
Journal of Algebra 312 (2007) 755–772

www.elsevier.com/locate/jalgebra

Structure of internal modules and a formula
for the spherical vector of minimal representations

Gordan Savin ∗, Michael Woodbury

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Received 15 March 2006

Available online 19 January 2007

Communicated by Efim Zelmanov

Abstract

We develop a formula for the spherical vector of minimal representations of simply laced Chevalley
groups.
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1. Introduction

Let G be a simply connected Chevalley group, and P = MN a maximal parabolic subgroup
of G. Let n be the Lie algebra of N . A choice of Chevalley basis defines a Z-structure on n. The
structure of M orbits over Z on irreducible subquotients of n could be highly non-trivial, and
very interesting as Bhargava [B] shows. In the first part of this paper we deal with this question
in the case when G is simply laced and N is abelian. In a sense, this is the most banal case.
Our results can be described as follows. Let Mss be the “semi-simple” part of M . It is more
natural to work with Mss. Starting with the highest root β one can, in a canonical fashion, define
a maximal sequence of orthogonal roots β , β1, . . . , βr−1 in the Lie algebra n. Let eβ, . . . , eβr−1

be the corresponding Chevalley basis elements in n. Then every Mss(Z)-orbit in n contains an
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element

deβ + d1eβ1 + · · · + dr−1eβr−1

such that d | d1 | . . . | dr−1. Moreover, all dk can be picked to be non-negative except perhaps
dr−1. This result is a generalization of a result of Richardson, Röhrle and Steinberg [RRS], who
considered the same question for groups over a field k. Then

n = Ω0 ∪ · · · ∪ Ωr

where Ω0 = {0} and Ωj is the Mss(k)-orbit of eβ + eβ1 + · · · + eβj−1 except, perhaps, Ωr which
could be a union of orbits parameterized by classes of squares in k×. Also, the case when n is
a 27-dimensional representation of E6(Z) was recently obtained by Krutelevich [K] in his Yale
PhD thesis.

Our next result is an application to minimal representations of p-adic groups. Let G be a
simple split group of adjoint type. Let P = MN be a maximal parabolic subgroup with abelian
nil radical. Let Ω1 be the set of rank = 1 elements in the opposite nil-radical N̄ . The minimal
representation of G can be realized as a space of functions f on Ω1 (see [MS]) such that the
action of P is given by

{
(π(n)f )(y) = f (y)ψ(−〈n,y〉) and

(π(m)f )(y) = χs0(m)Δ−1/2(m)f (m−1ym)

where ψ is an additive character of Qp of conductor 0, 〈n,y〉 the natural pairing between N

and N̄ , and χs0(m) an unramified character of M , described in Section 3. The main disadvantage
of this model is that we do not have any explicit formula for the action of the maximal compact
subgroup K = G(Zp). In particular, it is not clear a priori how to determine the spherical vector
of the minimal representation. We accomplish this as follows. First of all, under the action of
M(Zp) the orbit Ω1 decomposes as a union of orbits each containing pme−β for some integer m.
Thus a spherical vector f , since it is fixed by M(Zp), is determined by its value on pme−β for
all integers m. Furthermore, since f is fixed by N(Zp) as well, it must vanish on these elements
if m < 0. To determine f exactly we shall use the fact that it is an eigenvector for the Hecke
algebra. More precisely, we have Ti ∗f = ci · f where Ti is a Hecke operator corresponding to a
miniscule coweight ωi . Such a coweight exists since we assume that G has a maximal parabolic
subgroup with abelian nilpotent radical. The support of the Hecke operator is KωiK . The Cartan
decomposition implies that KωiK can be written as a union KωiK = ⋃

j pjK for some pj

in P . Then

Ti ∗ f =
∑
j

π(pj )f.

Thus the action of Ti can be explicitly calculated since we know how P acts! This gives us a
recursive relation

ci · f (
pne−β

) = a1f
(
pn+1e−β

) + a0f
(
pne−β

) + a−1f
(
pn−1e−β

)
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from which it is not too difficult to determine f completely. In fact, the answer is a geometric
series

f
(
pne−β

) = 1 + pd + · · · + pnd

where d depends on the pair (G,M). In particular, this formula is a generalization of the well-
known formula for GL2. Indeed, if f is a spherical vector of the representation (parabolically)
induced from two unramified characters χ1 and χ2, then

f
(
pne−β

) = χ1(p)n + χ1(p)n−1χ2(p) + · · · + χ1(p)χ2(p)n−1 + χ2(p)n.

The question of spherical vector was addressed in several papers. For p-adic groups, but
working with a different model of the minimal representation, a formula for the spherical vector
was found by Kazhdan and Polishchuk in [KP]. For real groups, in a situation similar to ours, the
spherical vector was determined in a beautiful paper of Dvorsky and Sahi [DS]. Their result is a
bit more restricted, for they assume that N̄ is conjugated to N , which is not always the case.

2. Maximal parabolic subalgebras

Let g be a simple split Lie algebra over Z and t ⊆ g a maximal split Cartan subalgebra. Let Φ

be the corresponding root system. We assume that Φ is a simply laced root system, meaning that
all roots are of equal length. In particular, the type of Φ is A, D or E. Fix Δ = {α1, . . . , αl}, a set
of simple roots. Every root can be written as a sum α = ∑l

i=0 mi(α)αi for some integers mi(α).
To every simple root αi we can attach a subalgebra p = m ⊕ n such that

{
m = t ⊕ (

⊕
mi(α)=0 gα),

n = ⊕
mi(α)>0 gα.

