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Let X be a nonsingular variety (with dim X � 2) over an alge-
braically closed field k of characteristic zero. Let α : Spec k�t� → X
be an arc on X , and let v = ordα be the valuation given by the or-
der of vanishing along α. We describe the maximal irreducible sub-
set C(v) of the arc space of X such that valC(v) = v . We describe
C(v) both algebraically, in terms of the sequence of valuation ide-
als of v , and geometrically, in terms of the sequence of infinitely
near points associated to v . As a corollary, we get that v is deter-
mined by its sequence of centers. Also, when X is a surface, our
construction also applies to any divisorial valuation v , and in this
case C(v) coincides with the one introduced in [L. Ein, R. Lazars-
feld, M. Mustaţǎ, Contact loci in arc spaces, Compos. Math. 140
(2004) 1229–1244, Example 2.5].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a nonsingular variety over a field k. A k-arc γ on X is a morphism of k-schemes
γ : Spec k�t � → X . There is a scheme X∞ , called the arc space of X , which parametrizes the arcs
on X . We refer the reader to [EM, Section 2] for the construction of X∞ . Denote the closed point
of Spec k�t � by o.

In this paper, I study valuations ordγ : O X,γ (o) → Z�0 ∪ {∞} given by the order of vanishing
along a k-arc γ : Spec k�t � → X . Such valuations are precisely the Z�0 ∪ {∞}-valued valuations with
transcendence degree zero. I associate to ordγ several different natural subsets of the arc space X∞ .
I prove if γ is a nonsingular arc, then these subsets associated to ordγ are equal. Furthermore, I show
this subset is irreducible, and the valuation given by the order of vanishing along a general arc of this
subset is equal to the original valuation ordγ .
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The motivation for this project was the discovery by Ein, Lazarsfeld, and Mustaţǎ [ELM, Theorem C]
that divisorial valuations (equivalently, valuations with transcendence degree dim X −1) correspond to
a special class of subsets of the arc space called cylinders. More specifically, for a divisorial valuation
valE given by the order of vanishing along a prime divisor E over X , there is an irreducible cylinder
Cdiv(E) ⊆ X∞ such that for a general arc γ ∈ Cdiv(E), we have that the order of vanishing of any
rational function f ∈ C(X) along γ equals its order of vanishing along E . In symbols, ordγ ( f ) =
valE ( f ) for all f ∈ C(X). Conversely, it is shown in [ELM, Theorem C] that every valuation given by
the order of vanishing along a general arc of a cylinder is a divisorial valuation.

The goal of this paper is to investigate whether other types of valuations, besides divisorial ones,
have a similar interpretation via the arc space. We find there is a nice answer for valuations given
by the order of vanishing along a nonsingular arc on a nonsingular variety X . If X is a surface, all
valuations with value group Z

r (lexicographically ordered) for some r are equivalent to a valuation
of this type. One can interpret our results as being complementary to those of Ein et al. as follows.
Both say that valuations are encoded in a natural way as closed subsets of the arc space. We address
the case when the transcendence degree is zero, whereas Ein et al. study the case of valuations with
transcendence degree dim X − 1.

1.1. Valuations and subsets of the arc space

In this section, I begin by explaining the relationship between valuations on a nonsingular vari-
ety X over a field k and subsets of the arc space X∞ of X . I then construct several natural subsets of
the arc space that one might associate to a valuation. One of the main results of this paper is that for
a large class of valuations, these different constructions agree, i.e. they define the same subset of the
arc space.

We need to introduce some notation. An arc γ : Spec k�t � → X gives a k-algebra homomor-
phism γ ∗ : Ô X,γ (o) → k�t �, where o denotes the closed point of Spec k�t �. We define a valuation
ordγ : Ô X,γ (o) → Z�0 ∪ {∞} by ordγ ( f ) = ordt γ

∗( f ) for f ∈ Ô X,γ (o) . If γ ∗( f ) = 0, we will adopt the
convention that ordγ ( f ) = ∞.

Given an ideal sheaf a ⊆ O X on X we set ordγ (a) = min f ∈aγ (o)
ordγ ( f ). For a nonnegative inte-

ger q, we define the qth order contact locus of a by

Cont�q(a) = {
γ : Spec k�t � → X

∣∣ ordγ (a) � q
}
. (1)

The following definition appears in [ELM, p. 3], and provided, at least for us, the initial link be-
tween valuations and arc spaces:

Definition 1.1. Let C ⊆ X∞ be a nonempty irreducible subset. Assume C is a cylinder [ELM, p. 4].
Define a valuation valC : k(X) → Z on the function field k(X) of X as follows. For f ∈ k(X), set

valC ( f ) = ordγ ( f )

for general γ ∈ C . Equivalently, if α ∈ C is the generic point of C , then valC ( f ) = ordα( f ). (Caveat:
α need not be a k-valued point of X∞ . See Remark 2.3.)

It turns out that the conditions that C is a cylinder and X is nonsingular imply that valC ( f ) is
always finite [ELM, Proposition 1.1]. If we drop the assumption that C is a cylinder, then the map ordα

(where α is the generic point of C ) is a Z�0 ∪ {∞}-valued valuation on O X,α(o) .
We now describe a way to go from valuations centered on X to subsets of the arc space. Following

Ishii [Ishii2, Definition 2.8], we associate to a valuation v a subset C(v) ⊆ X∞ in the following way.

Definition 1.2. Let p ∈ X be a (not necessarily closed) point. Let v : Ô X,p → Z�0 ∪{∞} be a valuation.
Define the maximal arc set C(v) by
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C(v) = {
γ ∈ X∞

∣∣ ordγ = v, γ (o) = p
} ⊆ X∞,

where the bar denotes closure in X∞ .

If we start with an irreducible subset C , we get a valuation valC by Definition 1.1. We can then
form the subset C(valC ) as in Definition 1.2. We have C ⊆ C(valC ) because C(valC ) contains the
generic point of C . In general, we do not have equality.

We can associate another subset of X∞ to a valuation v on a nonsingular variety X as follows. Let
{Eq}q�1 be the sequence of divisors formed by blowing up successive centers of v (see Definition 2.8).
Following [ELM, Example 2.5], to each divisor Eq we associate a cylinder Cq = Cdiv(Eq) ⊆ X∞ . Using
notation we will explain in Section 2, we will define Cq = μq∞(Cont�1(Eq)). In words, Cq is simply
the set of arcs on X whose lift to Xq−1 (a model of X formed by blowing up q − 1 successive centers
of v) has the same center on Xq−1 as v . This collection {Cq}q�1 of cylinders forms a decreasing
nested sequence. We take their intersection,

⋂
q�1 Cq , to get another subset of X∞ that is reasonable

to associate with v .
On the other hand, another way the valuation v can be studied is through its valuation ideals

aq = { f ∈ Ô X,p | v( f ) � q}, where q ranges over the positive integers. The set
⋂

q�1 Cont�q(aq) is yet
another reasonable set to associate with v .

