crystal B(As)s,s,s, (See 5.2). Similarly, we get

Y- Y5
Di207(a;Y) = a3 <Y1,1 + ﬁ) ., Diagi24 077 (a;Y) = ayazaz (Y1,3 + ﬁ) )
Yo Yo3

which coincide with the total sums of monomials in Demazure crystals B(A1)sys,s,,
B(A3)sys,s, Tespectively up to torus parts. All other cluster variables in C[G*] are
given as
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G _ 2
(D12,12D13,34) 0 Ty = afazazYs o,

Y11Y13Y21 n Y1,1Y2,1>
Y50 Yo 3

—a
D12 1407 = aqaz (Y1,2Y2,1 +

Y11Y13Y53 n Y1 3Yo 3

=G
Di223 07 = ajaz <Y1,2Y2,3 +
Yoo You

—a
) , DizoTy =a1Yss,

Di93134 0TC = aragasYay, Dia13 078 = ajas <Y1,2Y2,1Y2,3 + %) ,
2,2

which coincide with the total sums of monomials in Demazure crystals B(As)e, B(A1 +
A2)sssey B(A2 + A3)sysyy B(As)e, B(A1)e and B(A; + Ag + As)s, respectively up to
torus parts. These results imply the statement of Theorem 6.8 for » = 3. Thus, the
correspondence —a; — B(A;)sqs,50, @ — B(Ai)e (1=1,2,3), a1 +az — B(A1+A2)s,s,,
ag+ag — B(As+ A3)sy sy, and ag + as + a3z — B(A1 + As + A3)s, yields an alternative
parametrization of all cluster variables in (C[Ge’cz] by the set of almost positive roots.
Here, if one takes some specific cluster as an initial cluster, the parametrization in 8]
seems to coincide with ours, which will not be discussed in this article.

For the proof of main results, we use the additive categorification of the coordinate
ring C[L*“’] which has been invented by Geiss et al. [9]. Each cluster in C[L®<] is
associated with a cluster-tilting module of the preprojective algebra (see Sect. 4), and each
cluster variable is associated with a direct summand of the corresponding cluster-tilting
module. There exists a remarkable formula to calculate such cluster variables explicitly
(Proposition 4.13) [5,9]. With the help of this formula and the additive categorification,
we shall obtain the explicit forms of all cluster variables.

The article is organized as follows. In section 2, we recall properties of (reduced)
double Bruhat cells G*? and L*". In section 3, after a concise reminder on cluster al-
gebras, we review an isomorphism between the coordinate ring of a double Bruhat cell
G®? and a cluster algebra A(i). In section 4, we recall the cluster algebra structure of
C[L*"] and basic notions of preprojective algebras. We also review the additive categori-
fications of the cluster algebras C[L®"] following [5,9]. In section 5, we shortly review
the definition of monomial realizations of crystal bases. Section 6 is devoted to present
our main results, which provide a relation between all cluster variables in (C[Ge’cz] and
monomial realizations of Demazure crystals. In Section 7, we complete the proof of the
main theorems.

2. Factorization theorem

In this section, we shall introduce (reduced) double Bruhat cells G*, L*" and their
properties [4,6]. For | € Z~, we set [1,1] :={1,2,--- ,1}.
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2.1. Double Bruhat cells

Let G be a simple complex algebraic group of classical type, B and B_ be two opposite
Borel subgroups in G, N C B and N_ C B_ be their unipotent radicals, H := BN B_ a
maximal torus. We set g := Lie(G) with the triangular decomposition g = n_®hPSn. Let
ei, fi (i € [1,7]) be the generators of n, n_ and h; be the i-th simple coroot (i € [1,r]).
For i € [1,7] and t € C, we set

x;(t) := exp(te;), vi(t) := exp(tf;). (2.1)

Let W := (s;]i = 1,--- ,r) be the Weyl group of g, where {s;} are the simple reflections.
We identify the Weyl group W with Normg(H)/H. An element

5 = xi(—1)yi(Das(—1) (2.2)

is in Normg (H ), which is a representative of s; € W = Normg(H)/H [21]. For u € W,

let w = s;, - -+ s;, be its reduced expression. Then we write w =3;, ---5;,, call [(u) :=n

7

the length of u. We have two kinds of Bruhat decompositions of G as follows:
G= ][ BuB =[] B-uB-.
uceW ueW

Then, for u, v € W, we define the double Bruhat cell G*" as follows:
G"" := BuBN B_7B_.
We also define the reduced double Bruhat cell L*" as follows:
L*" := NuN N B_vB_ C G"".

Definition 2.1. Let v = s;, - - - s;, be a reduced expression of v € W (j,,---,71 € [1,7]).
Then the finite sequence i:= (jn,--- ,J1) is called a reduced word for v.

For example, the sequence (2,1,3,2,1,3) is a reduced word of the longest element
898183828153 of the Weyl group of type As. In this paper, we mainly treat (reduced)
double Bruhat cells of the form G*¥ := BN B_vB_, LY := NN B_vB_.

2.2. Factorization theorem

In this subsection, we shall introduce the isomorphisms between double Bruhat cell
G*? and H x (C*)"%) and between L®” and (C*)!("). For i € [1,7] and ¢t € C*, we set
o) (t) == thi | where if ¢ is written as t = exp(k) with some k € C, we set t"i := exp(kh;).

For areduced word i = (i1, -+ ,ip) (i1, ,in € [1,7]), we define a map z& : HxC"™ —

G as



154 Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149-206

xiG(a;tl,-~- Jtn) = a- i, (t1) -2y, (En). (2.3)

Theorem 2.2. [/,6] For v € W and its reduced word i, the map le is a biregular isomor-
phism from H x (C*)!V) to a Zariski open subset of G¥. The map (C*)!¥) — Lev,

(t1,++ ,tn) = ¥ (1;t1, -+ ,t,) is a biregular isomorphism to a Zariski open subset of
L&Y,
Fori= (i1, - ,in) (i1, - ,in € [1,7]), we define a map T : H x (C*)" — G*" as
T a5ty o tn) = azg, (0o, (0, (t2)ag) () - - 24, (tn)af, (t),

where a € H and (t1,--- ,t,) € (C*)™.
Now, let G = SL,4+1(C) and ¢ € W be a Coxeter element such that a reduced word i
of ¢ can be written as

. (2,4,6,---,r,1,3,5,--+ , 7 —1,2,4,6,---,7,1,3,5,--- ,r—1) if r is even,
i= (2.4)

(2,4,6,---,r—1,1,3,5,--- ,r,2,4,6,--- ,7 —1,1,3,5,--- ,r) if r is odd.

Remark 2.3. In the rest of the paper, we use double indexed variables Y, ; (s € Z, j €
[1,7]). If we see the variables Ys ¢, Y5 ; (r +1 < j) then we understand Y, o = Y; ; = 1.
For example, if [ =1 then Y, ;_; = 1.

Proposition 2.4. In the above setting, the map EIG is a biregular isomorphism between
2

H x (C*)?" and a Zariski open subset of G&¢ .

Proof. Let j; be the k-th index of i in (2.4) from the right, which means that i =
(Jor, =+ s Jr41sJrs 5 J2,J1). Note that ;1 = j; (1 < i < r). In this proof, we use the
notation

Y = (Yi 7Y1,j1’Y27j7v7"' 7YV2J27Y27J’1>7

sJr

for variables instead of (t1,--- ,ta.) € (C*)?".
We define a map ¢ : H x (C*)?" — H x (C*)?",

d(@Y) = (Pu(a;Y); @15, (Y), -, @15, (Y), @5, (Y), -+, 25, (Y), P25, (Y)),

where

ro 2
®p(a:;Y) =a- [T [T el (¥, (2.5)

i=1j=1

and for [ € {1,2,--- ,r},
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(V1Yo 1) (Yiap1Yeiq1)

if [ is even
Y, Y2 1 )
By (Y) = 1Yo (2.6)
’ (Yo,1-1)(Y2,141) e
%}gim lf l 1S Odd7
4(}/2’“;,)0/2’“1) if [ is even
By, (Y) := 21 ’ 2.7
2i(Y) 1 if 1 is odd. 27

Yau
Note that ¢ is a biregular isomorphism since we can construct the inverse map 1 :
H x (C*)?" — H x (C*)?,
P(a;Y) = (Va(a; Y); Wy, (Y), -+, Wy 5, (Y), Waj, (Y), -+, Wayj, (Y))

of ¢ as follows:

(Yi1-1Y1,Y1141Y2,-3Y2 oY 1 10Yo43) "1 if 1 is even,

\Iflyl(Y) = i .
(Yi,Ya oYo 1Yo 41Y0 40) 7t if 1 is odd,

(Yo 1Y, Yo 1)~ if 1 is even,

Uao i (Y) :=
24(¥) {Yl if 1 is odd,
2,1

-1

r 2
Uy(aY)=a- [ [T]] e (¥;i(Y))

i=1j=1

Then, the map v is the inverse map of ¢.
Let us prove

7 (@;Y) = (21 0 9)(a;Y),

which implies that & : H x (C*)?" — Ge is a biregular isomorphism by Theorem 2.2.
First, it is known that for 1 <4, j <rand s, t € C*,

(2t (s)  if i =j,

a (s)ai(t) = { mi(s~H)aY (s) if |i—jl =1, (2.8)
xi(t)e (s) otherwise.

On the other hand, it follows from the definition (2.3) of 2 and (2.5) that

(z7 0 ¢)(a;Y) =a- (H 11 Oéiv(Ys,i)) x @5, (P1,5,(Y)) - 25, (P15, (Y))

i=1s=1

X 2, (P2,5,(Y)) -+ 2y (P25, (Y)) 2, (2,5, (Y)).
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For each even [ (1 <1 <r), we can move

oY (Yi)ay (Yis) - o) s(Viros)oy s (Yiaoa) [ o (Vi) [ o (Ya.i)

=l i=1

to the right of x;(®1,(Y)) by using the relations (2.8):

af (Yi1)ay (Yiz) o s(Yi—3)ey 1 (Y11 (Ha (Y1) Ha (Ya,) )xz @1 ,(Y))

Y?IYZQZ . .
= oy (Y L Y(YViq) ) (Vi V(Y1 Y(Ys.
Il < 17l( )Y1’171Y2,171Y17[+1Y2’l+1 al( 1,1) al—l( 17l 1) Haz ( 171) gal ( 271)

=2 (Yi)ay (Yip)ay (Vi) - o) s(Yiaos)oy (Yiaoa) [ [ od (Vi) [ e (V2)-
1=l =1

Similarly, we can also move ay (Ya 1)y (Ya,3) -+ o’ (Yo -1) [Ti; @) (Y2;) to the right
of zl(¢27l(Y)):

af (Yan)ag (Yo3) - - a5 (Yau-3)oq (Yau-1 <H04 (Yo, >$l ®2,(Y))

= z(Ya)of (Yo )ay (Ya,3) - - o’ 3(Yau—s)eq’ (Y1) H ay (Ya,0)-
=1

For odd [, we obtain

o) (Y1) o(Yiaye) - af, (Yij,)a) (Yo )y (Ya2) - - o (Yoo )21 (®1,4(Y))
=z (Vi) (Vi) a(Yigga) - o, (Y1 5,)af (Yap)ag (Ya2) - - ) (Ya,),
o) (Yo, ) o(Yauy) - - af, (Yo i, )wi( @, (Y)) = 21(Yau) ) (Yo )o0'ho(Yauy2) - - o (Yo, ).

Thus, we get

(zf 0 p)(a;Y) = a-x;, (Y1, )y (Y1) x5 (Y15)a) (Y)
5, (Yo, )of (Ya,) - w5, (Yoo )ay, (Yo i) w5, (Yo 5,)af, (Yo ) = 7 (a;Y). O

3. Cluster algebras

Following [2,6,7,11], we review the definitions of cluster algebras and their generators
called cluster variables. It is known that any coordinate ring of double Bruhat cells
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possesses the cluster algebra structure, and some minors play roles of the cluster variables
[12]. We will clarify a relation between cluster variables on double Bruhat cells and crystal
bases in Sect. 6.
Weset [-1,—1] :={-1,-2,--- ,—l} forl € Z~q. Forn,m € Zsq,let x1, -, Zp, Tpyi1,
©, Tpt+m be commutative variables and F := C(z1,  * ,Tpn, Tnt1,  * ,Tntm) be the
field of rational functions.

3.1. Cluster algebras of geometric type

In this subsection, we recall the definitions of cluster algebras. Let B =
(bij)i<i<n+m, 1<j<n be an (n 4+ m) x n integer matrix. The principal part B of B is
obtained from B by deleting the last m rows. For B and k € [1,7], the new (n4m) x n

integer matrix juy(B) = (b};) is defined by

ij T

b/ L —bij ifi:/fOI‘j:k',
otherwise.

. [bik|brj+bik|brjl
bij + - 2

One calls g (B) the matriz mutation in direction k of B. If there exists a positive integer
diagonal matrix D such that DB is skew symmetric, we say B is skew symmetrizable.
Then we also say B is skew symmetrizable. It is easily verified that if B is skew sym-
metrizable then py(B) is also skew symmetrizable [11, Proposition 3.6]. We can also
verify that uk,uk(]?) = B.Ify:= (Y1,-  »YnsTnt1, - »Tnpm) is an algebraically inde-

pendent subset that generates F, we call the pair (y, B) seed. For 1 < k < n, a new
cluster variable y}, is defined by the following ezchange relation.

Ykys, = I v+ I vt (3.1)

1<i<n4+m, b;pz>0 1<i<n+m, b;r<0

Let py(x) be the set of variables obtained from y by replacing yx by y;,. Ones call the pair
(1 (y), ur(B)) the mutation in direction k of the seed (y, B) and denote by i ((y, B)).

Now, we can repeat this process of mutation and obtain a set of seeds inductively.
Hence, each seed consists of an (n 4+ m)-tuple of variables and a matrix. Ones call this
(n 4+ m)-tuple and matrix cluster and exzchange matriz respectively. Variables in cluster
is called cluster variables. In particular, the variables x, 41, -+, Tnim are called frozen

cluster variables.

Definition 3.1. [6,11] Let B be an integer matrix whose principal part is skew symmetriz-
able, X = (21, "+ ,Zn+m) and ¥ = (x, B) a seed. We set A = Z[z}},, -+ ,25t,,]. The
cluster algebra (of geometric type) A = A(X) over A associated with seed ¥ is defined
as the A-subalgebra of F generated by all cluster variables in all seeds which can be
obtained from X by sequences of mutations. Then X is called an initial seed of A.
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3.2. Cluster algebra A(i)

In the rest of this section, let G = SL,11(C) be the complex simple algebraic group
of type A, and g := Lie(G).

Let i = (jor, - ,j2,71) be the reduced word for ¢ € W defined in (2.4). Let us define
the cluster algebra A(i) associated with i. It satisfies that A(i) ® C is isomorphic to the
coordinate ring C[G%<’] of the double Bruhat cell [2]. Let |#] denote the integer part of
x.

Following [2], we define a quiver T'; as follows. The vertices of T'; are the variables xy,
(k € [-1,—r] U[1,2r]). The arrows are as follows:

T T_2 T3 - T—j, T—j1-1
x2r§L;\xl’/T;_J{§j>i :L $r$+1>+ﬁ]+l
. UJ\jT/;L\L;J X i_ | 5+ (3.2)

where if r is odd then j; = r and the vertices xz_;, 1, Ty |z]+1) Tz]+1 and arrows
adjacent to these vertices are removed. For k (1 < k < [ZE!]), vertices and arrows
around the vertex x; in the quiver I'; are described as

T—jr+2 xjk+1/x\tjk\xjk1
| xr+ik+%ﬁ\%+tgﬁ+kﬂ//rr+k /ET+L%J+k e
Tkt T\ 5 J+k+1 Z\Lk \ng (3.3)
For k ([“£] < k <), it is described as
cLrtk—| T L4k Lr+k—|% “BT-&-]{ 1
Lk—| 5] fik Le—|5]-1 $k71 (3.4)

Example 3.2. Let us consider the case G = SL5(C) and i = (2,4,1,3,2,4,1,3). The
quiver I'; is described as

REN
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Next, let us define a matrix B = B(i).