Note that mss = [m,m] is a semi-simple Lie algebra which corresponds to the Dynkin diagram
of Δ \ {αi}. Let β be the highest root, and b = ni(β). For every j between 1 and b, define

nj =
⊕

mi(α)=j

gα.

Then [nj ,nk] ⊆ nj+k . In particular, if b = 1 then n is commutative. Here is the list of all possible
pairs (g,m) with n commutative. (The simple root defining m will be henceforth denoted by τ .)

g An−1 Dn Dn+1 E6 E7

mss Ak−1 × An−k−1 An−1 Dn D5 E6

dim(n) k(n − k) n(n − 1)/2 2n 16 27

Explanation: in the first case, n is equal to the set of k × (n − k) matrices. In the second case it
is equal to the set of all skew-symmetric n × n matrices, and in the third case n is the standard
representation of so(2n). In the fourth case n is a 16-dimensional spin representation and, in the
fifth and last case, it a 27-dimensional representation of E6.

We would like to determine Mss(Z)-orbits on n. Consider the case when n is the set of n × m

matrices. As is well known, using row-column operations, every matrix A can be transformed
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(reduced) into a matrix with integers d1 | d2 | . . . on the diagonal. The column operations corre-
spond to multiplying A by certain elementary matrices. For example, if m = 2, then multiplying
A from the right by (

1 1
0 1

)
,

(
0 1
1 0

)
and

(−1 0
0 1

)

corresponds, respectively, to:

(i) Adding the first column of A to the second.
(ii) Permuting the two columns of A.

(iii) Changing signs in the first column of A.

Similarly, row operations correspond to multiplying A by the elementary matrices from the
left. An inconvenience here is that the last two matrices are not in SL2(Z) since they have
determinant −1. In order to remedy this, we shall replace them by the following matrices of
determinant 1: (

1 1
0 1

)
,

(
0 −1
1 0

)
and

(−1 0
0 −1

)
.

Multiplying A by these three matrices corresponds to so-called strict column operations:

(i) Adding the first column of A to the second.
(ii) Permuting two columns of A, and changing the signs in one.

(iii) Changing the signs in both columns of A.

Since elementary matrices (of determinant one) generate SLn(Z), the strict row column re-
duction can be formulated as the following:

Every SLn(Z) × SLm(Z)-orbit in the set of n × m matrices contains a diagonal matrix d1 |
d2 | . . . where all entries, save perhaps one, are non-negative.

The proof of this result is inductive in nature. The first number d1 is the GCD of all matrix
entries. Using row-column operations we can arrange to have d1 on the left upper corner, with 0
in all other positions in the first row and column. In this way we reduce to (n − 1) × (m − 1).

We claim that this inductive procedure can be done in general. To explain, we need another
parabolic subgroup q = l ⊕ h, so-called Heisenberg parabolic subgroup. Here lss = [l, l] corre-
sponds to the subset of Δ given by {αi | 〈β,αi〉 = 0}. The possible cases are following.

g An+1 Dn+1 E6 E7

lss An−1 A1 × Dn−1 A5 D6

2.1. Fourier–Jacobi towers

(As described in the work of Weissman [W].) Fix a pair (G,M). Let g1 be the unique sum-
mand of lss which is not contained in m. Put{

m1 = m ∩ g1,

n = n ∩ g .
1 1
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Thus, starting from a pair (g,m) we have constructed another pair (g1,m1). Note, as a simple
observation, that this process can be continued as long as the pair is not equal to (An,An−1),
which we will call a terminal pair. The length of the tower

(g,m),

(g1,m1),

...

finishing with a terminal pair, is the rank of n. In particular, the rank of n1 is one less then the
rank of n.

Some examples (of rank 3):

(g,m) (E7,E6) (D6,A5) (A5,A2 × A2)

(g1,m1) (D6,D5) (D4,A3) (A3,A1 × A1)

(g2,m2) (A1,−) (A1,−) (A1,−)

In the last tower, the corresponding sequence n, n1 and n2 can be identified with 3 × 3, 2 × 2 and
1 × 1 matrices, respectively.

Theorem 2.1. Fix a pair (g,m) such that the rank of n is r . Let β , β1, . . . , βr−1 be the highest
roots for g, g1, . . . ,gr−1, respectively. Then every Mss(Z)-orbit in n contains an element

deβ + d1eβ1 + · · · + dr−1eβr−1

such that d | d1 | . . . | dr−1. Moreover, all dk can be picked to be non-negative except perhaps
dr−1 which can happen only if the terminal pair is (A1,−).

Proof. The proof is the induction on r . If r = 1, then the pair is terminal and we have two cases.
If the pair is (A1,−) then Mss is trivial and orbits are parameterized by integers. If the pair
is (An,An−1) then Mss = SLn(Z), and n = Zn. Here orbits are parameterized by non-negative
integers.

Let ΦM be the roots of m and Σ ⊆ Φ be the set of all roots in n. Then any element of n can
be written as

n =
∑
α∈Σ

tαeα

for some integers tα . If γ is in ΦM then the adjoint action of the one-parameter group eγ (u) on
eα is given by

eγ (t)(eα) = eα + t[eγ , eα].