Given an arc α : Spec k�t � → X , we have an induced map α∗ : Ô X,α(o) → k�t �. We associate to
ordα the set

I = {
γ ∈ X∞

∣∣ γ (o) = α(o), ker
(
α∗) ⊆ ker

(
γ ∗) ⊆ Ô X,α(o)

}
. (2)

In words, I is the set of arcs γ with ordγ ( f ) = ∞ for all f ∈ Ô X,α(o) with ordα( f ) = ∞.
Finally, let R = {α ◦ h ∈ X∞ | h : Spec k�t � → Spec k�t �}. In words, R is the set of k-arcs that are

reparametrizations of α.
The main result of this paper is that for valuations v = ordα , all five of these closed subsets (C(v),⋂

q�1 Cq ,
⋂

q�1 Cont�q(aq), I , R) are equal. Furthermore, this subset is irreducible, and the valuation
given by the order of vanishing along a general arc of this subset is equal to v .

For convenience, we will assume the arc α we begin with is normalized, that is, the set {v( f ) |
f ∈ Ô X,p, 0 < v( f ) < ∞} (where v = ordα ) is nonempty and the greatest common factor of its
elements is 1. Every arc valuation taking some value strictly between 0 and ∞ is a scalar multiple of
a normalized valuation.

Also, we restrict ourselves to considering the k-arcs in the sets described above. We denote
by (X∞)0 the subset of points of X∞ with residue field equal to k. If D ⊆ X∞ , then we set
D0 = D ∩ (X∞)0.

Theorem 1.3. Let α : Spec k�t � → X be a normalized arc on a nonsingular variety X (dim X � 2) over an
algebraically closed field k of characteristic zero. Set v = ordα . Then the following closed subsets of (X∞)0 are
equal:

C(v)0 =
( ⋂

q�1

Cq

)
0
=

( ⋂
q�1

Cont�q(aq)

)
0
= (I)0 = R.

Furthermore, the valuation given by the order of vanishing along a general arc of this subset is equal to v.

As a corollary, we get that k-arc valuations are determined by their sequence of centers.

Corollary 1.4. Let X be a nonsingular variety over an algebraically closed field k of characteristic zero. Let
v : O X,p → Z�0 ∪ {∞} be a normalized k-arc valuation, where p ∈ X is the center of v on X. Then v is
uniquely determined by its sequence of centers, that is, if v ′ : O X,p → Z�0 ∪ {∞} is another normalized k-arc
valuation with the same sequence of centers as v, then v = v ′ on O X,p .
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The author suspects the above corollary is known (or can be easily directly proved) by experts
in valuation theory, but has been unable a reference for it in the literature. It is a classical fact that
valuations on surfaces are determined by their sequence of centers. On the other hand, M. Núñez
[Núñez] has given examples (with dim X � 3) of valuations that are not determined by their sequence
of centers. Núñez’s examples are valuations defined by power series with fractional exponents.

Remark 1.5. If X is a surface and if v is a divisorial valuation, then
⋂

q>0 Cq equals the cylinder Cr

associated to v in [ELM, Example 2.5], where r is such that pr is a divisor.

1.2. Outline of the paper

In Section 2 we recall some basic terminology and results regarding arc spaces. In Section 3 we
define arc valuations, and we compare them with other notions of a valuation. In Section 4 we show
that k-arc valuations can be desingularized. We will need this result in Section 5, where we study
k-arc valuations on nonsingular varieties. We first study the case of a nonsingular arc valuation. Later
we consider more general arc valuations and prove Theorem 1.3.

2. Background on arc spaces

Let X be a variety over a field k. Let k ⊆ K be a field extension. The arc space X∞ is a scheme
over k whose K -valued points are morphisms Spec K �t � → X of k-schemes, since we have

Hom(Spec K , X∞) = Hom
(
Spec K �t �, X

)
. (3)

In particular, when X is affine, giving a K -valued point of X∞ is the same thing as giving a homo-
morphism of k-algebras Γ (X, O X ) → K �t �.

Definition 2.1. Let k ⊆ K be a field extension. A K -arc is a morphism of k-schemes Spec K �t � → X .

If μ : X ′ → X is a morphism of schemes, then we have an induced morphism μ∞ : X ′∞ → X∞
sending γ to μ ◦ γ .

Let γ : Spec K �t � → X be a K -arc on X . Let x = γ (o). Given an ideal sheaf a on X , we define
ordγ (a) = min f ∈ax ordγ ( f ). For a nonnegative integer p, we define Cont�p(a), the contact locus of a

of order p, to be the closed subscheme of X∞ whose K -valued points (where k ⊆ K is an extension
of fields) are

Cont�p(a)(K ) = {
γ : Spec K �t � → X

∣∣ ordγ (a) � p
}
. (4)

If Z is a closed subscheme of X defined by the ideal sheaf I , we write Cont�p(Z) for Cont�p(I).
If a closed subscheme structure on a closed subset of X has not been specified, we implicitly give it
the reduced subscheme structure.

For an ideal a of Ô X,γ (o) , we define ordγ (a) = min f ∈a ordγ ( f ). For x ∈ X and an ideal a of Ô X,x

we have a closed subscheme Cont�p(a) of X∞ whose K -valued points (where k ⊆ K is an extension
of fields) are

Cont�p(a)(K ) = {
γ : Spec K �t � → X

∣∣ γ (o) = x, ordγ (a) � p
}
. (5)

Proposition 2.2. Let X be a variety over a field k. Let γ : Spec k�t � → X be a k-arc. Then γ (o) ∈ X is a closed
point of X with residue field k.
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Proof. Set p = γ (o), and let κ(p) denote the residue field of p ∈ X . We have a local k-algebra
homomorphism γ ∗ : O X,p → k�t �. Taking the quotient by the maximal ideals, we get a k-algebra ho-
momorphism κ(p) ↪→ k that is an isomorphism on k ⊆ κ(p). Hence κ(p) = k. Since tr.degk κ(p) = 0,
it follows that p is a closed point. �
2.1. Points of the arc space

We next make a couple of remarks about the notion of a point of the arc space.