Definition 3.3. Let B(i) be an integer matrix with rows labelled by all the indices in
[-1,—r]U[1,2r] and columns labelled by all the indices in [r + 1, 2r]. For k € [-1, —r]U
[1,2r] and I € [r + 1,2r], an entry by of B(i) is determined as follows:

1 if xp — x;in Ty,
brr == ¢ —1 if T — Tk in Fi,
0 otherwise.

The principal part B(i) of B(i) is the submatrix (b; ;) je(rt1,2:- We also define s :=
(x, B(i))-

Proposition 3.4. [2] B(i) is skew symmetric.

In general, for a family of variables y = (yi)ic[—1,—rJup1,2r] and a (37) X r integer matrix
B = (lzl»,j)Z-e[,L,,ﬂ]u[l’gﬂ’je[rﬂﬁg,ﬂ] whose submatrix (b; ;)i jer+1,2r is skew symmetric, let
I'((y, B)) be a quiver whose vertices are y_,, -+ ,y—_1,Y1 - , Ya2r, and whose arrows are
determined as follows: For ¢ € [-1,—r] U [1,2r] and j € [r + 1,2r], there exist |b; ;]
arrows y; — y; (resp. y; — ;) if b;; > 0 (resp. b;; < 0). We can easily check that
I'((x,B(i))) = I';. When there exist b arrows y; — y;, we write y; LN Y; Or y; =% Ui
(b>0).

Lemma 3.5. [11] Let (y, B) be a seed, where y = (Yi)ie[-1,—rJup,2r] and B = (bij) is a

(3r) x r-skew symmetric matriz. For k € [r + 1,2r], the quiver I'((ur(y), pe(B))) has
vertices Y—r, -+ ,Y—1,Y1, s Yps - »Y2r and its arrows are determined as follows:

b b . b b .
(1) If yi — yx (resp. y — y;) in I((y,B)) then y,. — vy; (resp. yi — y;,) in

L((pr(y)s e (B)))-

(2) We suppose that there exist arrows y; N yr and Yy LA y; in T((y, B)) with b, ¥’ >0

and either i € [r+1,2r] orj € [r+1,2r]. If y; % yi in T((y, B)), then y; a—tl/ y

in D((ux(y), ik (B)))- i
(3) The rest of the arrows are the same as the one of T'((y, B)).

Definition 3.6. [2] By Definition 3.1 and Proposition 3.4, we can construct the cluster
algebra. We denote this cluster algebra by A(i).

3.8. Cluster algebras on double Bruhat cells

For a reduced expression v = sj, 55, ,---s5 of v € W, its reduced word i =
(Jns---,71) and k € [1,n], we set
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Usk = Usk(i) == 55,85, S5,y (3.5)

For k € [1,2r], we define A(k;i)(z) := D)2, gir(i1,4x) (), and for k € -1, —r],
A(k;i)(z) = Dy, kpp,e-2(1, k) (2)-

Finally, we set F(i) := {A(k;i)(x)|k € [-1, —r]U[L, 2r]}. It is known that the set F'(i)
is an algebraically independent generating set for the field of rational functions C (Ge’cz)
[6, Theorem 1.12]. Then, we have the following.

Theorem 3.7. [2,9,12] The isomorphism of fields ¢ : F — (C(G""CQ) defined by o(xy) =
A(k;i) (k € [-1,—r] U [1,2r]) restricts to an isomorphism of algebras A(i) ® C —
c[Gee].

For k € [1,r], the correspondence of the initial cluster variables under the isomorphism
in Theorem 3.7 are as follows:

Tje = Dingidie20150) = Dt issy sip-sin, Lin] = PlLgalisy sia 55,4 L]

= Dz, 11D
Trtk D[l’jk:]ac2>7v,k+1[17jk] = D[ij],é’jl Sjo " Sipgp_1 1k
= D[l,jk],8j15j2---8]‘k [ij] = D[l,jk],c2>2r_k[l,jk]7

Tk = D ez, Uikl = Plgadisi sinesigy Loie] = DLl [La]-
3.4. Finite type

Let S be the set of all seeds of a cluster algebra A. If S is finite, then A is said to be
of finite type. In this subsection, we shall review cluster algebras of finite type [8].

Let B = (b;;) be an integer square matrix. The Cartan counter part of B is a gener-
alized Cartan matrix A = A(B) = (a;,;) defined as follows:

2 if i =,
a; ; =
Y gl it #

Theorem 3.8. [8] The cluster algebra A is of finite type if and only if there exists a seed

Y = (y, B) such that A = A(X) and the Cartan counter part A(B) is a Cartan matriz
of finite type, where B is the principal part of B.

By this theorem, we can define the type of each cluster algebra of finite type mirroring
the Cartan-Killing classification.
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Let @ be the root system associated with a Cartan matrix, with the set of simple
roots IT = {o;| ¢ € [1,7]} and the set of positive roots ®~o. The set of almost positive
roots ®>_1 is defined by ®>_; := &5 U —IL

Theorem 3.9. /8]

(i) For a cluster algebra A of finite type, the number of the cluster variables in A is
equal to |®>_1|, where ® is the root system associated with the Cartan matriz of the
same type as A.

(it) Let ¢ € W be a Cozeter element of G whose length l(c) satisfies 1(c*) = 2I(c) =
2rank(G). Then the coordinate ring C|G=<| has a structure of cluster algebra of
finite type under the isomorphism in Theorem 3.7, and its type is the Cartan-Killing
type of G.

4. Additive categorifications of cluster algebras

We fix an element v € W and set n := [(v). In this section, we set G = SL,41(C) and
review the additive categorifications of the coordinate rings C[L%"] according to [1,5,9].

4.1. Preprojective algebras and category C,
Let @ = (Qo, @1, s,t) be a Dynkin quiver of type A and

A=CQ/©)

the associated preprojective algebra. Here @Q is the double quiver of Q:

CQ is its path algebra, and (€) is the ideal generated by

C= Z (a*a — aa™),

a€Q1

where if a € Q; is the arrow from i to j then a* is the arrow in @ from j to i Let
11, = I be the indecomposable injective A-modules which have the simple socle iso-
morphlc to Sy, -+, .S, respectively, where S; is the 1-dimensional simple A-module which
corresponds to the vertex ¢ in (). The module IAJ is described as follows:
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r—j+1

T—17J r—j+2

Vi

NN
e o

In (4.1), each vertex k (1 < k < r) means a basis of fj, and each arrow k — k+1
(resp. k — k — 1) means the action of the edge k — k + 1 (resp. k — k — 1) € A on the
basis k. The vertex e;, € A acts on each basis £’ as

B AT
€. =
0 ifk#k.

For example, the vertex e; € A acts on the basis j located at the bottom of (4.1)
identically, and all other paths act trivially. Thus, 1-dimensional submodule generated
by this basis j is isomorphic to the simple module S;.

Let mod(A) be the category of finite dimensional A-modules. Note that though in
[9] the category nil(A) is treated, we consider the category mod(A) instead of nil(A)
since mod(A) = nil(A) holds in our setting. For j € Qo and A-module X in mod(A), let
soc;(X) be the sum of all submodules U of X with U = §;. For a sequence (i1, --- , i)
(i1,19,--- ,it € Qp), there exists a unique chain

0=XoCX;jC--- Xy CX

of submodules such that X,/X, 1 = soc;, (X/X,_1) (p = 1,2,---,t). We define
SOC(i, e i) (X) 1= X¢.
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Let v € W and i = (jp, -+ ,J1) be its reduced word. Without loss of generality, we
may assume that for each j € [1,7], there exist some k € [1,n] such that j; = j. The
A-modules Vi, = Vi, (k=1,2,--- ,n) € mod(A) are defined as

~

Vk = Vi,k = SOC(jk’,,, ,j1)(Ij )

Let V; := @} _, Vi and C; be the full subcategory of mod(A) whose objects are factor
modules of direct sums of finitely many copies of V;. For j € [1,7], let m; := max{l <
m < n|jm =7} and Lij := Vim,. We also set [; := I;; @ -- @ Ij . The category C; and I;
depend on only v, and do not depend on the choice of reduced word i. Thus, we define

Cv = Ci, Iv = Ii.

A A-module C in C, is called C,-projective (resp. C,-injective) if Ext} (C, X) = 0 (resp.
Ext)(X,C) = 0) for all X € C,. If C is C,-projective and C,-injective, C' is said to be
C,-projective-injective.

Theorem 4.1. [3,9] The category C, has r indecomposable C,-projective-injective modules,
which are the indecomposable direct summands of I,,.

Proposition 4.2. Let i be the sequence in (2.4), ji be the k-th index of i from the right,
that is, = (Jar, -+ s Jrg1sJrs -+ 5 J1). Then Vi, = Vig (1 < k < 2r) is given as follows:

1
Vi=S,, if1<k<|'

IE (4.2)
Jk —1\' /jk+1

e r+1

Ve — Jk , Hr+1<k<|——]+r,  (44)
Jk—3 Jr—1 Jr+1 Jrk+3
\Jk—< \Jk< \jk"‘/
et et
Vi = i . if L%JJrrJrlgngr. (4.5)

In this case, we have [.2 =L =V, 1 B - D Va,..

Proof. For k with 1 < k < [ZF], to calculate Vi = soc(j, j, ... 7j1)(fjk)7 we consider
the chain

0=XoC X, CXoC---CXpClj,
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such that X; = SOCJk( ]k) S]k’ X2/X1 = S0Cj; 1( Jk/Xl) XS/XQ = S0Cj;,_o (fjk/XQ)v

-, Xi/Xp_1 = socj, (I, /Xk—1). By (4.1), the module I, /S;, has simple submodules
isomorphic to Sj,—1 and 9, 41. Since fjk /Sj, has no simple submodules isomorphic to
S S Sjl,wehaveXl=X2:~-~:Xkandthen

Jk—15 PJk—20 """ >
Vi=Xi =5
Next, for |42 | +1 < k < r, we consider the chain

0=XoC X, CXoC---CXyCIj,

such that X; = soc;, ( ]k) S, X2/X1 = socj,_, (I;,/X1),---. In the same way as in
(4.2), we get X1 = Xo = —ij =5;,. And XLEJ‘H/XL%J :SOCjk,L%J(Ijk/Xng):
Sjx—1- So the module X, is described as
Je—1
\,
Jk
Similarly, we obtain Xz o/X|r 11 = socjka%kl(IAjk/XLgJH) = Sj.+1. In the same
way as in (4.2), we have Vi = Xy = Xj}—1 = -+ = X|r ;5. Thus, the module Vj is
described as
Je—1 Jr+1

N

Next, forr+1<k<L

L| +r, we consider the chain
0=XoCX1CXaC---CXyClIj

such that X, = socj, (I;,) = Sj,, Xo/X1 = socj,_,(I;,/X1),---. Note that j; = jii,
(1 <1 < r). In the same way as in (4.2), we get X1 = Xo = -+ = X1 = S
And X\ v /X vpy = SOCjk—L%JJrl(Ijk/XL%J*l) = Sj,—1, where we set S; := 0 for
Jj < 0. We also get XLTT“HI/XL%J =S0Cj, a1 (Ijk/XL%J) = S, 41, and

Xty = Xpzp o = = X
We also obtain X,./X,._1 = SOCjkir+1(IAjk/XT_1) =52, Xrt1/Xr = S, Xogo/ X1 =
Sj4+2 and X, 9 = X, 43 = --- = Xj. Therefore, the module X =V}, is described as
Jk—2 Jk ik + 2

SN .
Je—1 Jp+1
\/

Jk
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Finally, for LT'QHJ +7r+1<k<2r, we can verify that the module V} is described as:

jk* Jr—1 Jre+1 Jr+3

St e e
N

Jk* Jk+

Jk
by the same argument as in (4.2), (4.3) and (4.4). O

Remark 4.3. When we see the quiver

N < BN
/ \
/
or its subquiver, if j = 1, 2 or 3, we understand it means
e AN NN
v / N, a \ a N, /!

2

e \/ \/

1

respectively. Similarly, if j =r, r — 1 or r — 2, we understand it means

r—3 r—

4
4 L

r— r—5 T
§ pv e
S §

4.2. Mutation

For a A-module T in mod(A), let add(T") denote the subcategory of mod(A) whose
objects are all A-modules which are isomorphic to finite direct sums of direct summands
of T.

Definition 4.4. [1,5,9]

(i) A A-module T is rigid if Ext} (T,T) = 0.
(ii) For a rigid module T in C,, we say T is a C,-cluster-tilting module if Ext} (T, X) = 0
with X € C, implies X € add(T).
(iii) A A-module T is said to be basic, if it is decomposed to a direct sum of pairwise
non-isomorphic indecomposable modules.
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(iv) Let T, X and Y € mod(A). A morphism f € Homp (X,Y) (resp. f € Homa (Y, X))
is said to be a left (resp. right) add(T)-approzimation of X if Y € add(T') and for
an arbitrary Y’ € add(T') and f' € Homy (X,Y”) (resp. f' € Homy (Y’, X)), there
exists g € Homy (Y,Y”) (resp. g € Homy (Y, Y)) and f/ = go f (resp. f' = fog).

(v) For V, W € mod(A), a morphism f € Homy (V, W) is said to be left (resp. right)
minimal if every endomorphism g € End (W) (resp. g € End(V)) such that
go f=f (resp. fog= f)is an isomorphism.

Proposition 4.5. [5,9,10] Let T =Ty @To®- - -®T,, be a basic C,-cluster-tilting object. We
suppose that the {T;}i=1,2,... n are indecomposable summands of T and Tp_yi1,--- , T,
are the C,-projective-injective modules. Then for k € {1,2,--- ,n — r}, there is a short
exact sequence

0T 5T 517 -0 (4.6)
such that
(¢) f is a left minimal left add(T /Ty )-approximation,
(it) g is a right minimal right add(T/Ty)-approzimation,
(i) Tk is an indecomposable A-module,
) T
)

() Ty ¢ add(T),
(v T/Tk @ Ty is a basic C,-cluster-tilting object.

Definition 4.6. [5,9] In the setting of the previous proposition, the mutation pr, (T") of T'
in direction T}, is defined as

i (T) i= T/Ty & T, (4.7)

We call the short exact sequence (4.6) in Proposition 4.5 the ezchange sequence associated
to the direct summand T}, of T'.

For a basic module T =T, & --- & T, in C,, let I'7 be the quiver of End (T")°P, that
is, Endp (T)°P = CI'p/(R) with an admissible ideal (R) [1]. Setting
Homy (T3, T;) if i # J,

Rad(T;,T;) =
(T T5) {{nilpotent elements of Enda(T3)} if i =7,

we have the following:

Lemma 4.7. [1,5] The quiver 't has n wvertices indexed by {1,2,--- . n}, and for 1 <
1,7 < n, the number of arrows j — i is equal to the dimension of the space

Rad(T}, T})
S Rad(Ty, T;) o Rad(T;, Tp,)
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Definition 4.8. Let T = T} @ --- & T,, be a basic module in C,. For i,j € [1,n] and a
non-zero homomorphism f € Homy (T3, 7)), it is said that f is factorizable in the direct
summands of T if it belongs to Y_;_; Rad(T},T;) o Rad(T;, Tk).