Indeed, [eγ [eγ , eα]] = 0 since γ 
= −α, so the exponential series defining the action of eγ (u)

reduces down to the first two terms.
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Now assume that r > 1. Let n be in n. If n = 0, then there is nothing to prove. Otherwise, let
Σ1 ⊆ Σ the set of all roots in n1. Then

Σ = {β} ∪ Σβ ∪ Σ1

where Σβ is the set of all roots α in Σ such that 〈α,β〉 = 1. In order to use induction, we have
to show that n contains in its Mss(Z)-orbit an element such that

(i) tβ > 0 and tα = 0 for all α in Σβ .
(ii) tβ divides tα for all α in Σ1.

We deal first with (i). Recall that the Weyl group WM of M acts transitively on the set of roots
in Σ . After conjugating n by an element in WM , if necessary, we can assume that

0 < |tβ | � |tα|

for all α in Σ such that tα 
= 0. If tα 
= 0 for a root α in Σβ , then we can write tα = qtβ + r where
|r| < |tβ |. Notice that γ = α − β is a root. Furthermore, since nτ (α − β) = 0 it is a root in ΦM .
(Recall that τ is the simple root defining m.) It follows that

eγ (q)(tβeβ + · · · + tαeα + · · ·) = tβ + · · · + reα + · · · .

(This formula is correct if [eγ , eβ ] = −eα . If [eγ , eβ ] = eα then q has to be replaced by −q .) In
any case, if tα 
= 0 for some α in Σβ then we can decrease the smallest non-zero coordinate of n.
Proceeding in this fashion we can accomplish (i) in finitely many steps.

Next, we deal with (ii). Let α be in Σ1 such that tβ does not divide tα . After conjugating by
an element of WM1 , if necessary, we can assume that α = β1. Let δ be a simple root such that
〈β, δ〉 = 1. Then α = β1 + δ is a root in Σβ and

eδ(1)(tβeβ + tβ1eβ1 + · · ·) = tβ + · · · ± tβ1eα + · · · .

Thus we are back in the situation of the proof of (i) and, in the same fashion, we can decrease
the smallest coordinate of n. This process has to stop in finitely many steps. This proves part (ii)
and, therefore, the theorem. �
Corollary 2.2. (See [RRS].) Let k be any field. If (A1,−) is not the terminal pair, then n =
Ω0 ∪ · · · ∪ Ωr where Ωi is the Mss(k)-orbit of eβ + · · · + eβi−1 . If (A1,−) is the terminal pair
then Ωr is a union of M(k)-orbits parameterized by classes of squares in k×. In any case,
elements in Ωi are said to have rank i.

3. Degenerate principal series

In this section we shall assume that G = Gad is of adjoint type. We give an explicit model
of the minimal representation of G. The discussion here is based on [S] and [W]. Since G is
assumed to be of adjoint type, it acts faithfully on the Lie algebra g and the torus T of G is
isomorphic to Λc ⊗ k× where Λc is the lattice of integral coweights. It is the lattice dual to the
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root lattice with respect to the usual form 〈·,·〉. Let λ(t) denote the element λ ⊗ t in T . It acts on
eα by the formula

λ(t)eαλ(t)−1 = t 〈λ,α〉eα.

Let τ be the simple root defining P , and ρ and ρ̄ the half-sum of all roots in N and N̄ ,
respectively. Let Δ :M → R+ be the modular character with respect to N̄ , which means that∫

N̄

f
(
mxm−1)dx = Δ(m)

∫
N̄

f (x) dx.

Let ρN and ρN̄ be the half-sum of all roots in n and n̄, respectively. Then the composition of Δ

with the embedding of T into M is given by

Δ1/2(λ(p)
) = |p|〈λ,ρN̄ 〉.

Furthermore, let χ :M → R+ be a character such that χ2〈τ,ρN 〉 = Δ. Define the principal series
I (s) = IndG

P̄
(χs), the space of all locally constant functions on G such that

f (n̄mg) = χs(m)Δ1/2(m)f (g).

There is a non-degenerate G-invariant hermitian pairing (·,·)s : I (−s)× I (s) → C defined by

(f−s , fs)s =
∫

P̄ \G
f−s(x)f̄s(x) dx =

∫
N

f−s(x)f̄s(x) dx.

Here the last equality follows since P̄N is an open subset of G. Inside I (s) there is a P -
submodule of all functions in I (s) supported in the open subset P̄N . This can be identified
with S(N), the space of locally constant, compactly supported functions on N . The action of the
maximal parabolic P = MN on S(N) is given by{

π(n)f (x) = f (x + n),

π(m)f (x) = χs(m)Δ1/2(m)f (m−1xm).

Next, we shall analyze the structure of S(N), as a P -module, using the Fourier transform.
To that end, notice that we have a natural pairing 〈·,·〉 between N and N̄ induced by the Killing
form. Thus N̄ can be identified with the dual of N . The Fourier transform is an isomorphism of
(vector spaces) S(N) and S(N̄) defined by

f̂ (y) =
∫
N

f (x)ψ
(〈x, y〉)dx.