Remark 2.3. Let X be a scheme of finite type over a field k. Let α ∈ X∞ be a (not necessarily closed)
point of the scheme X∞ . That is, in some open affine patch of X∞ , α corresponds to a prime ideal.
Let κ(α) denote the residue field at the point α of the scheme X∞ . There is a canonical morphism
Θα : Specκ(α) → X∞ induced by the canonical k-algebra homomorphism O X∞,α → κ(α). By Eq. (3),
the morphism Θα corresponds to a κ(α)-arc θα : Specκ(α)�t � → X . We will abuse notation and refer
to this arc θα : Specκ(α)�t � → X by α : Specκ(α)�t � → X . That is, given a point α ∈ X∞ , we have a
canonical κ(α)-arc α : Specκ(α)�t � → X .

Remark 2.4. We now examine the reverse of the construction given in Remark 2.3. Let k ⊆ K be some
extension of fields. Given a K -arc θ : Spec K �t � → X , by Eq. (3), we get a morphism Θ : Spec K → X∞ .
The image Θ(pt) of the only point pt of Spec K is a point of X∞ , call it α. By Remark 2.3,
we associate to α a κ(α)-arc Θα : Specκ(α)�t � → X . Note that Θ : Spec K → X∞ factors through
Θα : Specκ(α) → X∞ , since on the level of rings, the k-algebra map Θ∗ : O X∞,α → K induces a map
κ(α) → K . Hence θ : Spec K �t � → X factors through θα : Specκ(α)�t � → X . To summarize, K -arcs on
X correspond to K -valued points of X∞ . To each K -valued point of X∞ , we can assign a point of X∞ .
If we let K range over all field extensions on k, this assignment is surjective onto the set of points
of X∞ , but it is not injective. To a point α of X∞ , we assign (as described in Remark 2.3) a canonical
κ(α)-valued point of X∞ . The point of X∞ that we assign to this κ(α)-valued point is α.

Remark 2.5. Let p be a closed point of an n-dimensional nonsingular variety X , and fix genera-
tors x1, . . . , xn of the maximal ideal of O X,p . Let k ⊆ K be an extension of fields. Giving an arc
γ : Spec K �t � → X such that γ ∈ Cont�1(p)(K ) is equivalent to giving a homomorphism of k-algebras
Ô X,p � k�x1, . . . , xn � → K �t � sending each xi into (t)K �t �.

Definition 2.6. We say an arc γ : Spec K �t � → X is a trivial arc if the maximal ideal of Ô X,γ (o) equals
the kernel of the map γ ∗ : Ô X,γ (o) → K �t �.

We have the following observation (whose proof we leave to the reader).

Lemma 2.7. Let X be a nonsingular variety. If μ : X ′ → X is the blowup of a closed point p ∈ X, with excep-
tional divisor E, then:

(1) Let γ : Spec K �t � → X be an arc such that γ ∈ Cont�1(p), and suppose γ is not the trivial arc. Then
there exists a unique arc γ ′ : Spec K �t � → X ′ lifting γ , i.e. γ = μ ◦ γ ′ . Furthermore, γ ′ ∈ Cont�1(E).

(2) If γ is as in part (1) and additionally K = k, then the residue field at γ ′(o) ∈ X ′ equals k. Furthermore, if
ordγ (x1) � ordγ (xi) for all 2 � i � n, then there exist ci ∈ k (for 2 � i � n) such that x1 and xi

x1
− ci for

2 � i � n are local algebraic coordinates at γ ′(o).
(3) μ∞(Cont�1(E)) = Cont�1(p).

We now describe a geometric construction, called the sequence of centers of a valuation, that is
useful in studying valuations, especially those on smooth surfaces. We give the definition only for
valuations given by the order of vanishing along an arc γ : Spec k�t � → X , as this is the case we will
be interested in. For a general valuation, the definition is similar [H, Exercise II.4.12].
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Definition 2.8 (Sequences of centers of an arc valuation). Let X be a nonsingular variety over a field k
and let γ : Spec k�t � → X be an arc that is not a trivial arc. The point p0 := γ (o) is called the center
of v on X . We blow up p0 to get a model X1 with exceptional divisor E1. By Lemma 2.7 the arc γ has
a unique lift to an arc γ1 : Spec k�t � → X1. Let p1 be the closed point γ1(o). We define inductively a
sequence of closed points pi and exceptional divisors Ei on models Xi , and lifts γi : Spec k�t � → Xi
of γ as follows. We blow up pi−1 ∈ Xi−1 to get a model Xi , and let Ei be the exceptional divisor of
this blowup. Let γi : Spec k�t � → Xi be the lift of γi−1 : Spec k�t � → Xi−1. We denote by pi the closed
point γi(o), and by μi : Xi → X the composition of the first i blowups. We call {pi}i�0 the sequence
of centers of γ .

3. Arc valuations

In this section, we begin the study of arc valuations, which are the central object of this paper. We
begin by defining arc valuations, normalized arc valuations, and nonsingular arc valuations.

Definition 3.1 (Arc valuations). Let X be a variety over a field k, and let p ∈ X be a (not necessarily
closed) point. Let k ⊆ K be an extension of fields. A K-arc valuation v on X centered at p is a map
v : O X,p → Z�0 ∪ {∞} such that there exists an arc γ : Spec K �t � → X with γ (o) = p (where o is the
closed point of Spec K �t �) and v( f ) = ordγ ( f ) for f ∈ O X,p . Since ordγ extends uniquely to Ô X,p

(the completion of O X,p at its maximal ideal), we can extend v to Ô X,p as well. This extension does
not depend on the choice of arcs γ satisfying v = ordγ on O X,p . Therefore we will also regard arc
valuations as maps v : Ô X,p → Z�0 ∪ {∞} without additional comment.

It is shown in [Ishii, Proposition 2.11] that every divisorial valuation is an arc valuation.

Definition 3.2 (Normalized arc valuations). We call an arc valuation v centered at a point p ∈ X nor-
malized if the set {v( f ) | f ∈ Ô X,p, 0 < v( f ) < ∞} is nonempty and the greatest common factor of its
elements is 1. Every arc valuation taking some value strictly between 0 and ∞ is a scalar multiple of
a normalized valuation. We say an arc γ : Spec K �t � → X is normalized if ordγ : Ô X,γ (o) → Z�0 ∪ {∞}
is a normalized arc valuation.