Let B(I'r) = (b;,;) denote n x (n — r)-matrix defined by
b; ; = (number of arrows j — ¢ in I'r) — (number of arrows ¢ — j in I'r).

For i = (jn, - ,j1) € Q, we define a quiver I as follows: For k € [1,7n], we use the
notation

k7 i=max{0,1 < s <k—1lis = iy},
Et i=min{k +1<s<n,n+1lis =i}

The vertices of Tj are 1,2, --- ,n. For two vertices k,l € [1,n] with [ < k, there exists
an arrow k — [ (resp. [ — k) if and only if [ = k= (resp. k <1t < k™ and a;, ;, <0).

Theorem 4.9. [3,9,10] Let n = 1(v) and i = (jn, - ,j1) be a reduced word of v.

(i) The module V; defined in J.1 is a basic C,-cluster-tilting object and Ty, = T;.
(it) Let T=T1 & To & --- T, be a basic C,-cluster-tilting object. For 1 <k <mn—r,
we have B(F”Tk (T)) = ,uk(B(FT))
(#it) For a basic C,-cluster-tilting object T =Ty @To® -+ - ® T, and 1 <k <n —r, the
exchange sequence associated to the direct summand Ty of T is

0—T, — @ T, — T — 0.

i—k in I'p

Example 4.10. Let i be the reduced word in (2.4). By Theorem 4.9 (i), for 1 < k < [ =41 ],
the quiver I'y; is described as

r+k4+l—r+ 5] +k+1 r+k r+ |z +k
ket 1l——5] +k+1 k [5]+k (48)

Proposition 4.11. In the setting of Proposition 4.2, let
0—=Vi—=Vi= V=0

be the exchange sequence associated to the direct summand Vi, of Vi (1 <k <r). Then
the indecomposable module V;© is given as follows:
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Fork with1 <k < , the modules V,© and V w1y OTE given as
k J

VAV

- ’ (4.9)
respectively.
(2) For k with [“t] +1 < k <r, the module V} is given as
S p R e
Jk 2\\\ /k\ Jg+2
Je—1 Jk+1 (4.10)

Proof. (1) For 1 < k < |™H], recall that Vj, = Sj,. In {Vi| 1 < i < 2r, i # k}, the
module V;..; has the simple socle isomorphic to S, and the others do not so since their
simple socles are S; (I # ji) by (4.3), (4.4), (4.5). The module V,1 is described as
Je—2 Jk Jk+2
Je—1 Jr+1
e

and bottom jj means a basis generating the simple socle isomorphic to S;, ((4.1), (4.4)).
Hence, there exists an injective homomorphism Vj, — V.4, and its image is the simple
socle. By the above argument, we have Homy (Vi, V,4) = C and Rad(Vy, Vi) = {0} for
t #r+ k. We get Vi = V44 by Lemma 4.7 and Theorem 4.9 (iii), which yields that V;*
(1<k<|™])and V7 [rp1) are described as

VAV

respectively.

(2) Next, for |
is described as (4.
the basis ji — 1, ji and ji + 1 lower one in (4.5). Let ¢;, —1, ¢j, and ¢;, 41 denote these

%J + 1 < k < r, the module V}, is given as (4.3). The module V,
5) and it has the submodule isomorphic to Vi, which is generated by

three bases. Thus, there exists an injective homomorphism Vi, — V, . Since Vj has
the simple quotients isomorphic to S;, —1, Sj,+1, there exist surjective homomorphisms
Vi — Vk—L%J = Sj,—1 and V, — Vk—LgJ—l = S +1 (note that jk—\_%l = jr — 1 and
Jk—1z)-1=Jk+ 1). The modules Vitk—|z) and Vidk—1z]-1 have the simple submodules
isomorphic to S;, 1 and Sj, 41 respectively. However, homomorphisms V;, — Vitk—z]
and Vi, — Vi.q |z -1 are factorizable in the direct summands of V; since they are equal



Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149-206 169

to the composite maps V, — Vk—LgJ — Vr+k—L§J and Vi — Vk—[gj—l — Vr+k—[§j—1
respectively. Moreover, we see that Rad(Vy, Vi) =0 for t Zr+k, k— 5], k—[5] -1
since V; does not have submodule isomorphic to Vi, Sj,—1 and S}, 1. From this, the
homomorphisms Vi — Viyp, Vi — Vi—|z) and Vi, — Vi—|z)-1 are not factorizable in
the direct summands of V;. Therefore, the exchange sequence associated to the direct
summand Vj, of V; is

0=V = Vign ®S;,-1® 55,41 =V, =0

by Lemma 4.7 and Theorem 4.9 (iii). The image of the homomorphism V; — V, 4 &
Sj—1 @ Sj.+1 is 3-dimensional and it can be explicitly written as C(cj,—1 + dj,—1) ®
C(cj,) @ C(cjp+1 + €j,+1) with some non-zero elements dj, _1 € Sj,—1, €j,+1 € Sj.+1-
By the above argument, the module V;* = (Vi @ Sj,—1 @ Sj,4+1)/(C(cj—1 @ dj,—1 @
ejp+1) ® Clej, ®dj—1 B ejt1) ®C(cj41 D dj—1 B ej41)) is described as follows:

N
P

-1

+ Jk+3

-3
N
Jk — +2

l\')
. .
e x>
- /H

)

x>

AW

+ O

Proposition 4.12. The modules (,U,VT[LVL r+1JVi)r and (IU/Vk/—ng—lu'Vk“/i)k_l_%J_l (=] +
2
2 <k <) are described as

]/+1 Jy+3

/ \ / J/ }k Jr+2

N i

’ Jk—

:/w

respectively. Note that jL%J =1.
4.3. Cluster algebra structure of C[L"]

For a A-module X and a sequence k = (k1,--- ,ks) (k € [1,7]), let Fi x denote the
projective variety of composition series of X:

O:XOCX1CX2C"'CXS:X7

such that each subfactor X;/X;_1 is isomorphic to the simple A-module S, (1 <t < s).
Recall that we set x;(t) := exp(te;) in (2.1).

Proposition 4.13. [5,9] For each A-module X in mod( ), there exists a unique function
wx € C[N] such that for any sequence i = (i1, ,ix) (1 < ik <),



170 Y. Kanakubo, T. Nakashima / Journal of Algebra 538 (2019) 149-206

(A Al
ox (@i, (t1)@iy (t2) - - 24, () = > Xe(Fin, x ) =",
a1! te ak!
3:(LL1,“~ 7ak)e(ZZU)k
where x. is the Euler characteristic, and for a= (a1,as, - ,ak),
i? = (ila"' ai17i27"' 77:27"' 7i/€7"' 7/Lk)
—_— —— ——
ai asz aj
Note that we can write z;, (t1)z;, (t2) -+ i, (tr) = 2 (1;t1,- -+ ,tx), where 1 is the
identity element of H and z{ is defined in (2.3).
For a A-module X in mod(A) and i = (iy,--- ,ix), a = (a1,az, -+ ,ax) € (Z>0)*, let

Fi,a,x be the projective variety of partial composition series of X
0=XoCcXjCXoC---CXp=X

such that each subfactor X;/X; 1 is isomorphic to SZt for all 1 <t < k. Then we have
Xe(Fin x) = Xe(Fia,x)arlas! - - - a! [9]. Therefore, in the setting of Proposition 4.13,

ox (@i, (t1) @iy (t2) - -~ @iy (t)) = > Xe(Fiax )ty -tk (4.11)

a=(a1,,ar)E(ZL>o)*

Example 4.14. In the setting of Proposition 4.2 and 4.11, let us calculate py, (1 <k <7r)
and (,O(lukvi)k (1 S k S 7"). We set Y := (Y17j7‘7 s 7}/1,]'1’}/2,]}’ ce ,}/27]'2,)/2,3‘1).

For i in (2.4), let us consider the variety of flags Fia v, . Let ji be the k-th index of i
from the right. We write a € (Z>()*" as follows:

a= (a1, 015, Q15,02 5025, 02,5, )-

By Proposition 4.2, for 1 < k < [T'ZHJ, since Vi = Sj,, if Fiay, # ¢ then i* = (ji),
which implies a1 ;, = 1 and other a1 j, as ; are equal to 0, or as j, = 1 and other a1 ;,as ;
are equal to 0. In this case, Fia v, is a point (= (0 C Sj, = Vi)). Thus, Proposition 4.13
means that

ov, (2 (1Y) = Y15, + Yo,

Next, for [“H1] 4+ 1 < k < r, the module Vj, is described as (4.3). If Fia y;, # ¢ then
i = (jp,Jr — 1,Jr + 1) or i* = (j, jr + 1, jx — 1), which implies

a1, = Q15,—1 = 01 j,+1 =1, or ayj, =ai -1 =az;+1 =1,
Or aij, =a2j,—1 = a2j5+41 =1, or asj; =az; 1 =az;+ =1,

Or a1j, =141 = A2,j5,—1 = 1,

and the all others are equal to 0. Thus, by Proposition 4.13,
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ov (27 (1Y) = Y15, Y11 Y141 + Y15, Y151 Y2541 + Y15, Y25, -1 Y2 51
+Y2,5, Y2 g —1Y2 g1 + Y15, Y2 5 -1 Y1 1 (4.12)

Similarly, it follows from (4.9) that for 1 < k < L%lj,
Go(q. _
Py (@ (1Y) = Vajo 1Yo g1 Yeju2Va i Ve jotas (4.13)
()

where (%) is condition for a,b,c,dand e:1<a<e¢<2,1<b<d<2,1<a<d<2
and 1 <b<e<2. And

@(HL%JV)L%J(%GO%Y)): D YaoYis (4.14)

1<a<b<2

For Lrglj +1 <k <r, it follows from (4.10) that

= Y15, -1Y1j,+1Y2,5,—2Y2, 5, Y2 5,422 5, —3Y2 j,—1Y2 i, 11 Y2 543 (4.15)

For two basic C,-cluster-tilting modules R, R’, we denote R ~ R’ if R is obtained
from R’ by a sequence of mutations (4.7).

For v € W, let L(C,) := L(Cy, Vi) be the subalgebra of C[N] generated by
{OR, PRys PR, |R1 ® Ry ® --- @ R, € Ob(C,) ~ Vi}. Let L(C,) be the algebra
obtained from L(C,) by formally inverting the elements ¢p for all C,-projective-injective
module P. That is, L(C,) is the localization of the ring L(C,) with respect to pp. It
follows by Theorem 4.9 that L(C,) has a cluster algebra structure.

Theorem 4.15. [9] For v € W, the coordinate ring C[L®"] has a cluster algebra structure.
For each reduced word i = (jn,--- ,j1) of v, the pair ((¢v;,., - ,vv,), B(I'v;)) provides
an nitial seed of the cluster algebra. Moreover, the restriction to LSV gives a natural
isomorphism of cluster algebras

L(C,) = C[L*].

Furthermore, using the notation as in (3.5), we have @y, , = D Lew.

1L,jk),v>n—x[1,4k]

5. Monomial realizations and Demazure crystals

In Sect. 6, we shall describe cluster variables in a cluster algebra of finite type in terms
of the monomial realizations of Demazure crystals. Let us recall the notion of crystal
base and its monomial realization in this section. Let g be a complex simple Lie algebra
with an index set I = {1,2,---,r}, a Cartan matrix A = (a; ), and the weight lattice
P. We take e;, f;, h; as in Sect. 2.1.
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5.1. Monomial realizations of crystals
In this subsection, we shall review the monomial realizations of crystals [15,17,20].

Definition 5.1. [16,18] A crystal associated with a Cartan matrix A is a set B together
with the maps wt : B — P, &, fi : BU{0} - BU{0} and ¢;, ¢; : B — Z U {—0c0},
i € I, satisfying some properties ((7.1)-(7.5) in [18]).

We call &; and f; (i € I) the Kashiwara operators. Let U, (g) be the quantum enveloping
algebra [16] associated with the Cartan matrix A with an indeterminate ¢. Let V()
(A € Pt = ®;c1Z>0A;) be the finite dimensional irreducible representation of Uy(g)
which has the highest weight vector vy, and B(A) be the crystal base of V/(\). The
crystal base B(A) has a crystal structure.

Let us introduce the monomial realization [15,20] which realizes each element of
B(\) as a certain Laurent monomial. First, fix a cyclic sequence of the indices
co (1,09, 0y ) (1,49, ,4p) - -+ such that {i1,49,---,4,} = I. And we can associate
this sequence with a family of integers p = (p;,i); icr, j#i such that

1 if a<b,
Dig iy =
! 0 if a>b.

Second, for the doubly-indexed variables {Y,;|i € I, s € Z}, we define the set of
monomials

y=qv= ]I ¥

SEZL, i€l

Csi € Z, (s, =0 except for finitely many (s, 1)

Finally, we define maps wt : V — P, &, ¢; : Y — Z, i € I as follows. For Y =
I Yscz’ €Y, set

SEZL, €]
wt(YV) :=> Coili, @i(Y) :=max <> Guils€Zp, (YY) = pi(Y) = wt(Y)(hy).
1,8 k<s
(5.1)

We set

Asi =Y Yoq1, HYsﬁ;j.i,j (5.2)
JFi

and define the Kashiwara operators as follows
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—1 . 1
fy— Anfi,iY it ;(Y)>0, Y = An, Y i &(Y) >0,
0 if (V) =0, 0 it &(Y)=0,
where
ng =min< n|p;(Y) = Z Chyi Ne, :=max ¢ n | ¢;(Y) = Z Qi
k<n k<n

Then the following theorem holds:

Theorem 5.2. [15,20]

(i) For the set p = (pj,;) as above, (Y, wt, @;, €5, fi,€i)ier is a crystal. When we empha-
size p, we write Y as Y(p).

(i) If @ monomial Y € Y(p) satisfies €;,(Y) = 0 for all i € I, then the connected
component in the sense of crystal graph containing Y is isomorphic to B(wt(Y')).

5.2. Demazure crystals

The crystal B(\) (A € PT) has the unique element u) which satisfies wt(uy) = A and
e;uy = 0 for all ¢ € I. We call uy the highest weight vector of B(X). For w € W, the
Demazure crystal B(\),, C B(A) is inductively defined as follows.

Definition 5.3. Let uy be the highest weight vector of B(X). For the identity element e
of W, we set B(\)e := {uy}. For w e W, if s,w < w,

BNw :={ffb | k>0, b€ B(\)s,uw, é&b=0}\{0}.

Theorem 5.4. [19] For w € W, let w = s;, - -+ 8;, be an arbitrary reduced expression. Let
uy be the highest weight vector of B(\). Then

B = {727 Jiuala(1), -+ a(n) € Zo} \ {0},
Lemma 5.5. Let us consider the case of type A, and the cyclic sequence is

(2,4,---,r,1,3,5,--- ,r—1) if r is even,
(2,4,---,r—1,1,3,5,--- ,r) if r is odd.

In this case, (5.2) is written

Yy Yo, e
#Yf‘“ if 7 is even,
Al,i = ; ’ (53)

Yy Yo, o
Vo Ya i if ¢ is odd.
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In general, if each factor of a monomial Y € Y has non-negative degree, then ;(Y) =0
for all i € I. In particular, we have €;(Y1,;) = 0 for j € I. Thus, we can consider
the monomial realization of crystal base B(A;) with the highest weight vector Y j. The
following is its partial crystal graph:

fit1
Y1 Yl;A ; V1A A g
fjfl fjfl
— 1 54— —1
Vg A AT VA A AT
J

6. Cluster variables and crystals

In the rest of the article, we set G = SL,1(C) (r > 3) and only treat the Coxeter
element ¢ € W such that a reduced word i of ¢? can be written as (2.4). Let jj be
the k-th index of i from the right, and we consider the monomial realization associated
with the sequence (j,- - ,Jj2,71) (Sect. 5.1). Thus, the setting below is the same as in
Lemma 5.5. For a,b € Z>q with a < b, we set [a,b] := {a,a+ 1,---,b}. In this section,
we describe the cluster variables on the double Bruhat cell G&¢* as the total sum of
monomial realizations of Demazure crystals.