Using the Fourier transform we shall transfer the action of P from S(N) to S(N̄). Let f ∈ S(N̄),
and m ∈ M . Then the Fourier transform of π(m)f is

̂(
π(m)f

)
(y) = χs(m)Δ1/2(m)

∫
f

(
m−1xm

)
ψ

(〈x, y〉)dx.
N
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We introduce a new variable z by z = m−1xm. Then dx = Δ(m)−1 dz, and the formula simplifies
to

̂(
π(m)f

)
(y) = χs(m)Δ−1/2(m)f̂

(
m−1ym

)
.

This gives a formula for the action of M on S(N̄). Similarly—but much easier—we can derive
the action of N on S(N̄). The two formulas are summarized below:

{
(π(n)f )(y) = f (y)ψ(−〈n,y〉) and

(π(m)f )(y) = χs(m)Δ−1/2(m)f (m−1ym),

where m ∈ M , n ∈ N and f ∈ S(N̄).
Let Ωi be the set of elements of rank i in N̄ . Let Si be the subset of S(N) of all functions

f such that the Fourier transform f̂ vanishes on
⋃

j<i Ωj . Then Si is a P -submodule, and
the quotient Si/Si+1 is isomorphic to S(Ωi)—the space of locally constant and compactly sup-
ported functions on Ωi—with the action given by the previous formulas. Every subquotient is
irreducible by Mackey’s lemma.

Let us look now at the special case s = s0 when the minimal Vmin representation is the
unique submodule of I (−s0). Notice that the pairing (·,·)s0 restricted to Vmin × S(N) is left
non-degenerate. Indeed, any f 
= 0 in Vmin will give you a non-trivial function when restricted
to N (since N is dense in P̄ \G) and, therefore, a non-trivial distribution of S(N). In fact, we
have a bit more. The pairing is left non-degenerate even when restricted to Vmin × S1. To see this
recall that Vmin is unitarizable. In particular, by a theorem of Howe and Moore, if an element
v in Vmin is fixed by N then v = 0. Since any vector in Vmin perpendicular to S1 is N -fixed it
must be zero. This shows that the pairing, restricted to Vmin × S1, is left non-degenerate. Since
the N -rank of Vmin is one the pairing is trivial on S2 ⊆ S1. (This is basically a definition of the
N -rank.) Thus the pairing descends to a non-degenerate pairing in both variables of Vmin and
S1/S2 = S(Ω1), where the action of P on S(Ω1) is given by

{
(π(n)f )(y) = f (y)ψ(−〈n,y〉) and

(π(m)f )(y) = χs0(m)Δ−1/2(m)f (m−1ym).

Here m ∈ M , n ∈ N and f ∈ S(Ω1). It follows that Vmin, as a P -module, embeds into the
P -smooth dual of S(Ω1). This dual can be described in the following way. While there is no
M-invariant measure on Ω1, there exists a (modular) character δ1 of M and a measure dy on Ω1
such that ∫

Ω1

f
(
mym−1)dy = δ1(m)

∫
Ω1

f (y)dy

for every locally constant and compactly supported function f on Ω1. The P -smooth dual of
S(Ω1) is isomorphic to the space of locally constant, but not necessarily compactly supported,
functions on Ω1 with the action of P given by

{
(π(n)f )(y) = f (y)ψ(−〈n,y〉) and

−1
(π(m)f )(y) = χ1(m)f (m ym),
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where the character χ1 is defined by χ1 · (χs0 · Δ−1/2) = δ1. It appears that we have an annoying
issue of figuring out what δ1 is. It turns out that is not necessary. To this end, note that Vmin is
a quotient of I (s0) and the pairing of Vmin and I (s0) descends down to a pairing between Vmin
and Vmin. It follows that S1/S2 is a submodule of Vmin (the second factor) which shows that
χ1 = χs0 · Δ−1/2.

The possible cases for s0 (see [W]) and 〈τ,ρN 〉 are following.

g An+1 A2n+1 Dn+1 Dn+1 E6 E7

mss An An × An An Dn D5 E6

s0 0 n n − 2 1 3 5

〈τ,ρN 〉 n/2 + 1 n + 1 n n 6 9

4. Eigenvalues of Hecke operators

Consider the root system of type An, Dn or En, and let ωj be the fundamental coweights as in
Bourbaki tables. Let ω̂b be the fundamental weight corresponding to the unique branching vertex
of the Dynkin diagram for Dn and En. This is ω4 for all three exceptional groups. For the root
system of type An there is no branching point, but we define ω̂b to be the fundamental coweight
of the middle vertex if n is odd, or the arithmetic mean of the two middle vertices if n is even.
Let ρ be the half sum of all positive roots. The Satake parameter of the minimal representation
is λmin(p) ∈ Ĝ, the dual group of G, where

λmin = ρ − ω̂b.

If ωi is a miniscule fundamental coweight, then the eigenvalue of the Hecke operator
p−〈ρ,ωi 〉Ti on the spherical vector of the minimal representation is

TrV (ωi)

(
λmin(p)

) =
∑
μ∼ωi

p〈λmin,μ〉,

the trace of λmin(p) on the representation V (ωi) of Ĝ with the highest weight ωi . Here the
sum is taken over all weights μ of V (ωi). (Weight spaces of the miniscule representation are
one-dimensional and are Weyl group conjugate to ωi .) We now give explicit formulas in the
following cases:
Case A2n−1, and ωi = ω1, the highest weight of the standard 2n-dimensional representation.
Then the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1 + pn−2 + · · · + p + 2 + p−1 + · · · + p2−n + p1−n.