Notation 3.3. Let X be a nonsingular variety over an algebraically closed field k of characteristic zero.
Let γ : Spec k�t � → X be an arc centered at p ∈ X and let γ ∗ : Ô X,p → k�t � be the corresponding
k-algebra morphism. Assume γ is not a trivial arc. Define a k-algebra Aγ by Aγ = Ô X,p/ker(γ ∗).
Let Ãγ be the normalization of Aγ . Then γ ∗ induces an injective k-algebra map γ ∗ : Aγ ↪→ k�t �
which extends to an injective k-algebra homomorphism γ ∗ : Ãγ ↪→ k�t �. We denote by ordγ the

composition ordt ◦γ ∗ : Ãγ → Z�0. Note that for f ∈ Ô X,p \ ker(γ ∗), we have ordγ ( f ) = ordγ ( f ). We

will show in Lemma 3.5 that there exists φ ∈ k�t � such that the image of γ ∗ : Ãγ ↪→ k�t � equals
k�φ� ⊆ k�t �.

Lemma 3.4. We use the setup described in Notation 3.3. The ring homomorphism γ ∗ : Aγ ↪→ k�t � gives k�t �
the structure of a finite Aγ -module. In particular, Aγ has Krull dimension one.

Proof. Choose local coordinates x1, . . . , xn at p such that γ ∗(x1) �= 0. We have γ ∗(x1) = tru for some
positive integer r and unit u ∈ k�t �. Since k is algebraically closed and has characteristic zero, there
exists a unit v ∈ k�t � such that vr = u. Indeed, we may use the binomial series and take v = u1/r to
be an rth root of u.

Let τ : k�t � → k�t � be the k-algebra automorphism of k�t � defined by τ (t) = tv−1. Then
τ (γ ∗(x1)) = τ (tru) = tr v−ru = tr . Therefore, we may assume without loss of generality that
γ ∗(x1) = tr .

I claim 1, t, . . . , tr−1 generate k�t � as a module over Aγ . Let f (t) = ∑
i�0 f iti ∈ k�t � with f i ∈ k

for all i � 0. For 0 � j � r, define a power series p j(X) ∈ k� X � by p j(X) = ∑
i�0 f j+ir X i . Then
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j=r−1∑
j=0

γ ∗(p j(x1)
)
t j =

j=r−1∑
j=0

p j
(
γ ∗(x1)

)
t j =

j=r−1∑
j=0

p j
(
tr)t j

=
j=r−1∑

j=0

∑
i�0

f j+irt j+ir =
∑
i�0

f it
i = f (t).

Hence 1, t, . . . , tr−1 generate k�t � considered as a module over Aγ via the ring homomorphism
γ ∗ : Aγ ↪→ k�t �. Since k�t � has dimension one and module finite ring extensions preserve dimension
[Eisenbud, Proposition 9.2], we conclude Aγ has dimension one. �
Lemma 3.5. We continue using the setup and hypotheses of Lemma 3.4. There exists φ ∈ k�t � such that the
image of γ ∗ : Ãγ ↪→ k�t � equals k�φ� ⊆ k�t �.

Proof. Since an integral extension of rings preserves dimension [Eisenbud, Proposition 9.2], we have
that Ãγ has dimension one. Since k�t � is normal (in fact it is a DVR), the local k-algebra map
γ ∗ : Aγ ↪→ k�t � extends to a k-algebra map γ ∗ : Ãγ ↪→ k�t �.

I claim the ring Ãγ is a complete local domain. The local ring Aγ is complete since it is the image
of a complete local ring. The normalization of an excellent ring A (in our case, the complete local
domain Aγ ) is module finite over A [Matsumura80, p. 259]. A module finite domain over a complete
local domain is local and complete (apply [Eisenbud, Corollary 7.6] and use the domain hypothesis to
conclude there is only one maximal ideal). Hence Ãγ is a complete local domain.

Since Ãγ is a complete normal 1-dimensional local domain containing the field k, it is isomorphic
to a power series over k in one variable [Matsumura80, Corollary 2, p. 206]. That is, there exists
φ ∈ k�t � such that the image of γ ∗ : Ãγ ↪→ k�t � equals k�φ� ⊆ k�t �. �

The following result was pointed out to me by Mel Hochster.

Proposition 3.6. Assume the setup of Notation 3.3 and let φ be as in Lemma 3.5. Let d be the greatest common
divisor of the elements of the nonempty set {ordγ ( f ) | f ∈ Ô X,p, 0 < ordγ ( f ) < ∞}. Then d = ordt(φ). In
particular, ordγ is a normalized arc valuation if and only if ordt(φ) = 1.

Proof. For f , g ∈ Aγ such that f
g ∈ Ãγ ⊆ Frac(Aγ ), we have ordγ (

f
g ) = ordγ ( f )− ordγ (g), and hence

d divides ordγ (
f
g ). In particular d divides ordt(φ). We have γ ∗(Aγ ) ⊆ γ ∗( Ãγ ) = k�φ� ⊆ k�t � and

hence ordt(φ) divides ordγ ( f ) for all f ∈ Aγ . So ordt(φ) divides d. Hence d = ordt(φ). �
Definition 3.7 (Nonsingular arc valuations). Let v be an arc valuation centered at p, and let mp denote
the maximal ideal of Ô X,p . We call v nonsingular if

min
f ∈mp

v( f ) = 1. (6)

If γ ∈ X∞ , then we say γ is nonsingular if ordγ is a nonsingular valuation.

Let C be an irreducible subset of X∞ , and let α be the generic point of C . Following Ein, Lazarsfeld,
and Mustaţǎ [ELM, p. 3], we define a map valC : O X,α(o) → Z�0 ∪ {∞} by setting for f ∈ O X,α(o)

valC ( f ) = min
{

ordγ ( f )
∣∣ γ ∈ C such that f ∈ O X,γ (o)

}
. (7)

Proposition 3.8. If C ⊆ X∞ is an irreducible subset with generic point α : Spec K �t � → X, then valC = ordα

on O X,α(o) . In particular, valC is an arc valuation.
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Proof. Fix f ∈ O X,α(o) , and let U ⊆ X be the maximal open set on which f is regular. We have
ordα( f ) � valC ( f ) by Eq. (7). Let α′ ∈ C be such that valC ( f ) = ordα′ ( f ). Let π : X∞ → X be the
canonical morphism sending γ → γ (o). If ordα( f ) > valC ( f ), then C ∩ Cont�ordα( f )( f ) is a closed
subset of the irreducible set C ∩ π−1(U ), containing α but not α′ ∈ C , contradicting {α} = C . Hence
ordα( f ) = valC ( f ) for all f ∈ O X,α(o) . �

Next, we show arc valuations are the same as Z�0 ∪ {∞}-valued valuations, which are defined as
follows:

Definition 3.9. Let R be a k-algebra. A Z�0 ∪ {∞}-valued valuation on R is a map v : R → Z�0 ∪ {∞}
such that

(1) v(c) = 0 for c ∈ k∗ ,
(2) v(0) = ∞,
(3) v(xy) = v(x) + v(y) for x, y ∈ R ,
(4) v(x + y) � min{v(x), v(y)} for x, y ∈ R ,
(5) v is not identically 0 on R∗ .