Let V ::2 ((QOV)%’ ) (QOV)Tnle (QPV)M Tty (@V)lv (@V)*Tv ) (@V)*l)» where
(pv)r € C[G*] are defined as follows:

(@V)k = {D[l’jk]’cizrk[l’jk] it 1 <k<2r,
D 1,1, ] if —r<k<-—1.

By Theorem 3.7 and Theorem 3.9, we can regard (C[Ge’cz] as a cluster algebra of finite
type and V as its initial cluster. Moreover, (¢vy)ar, -, (©v)r+1 and (py)—p, - -, (y) -1
are frozen. From Theorem 4.15, for k € [1, 2r],

(V)| pe.c2 = Qv (6.1)

Thus, we can rewrite (3.3) as

(<PV)r+k+1 (¢v) 5 Hy [Hk‘\wv)TILEHk

oV )1 SOV L k41 (pv \¢V)L§J+k

(V) —ji+2 (PV)—jr+1 (©V)—ji (ov)—jp-1 (6.2)
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Comparing with (4.8), we see that the matrix B(T'y;) is a submatrix of —B(i), which
is obtained by deleting rows labelled by (pv)_,,---,(¢y)_1 (note that - sign of —B(i)
is needed to match the setting of [2] and [9]). Note also that there are some differences
between the quiver T'y; in (4.8) and the quiver obtained from I'; by deleting the bottom
row, that is, the arrows between the frozen cluster variables such as r + [§| + &k + 1,
r+k,r+ 5] +kin (4.8).

In the rest of the paper, for simplicity, we will drop frozen variables from a clus-
ter in C[G“], e.g, V = ((¢v)r, -+, (pv)1). We will order the cluster variables
(¢v)1,- -+, (pv), from the right in V as above, and let pj denote the mutation of the
k-th cluster variable from the right. For a cluster T in C[G®<], let (o)) denote the
k-th (non-frozen) cluster variable from the right:

T := ((¢T)r, - 5 (T)1)-

Each cluster variable is a regular function on Ge’cz, and by Proposition 2.4, it can be
seen as a function on H x (C*)?". Then, let us consider the following change of variables:

Definition 6.1. Along with (2.4), we set the variables Y € (C*)?" as

Yi2, Y14, Y1, Y10,Y18, - Yie—1, Y0, Yo, , Yo, Yo, 1)
T is even,

Y2, Y14, Y1, Y10, Y13, Y, Yoo, o0 Yo 1, Yo 1, Ya,)
r is odd.

Y =

(6.3)
Then for a € H and cluster T in C[G**’], we define

)@ Y) := (p1)k 0T (a;Y), (1<k<r),

G

where Z;" is as in 2.2.

Due to the property of minors, fora € H,z € G,w e W,i,j € I and t € C, we get
D[l,i],w[l,i] (GUC) = aAiD[l,i],w[l,i] (33)7 D[l,i],[l,i] (xﬂfg(t)) = D[l,i},[l,z’] (w)v (6'4)

where z;(t) € N is the one in (2.1) and if @ = T" (T € C*, h € Lie(H)), then
abi = hi(h),

Proposition 6.2. (1) For k (1 <k < [ZHL]),

(05 n(a; Y) = a™e Yy, (1+ AL,

and for k (|"51] + 1<k <7),
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(wgv’)k(a;Y?—a Jle]k(l—’_Aljk +A13kA j 1+A1]kA1}k+1+A1]kA1g1k 141 jk""l)

1.jk—

For each k (1 < k <), there exists a monomial realization 1 of the crystal base B(A;,)
such that (§)e(a: ¥) = 0% Cyepin,,),  nb)-
(2) Fork (1 <k < |™£L)), putting J := ji, = 2| "] =2k + 1,

(¢gth)) (a. Y) — A1t As (Yl J—2Y1 Y1, J+2(1 + Al_lJ 2)(1 + A1_1J+2)
+Yi 1Yo Y1 0 (1+ A1 J-1t A1 J-141 b+ A1 g1 HAL J+1Ai}l+2))7
(QD(GLLTT_HJV))LL;]J (a;Y) = a™Y15Ya1(1+ ATs+ A1,%A1,3)~

There exist monomial realizations of u and p' of B(Aj_1+A;+ A1) ®BAj_o+ A+
Ajy2) and B(A1 + Ag) such that

(@wyk(a; ¥) = a™ =t N7 ),

beB;
(@(CiLLﬁJV))L%J(a;Y) =a™ Z ' (b),
2 bEB(A1+A2) 5550

where By = B(AJ 1+ AJ + AJ+1)3J—2$J—1SJ+23J+1 S5 B(AJ—2 =+ AJ + AJ+2)$J—23J+2'
For LTHJ < k <r, we have (¢ (Ci“cv))k(a; Y) = ClAj’"’14'[X"’€Jr15/2,]',c = gfer—2k1thar—okis i
Y or—okt2. The set {Ysa j, } is a monomial realization of the Demazure crystal B(A;,)e =
B(Agr—2k12)e-

Proof. In the above setting,
(§)r(a;Y) = (pv)r o af 0 ¢(a;Y),
where ¢ : H x (C*)2 — H x (C*)?",
P(a;Y) = (Pr(a;Y); 1,5, (Y), -+ @15, (Y), @ (Y), o, o, (Y), D5, (Y))

is the map in the proof of Proposition 2.4. Since (pv)i is the minor Dy j,
(Theorem 3.7), we have

2o [1,7k]

(pv)i ozt (a;Y) = ar (oy)r 0 7' (1Y), (6.5)

where Y := (Y15, - Yl,]T+1,1/-2jT, ---,Y5;,) and 1 is the identity element of H. By
(6.1), we obtain (v )k o2 (1;Y) = ¢y, oxf(1;Y). In Example 4.14, we have calculated

PV, © (1 Y)
If 1 < k < [ZH], jk is odd. By the fact v, o 2{(1;Y) = Y1, + Y2 ,, (2.5), (2.6)
and (2.7), we get
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(G )k(a;Y) = (@ (a; X)) 25 (@1, (4, Y) + o j, (a5 Y))

= aAJ'k (YLJ’;CYQJIC) <E§€7Ji§z7j:+l + Yél,]k) =a Jle jk(l + Al ]k)
where A; ; is given in (5.3). By Theorem 5.4 and Lemma 5.5, the set of monomi-
als {Y1j,, Y15, A ;k} coincides with the monomial realization of Demazure crystal
B (AM) , where the monomial corresponding to the highest weight vector is Y7 j, .

For LTHJ +1 <k <, ji is even. In this case, we have calculated ¢y, o z{(1;Y) in
(4.12). Thus, using (2.5), (2.6) and (2.7), one has

(5)e(a;Y) = a™e (Y15, Ya j,)

o[ Y2in—2Y242 Yi+1Y2,5,—2 _’_Y]-Jk 1Y1,5,41
YijpYoj-1Yo i1 Y1525, Y2 5,1 Yi

1]k}/2 Jk

+

1 n Yi-1Y25,+2
Yoo Y15.Y2,5, Y2541

A, Yije-1Yin | YiYe -2 | Yi-1Y2 42
=a 'k Yij + + +
Y2 5, Y2 -1 Y2 i1
E,jkzyz,jkyz,jﬁz)

+
Yo, —1Y2,5,+1

A _ — _ _
=a®rY;,(1+ AL e HAL gkA1 1 AL JkA1 Gl T AL gkA1 em14n ,]k+1)

Yijpe-1Y1i 41 Y1, +1Y2,5, -2
Y2 5, ’ Y2 -1 ’

By Theorem 5.4 and Lemma 5.5, the set of monomials {Y7 j, ,

Yij,—1Y2 42 Yo, —2Y2,5, Y25, 42
Y2 jp+1 ’

Vo Ve } coincides with the monomial realization of Demazure

Ik — Ik

crystal B(Aj,)s;, 1s;, 155, » Where the corresponding highest weight vector is Y1 j,.
Next, let us consider the mutation in direction k of V by calculating (wakv))k(a; Y)

(1<k<r).If1<k<[™] by (4.8) and (6.2),

(P(uev))k 0 2 (a:Y)

_ <(«pv)r+k(¢v)—jk+1(wv)—jk—1 + (sov)—jk(W)Lgﬁk(@v)tgﬁkﬂ) o 28(a:Y)
(ov)k
_ aAfk—laj:J:kaAﬂ'k“ _ <90Vr+k + <'0VL5J+k<pVL5J+k+1> 0 26(1;Y)
a Ik PVi
— aAjkflaAijrl . (@(ukv)k) o x?(l,Y), (66)

where we use (6.4). From (4.13), for 1 < k < [=H] we get

(©Gvyn(a:Y) = (p(uv))e 0 i 0 6(a; Y)

_ Aj -1 i1
=y 7w (I)H TR E :¢b17jk—1(I)b27jk+1q)ba7jk—2(bb4vjk(bbEvvjk'"rQ’
(%)
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where (%) is the condition for by,be,bs,by and b5 : 1 < by < b3 < 2,1 < by < by <2
1 <b <bg <2and 1 < by < by < 2. We can easily verify that if by = 2, then
1§b1§b3§2and1§b2§b5§2.Ifb4:1,thenb1:bgzlandlgbg, b5§2By
(2.6) and (2.7), we see that

dy ;= A;;éz,j (6.7)

for j € [1,7]. Thus,

E ¢b17jk—1(I)bz;jk"t‘l(I)bS,jk—2¢b4ajk(bb57jk+2 =
(%), ba=2

2,5, -1P2,j,+1P2 5, —2P2 Jk¢27]k+2(1 + Al Jr—1 + Al Jk— 1Ai;k—2)
X (L4 AT+ A1 AT jre)

12% -1 -
]fQ,jkflva,jk 1( 1 ] r—1 1 jk 1“1, 5 — 2)( 1 j r+1 1 ijrl ,jk+2) ’

E q)bhjk—l(bbz;jk‘f‘l(I)bS,jk—2(bb47jk(bb57jk+2
(%), ba=1

=@y, 1P1 5, 11Pa 2P, oy 2(1+ AT, )1+ A7), 40)

Yi—2Y1,5, Y1 52

= 1+ A7 1+A
Yl,jk—1Y2,jk—1Y1jk+1Y2,jk+1( L2 Liet2)-

By the above argument, we get

(¢ (CL,CV)) (;Y)=a Nkt “‘H(Yl Jk— 2Y1,JkY1,Jk+2(1+A1 Gk— )1+ A7 ]k+2)
+Y Jk— IYZ,JkYI ]k"l‘l(l +A1 Je—1 +A1,jk 1A1 ;k 2)( +A1 WJe+1 +A1 Jk+1A jk+2))

By the definition of Kashiwara operators in 5.1, we see that Y7 ;, oY1 ;, Y1 ji42(1 +
A1_gk 5)(1+ A1g +2) are the total sum of p(B(Aj,—2 + Aj, + Ajut2)s;, s, 1), and
Yi5,—1Y2 JkYLJkH(l"‘Al k— 1+A1 Ge— 1471, }k o) (1+A] jk+1+A ,]k+1Ai}k+2) is the total
sum of M( (A]k—l + AJk + A]Ic+1)53k7253k715]k+253k+1) Note that A]k—2 + Ajk + A.jk+2 =
(Aj—1 + NG, + Aj1) — 1 — o — Qg1

Arguing similarly, we obtain

(PG vn )1z (@ Y) = @2Y12Yo1 (14 A + A[ A7),
2

The polynomial Y7 55 1 (1 +Ai§ +AI§AI§) is the total sum of the monomial realization
of the Demazure crystal ' (B(A1 + Ag)sys,)-
Similarly, for [Z£! | < k < r, it follows from (3.4) and (4.15) that

G A, A
(Phuv) k(@ Y) = @pnt @y ikt 5 By g @y 5, 11 P 2P, P jito

) . ) . — A1 A .
X®g 5, —3P2 5, —1P2 5, +1 P2, +3 = a AR Yy
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The monomial Y j, is the monomial realization of the Demazure crystal B(Aj, )e. O

We obtain the following Proposition 6.3 by Proposition 4.12 and the same argument
in the above example.

Proposition 6.3. We have the cluster variable
A
((p(cir#L%JV))T(a; Y) =a™Ya,,

and the set {Ys1} is a monomial realization of the Demazure crystal B(Ay).. For | 5]+
2 <k <r, we obtain

G .
(@(Nk—tgj—lﬂkv))k_tgj —1(a;Y)

_ Asr—opr1+Aor_ok -1 -1 -1
= @ AR TR Y o okt 3Y1 202k a (L + AL o opia AL o opia AT orokrs)s
-1
and the set {Y22,_2k4+3Y1 20 —2k+4, Y2,2r—2k+3Y1,2r—2k+4A1,2,«_2k+4a Yo or—okq3 X
-1 1 L. . . . .

Y1727«_2k+4A1’2T72,€+4A1’2T72,€+5} coincides with the monomial realization of the De-
mazure crystal B(Aor—okt3 + Aor—2k44)s0r_onissor_apiar Where Yo op_op3Y1 or_opqq is
the corresponding highest weight vector in B(Agr—ok+3 + Aor—opt4).

In the following Proposition 6.4, 6.6 and 6.7, we shall give the explicit expressions of all
the other cluster variables in (C[GS’CQ]. We use the notation as in (2.5), (2.6), (2.7) and
(5.3), and set ¢(Y) = (®1;(Y), -+, 1, (Y), P2, (Y), -+, P2, (Y)). We abbreviate
Dy (a;Y) to ®y. For the integers b, ¢ (b < ¢) and z, we set

e—1 -1 T—2b—2
Alb, ¢y z] = (H A1,z252A1,m253) AL o= ] Anl

s=b s=x—2c—2

For p € Zso and b = (b;)7_; € (Z>0)?, ¢ = (¢;)!_, € (Z>p)P such that b; < ¢
(1 <4< p), we also set

T—2b1—2 x—2b,—2
alb,c;z] = g o+ -+ g oy,
t=x—2c1—2 t=x—2c,—2

where when s < 0, we understand A4; s = 1, a; = 0. For [ € Z>(, we define

R} :={(b,c) € (Z>0)" x (Z>0)| b= (bi)i—;, ¢ = (ci)i—,

0§b1<01<-~‘<bp<cp§l}.