Case A2n, and ωi = ω1, the highest weight of the standard 2n-dimensional representation. Then
the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1/2 + pn−3/2 + · · · + p1/2 + 1 + p−1/2 + · · · + p3/2−n + p1/2−n.

Case Dn+1, and ωi = ω1, the highest weight of the standard (2n+2)-dimensional representation.
Then the eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is

pn−1 + · · · + p2 + 2p + 2 + 2p−1 + p−2 + · · · + p1−n.
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Case E6, and ωi = ω1, the highest weight of the standard 27-dimensional representation of E6.
In the terminology of Bourbaki, the Satake parameter is

λmin = (0,1,1,2,3,−3,−3,3).

It will be convenient to realize V (ω1) as an internal module in E7. More precisely, consider the
root system of type E7 as in Bourbaki tables. If we remove the last simple root α7 then we get a
root system E6. As usual, write every positive root of E7 as α = ∑

mi(α)αi . The subspace⊕
m7(α)=1

gα

is the 27-dimensional representations of E6 with the highest weight ω1, i.e. the first fundamental
weight. Thus to tabulate the weights of this representation, we have to write down all roots α of
E7 such that m7(α) = 1 which is the same as 〈α,ω7〉 = 1, where ω7 = e6 + 1

2 (e8 − e7). These
are ±ei + e6 (1 � i � 5), e8 − e7 (total of 11 roots here) and

1

2

(
e8 − e7 + e6 +

5∑
i=1

(−1)ν(i)ei

)

where
∑

ν(i) is odd. This, second, group has 16 roots.
(Warning: ω7 is the fundamental weight for E7. While simple roots for E6 are also simple

roots for E7 this is not true for fundamental weights. First 6 fundamental weights for E7 are not
the fundamental weights for E6.)

The eigenvalue of the Hecke operator p−〈ρ,ω1〉T1 is( ∑
m7(α)=1

p〈λmin,α〉
)

= p6 + p5 + 2p4 + 2p3 + 3p2 + 3p + 3

+ 3p−1 + 3p−2 + 2p−3 + 2p−4 + p−5 + p−6.

Case E7, and ωi = ω7, the highest weight of the 56-dimensional representation of E7. Here the
Satake parameter is

λmin = (0,1,1,2,3,4,−13/2,13/2).

Again, the representation Vω7 can be written down as an internal module in E8. Let α8 be the
root for E8 such that other simple roots belong to E7. Then the 56-dimensional representation is
equal to ⊕

m8(α)=1

gα.

So again we have to tabulate all roots for E8 such that 〈α,ω8〉 = 1. Since ω8 = e7 + e8, these are
±ei + e7 (1 � i � 6), ±ei + e8 (1 � i � 6) and

1

2

(
e8 + e7 +

6∑
(−1)ν(i)ei

)

i=1
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where
∑

ν(i) is even. There are 32 of this last type. Now it is not too difficult to see that the
eigenvalue of the Hecke operator p−〈ρ,ω7〉T7 for E7 is

( ∑
m8(α)=1

p〈λmin,α〉
)

= p
21
2 + p

19
2 + p

17
2 + 2p

15
2 + 2p

13
2 + 3p

11
2 + 3p

9
2 + 3p

7
2 + 4p

5
2

+ 4p
3
2 + 4p

1
2 + 4p− 1

2 + 4p− 3
2 + 4p− 5

5 + 3p− 7
2 + 3p− 9

2

+ 3p− 11
2 + 2p− 13

2 + 2p− 15
2 + p− 17

2 + p− 19
2 + p− 21

2 .

5. Satake transform

Let U be the maximal nilpotent subgroup corresponding to our choice of simple roots. Let ωi

be a miniscule fundamental coweight. The purpose of this section is to decompose the double
coset Kωi(p)K as a union of single cosets uμ(p)K , where u ∈ U . This will be accomplished
by means of the Satake transform.

The modular character δ is given by δ(λ(p))1/2 = p〈ρ,λ〉. The Satake transform S :HG → HT

is given by

S(f )(t) = δ(t)−1/2
∫
N

f (tu) du.

It is known that S(Ti) = p〈ρ,ωi 〉V (ωi) where V (ωi) is the fundamental representation of Ĝ = Gsc

with the highest weight ωi . Here we use the identification of HT with C[Λc], the group algebra
of the coweight lattice Λc. Under this identification V (ωi) is a sum of delta functions for all
weights μ of V (ωi). It follows that S(Ti)(μ(p)) = 0 unless μ is a weight of V (ωi) in which case
it is equal to p〈ρ,ωi 〉. Proposition 13.1 in [GGS] implies that, for every weight μ of V (ωi), the
number of single cosets of type uμ(p)K contained in Kωi(p)K is equal to p〈ρ,μ+ωi 〉.

Proposition 5.1. Let ωi be a miniscule fundamental coweight, and μ a Weyl group conjugate
of ωi . If uμ(p)K is contained in Kωi(p)K then it is equal to

( ∏
α>0, 〈α,μ〉=1

eα(tα)

)
μ(p)K

for some (unique) tα ∈ Zp/pZp .