Notation 3.10. Let p ∈ X be a (not necessarily closed) point of X , and let v : O X,p → Z�0 ∪ {∞}
be a Z�0 ∪ {∞}-valued valuation. Set p = { f ∈ O X,p | v( f ) = ∞}. We have an induced valuation
ṽ : O X,p/p \ {0} → Z that extends as usual to a valuation ṽ : Frac(O X,p/p) \ {0} → Z. Set ṽ(0) = ∞.
Let R ṽ = { f ∈ Frac(O X,p/p) | ṽ( f ) � 0} be the valuation ring of ṽ . R ṽ is a discrete valuation ring. Set
κ(v) = R ṽ/mṽ .

Remark 3.11. Let R be a discrete valuation ring (in the sense of [Matsumura86, p. 78], so R is
Noetherian) with maximal ideal m. Let v : R \ {0} → Z be a valuation, not identically zero. Let
ordm : R \ {0} → Z be given by ordm( f ) = max{n | f ∈ mn}. Then there is a positive integer q such
that v = q ordm . Indeed, let t be a generator of m. Set q = v(t). Fix f ∈ R \ {0}. Let n = ordm( f ).
We can write f = utn , for a unit u ∈ R \ m. Then v(u) = 0 since u is a unit, and v( f ) = v(utn) =
v(u) + nv(t) = q ordm( f ).

Proposition 3.12. Let p ∈ X be a (not necessarily closed) point of X . If v : O X,p → Z�0 ∪ {∞} is a valuation
as in Definition 3.9, then v is an arc valuation on X. In fact, there exists an arc γ : Specκ(v)�t � → X such
that γ (o) = p and ordγ = v on O X,p .

Proof. We use the notation introduced in Notation 3.10. By Remark 3.11, there is a positive inte-
ger q such that ṽ = q ordmṽ

. The completion R̂ ṽ of R ṽ with respect mṽ is again a discrete valuation
ring [Matsumura86, Exercise 11.3]. Let m̂ denote the maximal ideal of R̂ ṽ . The complete regular lo-
cal k-algebra R̂ ṽ is isomorphic to the power series ring κ(v)�T � [Matsumura80, Corollary 2, p. 206].
Identify κ(v)�T � with the subring κ(v)�tq � of κ(v)�t � via T → tq . The composition of the canonical
homomorphisms

O X,p → O X,p/p → R ṽ → R̂ ṽ = κ(v)�T � = κ(v)
�

tq �
↪→ κ(v)�t �

gives an arc γ : Specκ(v)�t � → X . Let f ∈ O X,p . If f = 0, then v( f ) = ordγ ( f ) = ∞. If f �= 0, then
(writing f to mean the image of f in the appropriate ring)

ordγ ( f ) = ordt( f ) = q ordT ( f ) = q ordm̂( f ) = q ordmṽ
( f ) = ṽ( f ) = v( f ).

Thus ordγ = v on O X,p . �
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4. Desingularization of normalized k-arc valuations

In this section, we prove that a normalized k-arc valuation on a nonsingular variety X over a
field k can be desingularized. Specifically, the goal of this section is to prove Proposition 4.5, which
says that a normalized k-arc can be lifted after finitely many blowups to a k-arc that is nonsingular.
Our proof is based on Hamburger–Noether expansions.

Let X be a nonsingular variety of dimension n (n � 2) over a field k and let p0 ∈ X be a closed
point. Let γ : Spec k�t � → X be an arc such that γ (o) = p0 and v := ordγ is a normalized arc valua-
tion (Definition 3.2). Let pi ∈ Xi (i � 0) be the sequence of centers of v , as described in Definition 2.8.
If γr denotes the unique lift of γ to Xr (by Lemma 2.7), then note that v extends to the valuation
Ô Xr ,pr → Z�0 ∪ {∞} associated to γr . Hence for f ∈ Ô Xr ,pr , we will write v( f ) to mean ordγr ( f ).

4.1. Hamburger–Noether expansions

We will use a list of equations known as Hamburger–Noether expansions (HNEs) to keep track of
local coordinates of the sequences of centers of v . We explain HNEs in this section. Our source for this
material is [DGN, Section 1], where the presentation is given for arbitrary valuations on a nonsingular
surface.

HNEs are constructed by repeated application of Lemma 2.7 part (2), which we recall:

Lemma 4.1. Let X be a nonsingular variety of dimension n (n � 2) over a field k and let p0 ∈ X be a closed
point. Let γ : Spec k�t � → X be an arc such that γ (o) = p0 and v := ordγ is a normalized arc valuation
(Definition 3.2). Let x1, x2, . . . , xn be local algebraic coordinates at p0 such that 1 � v(x1) � v(xi) for 2 �
i � n. Then for 2 � i � n, there exists ai,1 ∈ k such that if we let yi = xi

x1
− ai,1 ∈ k(X), then x1, y2, . . . , yn

generate the maximal ideal of O X1,p1 ⊆ k(X) = k(X1).

We now describe how to write down the HNEs, following [DGN, Section 1]. Let xi,ai,1, yi be as
in Lemma 4.1. We have xi = ai,1x1 + x1 yi . If v(x1) � v(yi) for every 2 � i � n, then with the local
algebraic coordinates x1, y2, . . . , yn at p1 we are in a similar situation as before, and we repeat the
process of applying Lemma 4.1 to get local algebraic coordinates at p2. Suppose that after h steps we
have local algebraic coordinates x1, y′

2, . . . y′
n at ph such that v(x1) > v(y′

j) for some 2 � j � n. We
may choose j such that v(y′

j) � v(y′
i) for 2 � i � n. There are ai,k ∈ k such that

xi = ai,1x1 + ai,2x2
1 + · · · + ai,hxh

1 + xh
1 y′

i (8)

for 2 � i � n, 1 � k � h. The assumption that ph is a closed point implies v(y′
i) > 0 for 2 � i � n.

Let z1 = y′
j , and we repeat the procedure of applying Lemma 4.1 with the local coordinates

z1, x1, y′
2, . . . , y′

j−1, y′
j+1, . . . , y′

n (note that we brought z1 to the front of the list because it is the
coordinate with smallest value). We will refer to such a change in the first coordinate (in this case,
from x1 to z1) of our list as an iteration.