For (b,c) € R}, we define [b,c] := [b1,c1] U+ U [by, ¢p).
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Proposition 6.4. For k € [|[“] + 1,7 — 1] and | € [0,r — k — 1], let p[l] be the following
iteration of mutations

P[] = (k= 5 it faett) -+ (b= 5 1 k2 k1) (b — | 5 | o1 Hk ) -

(a) We have the cluster variable

(‘P(Ci[] ))k—[lHl(a'Y)
s+1)+(C 2 —2s—
<I>(Z R 2)<P(H[z]V)k7L%MoxiG(l;cﬁ(Y))

= aTE A HEb Az gy [T (4 AT gy
q€[0,1-1]

DD HAb“C“Jk [T a+a )

p>0 (b,c)eRP_ q€[0,l-1]\[b,c]

(b) We also obtain the cluster variable

(908%+z,+m[z]v))k+z+1(a; Y)

S0 (Mg —2st 1A, —25—2) G(1.
= (I)H Ok ke P41V ) ri41 © Ti (17¢(Y))
1

=a é:o(Ajk—2s+1+Ajk,2572)H2

- - -1
x (1+A1]k 21— 2+A1,;k—2l 2A 1,5k —21— 3) H (1+A1,jk—2q—2>
g€[0,1—1]

+Z Z cp,l"‘Algk 20— 2(14“41”c 20— 3))

p>0 (b, c)ERp

p

X HA[bhci;jk] H (L+ A7), 202) |-

=1 q€[07l—1]\[b7c]

where

-1 ! !
Hy = (H Yl,jk—2t—2> (H Y2,jk—2t—1> , Hy:= <H Yl,jk—2t—2Y2,jk—2t—1> .
=0 =0 =0

Example 6.5. If » = 10, k = 6 and [ = 2, then p[2] = psuopsiiapsiir il firpie, jo = 10 and
Hy =Y55Y16Y27Y18Y29 in the notation of Proposition 6.4. Note that

}ﬁ:{KQD}ﬁp—L

10) otherwise.
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It follows from Proposition 6.4 (a) that

(£avy)a(a; Y) = e thethethethethoy, v, 6Yo7Y18Ya0(14+ A)(1+ Arg)
fahatAsthetArthsthoy) V) oY 7Y 8Ya.0A[0, 1510
= gfsthethotArthatloy, V1 6Yo7Y18Vo0(1 + AT + ALg + AT gATS)

pahothsthatArtsthoy, [y, Y, 1Y gYay. (6.8)
In the same setting, let us calculate (@&9#[2]V))9(a; Y). Note that
R = {{<0,1>,<0,2>,<1,2>} ifp=1,
10} otherwise,
and Hy = Y1 4Y25Y1 6Y2,7Y1 8Y2 9. Thus, by Proposition 6.4 (b),

A4+A6+A7+A8+A9) (QD(CLQM[Q]V))Q(GI; Y)

=Y14Y2,5Y1,6Y2,7V1,8Y2,0(1 + A78) (1 + A7) (1 + A7) + AT 4ATS)

a~¢

+Y1.4Ya25Y1,6Y27V1,8Y2,0A0,1;10](1 + A7) + AT ATS)
+Y1,4Y2,5Y1,6Y2,7Y1,8Y2,04[0,2;10](1 + A 3)
+Y1,4Y25Y1,6Y2,7V1,8Y2,0A[1,2;10](1 + AT3)

= Y1,4Y2,5Y1,6Y2,7Y18Ya,0(1+ Apg + A g + AT gATS) (1 + ATL + AT 1AL ;)
+Y1,4Y15Y25Y1 7Y1,0Y20(1 4+ Ai}l + Ai};Af,:la)
+Y13Y15Y26Y1,7Y1,0Y20(1 + Afilz,) (6.9)
+Y13Y15Y1 7Y2 7Y 8Yoo(1 + Afé)

Proposition 6.6. For k € [1, [ | —2] and | € [0, [Z5L ] — k —2], let pi/[I] be the following
iteration of mutations

1] = (et 5 gkt 2 5 ) rhein) - (M2 5 )4kt 31 5 ] +h42)

X (k41 5 ) +h+20] 5 +h+1) k-

(a) If jix < r, we have the cluster variable

G . W VR .
(Qp(u’[l]V))kJrlJrl(av Y) = LLZLD jp—2s—2F gy —2 +1H3

XU+ A 1 A A ) [T O+ AT, agh)
q€[1,1+1]
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146,
+Z Z (1= b0+ Ay 1" (L4 AT o))

p>0 (b,c)ER],

P

X HA[bi,ci;ijr?)] H (1+A1]k 20+1) | »
i=1 q€[LI+1]\([b,c])

and if jp = r, we have

41 _
(0w kriri(a; Y) = ades=o Arozem2throzest g H (14 A7; _2g41)
q€[1,l+1]

+Z Z HA[b“Cl,T‘F?)] H (1+A1r 2q+1)

p>0 (b,c)€RP, | ,by>0i=1 a€[1,1+1]\([b,c])
(b) If jx < r, we also obtain the cluster variable

G . Zl7 Aj, 25— 2+Za 2s+1
<(‘0(HL§J+1«+1+2H’[1]V)>LgJHﬁLHQ(a’ Y) =a " o Ak Hy

X H (1+A1 Jk— 2q+1)<1+A1 Je—2l— 3+A1 Je—2l— 3‘41_];C 20— 4)
q€[1,1+1]

_ _ _ — 146y, .
X(l + Al’;k+1 + A17;k+1A17;k+2) + Z Z (1 - 6b1,0 + Al,jkﬁilyo( + Al Jk+2))

p>0 (b,c)eR}, ,

X(1 = 6c, 142 + A1 e— ;7 lgz(l + Ai}k,21,4))

P

< [[Abiciige+31 [ Q+AL a0 |
i=1 g€ LI\ (b))

and if j = r, we have

G . Y T Ao oY R Ao
(Pl on i V)51 rhtt2(a: Y) = a Hy

x [ (14 Al_,i—Ql—S + Aii—zl 3A1_7‘ 91—4) H 1+ Al_,:*—2q+1)
q€(1,141]

+Z Z ﬁA[bi,Ci;T—Fg]

p>0(b,c)ER}, 5, b1>01=1

=146, _ —
X (1 - 5cp,l+2 + A17r_21—;,+2(1 + A1,71n—2l—4)) H (1 + Al,rl'—2q+1) ’

q€[1,1+1]\([b,c])
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I4+1 142 I+1
where Hy := ( 0 Yl’jk—2t+1y2,jk—2t>7 Hy:= ( Pl Yl,jrztﬂ) (HtJ:rO Y2,jk—2t) =
Hs x Y1 j,—21—3. If jr =7, then we understand Y1 j, 11 =1 and Aj, 41 = 0.

Proposition 6.7. For [ € [0, 5] — 2], let p"[l] be the following iteration of mutations
PO = () et pe—t) - (e a2t 1) (B 2 ) g e 1 )

(a) We have the cluster variable

+1 1 —
(PGmvy) 251 | —i-1(a; Y) = @m0 Meetotiiomo Raeta . p IT a+4s)
q€[1,l41]

-+ Z Z H A[—Ci, —bi; 2] H (1 + Ai%q)

p>0 (b,c)€RY, ;b1 >0i=1 q€[L,i+1]\[b,c]

(b) We also obtain the cluster variable

G . L2h Az VL A
(G —awriipw)r—i-1(a3 ¥) = a2emo Raro Tz Rz

x| (1+ Al_él-r4 + A1_,§1+4A2_115)) H (1+ Al_,%q)
g€[1,l+1]

—1+46.,, _
+ Z Z (1= Geirz + A ors” (L4 Ay 5))
p>0 (b,c)ERY, 5.b1>0

P

X HA[—Ci,—bi;ﬂ H (1+A1_éq) )

i=1 g€[LI+1]\[bc]

! I+1 I+1
where Hy := (tho Y1,2t+2> (tho Y2,2t+1), Hg := (tho Y1,2t+2Y2,2t+1> = Hjs x
Yi2t44.

Furthermore, if r is odd, then we get the cluster variable

2

G .
((p(m##u”[r_l 72]V))1(a7 Y)

r—3 r—1
r—5 r—3 2 P]
= gXsZ0 AzetstEolo Azsta H Y 2142 H Y 0141 H (1+ Al_éq)
t=0 t=0 a€[1, 751
p
+> > [TAFe, —bs20 [ (+475) ],
Pp>0(b,c)eR_;, b1>0%=1 q€[1,752\[b,c]

2

where we set ' [—1] := po when r = 3.
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The following theorem is the main result, which describes all the cluster variables in
(C[Ge’cz] in terms of the monomials in Demazure crystals. We use the notation as in
Proposition 6.4, 6.6 and 6.7.

Theorem 6.8. There exist certain Demazure crystals such that each cluster variable in
C[Ge*cz} is the total sum of their monomial realizations. More precisely, it is given by
Proposition 6.2, 6.3 and the following:

1) Letke[|™L |+ 1,7 =1, 1€[0,r —k—1] and J := j, = 2r — 2k + 2.
2
(a) The cluster variable (‘p(CL[Z]V))k*L%Hl(a; Y) is the total sum of monomials in

2r—2k+1 2r—2k+1
B ( > AS> e P B (( > AS> —ab,c; J]) .
w p>0 w1 (b,c)

s=2r—2k+1-2I 1 s=2r—2k+1-21

(b,c)eRY_;

(b) The cluster variable (SD(CI;JkJrlJrlH[l]V))kJ'_l—"_l(a; Y) is the total sum of monomials in

2r—2k+1 2r—2k+1
B < > AS> o PB (( > AS> —afb,¢; J]) .
w >0 w2 (b,c)

s=2r—2k—21 5 s=2r—2k—2I]

(b,c)ER?
(2) Letke[1,[=2] 2], 10, ] —k—2] and J :=ji, =2[r + 1/2] — 2k + 1.

(a) The cluster variable (wﬁb,[lw))kJrHl(a; Y) is the total sum of monomials in

2| 7EL | —2k+2 2| =t | —2k+2

B > Al @ P - > Ay

s=2| 4t | —2k—21—1 ws >0 s=2| "t |—2k—21—1

(b,c)ERY,,
if j=r=b>0
- a[ba C; J + 3] )

wg(b,c)
(b) (LP(C;L%HHHQM[I]V))L§J+k+l+2(a; Y) is the total sum of monomials in

2| 2 | —2k+2 2| F | —2k+2

B § A, ® EB B § j A
—_o|rtl | _9pn_o7_ —9o|rtl | _9L_9]_
s=2| TtL | —2k—21—2 s =0 s=2|THL | —2k—21—2

(b,c)€Rf+2
if jp=r=b1>0

—alb,c; J + 3]

wy(b,c)
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(3) Letle[0,]5] —2].
(a) The cluster variable (‘Pﬁ”[zw>>vg—1wfl<“? Y) is the total sum of monomials in

2043 2143

B (Z AS> s @ ((Z AS> _a[_c,_b;2]> |

s=1 ws s=1 w5(b,c)
p>0

(b,c)ERf_H,ln >0

(b) The variable (QD(CLT_Z_W,,UW))T,l,l(a; Y) is the total sum of monomials in

204+-4 204+-4
B(Z AS> 5 @ B((Z AS> _a[_c,_b;2]> |
s=1 we s=1 weg(b,c)
p>0

(b,c)ERT, 5,b1>0

If r is odd, then (

(2,

The explicit forms of the Weyl group elements in the above formula will be given in the

G . . . .
w(ulu#u”[%l—ﬂw)l(a’ Y) is the total sum of monomials in

o P B((;AS>—a[—c,—b;Q]>H

p>0 a€l1, T3\ [b,e] 524

(b,c)eRY _, ,b1>0
2

1.8
a1, "53] 729

next section.

We obtain the following corollary from Proposition 6.2, Proposition 6.3 and Theo-
rem 6.8. Let Z be the set of the non-frozen cluster variables in (C[Ge’CQ].

Corollary 6.9. (1) Each initial cluster variable @y, in C[G"] is the total sum of mono-
mials in the Demazure crystal B(Aj,)z2, . where we use the notation as in (3.5).

(2) For b, b/ € T with b <V, there uniquely exists a non-initial cluster variable b, b']
which is given as the total sum of monomials in

v p
BO) A)w @ P BN,
j=b

i=1
with some p € Z>o, w,w; € W and \; € Pt such that (Z?;b Aj> -\ € D, Z>o0y.
Thus, the map ®>_1 — =2 defined by
b/
—aj, oV, Zaj — b, V']

Jj=b

is a bijection between the almost positive roots ®>_1 and =.
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Proof. Let us show (2) since the case (1) is immediate from Proposition 6.2 (1). We
consider the following 6 cases.

(i-1) We suppose that ' and b are odd, and 3 < b < b < r. In this case, putting
ko= 2= and 1= Y22 it follows "2 |+ 1<k <r—1land0<[<r—k—1. Using
Theorem 6.8 (1)(a), we obtam @b, V] = (Pupv)) k- 1| +1-

(i-2) In the case b and r are odd, and 3 < b < r — 2, putting k:= 1 and [ := T_é#, we
obtain 0 < I < ZH — 3 and j; = r. It follows from Theorem 6.8 (2)(a) that ¢[b, 7] =
(v Ji+2-

(ii-1) We suppose that b’ is odd and b is even, and 2 < b < b’ < r. In this case, putting
k::%_Tbl'|r1 and [ := b/_%, it follows L%lJJrlgkgrflandOglgrfkfl.
Hence, we get o[b, '] = (0(up14100V))k+1+1 by Theorem 6.8 (1)(b).

(ii-2) In the case r is odd, b is even and 2 < b < r — 3, putting k := 1 and [ :=

r=0=3 we obtain 0 < I < ZEL — 3 and j; = r. So Theorem 6.8 (2)(b) says ¢[b,]

(Pl pram V) L5 4143

(iii) We suppose that b’ is even and b is odd, and 6 < ¥ < r; 3 < b < ¥ — 3. In this
setting, putting k := L%J +1 - %/ and [ := b/_2b_3, we have 1 < k < L%J — 2 and
0 <1 <[] — k — 2. Therefore, we can verify ¢[b,b'] = (Y v))k+i+1 by using
Theorem 6.8 (2)(a).

(iv) We suppose that & and b are even, and 6 < b < r, 2 < b < b — 4. We set
k= L%J+lf%andl:: b/_%. Then k and [ satisfy 1 < k < |[ZH] — 2 and
0 <1< [“] —k— 2 Thus, the conclusion ¢[b,b] = (@(”L§J+k+l+2/" V)5 | +htit2
follows from Theorem 6.8 (2)(b).

(v) Let b’ be an odd number (3 < b’ < r). Setting [ := —3 , we see that 0 <1 < |5 —2.
Using Theorem 6.8 (3)(a), we have ¢[1,d'] = ((IO(M//[l]V))L7+1J 1—1- Similarly, in the case b’

is an even number (4 < ¥ < r), putting [ := , we get o[1,0'] = (@(u,_ 1w v))r—1—-1-

)1-

(vi) The remaining cluster variables are @[b' — 2,0'] (V' is even, 4 < b <r), o[t/ — 1,V],
e[t V] (b is even, 2 < b < r) and ¢[1,1], and if r is odd, ¢[r — 1,7] and ¢[r, r].

Putting k := | =] +1— %, we have 1 < k < [Z£!|. By Proposition 6.2 (2), it follows

[ = 2,b'] = (@4 v))k- In the case r is odd, we have ¢[r — 1,7] = (¢(,,v))1. Similarly,

”.+17%V))7~+1_%’ and (»0[17 2] = (@(#L%JV))LT;AJ .

In particular, if r is odd, then Theorem 6.8 (3) implies ¢[1,7] =

(‘P(,uut rs w5 —

we have o[V, 0] = (¢

From Proposition 6.3, setting K := r + 2 — %/ for 4 < b, we obtain [t/ — 1,¥] =
(w(#K—L%j—lﬂKV))Kflgjfl' In the case r is odd then we have @[r,r] = (w(#lung))y
2

The same proposition means ¢[1,1] = (QO(HTIJ«LTJAJV))T' O
2

Example 6.10. We consider the same setting as in Example 6.5. Let p (resp. p') de-
note the monomial realization of crystal B(As + Ag + A7 + Ag + Ag) (resp. B(2A5 +
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A7 + 2Ag)) such that the highest weight vector is realized as Y2 57 6Y2,7Y1,8Y29 (resp.
Y15Y25Y1,7Y1,0Y29). It follows from Theorem 5.2, 5.4 and (6.8) that

(‘P(CL[Q]V))S(@? Y)

— gMsTAsHAc+AT+As+Ag § : (b)) + E : M/(b)
b€B(A5+AG+A7+Ag+A9)5658 beB(2A5+A7+2A9).