Proof. Notice that eα(tα) commute since the scalar product of μ and any root can be only −1, 0
or 1. In particular, the product in the proposition is well defined. Furthermore, since eα(tα) with
tα ∈ Zp are contained in K the single cosets (as defined in the statement) are contained in our
double coset. We shall first show uniqueness. If

∏
eα(tα)μ(p)K =

∏
eα

(
t ′α

)
μ(p)K
α>0, 〈α,μ〉=1 α>0, 〈α,μ〉=1
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then

∏
α>0, 〈α,μ〉=1

eα

((
tα − t ′α

)
/p

) ∈ K.

This is possible if and only if tα ≡ t ′α (mod K), as claimed. Finally, since we know that the num-
ber of single cosets of the form uμ(p)K is equal to p〈ρ,ωi+μ〉, in order to prove the proposition
it remains to verify the following lemma.

Lemma 5.2. Let μ be a Weyl group conjugate of the miniscule coweight ωi . Then the number of
positive roots α such that 〈α,μ〉 = 1 is equal to 〈ρ,ωi + μ〉.

Proof. Let w be a Weyl group element such that μ = w(ωi). Let α be a positive root such that
〈α,μ〉 = 1. Then

1 = 〈α,μ〉 = 〈w−1(α),ωi〉.

This implies that w−1(α) = β is positive, so we are counting the number of positive roots β such
that w(β) is positive and 〈β,ωi〉 = 1. Since 〈β,ωi〉 = 1 or 0 for every positive root, the number
of positive roots α such that 〈α,μ〉 = 1 is equal to

∑
β>0,w(β)>0

〈β,ωi〉.

Since (this is well known)
∑

β>0,w(β)>0 β = ρ + w−1(ρ) the lemma follows. �
6. Spherical vector

We would like to determine the spherical vector of the minimal representation. Under the
action of M(Zp) the orbit Ω1 decomposes as a union of orbits each containing pme−τ for some
integer m. Thus a spherical vector f , since it is fixed by M(Zp), is determined by its value on
pme−τ for all integers m. In order to simplify notation, let us write

f (m) = f
(
pme−τ

)
.

Next, since f is fixed by N(Zp) as well, f (m) = 0 if m < 0. To determine f exactly we
shall use the fact that it is an eigenvector for the Hecke operator Ti = Char(KωiK) where ωi

is a miniscule fundamental coweight. As we know from the previous section, the double coset
KωiK can be written as a union of single cosets uμ(p)K where μ is a Weyl group conjugate of
ωi and u is in U ∩ K . Also, for a fixed μ there are p〈ρ,μ+ωi 〉 different single cosets. It follows
that e−τ is a highest weight vector for M ∩ U . Thus, it follows that

(Ti ∗ f )(m) =
∑
μ

p〈ρ,μ+ωi 〉χs0(μ)Δ−1/2(μ)f
(
m + 〈μ,τ 〉).
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Since 〈μ,τ 〉 is equal to −1, 0 or 1, the formula gives a recursion relation as indicated in the
introduction. It remains to calculate this formula in every case. But first we state the final result.

Theorem 6.1. Let Ω1 be the set of rank one elements in N̄ . Recall that the Chevalley basis
gives a natural coordinate system of N̄ . If x ∈ Ω1, let pm be the greatest common divisor of all
coordinates of x. Then f (x) = 0 unless m � 0. If m � 0 then, after normalizing f (1) = 1,

f (x) = 1 + pd + · · · + pmd

where d is given by the following table:

g An+1 A2n+1 Dn+1 Dn+1 E6 E7

mss An An × An An Dn D5 E6

d n/2 0 1 n − 2 2 3

Proof. We calculate the recursive relation on a case by case basis using the data from the fol-
lowing tables. The first table includes the half sum of all the positive roots and the simple root τ

not in M . The second table gives the characterization of χs0(·)Δ−1/2(·) in terms of ρN , the half
sum of the roots in M .

(G,M) ρ τ

(A2n−1,An−1 × An−1) (n − 1
2 , n − 3

2 , . . . , 1
2 − n) (0, . . . ,0,1,−1,0, . . . ,0)

(Dn+1,Dn) (n,n − 1, . . . ,1,0) (1,−1,0, . . . ,0)

(Dn+1,An) (n,n − 1, . . . ,1,0) (0, . . . ,0,1,1)

(E6,D5) (0,1,2,3,4,−4,−4,4) 1
2 (1,−1,−1,−1,−1,−1,−1,1)

(E7,E6) (0,1,2,3,4,5,− 17
2 , 17

2 ) (0,0,0,0,−1,1,0,0)

ρN χs0Δ−1/2

(A2n−1,An−1 × An−1) ( n
2 , . . . , n

2 ,− n
2 , . . . ,− n

2 ) p− 1
n 〈·,ρN 〉

(Dn+1,Dn) (n,0, . . . ,0) p( 1
n −1)〈·,ρN 〉

(Dn+1,An) ( n
2 , . . . , n

2 ) p− 2
n 〈·,ρN 〉

(E6,D5) (0,0,0,0,0,−4,−4,4) p
− 1

2 〈·,ρN 〉

(E7,E6) (0,0,0,0,0,9,− 9
2 , 9

2 ) p
− 4

9 〈·,ρN 〉

We start with the case G = Dn+1 and M = Dn. The Weyl group orbit of the highest weight
ω1 = e1 consists of ±ei for 1 � i � n + 1. The eigenvalue of T1 is

pn
(
pn−1 + · · · + p2 + 2p + 2 + 2p−1 + p−2 + · · · + p1−n

)
.
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Next, we shall work out T1 ∗ f (m) using the action of single cosets. The total number of single
cosets is

p2n + p2n−1 + · · · + pn+1 + 2pn + pn−1 + · · · + p + 1.