If we do not arrive at a situation where v(x1) > v(y′
j) for some 2 � j � n, then there exist ai,k ∈ k

(for 2 � i � n, and all k � 1) such that

v

(
xi − ∑N

k=1 ai,kxk
1

xN
1

)
� v(x1),

and hence (since v(x1) � 1)

v

(
xi −

N∑
k=1

ai,kxk
1

)
> N (9)

for all N > 0.
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Let z0 = x1, and for l > 0 let zl be the first listed local coordinate at the lth iteration. We have
v(zl) < v(zl−1) since an iteration occurs when the smallest value of the local coordinates at the center
decreases in value after a blowup. So {v(zl)}l�0 is a strictly decreasing sequence of positive integers,
and hence must be finite, say v(z0), v(z1), . . . , v(zL).

For notational convenience, redefine x1, . . . , xn to be the local algebraic coordinates after the final
iteration, with x1 = zL . So x1, . . . , xn are local algebraic coordinates centered at pr on Xr for some r,
and Eq. (9) becomes

v

(
xi −

N∑
k=1

ci,kxk
1

)
> N (10)

for 2 � i � n, ci,k ∈ k, and all N > 0.

Definition 4.2. Let P1(t) = t , and for 2 � i � n define Pi(t) ∈ k�t � by Pi(t) = ∑∞
k=1 ci,ktk .

Remark 4.3. Eq. (10) implies v(xi − Pi(x1)) = ∞ for 2 � i � n.

Lemma 4.4. For every ψ = ψ(x1, . . . , xn) ∈ Ô Xr ,pr � k�x1, . . . , xn �, we have v(ψ) = ordt ψ(t, P2(t),
. . . , Pn(t)).

Proof. Since k�x1, . . . , xn �/(x2 − P2(x1), . . . , xn − Pn(x1)) � k�x1 �, we may write ψ(x1, . . . , xn) =
q(x1) + ∑n

i=2(xi − Pi(x1))hi for hi ∈ k�x1, . . . , xn � and q(x1) ∈ k�x1 �. Note that q(x1) = ψ(x1, P2(x1),

. . . , Pn(x1)). We have v(ψ) � min{v(q), v((x2 − P2(x1))h2), . . . , v((xn − Pn(x1))hn)}. Since v((xi −
Pi(x1))hi) = ∞, we have v(ψ) = v(q), since in general, if v(a) �= v(b), then v(a +b) = min{v(a), v(b)}.

Let n = ordx1 q(x1). We claim v(q) = nv(x1). If n = ∞, then q = 0 and both sides of v(q) = nv(x1)

are ∞. If n < ∞, then q = xn
1u for a unit u in k�x1 �. We have v(u) = 0, since 0 = v(1) = v(uu−1) =

v(u) + v(u−1) and v(u), v(u−1) � 0. Hence v(q) = nv(x1).
So we have v(ψ) = v(q) = (ordx1 q(x1))v(x1) = ordx1 ψ(x1, P2(x1) . . . , Pn(x1)) · v(x1). Since ψ was

arbitrary, we have that the image of v : k�x1, . . . , xn � → Z�0 ∪ {∞} equals Z�0 · v(x1) ∪ {∞}. Since v
was normalized so that the image of v had 1 as the greatest common factor of its elements, we have
v(x1) = 1 and v(ψ) = ordt ψ(t, P2(t), . . . , Pn(t)). �

Summarizing the discussion so far, we have

Proposition 4.5. Let v be a normalized k-arc valuation on a nonsingular variety X over a field k. Then there
exists a nonnegative integer r and local algebraic coordinates x1, . . . , xn at the center pr of v on Xr and

Pi(t) ∈ (t)k�t �

for 2 � i � n such that for every ψ = ψ(x1, . . . , xn) ∈ Ô Xr ,pr � k�x1, . . . , xn �, we have

v(ψ) = ordt ψ
(
t, P2(t), . . . , Pn(t)

)
.

Roughly speaking, this result says that a normalized k-arc valuation can be desingularized. More
precisely, a normalized k-valued arc γ can be lifted after finitely many blowups (of its centers) to an
arc γr that is nonsingular (see Definition 3.7 for the definition of nonsingular arc). Using the notation
of Proposition 4.5, the arc γr : Spec k�t � → Xr is given by the k-algebra map Ô Xr ,pr → k�t � with
ordγr (x1) = 1 and xi → Pi(γ

∗
r (x1)) for 2 � i � n. Since ordγr (x1) = 1, we have γr is a nonsingular arc.

If the arc γ is nonsingular, we can take r = 0 in Proposition 4.5, and we have the following result.
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Proposition 4.6. Let γ : Spec k�t � → X be a nonsingular k-arc on a nonsingular variety X over a field k.
Let x1, . . . , xn be local algebraic coordinates at p = γ (o) on X with ordγ (x1) = 1 (Definition 3.7). Then there
exists

P i(t) ∈ (t)k�t �

for 2 � i � n such that γ ∗(xi) = Pi(γ
∗(x1)) for 2 � i � n. Furthermore, for every ψ = ψ(x1, . . . , xn) ∈

Ô X,p � k�x1, . . . , xn �, we have

ordγ (ψ) = ordt ψ
(
t, P2(t), . . . , Pn(t)

)
.

Proof. Since ordγ (x1) = 1, there can be no iterations in the Hamburger–Noether algorithm for v =
ordγ . Hence Eq. (10) holds, and in particular, Remark 4.3 applies. That is, if the Pi(t) for 2 � i � n are
as in Definition 4.2, we have ordγ (xi − Pi(x1)) = ∞ for 2 � i � n. So γ ∗(xi − Pi(x1)) = 0, and therefore
γ ∗(xi) = γ ∗(Pi(x1)) = Pi(γ

∗(x1)) for 2 � i � n. According to Lemma 4.4, for every ψ = ψ(x1, . . . , xn) ∈
Ô X,p � k�x1, . . . , xn �, we have

ordγ (ψ) = ordt ψ
(
t, P2(t), . . . , Pn(t)

)
. �

We will see in the next section that for a nonsingular k-valued arc γ , one can explicitly compute

the ideals of
⋂

q�1 μq∞(Cont�1(Eq)) and
⋂

q�1 Cont�q(aq), where aq = { f ∈ Ô X,γ (o) | ordγ ( f ) � q}.
We will see that these ideals are the same, and thus these two sets are equal.