Similarly, using (6.9),

aq—NathetAr+As+Ao) (SD(CLW[Q]V))Q(@; Y)

= > p(b) + > 1! (b)

bEB(Aa+As+Ae+A7+As+A0) 55545658 bEB(As+2A54+A7+2M0) 555,

+ Z ,u”(b) + Z M/H(b)a

beB(As+As+Ag +A7+2Ag)53 beB(As+As+2A7+Ag +A9)53

where p, i, /" and p”’ are the monomial realizations such that the highest weight vectors
are realized by Y1 4Y25Y16Y27Y18Y29, Y1,4Y15Y25Y1 7Y19Y2 9, Y13Y15Y26Y17Y10Y20
and Y173Y175Y177}/277Y1,8}/279, respectively.

Example 6.11. Let G = SL5(C) and ¢ = s2545183. The all cluster variables in C[Ge*c2]
are

IN

(ks (Gv)e 1<k <4), (96, vt (P06 mv))

(SD(CL[OW))L (SO(CLW[OW)M’ (‘P(C;;”[O]V))lv (waguf'[o]V))37

where p[0] = pypaps, p”[0] = pipspaps, and these are described as the total sums of
monomials in the following Demazure crystals up to torus parts and parametrized by
the almost positive roots as follows:

(¥§)x B(Aj)ez, —a,
(4‘05&1‘1))1 B(A2 + As + A4)5152S4 D B(Al + A3)51 Qg + a3 + oy
(‘pG A% )2 B(Al + A2)3332 o1 + oo
(#2V)
(05 ,v))3 B(A4)e Qy
(‘Pa4v))4 B(A2)e 0%
(<‘0€L1M4V))1 B(A?) + A4)s4 asg + oy
(‘P(Ciwzv)h B(Ay). aq
(PGuov) 1 B(As)e s
(PG uiov))4 B(Az + A3)s, s, Qs + as
(@(CL//[Q]V))I B(A1 + A2 + A3)32 a1 + oo + a3
(Qpagu“[o]V)h B(Al +A2 +A3 +A4)5254 @B(QAl +A3)g a1 + oo + a3+ oy
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7. Proof of the main theorem

In this section, we prove Proposition 6.4, 6.6, 6.7 and then finally Theorem 06.8.
For k1,--- ks € [1,7], let pug, - - - px I’y be the quiver of the seed (ug, -« - pk, (V), pogey - - -
ti, (Bi)) (Sect. 3).

Lemma 7.1. In the setting of Proposition 0.4, we have

(LP(CLHWMHHMU]V))k+l+2(@§ Y) = (Wak+l+2V)>k+l+2(a§ Y).

Proof. In the quiver T, by (6.2), the below is around (¢v)k4i+2:

(OV)rab—1z)4ir2  (@V)rhtire  @OV)rk—(z)ti01 (Y )rghtitt

l

e (V)b Lz rre——=(OV ) prir2=——(PV )k |2 414 1——=(PV ) it

b T

wv)—jk—m—s @V)—jk—zl—z; PV )—jr—201—-3 (@V)—jk—m—g

The initial cluster variables changed by pg+i+14[] are (ov)k, (0V)k+1, - 5 (OV ) k+i+1

and (@V)k,L%J, (@V)k*L%J+17 e (‘PV)kﬂngv which are not connected with (¢v)g+i42
directly in the above quiver. Hence, Lemma 3.5 says that the arrows incident to
(¢V)g+i+2 in Ty coincide with the ones in pgq;41p[l]T;. Thus, we get

G
(@(Mk+z+2uk+z+w[l]‘/))k+l+2

1
T 0D erirz ((Sag)r"‘k—L§J+l+l(QP%’:)THc—L§J+l+2(ﬁp\(§)fjk72l74
A%

+(@g)k—LgJ+z+1(¢€)k—LgJ+l+2(sﬁg)r+k+l+2> = (PG av) btir2. O

Next, we will order the indecomposable direct summands Vi, ---, Vs, of V; from the
right:

Vi=Vor @ @ V1.
For a basic C.z-cluster-tilting A-module T'= Ty, @ - - - & T, we write
pr(T) = pg,(T) =Tor @ -+ @ Tp1 @I @ T 1 ©--- & T,
for k € [1,r]. Let (ug(T)): denote the I-th indecomposable direct summand of p(T)

from the right.
In the following Lemma 7.2-7.4, the notations in Remark 4.3 are applied.
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Lemma 7.2. We use the notation as in Proposition 6./ and let ji be the k-th index of i
in (2.4) from the right.

(a) The module (p[l](Vi))r—| |41 is described as follows:

k=5 Jk1 =3 Jrpt—1 Jry ~1 ji+1 jrt3
BVAVAVARRRVIVAVARVAVAY,
VAN A VAV
(7.1)
Note that we have jupi = ji — 21 from (2.4).
(b) The module (pgri+1 0[] (Vi) kri+1 @8 described as follows:
ibt—3 i1 Gesitl Gegi+3 G5 Gu—3 jr—1 ji+1jk—3 je—1 ju+l jr+3
VAVAYERR Y \/ Y
RIS TSV,

Proof. Using the induction on [, we shall prove (a) and (b) simultaneously.

First, let us prove (a) and (b) for [ = 0. As have seen in Proposition 4.2 (4.2),
(kb1 (V3) ) 1o g = (Vi)k—z] = Sju—1. We have already obtained (ux(V3))r = Vi’ in
Example 4.11 (4.10). Similarly, (pg4+1p6(Vi)) k41 18

Jk—9 Jk—3 Je—1 Jgr+1
Jk—4 Jk — Jk
Je — Je—1 (7.3)

Hence, the modules (ux(Vi))r and (pg+146(Vi))k+1 have the simple submodule iso-
morphic to S, _1. So there exist injective homomorphisms

(k10 (Vi) k- 5] = Sje—1 = (Vi) ks (w1 pie(Vi))i— 1z — (b1 11 (VA)) k1.

Let ejk 1 denote a basis vector in (ukr1pk(Vi))k— |z = Sj,—1, and let €}, _; € (u(Vi))k
and e]k 1 € (Mr+1/6(Vi))ks+1 be the images of ej, _1 respectively. Note that since
Jrtk—z] = Jk—|5] =Jk — 1, the module Vr+k—L§J is described as

-3 Je—1 gk +1
\jk_é/ \jk/
~ e
Je— 1
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and has the simple socle isomorphic to Sj, —1 (4.4). So there exists an injective homomor-
phism Sj, 1 — V.1 ). However, this map is factorizable in the direct summands of
te+1 ok (Vi) since it is the same composite map as Sj, —1 = (prt+16(Va))e = (e (Vi) —
Viik—|z|- Moreover, we can verify that Hom(S;, -1, V;) = {0} for t # r+k—[5], k—[5],
k, k + 1. From Lemma 4.7 and Theorem 4.9 (iii), the exchange sequence associated to

the direct summand Sj, 1 of pg1pk (Vi) is as follows:

0= Sj—1 = (Vi) & (i (Vi) o1 = (a— 5 i (Vi) k- 5] — 0,

where the image of the injective homomorphism Sj, 1 — (uk(Vi))k @ (ttet1k(Vi)) k1
is C(e, _y + €, _1). Therefore, the module

(2 (Vi) k- 1) = (ke (Vi) @ (pk41k (Vi) it1)/C (€], 1 + €, 1) (7.5)

is described as follows:

]k{x; Jetl gk Jektl  Je+3
Jk i

MVAVARR VAN
/\\

Jk—3 J

J

?-

%

a-

il (7.6)

Since jrt1 = jr — 2, we have the claim (a) for I = 0.

Next, let us prove the claim (b) for [ = 0. We have seen that (fg—| = jptet1/06(Vi)) k1 =
(tk+14(V3)) k41 s described as (7.3). It follows from (7.6) that (x| = st 106(Vi)) ke 2|
has the submodule isomorphic to (ug41pk(Vi))k+1. Hence, we can find an injective ho-
momorphism

(o116 (Vi) k1 = (- 5 tep1 e (Vi) k- 5 - (7.7)

Note that the homomorphism (7.7) is not factorizable in the direct summands of
(1tk—| = 41125 (V3)) since no direct summand in (pg— | £ | pi+1/46(V3)) has submodules iso-
morphic to (pr+1pk(Vi))k+1- By (7.3) and (7.4), we see that the module (pg41 06 (Vi)) k41
has the quotient isomorphic to V. ;_|z|. Then, we have a surjective homomorphism
(k4100 (Vi) o1 = Vigg—|z), which is, indeed, factorizable in the direct summands of
(k- 5 p+1p(V3)) since it can be written as the composite map as follows: We label
each basis of Vi.yj || (7.4) as

and each basis of (pg— |z jpr+1k6(Vi))r—z) (7.6) as
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(3) (3) (3) (3) (3) (3) (3 (3)
\?2) \?2) (2) (2) (2)
djk*‘l djkz\d\ej;\i /e]k €iet2

\?1) (1)
djk*3 €je—1 ejk+1

Then we can define the surjective homomorphism (pig— | = k106 (Vi))k— 5] = Ve z)
S M) g D) s oD (= o o —2), dP ® oy ol (= gyt 1,
J

by €51 ¢ and e;
gk — 1 Jr —3) and mapping all others to 0. Then the homomorphlsm (/,Lk+1uk(‘/;))k+1 —

ande = C;

Je—1)

Vitk—z] coincides with the composite map

(k100 (Vi) k1 = (e o k1 (Vi) k= |51 = Vigk— 51

where the first map is the one in (7.7).

The other non-zero homomorphisms from (Mkﬂg]ﬂkﬂﬂk(vi))kﬂ = (rt16(V3)) k41
to the direct summands of (up— |z pk+1p(Vi)) are factored through (us—|zjpk+1 X
i (Vi))k—| £ |- Thus, the exchange sequence associated to the direct summand (up— |z X

i1 (Vi) k1 = (o106 (Vi) )1 Of pig— | = i1 s (V3) 1s as follows:

0 = (1 (Vi) k1 = (-2 kb (Vi) k- |z = (k1 pte— | o ek (Vi) )1 — 0.

By the above argument, we see that the module (#k-s—l#k—[g]ﬂkﬂ#k(vi))kﬂ is described
as

Je+1 (7.8)

which means the claim (b) for I = 0.

Next, we assume that the claims (a) and (b) are shown for 0,1,---,l. Let us con-
sider the claim (a) for [ + 1, and then construct the exchange sequence associated
to the direct summand (Mk+l+2Mk+l+1M[l](Vi))k—LgJ-s-lH of piptirottkri+1p[l](Vi) as in
(7.10) below. Since the mutation Mk~ |z |+1+1 does not appear in Hhrlrofk+i+1 0[], we
have (pripoptiopier [l (Vi))o— 5 j+141 = (Vik—|5)4141 = Sju—21-3 (see (4.2)). By the
induction hypothesis, the module (ug+i+2pk+1+1 [0 (Vi)k— |z )41 = (ll](Vi))k— 241 is
described as (7.1), and it has the simple submodule isomorphic to S, —2;—3. It follows
from Theorem 4.9 and a similar argument to the proof of Lemma 7.1 that the mod-
ule (uptitoprrit1 (Vi) krir2 is the same as (pgyi1+2(Vi))k4i42, and is described as
follows:
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Jr—20—

Jk— 2[/ Je— 2/ Je— 25

ch 2l-5 Jk 2l-3 (7.9)

Hence, this module (gtg4i4+2(Vi))k+i42 has the simple submodule isomorphic to S, —2;—3.
It follows from (4.4) and Jrtk—|5 4141 = Jk—|z)+1+1 = Jk — 20 — 3 that the module
(ki 2141 AU (VE))rak— |5 4101 = (Vi)rgk— 54141 Is described as
Jr—20—5 je—21—3 ju—20—1
Jh—2l =4 22
k20~ 3

and there exists an injective homomorphism Sj, —2—3 — (Vi)r4x—|z|4141- But, this
map is factorizable since it can be written as the composite map Sj, _2-3 —
(tktir2o (Vi) ktir2 — (\/i)r+k,L%J+l+1. By the induction hypothesis, the other di-
rect summands of ppiiropkri+14[1](Vi) do not have the simple submodule isomor-
phic to S, _2;—3. Thus, the exchange sequence associated to the direct summand

(kg2 b1 (Vi) k— 54141 = Sji—21-3 Of ppigopirippll] (Vi) is

0 = Sj—21-3 = (h+1+2(Vi))ki2 ® (R (Vi)) k- 5 )01 — (7.10)

(= 5 i1 i 2 1 1 (V) k- 54141 — O

The module (u[l + 1(Vi))k—|z)+141 = (- 5 +1+1 bttt 2ttt (V) k- 5 4141 18
described as

Je—1 Je—1 Jr+1 jr+3

VARYAYAY,

—2 Ik Jkt2

=N

Je=1 gl (7.11)

Jk+1—7 Jr+1—5 Jr+1—3 Jr+1—1 Jk

VAYAVARRY:
VAR NN

Jk+1—5 Jk+1—3 Jk—

Jk

w\?/w

Taking jr+; = jx — 2l into account, we get (a) for [ + 1.

Next, we consider the claim (b) for I + 1. The module (u[l + 1J(Vi))kti+2 =
(rrir2ttkrie1 21 (Vi) krio is described as (7.9). By the description (7.11) of the module
(1[l+1}(Vi))k— | £ ) 4141, it has the submodule isomorphic to (pg+1+2tk+14+14[1 (Vi) kt142-
Using the same argument in the proof of claim (b) for I = 0, there exists an injective
homomorphism (puti42k-+1+1 L1 (Vi) ktig2 = (ull+1] (Vi) g—| 5 j+141, which is not fac-
torizable in the direct summands of (u[l+1](V;)), and the other non-zero homomorphisms
from (pg+i+2tk+1+10[](Vi))k+i+2 to the direct summands of (u[l + 1](V;)) are factored
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through (u[l + 1J(Vi))g— |z 1i41- Thus, the exchange sequence associated to the direct
summand (u[l + 1)(Vi)) k42 of (p[l +1](V)) is

= (ull+ Vi) k2 = ([l + Vi) k-5 4101 = (epigopll + (Vi) k142 — 0,

(7.12)
which yields the following description of the module (pri4opl + 1](V4))krit2:
k=5 Tkt =3 Jra1—1 Jrit ~1 jet+1je— ~1 jetl Jrt
SVAVAVARIRVIVAVASVIVVA
VAN,V

Because of jgyi+1 = jrri — 2, we get (b) for I+ 1. O
We can similarly verify the following two lemmas.

Lemma 7.3. We use the notation as in Proposition 6.6 and let jj, be the k-th indez of i
(2.4) from the right.

(a) The module (1/'[)(Vi))k+i+1 @s described as follows:

iV
N

3_Jk
—4

Jk+1—6 Jr+1— 47Z\2;¢+l Jek—
“_\5]/ X x&

Jk+1—4 ]k+l

J

?r

Ik

"\u .

?.

2.