In order to calculate the coefficients a1 and a−1 in the recursive relation we are interested in
conjugates μ of ω1 such that 〈τ,μ〉 = 1 or −1. They are, followed by the number of cosets of
the type uμ(p)K , and the value χs0(μ)Δ−1/2(μ):

μ 〈τ,μ〉 p〈ρ,μ+ω1〉 χs0Δ−1/2

e1 1 p2n p1−n

e2 −1 p2n−1 1

−e1 −1 1 pn−1

−e2 1 p 1

In particular, it is not difficult to check that the right-hand side of the recursion can be written as

(
pn+1 + p

)
f (m + 1) + (

p2n−2 + · · · + pn+1 + 2pn + pn−1 + · · · + p2)f (m)

+ (
p2n−1 + pn−1)f (m − 1).

This gives plenty of reductions with the left-hand side of the recursion, which is the product of
the eigenvalue of T1 and f (m), and the recursion can be rewritten as

(
p2n−1 + pn+1 + pn−1 + p

)
f (m) = (

pn+1 + p
)
f (m + 1) + (

p2n−1 + pn−1)f (m − 1),

which is equivalent to

pn−2[f (m) − f (m − 1)
] = [

f (m + 1) − f (m)
]
.

This, of course, implies that f (m) = 1 + pn−2 + · · · + pm(n−2) or, in words, it is a geometric
series in pn−2.

We now address the case G = A2n−1 and M = An−1 ×An−1. The Weyl group of the miniscule
weight ω1 = e1 consists of the elements ei (1 � i � 2n). As before, we need the eigenvalue of T1,
which is

p
2n−1

2
(
pn−1 + · · · + p + 2 + p−1 + · · · + p1−n

)
,

because this (times f (m)) gives the left-hand side of the recursion formula. Also,

χs0(ei)Δ
−1/2(ei) = p− 1

n
〈ei ,ρN 〉 =

{
p−1/2, 1 � i � n,

p1/2, n < i � 2n.
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Notice that only the elements en and en+1 have non-zero dot product with τ (1 and −1,
respectively), and p〈ρ,ei+e1〉 = p2n−i . Thus, the right-hand side of the equation is

p− 1
2
[(

p2n−1 + · · · + pn+1)f (m) + pnf (m + 1)
]

+ p
1
2
[
pn−1f (m − 1) + (

pn−2 + · · · + 1
)
f (m)

]
.

After combining both sides of the equation and simplifying, this becomes

f (m) − f (m − 1) = f (m + 1) − f (m).

Hence, f (m) = m.
The next case is G = Dn+1 and M = Dn. As is the case when G = Dn+1 and M = An, we

consider the Weyl group orbit of ω1 = (1,0, . . . ,0). As noted above, this orbit consists of all
elements ±ei (1 � i � n + 1). First, we tabulate those elements μ such that 〈μ,τ 〉 
= 0.

μ 〈μ,τ 〉 p〈ρ,μ+ω1〉 χs0Δ−1/2

en 1 pn+1 p−1

en+1 1 pn p−1

−en −1 pn−1 p

−en+1 −1 pn p

The left-hand side of the recursion is identical to the other case with G = Dn+1, but the right-
hand side is

f (m + 1)
(
pn + pn−1) + f (m − 1)

(
pn+1 + pn

)
+ f (m)

((
p2n + · · · + pn+2)p−1 + (

pn−2 + · · · + 1
)
p
)
.

After cancellation and simplification the recursion becomes

p
[
f (m) − f (m − 1)

] = [
f (m + 1) − f (m)

]
.

Hence, f (m) = 1 + p + · · · + pm.
Next we consider G = E6 and M = D5. Recall that the eigenvalue for the Hecke operator T1

is

p8(p6 + p5 + 2p4 + 2p3 + 3p2 + 3p + 3 + 3p−1 + 3p−2 + 2p−3 + 2p−4 + p−5 + p−6)
= p14 + p13 + 2p12 + 2p11 + 3p10 + 3p9 + 3p8 + 3p7 + 3p6 + 2p5 + 2p4 + p3 + p2.
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As we have seen, there are 27 elements in the orbit of ω1. We list below those which have the
property that 〈μ,τ 〉 
= 0 along with the number of cosets of type uμ(p)K and χs0(μ)Δ−1/2(μ).

μ 〈μ,τ 〉 p〈ρ,μ+ω1〉 p
− 1

2 〈μ,ρN 〉

e6 − e1 −1 p4 p2

e6 + e2 −1 p5 p2

e6 + e3 −1 p6 p2

e6 + e4 −1 p7 p2

e6 + e5 −1 p8 p2

1
2 (−e1 + e2 + e3 + e4 + e5 + e6 − e7 + e8) −1 p15 p−1

1
2 (−e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8) 1 p5 p−1

1
2 (e1 + e2 − e3 − e4 − e5 + e6 − e7 + e8) 1 p6 p−1

1
2 (e1 − e2 + e3 − e4 − e5 + e6 − e7 + e8) 1 p7 p−1

1
2 (e1 − e2 − e3 + e4 − e5 + e6 − e7 + e8) 1 p8 p−1

1
2 (e1 − e2 − e3 − e4 + e5 + e6 − e7 + e8) 1 p9 p−1

e8 − e7 1 p16 p−4

From the table above we can read off the coefficients of f (m + 1) and f (m − 1) on the
right-hand side. These are

f (m − 1)
[
p6 + p7 + p8 + p9 + p10 + p14]

and

f (m + 1)
[
p4 + p5 + p6 + p7 + p8 + p12].