5. Main results

In this section, we present the main results of the paper. Let X be a nonsingular variety of di-
mension n (n � 2) over a field k. Let α : Spec k�t � → X be a normalized arc. Set v = ordα and
p = α(o), where o denotes the closed point of Spec k�t �. We associate to v several different sub-
sets of the arc space X∞ . In notation we will explain later in the section, these subsets are C(v),⋂

q�1 μq∞(Cont�1(Eq)),
⋂

q�1 Cont�q(aq), {γ ∈ X∞ | γ (o) = α(o), ker(α∗) ⊆ ker(γ ∗) ⊆ Ô X,α(o)}, and
R = {α ◦ h ∈ X∞ | h : Spec k�t � → Spec k�t �}. Our main result is that these five subsets are all equal.
We first analyze the case when v is a nonsingular arc valuation (Definition 3.7). We then consider the
general case where we drop the hypothesis of nonsingularity.

5.1. Setup

Throughout this section, we fix the following notation. Let X be a nonsingular variety of di-
mension n (n � 2) over a field k. Let α : Spec k�t � → X be a normalized arc valuation on X (see
Definition 3.2). Set v = ordα .

In Definition 2.8, we defined the sequence of centers of a k-arc valuation. To set notation for the
rest of this section, we recall this definition.

Definition 5.1 (Sequences of centers of a k-arc valuation). Let X be a nonsingular variety over a field
k. Let α : Spec k�t � → X be an arc on X . Assume α is not the trivial arc (Definition 2.6). Set
p0 = α(o) (where o is the closed point of Spec k�t �) and v = ordα . By Proposition 2.2, the point
p0 is a closed point (with residue field k) of X . The point p0 is called the center of v on X0 := X .
Blow up p0 to get a model X1 with exceptional divisor E1. By Lemma 2.7 the arc α has a unique
lift to an arc α1 : Spec k�t � → X1. Let p1 be the closed point α1(o). Inductively define a sequence
of closed points pi and exceptional divisors Ei on models Xi and lifts αi : Spec k�t � → Xi of α as
follows. Blow up pi−1 ∈ Xi−1, to get a model Xi . Let Ei be the exceptional divisor of this blowup.
Let αi : Spec k�t � → Xi be the lift of αi−1 : Spec k�t � → Xi−1. Let pi be the closed point αi(o). Let
μi : Xi → X be the composition of the first i blowups. We call {pi}i�0 the sequence of centers of v .
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5.2. Simplified situation

We first consider the special case when the arc α : Spec k�t � → X is nonsingular (Definition 3.7).

Proposition 5.2. Let X be a nonsingular variety of dimension n (n � 2) over a field k. Let α : Spec k�t � → X
be a nonsingular arc (Definition 3.7). Set v = ordα and p0 = α(o). Let C = ⋂

q�1 μq∞(Cont�1(Eq)). Then:

(1) C is an irreducible subset of X∞.

(2) Let aq = { f ∈ Ô X,p0 | v( f ) � q}. Then C = ⋂
q�1 Cont�q(aq).

(3) valC = v on Ô X,p0 .

Notation 5.3. Let m be the maximal ideal of O X,p0 . Since α is nonsingular, there exists x1 ∈ m such
that ordα(x1) = 1. Since ordα(x1) = 1, we have x1 ∈ m \ m2. Choose x2, . . . , xn in m so that x1, . . . , xn

are local algebraic coordinates at p0 (i.e. generators of m). For 2 � i � n, let Pi(t) ∈ (t)k�t � be as in
Proposition 4.6. Write Pi(t) = ∑

j�1 ci, jt j ∈ (t)k�t � for 2 � i � n and ci, j ∈ k. By Proposition 4.6, for

every ψ(x1, . . . , xn) ∈ Ô X,p0 � k�x1, . . . , xn �, we have

v(ψ) = ordt ψ
(
t, P2(t), . . . , Pn(t)

)
. (11)

For 2 � i � n, we also have

α∗(xi) = Pi
(
α∗(x1)

)
=

∑
j�1

ci, j
(
α∗(x1)

) j
. (12)

We break up the proof of Proposition 5.2 into several steps. For the remainder of this section,
v , x1, . . . , xn , P2(t), . . . , Pn(t) and ci, j are as in Proposition 5.2 and Notation 5.3.

Lemma 5.4. With the notation in Definition 5.1, Proposition 5.2, and Notation 5.3, the rational functions x1 and
xi−ci,1x1−ci,2x2

1−···−ci,q−1xq−1
1

xq−1
1

∈ k(X) for 2 � i � n form local algebraic coordinates on Xq−1 centered at pq−1 .

Proof. These n functions are elements of positive value under ordαq (by Eq. (12)), and hence lie in
the maximal ideal of the n-dimensional regular local ring O Xq−1,pq−1 . The ideal n ⊆ O Xq−1,pq−1 they
generate satisfies O Xq−1,pq−1/n � k, and hence n is a maximal ideal. �
5.2.1. Reduction to X = A

n

We denote the affine line A
1
k = Spec k[T ] simply by A

1. We show that we may reduce many
computations about the arc space of the nonsingular n-dimensional variety X to the case X = A

n .

Proposition 5.5. Let X be a nonsingular variety and p ∈ X. Let π : X∞ → X be the canonical morphism
sending an arc γ to its center γ (o). Then π−1(p) � (An

κ(p))∞ , where κ(p) is the residue field at p ∈ X. In

particular, if κ(p) = k then π−1(p) � (An)∞.

Proof. Since X is nonsingular, there exists an open affine neighborhood U of p and an étale morphism
φ : U → Spec k[X1, . . . , Xn] = A

n [Milne, Proposition 3.24b]. We will use the following fact [EM, p. 7]:
if f : X → Y is an étale morphism, then X∞ = X ×Y Y∞ . Applied to the open inclusion U → X , we
have U∞ = U ×X X∞ . Applied to the étale map U → A

n we have U∞ = U ×An A
n∞ . Hence we have

π−1(U ) = U ×X X∞ = U∞ = U ×An A
n∞.
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Hence

π−1(p) = Specκ(p) ×U π−1(U ) = Specκ(p) ×An
(
A

n)
∞ = (

A
n
κ(p)

)
∞. �

We resume considering Proposition 5.2, where now it is sufficient to assume X = A
n =

Spec k[x1, . . . , xn], and the k-valued point p0 corresponds to the maximal ideal (x1, . . . , xn). We
write (An)∞ = (Spec k[x1, . . . , xn])∞ = Spec k[{xi, j}1�i�n, j�0], where the last equality comes from
parametrizing arcs on Spec k[x1, . . . , xn] by xi → ∑

j�0 xi, jt j for 1 � i � n. Note that π : X∞ → X
(defined in Proposition 5.5) maps C to p0. Hence

C ⊆ π−1(p0) = (
A

n)
∞ = Spec S,

where

S = k
[{xi, j}1�i�n, j�1

]
. (13)

Definition 5.6. For 2 � i � n and q � 1, let f i,q(X1, . . . , Xq) be the polynomial that is the coefficient
of tq in

q∑
j=1

ci, j
(

X1t + X2t2 + · · ·) j
.