(7.14)

Note that ji41 = jk — 21 from (2.4).
(b) The module (p1) x4 kyig2tt' [J(VA)) 5 | 4hri42 s described as follows:

VN

Jk

Jk+i—4 Je+1—2 Jrt1 Je+1t2 Jk

YAYAYARRY)
NN

Jk+1 Jk—

Jk Jk

/

<
x/uk

.J;

(7.15)

Lemma 7.4. We use the notation as in Proposition 6.7.
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(a) The module (11" [1](Vi)) )| z42 |11 fs described as follows:

/\ ) \/\>/‘\ L NI
; \Mé QHé (7.16)

(b) The module (pr—j—1 1" [I](V3))r—1—1 is described as follows:
/Z /5 20—1 2041 2I+3 2145
\U/ ‘% \()/ \\1 >‘+2 204
5 e (7.17)

Furthermore, if v is odd, then the module (ulu#u”[% —2](Vi))1 is described as

\/ \ AVA
AN S

T

(7.18)

Next, let us prove Proposition 6.4. The following is an overview of the proof:
We will use the induction on [. Using the exchange relation (3.1), Theorem 4.9(ii),
(6.4), (6.5) and the induction hypothesis, calculations of (SO(CL[1+1]V)>k—L§J+l+1(a;Y)v
((p(citwuzu[l]‘/))k”“(a;Y) are reduced to those of PO+ 5 111 © & (1;6(Y)),
‘p(uk+z+2u[l+1]V)k+z+2Oxp(l' #(Y)), respectively. Then we can calculate PV 51110
2 (Lo(Y)) and @, aplit1]V)rsse © 25 (1 ¢(Y)) by the explicit forms of the modules
([l + V) g 54141y (Bhtir2pll + ]V)k+l+2 in Lemma 7.2, Proposition 4.13, the for-
mulas (4.11) and (6.7).

Proof of Proposition 6.4. For any cluster T = ((¢T);) e, 2ru[—r,—1]> (¢T)s (5 € [+
1,2r] U [-r,—1]) is frozen, then we have (pT)s = (pv)s. Using the induction on I,
let us prove Proposition 6.4 (a) and (b) simultaneously. For I = 0, let us calculate
(¢a[O]V))k—L§J' In Sect. 6, we see that the vertices and the arrows around the vertex
(¢v )k in the quiver I'; are described as follows:

(@V)r—i—k—i—l (QDV)TJrk | ET_HC va)rJrkiL%Jil

“(pv k+1<—(<ﬂv)k LJ (pv OV ) k- l5]-1

%J/

OV)—ji+2 (PV)—jr+1 . (PV)—jr—1
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Applying the mutation g1 to this quiver, the arrows between (cpv)k_@ and (yv)_s
(1<s<r)

(V) bp1i=—(PV)r |7} (ov)k

(PV)—jr+2 (PV)—jr+1 (ov)—jx

are transformed to

<~——(Prssr i (V) )kt 1——(V ) | 1 | <———(Ppy (V)
(PV)—jr+2 (PV)—jx+1 (PV)—ji

by Lemma 3.5. Similarly, the arrows between (¢, ., uv))k—z] = (pv)r—|z) and
(wuk+1ukV)S (1 S S S 2T> in Mk+1ﬂk(Fi) are

(OV)rab—| 141 (OV)rtk-z) (OV)rtk—|5)-1

R

(gp(#k#—lﬂkv))k"'lH((‘OV)k*L%J%(@(likv))k
Thus, by the exchange relation (3.1),

G
(PGuovy k-3

PG R v) k1 + (9) i1 (D9 )rk— 15 -1 (99 )t 151 (99 )t 5141
(F)k-15)

By (6.6) in the proof of Proposition 6.2, we can write

(©Guv)k = (Pauvi) 0 28 (a3 6(Y))
= (@ (V)M (@u (V)4 (pur),) 02 (L6(Y). (7.19)

Similarly, we have

(‘PakHMV))kH = (‘PakHV))lHl
= (@ ()M (@ (V)51 (@ vyep,) 0 2 (1¢(Y)). (7.20)

Therefore, using (6.4), (6.5), (7.19), (7.20) and Theorem 4.9 (ii), we obtain

(@H(Y))QAjk—1+Ajk—3+1\jk+1
(@ (Y))hint

(@(Cz[o]V))k—ng (a;Y) =

« (@(Mkv)k)(w(ﬂkJrl/th)kJrJ + (SDVT+k7L§J71)((er+k7L%J )(SOVTJrkagJJA)

of (1;0(Y))
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= (@u(Y) M= =t (v, g ) 0 2 (1 6(Y) (7.21)

— qlin—1HAg s A

(Guo1v)e ) © af (1;0(Y)).

Y G125, 1Y G, —3Y0 5 s 1Yo G X

The module (u[0]V)y— |z is described as (7.6). Using Proposition 4.13 and (4.11), let
us caleulate (0(u0v),_ ;) © 2 (1;6(Y)). To do that we will find
2

_ 2r
a=(apj,, 014,014,802, " 02,02 ) € (Z>0)

satisfying Fia (ujojv),_ -, 7# @ (or equivalently, F; a (ujojv),_ », 7 @)- If Fia (ujojv),_ » 7

L5 L5 L5
¢, by counting the number of the bases in (7.6) and the fact that the dimension at j, +1
is 3, we have a1 j, 11 + a2, +1 = 3. Considering similarly,

a1, +1 + G2, +1 = Q15,1+ Q25,1 = a1, -3 + a2 j, -3 = 3,
a1, +azj, = a1j,-2 + azj,—2 = 2, (7.22)

A1,j,+3 T 2,543 = Q1 j, 42 + Q25,42 = A1 j—a + Q25 —4 = Q1 j,—5 + Q25,5 = L.

Since the module (p[0]V)),—|z| does not have the simple submodules isomorphic to
S;.,S; -, S = 0, which yields

PP joey1, > We have ay j, = a1
L7 41
az jo—4 = 1, ag j,—o = 2, azj, = 2 and ap j,+2 = 1. We can also check that a; j,—3 =

dr—1 T al’jLTTﬂJH

al,jk,1 = a17jk+1 = 1 Thus, ’Fiav(ﬂ[o]v)k—ng 7£ ¢ lf and Ol’lly lf

i* = (Jk? - 37j1€ - 17jk + 1?jk _4,]]@ - 27]k - 2)jk7jk7jk +27
Jk =5 Jk — 3,k — 3. Jk — Lk — Lgk + L gk + Ljk +3). (7.23)

Then we show that fi,a,(u[o]V)k,LzJ is a point. Here, we use the notation as in (4.11).
2
By the above argument and (2.5), (2.6), (2.7), we have

G VY A1+ A, s A, _ , _ _ _ _
(Clupovy r—151(a; Y) = aloe TRk =300y 5 0 Ys 5 1Y g —3Y2,5,-3Y1 g1 Yo g4

X @15, -3 (Y) @1 g1 (V) P11 (V) D2y —a(Y) B3 (V)3 5, (V)3 5, (V)

2,Jk 2,5k
XD 42(Y) o, —5(Y)®3 5, 5(YV)®5 ;1 (Y)®3 1 (Y)Ps 5, 13(Y)

— aAjk*1+A7k*3+AJ'k+1 }/'27j-]€717

which implies the claim (a) for [ = 0.
Next, let us consider the claim (b) for [ = 0. By Lemma 3.5, the arrows between
(Lo v)r+1 = (Pupsav))kt1 and (@euo)v))s (s € [=r, =1] U [1,2r]) in u[0](T;), are
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(PV)rtkt1 (OV)rar—(z)-1
(V)b— | 5 )+ 1=—P(ursr V)t 1=——(L(u0]V) - | 5

(PV)—ji+2 (oV)—jx+1

Thus,

(O unsa uiov) b1 (@ Y)

(@G k= 131(0F) g2+ (0F) 15121 (0941 (9 k- 3141 (9F) =gt

(‘P(CLHIV))IH-I
Using (6.4), (6.5), (7.20), (7.21) and Theorem 4.9 (ii), we obtain

(SD(GILIC+1M[O]V)>}9+1 (a; Y) = ((I)H(a; Y))Ajkﬁ_*_[\ij

% (SD(H[O]V))C—L%J ) + (SOVT+1€,L%J71)(90Vr+k+1)(90vk7L§J+1)

o z{(1;6(Y))

(‘p(#k+1V)k+1)

197

= a2 TN Y] 5 o Yo oY g1 Yo a1 X (@0 plo)V)ess ) © 2 (L 6(Y)).  (7.24)

Applying a similar argument as in (7.23) to the module (pg4+10[0]V)g+1 in (7.8), for

a € (Z>0)*", we find that Fia (g u0]V) s 7 ¢ if and only if

i* = (]k + 1ajk: - Qajkajk +2ajk: _3ajk: - 17jk: + 17jk7 +3)7
(]k - 27]k + 17jkajk +2a]k 737jk - 17jk + 17jk +3)7
(Jr =2,k — 3, Jk + 1,k Jk + 2,5k — L,k + 1, Jx + 3).

Therefore, it follows from (6.7) and Proposition 4.13 that

(Plursapl0]V)iss) © 2 (1 6(Y))

=@y, +1P2j,—2P2j, Pojy +2P2, i, —3P2j, —1 P2, +1 P2 j, +3
+®1,j, 2P +1P2,j,, P2, +2P2,j, —3P2, 5 —1 P2, +1 P2 i 13
+P1 5 —2P1,5—3P1 s +1 P25 P2 g +2 P25 -1 P25 1 P2 43
= Q1 +1P2 5, —2P2j, Po 42 P2, —3P2 5, —1 P2 jy 1
X¢2’jk+3(1 + Ai}k—2 + A]:;k_QAi}k_?))

Yo i
2.1 (1+ADS o+ AT AT 3. (7.25)

= . . . 1jk—
Y2 jp—2Y1j+1Y2 5,41

Substituting (7.25) for (7.24), we obtain

(O sr piov) i1 (a3 Y) = a2 TRotryy 5 oVo 5 (14 A7) o+ AT AT, a);

(Bhot1p
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which means the claim (b) for [ = 0.
Next, assuming that the claims (a) and (b) for 0,1,--- [, let us prove the claims for

I + 1. Using Lemma 7.1, we have (w(uk+l+2ﬂk+l+ll$[l]v))k+l+2 = (@(Mk+z+2V))k+l+2' By
Lemma 3.5, we see that the arrows between (¢v)i—|z 141 and (pv)—s (s € [1,7]) in

Wktiroprri+1 UL are as follows:

(OV)k—| 54111

(@V)*(jk72l73) (@V)*(Jk*Qle)

It follows from the exchange sequence (7.10), Lemma 4.7 and Theorem 4.9 that the

arrows from (‘P(uk+z+zuk+z+1u[lW))s (1<s<2r)to (@V)kﬂngH are

(PlurirsaV)hti+2 = (V) - (24111 (Puv) k-2 ]+ = (OV) k- 5] 4141-

Similarly, since there exist non-factorizable homomorphisms in the direct summands

of (pti+2ttkti+1p[l]V) from (prriv1 IV )kti41s Verr— 241120 Vigk— 54141 and
Vigk—| 241 t0 Vi |z 141 = Sjy—2-3, we see that the arrows in (gpiroppri+1 #[T5)

from (WV)k—L%jH-&-l to (¢(Mk+z+2uk+z+1u[l]v))5 (1 <s<2r)are

(OV) k=5 141+1 = (Plupsrprn)V) b4, (PV)h—| 24141 = (PV)rth—| £ 4142,
(OV)k—z )41 = (OV)rab— 2yt (OV)e—zie1 = (PV)rik— 2] 41

Hence, by the induction hypothesis of the claim (b) and the same way as in (7.21), we
obtain the following:

1+3 4 . 1 )
(QD(CL[H»I]V))kangrlJrl = (‘bH(a?Y))(ZS:” Agp—2e41)H (amo Mgy —20-2)

X PV gy © 2 (13 0(Y)). (7.26)

The module (p[l + 1]V)IchgJ+l+1 is described as (7.11). Using Proposition 4.13, let
us calculate PV 5 151 © (15 9(Y)):

_ 2 -
Fora = (a’l,jr7 N R R R ,ale) S (ZZO) " if the variety Fi7a7(/‘/[l+1]v)k—L%j+l+1

is non-empty, we have
1j,+1 = Q2,42 = Q25,43 =1, a1j,—1 =1, asj, =2, agj, 11 =2, azj, -1 =3,
Q1,51 —5 = @25, —6 = A25, 4, —7 = 1,
a1jpy—3 =1, Qg4 =2, a5, —5 =2, az5,,,-3 =3, (7.27)
a1 —2t—3 + a2 j,—2t—3 =5 (0<t<1—1),

a1,j,—2t—2 + a2, —20—2 =3 (0 <t <),
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by the same argument in the proof of the claim (a) for [ = 0. Denoting the bases in
(7.11) by

ejk+l—7 Jk+1—9 e]kJrl 3 Yjk+1—1

k=5 e; 2—)3
IV T T AT
e ej ej

(14+3) 1 (143) 1 (1+3) (143) 6(2) (1) (1) (1)
J k

G+l €43

WARRWANWAY

( el 2) (2) 6(1) (1)
jk+li6 €k Jk+l -2 'k—\‘i e = \\i /Jk\ /Jk+2
(l+3/ \H-Q) (2) (1)
e]k+l 5 Jk+l—3 €je—3 €1 eJk+1

we see that all 1-dimensional simple submodules of (u[l + 1]V )g_|z|4141 are (Ceg-i)_2t_~_1
(1<t <i+3),Cellyand Cel ), — e, + el ) (0 < ¢ < 1), which
are isomorphic to Sj, —2i41, Sj,+1 and Sj, —o;—2, respectively. We can also see that all
1-dimensional simple submodules isomorphic to one of {Sj, —2:—3/0 <t <1 — 1} of the
quotient module

(tll+ V)2
t+1 +2 13 12 t+3 )
(C(6§k_2)t_2 e(k 2)t 2+€(k 2)t 2)@C(€§k—2)t—4 e(k 2)t 4+6(k 2)t 1)

t+1) t+2 t+3 t+4
are (Ce] _Q)t 5 and C(e §k 93 e;';E—Zt)—iﬂ + e;i—zt)—g gk 2)26 3) (0 <t <1—1). Thus,
Fia, (ul+10V)_ 2 4061 # ¢ if and only if a satisfies the following in addition to (7.27):
2

For each ¢t € [0,1 — 1],

(al,jk—Qt—Q; al,jk—Qt—3; al,jk—Qt—él) - (la 27 1)a (07 1a 0)7 (07 17 1)a (17 la O) or (17 17 1)

and all other a; ;, az; = 0.