Similarly, we can tabulate the values of p〈ρ,μ+ω1〉 and p− 1
2 〈μ,ρN 〉 when 〈μ,τ 〉 = 0. This will

show that the final term on the right-hand side of the equation is

f (m)
[
p2 + p3 + p4 + p5 + p6 + p7 + p8 + 2p9 + 2p10 + 2p11 + p12 + p13].

After subtracting this term from both sides and dividing by p4 + p5 + p6 + p7 + p8 + p12 this
becomes

f (m)
[
p2 + 1

] = f (m − 1)p2 + f (m + 1).

This is obviously equivalent to

p2[f (m) − f (m − 1)
] = [

f (m + 1) − f (m)
]
,

which implies that f (m) = 1 + p2 + · · · + p2m.
We now address the final case: G = E7 and M = E6. As we have already computed the

eigenvalue for the Hecke operator p−〈ω7,ρ〉T7 we see that the left-hand side of our equation is
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f (m)
[
p24 + p23 + p22 + 2p21 + 2p20 + 3p19 + 3p18 + 3p17 + 4p16 + 4p15 + 4p14

+ 4p13 + 4p12 + 4p11 + 3p10 + 3p9 + 3p8 + 2p7 + 2p6 + p5 + p4 + p3].
As in the case of G = E6, one must tabulate each of the 56 elements μ in the orbit of ω7 along

with number of cosets of type uμ(p)K (which is p〈ρ,μ+ω7〉), and the value χs0(μ)Δ−1/2(μ)

(which is p− 4
9 〈μ,ρN 〉). As before, we do this for those elements μ such that 〈μ,τ 〉 
= 0.

μ 〈μ,τ 〉 p〈ρ,μ+ω7〉 p
− 1

2 〈μ,ρN 〉

e6 − e7 1 p27 p−6

−e5 − e7 1 p18 p−2

1
2 (−e1 + e2 + e3 + e4 − e5 + e6 − e7 − e8) 1 p17 p−2

1
2 (e1 − e2 + e3 + e4 − e5 + e6 − e7 − e8) 1 p16 p−2

1
2 (e1 + e2 − e3 + e4 − e5 + e6 − e7 − e8) 1 p15 p−2

1
2 (e1 + e2 + e3 − e4 − e5 + e6 − e7 − e8) 1 p14 p−2

1
2 (−e1 − e2 − e3 + e4 − e5 + e6 − e7 − e8) 1 p14 p−2

1
2 (−e1 − e2 + e3 − e4 − e5 + e6 − e7 − e8) 1 p13 p−2

1
2 (−e1 + e2 − e3 − e4 − e5 + e6 − e7 − e8) 1 p12 p−2

1
2 (e1 − e2 − e3 − e4 − e5 + e6 − e7 − e8) 1 p11 p−2

−e5 − e8 1 p p2

e6 − e8 1 p10 p−2

e5 − e7 −1 p26 p−2

−e6 − e7 −1 p17 p2

1
2 (−e1 + e2 + e3 + e4 + e5 − e6 − e7 − e8) −1 p16 p2

1
2 (e1 − e2 + e3 + e4 + e5 − e6 − e7 − e8) −1 p15 p2

1
2 (e1 + e2 − e3 + e4 + e5 − e6 − e7 − e8) −1 p14 p2

1
2 (e1 + e2 + e3 − e4 + e5 − e6 − e7 − e8) −1 p13 p2

1
2 (−e1 − e2 − e3 + e4 + e5 − e6 − e7 − e8) −1 p12 p2

1
2 (−e1 − e2 + e3 − e4 + e5 − e6 − e7 − e8) −1 p11 p2

1
2 (−e1 + e2 − e3 − e4 + e5 − e6 − e7 − e8) −1 p11 p2

1
2 (e1 − e2 − e3 − e4 + e5 − e6 − e7 − e8) −1 p10 p2

−e6 − e8 −1 1 p6

e5 − e8 −1 p11 p2

So, the right-hand side consists of

f (m + 1)
[
p21 + p16 + p15 + p14 + p13 + 2p12 + p11 + p10 + p9 + p8 + p3]

+ f (m − 1)
[
p24 + p19 + p18 + p17 + p16 + 2p15 + p14 + p13 + p12 + p11 + p6]

+ f (m)
[
p23 + p22 + p21 + 2p20 + 2p19 + 2p18 + 2p17 + 2p16 + p15 + 2p14

+ 2p13 + p12 + 2p11 + 2p10 + 2p9 + 2p8 + 2p7 + p6 + p5 + p4].
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We simplify (just as before) and this yields:

p3[f (m) − f (m − 1)
] = [

f (m + 1) − f (m)
]

which implies that f (m) = 1 + p3 + · · · + p3m. The theorem is proved. �
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