Let us calculate the monomial M corresponding to (a1 j,—2t—2, @1, j,—2t—3, Q1 j,—2t—4) =
(0,1,0) for all t € [0,1 — 1], which means that a1 j, 2,41 = 1 (0 < s < [+ 3) and
a1 j,—2s42 =0 (0 < s <1+4). Thus, it is calculated as

+2
M =@ 5,10 % [[(®150—201P2 5260283y 263
s=0
(I)Z,jk—2sq)2,jk—2571(1)2,]';@—25+2(I)2,jk—2s+1q)2,jk72s+3)

1+2

Y2 5, Yo ji 42 Y2 j—2s+1

_ . 7.28)
5 (
Yig+1Y5 1 yog Yige—2s—1Y2,5,—25-1Y2,j, —2542

For p > 1 and (b,c) € R (b = {b;}}_,, ¢ = {¢;}}_,), the monomial corresponding to
a1 j,—2t—3 = 2, Q1 j,—2t—2 = Q1 j,—2t—a4 = 1 for t € [by,c1 —1JU--- U [by, ¢, — 1], and
ay j,—2t—3 = 1 for t € [1,1 = 1]\ ([br1,c1 — 1JU--- U [bp,cp — 1]), and a1 j,—2t—2 = 0
for t € [0,1]\ [b, ] is M x A[b1,c1;jk] - - - Albp, cp; ji] by (6.7). Using (6.7) again, we see
that the partial sum of ¢(,41v)

V)k—15 14141

o z{(1;¢(Y)) corresponding to aj j, —2i—3 =
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2, ay,j,—2t—2 = Q1 j, —2t—4 = 1forte [bl,cl - ].] U---u [bp, Cp — 1] and ay j,—2t—2 = 0 or
1fort e [0,1]\ [b,c]is

M x Alby, cu; ji] - - Albp, cps k] H (1+ A7, or2)-
te[0,i\([b1,c1]U--Ulbp,cp])

On the other hand, by (2.5) and (7.28),

(@ (a; Y))(Ze o Mgy —2041)+(Timo Mgy —20-2) 5 \f

141
_a(zH A]k . +1)+(ZS 0 Aop 2o 2)HY1,J1¢ 25— QHYVQ,jk 2s—1-
s=0 s=0
Hence, by (7.26), we have
s I+1
(PGpayv) =511 = ABe50 Az + (g Mgy 2)Hyl jo—zam2 [ [ Yaji—2e
s=0 s=0
x Y Albergid - Alby ey ] II (1+ A7, —21-2):

p=0, (b,c)ERY] te[0,\([b1,c1]U-+-U[bp,cp])

which implies the claim (a) for [ 4 1.
Finally, let us prove the claim (b) for { + 1. By the direct calculation, the arrows

between (‘p(uk+z+2uk+z+1u[l]V))k+l+2 = (w(ﬂk+l+2V))k+l+2 and (pv)-s (s € [1,7‘]) in ,u[l +
1]T; are as follows:

(W(#k+l+2v)>k+l+2

(OV)—(u—21—1)  (OV)_(js—21—3)

The exchange sequence (7.12), Lemma 4.7 and Theorem 4.9 imply that the arrows from
(Oui+vy)s (1 <58 <27) 60 (P(uyp4aV))ktire are

(SD(#[H'UV))’C—L%J‘H'H - (¢(ltk+l+2v))k+l+2'
The arrows from (‘P(uk+z+2V))k+l+2 to ((p(M[H‘l]V))S (1<s<2r)are

(w(#k+l+2v))k+l+2 - (So(ﬂk+l+1l‘[l]v))k+l+1’ (@(#k+l+2v))k+l+2 - (‘pV)H—k-&-l—L%J’

(PlunsiiaV)kti+2 = @V )rtkti42,  (PuniigaV))bti42 = (PV)hgi—| 2| 12-

By the same way as in (7.26), we have

41 A .
((P(Cibk+l+2#[l+1]V))k+l+2 = (®n(q; Y))(Zﬂo Agp—2e41 sy —202)

X Pk g2V g y1g2 © xiG(l; ¢(Y)). (7.29)
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The module (pgtir2p[l + 1V )k1ire is described as (7.13), and it has the sim-
ple submodules S})F% isomorphic to Sj,—2 (1 < ¢t < I+ 2). The quotient modules
(Hrtrv2nll + I]V)k+l+2/(‘s§'k72t 6955-,67%2) and (pig+1+2p[0+ 1]V)k+l+2/(5;k72174) have
the simple submodules isomorphic Sj, _2;—1 and Sj, —2;—5 respectively. Therefore, for
a = (a1, -+ ,a1,,02j., 01;) € (Z>0)*", the variety F; is
non-empty if and only if

Hrpir2 1[IV ) kg2

Alji+1 = G242 = Q25,43 = 1, 15,1 =1, ag5, = agj,+1 =2, ag5,—1 =3,
a1 j,—2t-3 + a2 j—2t—3 =5 (0 <t <1—-2),

a1 j,—2t—2 +agj,—212=3 (0<t<1—-1),

aij,—20-1 + a2 j,—21-1 =4, a1 j,—2-3+az;, —2-3 =2,

aij,—21-5 + a2, —21-5 = 1, a1 j,—21-2+asj, —2-2 =2,

aij,—21—4 + a2, —21—4 = 1,

and for each t € [0,] — 1],

(a1,j,—2t—2,01 5, —2t-3,01,5,—2¢—4) = (1,2,1),(0,1,0),(0,1,1),(1,1,0) or (1,1,1)
(al,jk72l72, al,jk72l73a al,jk72l74) = (1, ]-7 ]-), (07 Oa 0)7 (0, 07 1)7 (]—a 0, 0) or (17 Oa 1)

0 <aij,—21—5 < a1 j,—2—4 <1, all other aj 4, az; =0.

Let us calculate the monomial M’ corresponding to (a1 j, —2t—2, @1 5, —2t—3, A1 jp—2t—4) =
(O, 1, O) for all t € [O,Z — 1] and a1,j,—20—3 = Q1 j,—21—4 = Q1 j,—21—5 = 0. It is calculated
as

+1

!
M = H((I)l,jk—2s+1q)27jk—25—2¢'2,jk—23—3
s=0

Do i —25P2 jp—25—1P2 j, —25+2P2 j, —25+1 P2 j, —25+3)
141
Yo jr—2s—1

— . 7.30
1;[0 Y1 jo—2s4+1Y2 5, —254+1Y2,j,—25—2 (7.30)

S

For p > 1 and (b,c) € R}, (b = {bi}}_;, ¢ = {ci}j_;) such that ¢, < I + 1,
the monomial corresponding to a1 j,—2t-3 = 2, a1 j,—2t—2 = a1 j,—20—4 = 1 for
t e [bl,cl - 1} y---u [bp7Cp - 1], Qa1,5,—2t—3 = 1 for ¢t S [1,l - 1] \ ([bl,Cl - ] U---u
[bp,Cp — ID, a1,j,—21—-3 = Q1,j,—21—-5 = 0 and a1 j,—2t—2 = 0 for t € [O,l + 1] \ [b,C]
is M' x Albi,c1; k] - -+ Albp, ¢p; Jx] by (6.7). Using (6.7) again, we see that the partial
SUM of V(1,1 oull+1]V ) hsiss oz (1;¢(Y)) corresponding to ay j,—2t—3 = 2, a1 j,—2t—2 =
ai j,—2t—4 = 1 (t S [b1,61 — 1] J---u [bp,cp — 1]) and ai j,—2t—2 = 1 or 0 for
te [0,l—|- 1] \ [b,C] and 0 < a1,j—21—5 < a1 j,—21—4 < 118
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M' x Alby, c1; ji] - - Albp, ¢p; ] H (1+Ai;k—2t—2)
te[0,14+1\([b1,c1]U---Ulbyp,cp])

-1 1

x (1+ AL} e—oi-a T AL o s AT, a15)
Similarly, for p > 1 and (b,c) € R}, (b = {b;i};_;, ¢ = {c;}}_;) such that ¢, =
I + 1, the monomial corresponding to ai j,—2:—3 = 2, a1,j,—2t—2 = a1,j,—2¢—4 = 1 for
t e [bl,cl — 1] y---u [bp,l], Qai,j,—2t—3 = 1 fort e [l,l] \ ([bl,cl — 1] y---u [bp,l — ID,
1,5, —21—-3 = QA1,5,—-21—4 = 1, a1,5,—21-5 = 0 and a1 j,—2t—2 = 0 for t € [O,Z + 1]\
([br,c1] U -+ U [bp, L + 1)) is M' x A[b1, c1; i) - - - Albp, ¢p; ji]. We see that the partial
sum of V(.1 oull+1]V)psiss © 28 (1;¢(Y)) corresponding to a1 j, —2t-3 = 2, a1 j,—2t—2 =
a1,j,—2t—4 = 1 (t € [by,c1 —=1]U---U[bp, [ —1]) and a1 j, —21—2 = @15, —21—-3 = O1 j,—21—4 =
Lis M' x (1+ A5 g 5) X Alby,ca; k] -+ Albp, 3 k] [Lico 41\ (o1 ,e1)0- Uy a1 (1 +
Al_jk—%—Q)' On the other hand, by (2.5) and (7.30),

(@H(a;Y))(ZLE) Ajp—2st1+05 —20-2) o pf’

41 141
U A —2s41HA, 26—
aXsz0 Nig—2et1 Ay 202 HYLJ;C 25— 2HY2]k 25—1-
s=0 s=0
Hence, by (7.29), we have
- I+1 141
G A, +A,
(Pl srsapli+1]V) ) hi+2 = (&m0 Mg —2eri A, -2 2)HY1,Jk 25— QHYz,gk 251
s=0 s=0

X Z A[blacl;jk]'“A[blﬂcp;jk](l_5Cp l+1+A1jk ;Il) lzl(]‘—’_Al]k 21— 5)>
p>0, (b,c)ER?, |

X H (14 A7, 22)s
t€[0,1+1]\([b,c])

which implies the claim (b) for I +1. O
The proofs for Proposition 6.6 and 6.7 are similar to the one for Proposition 6.4.

Proof of Theorem 6.8. Let us set w;, w;(b, c¢) in our claim as
wy = H Sjr—2q—25 wl(b,c) = H Sjr—2q—25
qel0,l—1] q€[0,1—-1]\[b,c]

W2 = 85, —21—3S;, —21—2 H Sip—2q—2;
g€[0,1—1]

1— 5
wQ(baC) = Sjp—21— 353k 2l 2 H Sjr—2q—2>
q€[0,l-1]\[b,c]
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W3 = S5, 4255, +1 H Sjk—2q+15
q€[1,141]

1-6p, 0
w3 (b, €) 1= sj, 4255, 11" IT  si-20e1s
q€[1,1+1]\[b,c]

W4 1= 85,425,415, —21—45j, —21—3 H S —2q+1,

q€[1,+1]

1—6b1 0 1=6cp 142

wy(b,€) i= 85,125, 1" 8j—21-45;, 5 3 I si-20e1

q€[1,i+1]\[b,c]
ws 1= H Saq, ws(b,c) = H S24,
q€[1,i+1] q€[L,1+1]\[b,c]
. 1—=6cp 142

we = sarp5524a || 200 we(D,€) = sa14555,, IT s

q€[1,1+1] q€[L,i+1]\[b,c]

and prove only (1) since (2) and (3) are proven in the same way as (1).

(a)Forp > 0and (b,c) € R} ; (b={b;}}_;,c={c;}}_;),let py : ((Zi’“ j: 211 )—
alb, c; jk]) — Y be the monomial realization which maps the highest weight vector
in B (( ik:;i—Ql—l As) - a[b,c;jﬂ) to the monomial Hy[b,c] := Hy - A[b1,c1;7k] -
Alby, cp; ji|, where ) is defined in 5.1. By Proposition 6.4, we need show that
Hilb, | Tl cio0-1\p, (1 + Ai;k_Qq_Q) coincides with

> 11 (b). (7.31)

beB((S0 L, Ad)—alb,cijk]
(( =p—2i-t ) )qu[o‘z—u\[b,c] Sjp—2q-2

First, let us show that each factor in the monomial Hj[b, c] has non-negative degree.
For 1 < i < p, we can easily see that

-1 1
Albi, ci; ji] = (H A 1,56 —25— 2A1,jk—25—3> Ar 1,5k —2c;—2

ci—1
B (H Yl,jk251y2,jk254> Y1 5 —2c,—3Y1 jp—2ci—1

o Vige—2s—2Y250-25-3 | Yiji—2c,-2Y2 5 —2c,—2

c;i+1 ci—1
[1.5, Yige—as—1 [1so, 11 Y2,k —25—2

- 7.32
Hszbi Y17jk:—28—2 HS:biJrl YQ,Jk_2s_1 ( )

Hence, each factor in the monomial H;[b,c] has non-negative degree. Since the mono-
mial Aj; has the weight «; (see (5.1), (5.3)), the monomial Hi[b,c| has the weight

Zik ji 211 ) — alb, ¢; jg]. Furthermore, by (7.32), we can verify that for ¢ €

[1,0 — 1]\ [b,c], in the monomial H;[b,c|, the factor Y7 j, _24—2 has the degree 1, and
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the factor Y3 j, —o4—2 does not appear. Thus, the definition of Kashiwara operators in 5.1
implies that

fjk*2Q*2H1[b7C] = Hi[b,c]- Al;k 2¢—2>

and f % _9q—2H1[b,c] = 0. More generally, by the definition of the monomials A;; (i €
[1,7]) in (5.3), for g1, -+ ,qm € [1,1 = 1]\ [b,c] (m € Z>y), if ¢ € [1,1 — 1]\ [b,c] and
q¢# q1,"** ,qm, then in the monomial Hi[b,c][],-, AT ;k 2q. 2, the factor Y3 j, o4 o
has the degree 1, and factors ijlkﬁqu do not appear. Hence,

m

Jgjr2q72(Hl[bac] HAi}k—zqs—z) (Hl b C HAl Je— 2q9—2) A ,;k 2g—27

s=1

and f Jk—2q— Z(Hl[b C] Hs 1 Jk 2qg—2) 0.
Let idy be the identity map on the set ). By the above argument, we obtain

mb,e] [  (+A7, o) = II  Gdy+fiji20-2) | Hilb,dl,
q€[0,I-1]\[b,c] q€[0,1—-1]\[b,c]

and from Theorem 5.4, it coincides with (7.31). Now, the proof of Theorem 6.8 (1)(a)
has been completed.

Finally, let us show (b). For p > 0 and (b,c) € R} (b= {b;}}_,,c={c;}\_,), let

Je—1
p2: B > A —abei] | =Y

s=jp—20—2

be the monomial realization which maps the highest weight vector to the monomial
Hj[b,c] := Hy - A[b1,¢1;5k) - - - Albp, ¢p; jk]. By Proposition 6.4, we need show that

Hs[b,c]- (1 5CP,I+A1M Sl (L+ AT 5 s) H 1+ A7) _50) (7.33)

q€[0,1—1]\[b,c]

coincides with

> pa(b), (7.34)

beB(b,c)

where B(b,c) = ((Zik Ji 2l—2 )—Ol[baC;jk]) 16,0

8 —20-35;, 21 2 Ilaco,1-1)\[b,] S35 —2a—2
In the same way as (a), we see that each factor in the monomial Hs[b, c] has non-negative

power, and it has the weight (Zg’;}i_H_Q AS) —alb,c; jx]. For g1, -+ ,qm € [0,1 — 1]\
[b,c] (m € Z>g), if ¢ € [0,1 — 1]\ [b,c] and ¢ # @¢1, - ,Gm, then in the monomial
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Hylb,c] [T2, AT Jk 94,2 the factor Y7 j, 2o has the degree 1, and factors v
do not appear. Hence,

WJk—29—2

f]k —2q— 2(H2 b Y HAl Jk—2qs —2) (H2 b C HAI Jk— 2q5—2) A_“]k 2q—2>
s=1 s=1

and f 2 _og_a(Halb, c]TT0, Uk _94.—2) = 0. Moreover, if ¢, <[, we have

fjk 21-2(Ha[b,c HAI e— 2q572) (Ha[b,c HA1 ]k72q572) Af,;rm—z (7.35)
s=1 s=1

and f jn=2i- o(Ha[b, ] [T, AT ]k 94.—2) = 0. It follows from the explicit forms of Hz[b, c]
and A1 G 2q _o that in the monomial (7.35), the factor Y7 j, —2;—3 has the degree 1, and
factors Y _9;_5 do not appear. Hence, the definition of Kashiwara operators in 5.1
implies that

Fiv-2-3((Hz[b,c HAlak 20.-2) AL j, —212)
s=1

= ((Hz[b,c HAI ch72qs*2)A1_]k 20— 2) A_Jk 20=3

and fk o153 ((Hz[b, c] Hs 1A ,jk 2%72)141_],6 91_2) = 0. Similarly, if ¢, = [, we ob-
— m —1 —
tain fjk 21-3(Hz[b, ] Hs:l Al,gzrzqrz) = (Hz[b,c| ]2, Al,jrzqrz)A1 Gk—20—3" and

‘]szkimig(Hg[b,C] | Ai;rQquQ) = 0. By the above argument, the sum in (7.33) is
the same as

140c, 1. z : z
(1=, )idy + f}, — ™ (idy + fi—21-3)) II Gy +fiji20-2) | Halb,c],

q€[0,1—1]\[b,c]

and from Theorem 5.4, it coincides with (7.34). O
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