(Recall that the ci, j were defined in Notation 5.3.)

Definition 5.7. For each positive integer q, let Iq be the ideal of S generated by

(1) xi, j − f i, j(x1,1, . . . , x1, j) for 2 � i � n and 1 � j � q − 1.

Note that Iq is a prime ideal of S , since S/Iq = k[{x1, j} j�1, {xi, j}2�i�n,q� j].

Notation 5.8. If J is an ideal of S , we denote by V ( J ) the closed subscheme of Spec S defined by the
ideal J .

Definition 5.9. Let I be the ideal of S defined by I = ⋃
q�1 Iq . Since I is the ideal of S generated by

xi, j − f i, j(x1,1, . . . , x1, j) for 2 � i � n and 1 � j, we have S/I = k[{x1, j}1� j]. In particular, I is a prime
ideal of S .

Lemma 5.10. For each positive integer q, the ideal of μq∞(Cont�1(Eq)) in S is Iq . (Note: Iq is defined in
Definition 5.7.)

Proof. Note that μq∞(Cont�1(Eq)) is irreducible (e.g. [ELM, p. 9]). Since Iq is a prime ideal, we need
to show

μq∞
(
Cont�1(Eq)

) = V (Iq).

First we show μq∞(Cont�1(Eq)) ⊆ V (Iq) by showing that the generic point of μq∞(Cont�1(Eq))

lies in V (Iq). Suppose β ′ : Spec K �t � → Xq is the generic point of Cont�1(Eq). To be precise, β ′ is
the canonical arc (described in Remark 2.3) associated to the generic point of Cont�1(Eq). Also, K is
the residue field at the generic point of Cont�1(Eq). By Lemma 2.7 part (3), the pushdown of β ′ to
Xq−1 is an arc β : Spec K �t � → Xq−1 that is the generic point of Cont�1(pq−1). By the description of
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local coordinates at pq−1 given in Lemma 5.4, the arc β corresponds (by Lemma 2.7) to a map x1 →
x1,1t + x1,2t2 + · · · and

xi−ci,1x1−ci,2x2
1−···−ci,q−1xq−1

1

xq−1
1

→ ai,1t + ai,2t2 + · · · for 2 � i � n and some ai, j ∈ K .

The pushdown of β to X is the arc given by x1 → x1,1t + x1,2t2 + · · · and xi → ∑ j=q−1
j=1 ci, j(x1,1t +

x1,2t2 + · · ·) j + r(t) where r(t) ∈ (tq) ⊆ K �t �. In particular, the pushdown of β ′ to X corresponds to a
prime ideal in S containing the ideal Iq of S generated by xi, j − f i, j(x1,1, . . . , x1, j) for 1 � j � q − 1

and 2 � i � n. That is, the generic point of μq∞(Cont�1(Eq)) lies in V (Iq). Hence μq∞(Cont�1(Eq)) ⊆
V (Iq).

Conversely, we show that μq∞(Cont�1(Eq)) ⊇ V (Iq). The generators of Iq listed in Defi-
nition 5.7 show that the coordinate ring of V (Iq) is S/Iq = k[{x1, j} j�1, {xi, j}2�i�n,q� j]. Let
β : Spec K �t � → X be the arc corresponding (see Remark 2.3) to the generic point of V (Iq), where
K = k({x1, j} j�1, {xi, j}2�i�n,q� j). We have β∗(x1) = x1,1t + x1,2t2 + · · · . Since Iq contains xi, j −
f i, j(x1,1, . . . , x1, j) for 1 � j � q − 1 and 2 � i � n, we have that β∗(xi) = ∑q−1

j�1 f i, j(x1,1, . . . , x1, j)t j +
tqri(t) for some ri(t) ∈ K �t � and for each 2 � i � n. Hence β∗(xi) = ∑q−1

j�1 ci, j(β
∗(x1))

j + tqsi(t) for
some si(t) ∈ K �t �, by Definition 5.6.

Therefore

ordβ

(
xi − ci,1x1 − ci,2x2

1 − · · · − ci,q−1xq−1
1

)
� q = ordβ

(
xq−1

1

) + 1,

where the last equality follows from the fact ordβ(x1) = 1 as x1,1 �= 0 ∈ K . In particular, the unique
lift of β to an arc on Xq−1 has center pq−1, by Lemma 5.4. Hence β ∈ μq−1∞(Cont�1(pq−1)) =
μq∞(Cont�1(Eq)). Hence V (Iq) = {β} ⊆ μq∞(Cont�1(Eq)). �
Lemma 5.11. The subset C of X∞ is closed, and the ideal of C in S is I . (Note: C is defined in Proposition 5.2,
S is defined in Eq. (13), and I is defined in Definition 5.9.)

Proof. Since I is a prime ideal, we need to show C = V (I). We have

⋂
q�1

V (Iq) = V

( ⋃
q�1

Iq

)
= V (I)

and

C =
⋂
q�1

μq∞
(
Cont�1(Eq)

) ⊆
⋂
q�1

V (Iq)

by Lemma 5.10. It remains to show
⋂

q�1 μq∞(Cont�1(Eq)) ⊇ ⋂
q�1 V (Iq).

Let β : Spec K �t � → X be an arc corresponding to a point in
⋂

q�1 V (Iq). We may assume β is not

the trivial arc, since the trivial arc lies in
⋂

q�1 μq∞(Cont�1(Eq)). Say β∗(x1) = ∑
j�1 a1, jt j , where

a1, j ∈ K . Since Iq contains xi, j − f i, j(x1,1, . . . , x1, j) for 1 � j � q − 1 and 2 � i � n, we have that
β∗(xi) = ∑∞

j=1 f i, j(a1,1, . . . ,a1, j)t j for each 2 � i � n. Hence β∗(xi) = ∑∞
j=1 ci, j(β

∗(x1))
j , by Defini-

tion 5.6. Hence

ordβ

(
xi − ci,1x1 − ci,2x2

1 − · · · − ci,q−1xq−1
1

) = ordβ

(∑
j�q

ci, j x
j
1

)
= ordβ xq

1 � ordβ

(
xq−1

1

) + 1.

In particular, the unique lift of β to an arc on Xq−1 has center pq−1, by Lemma 5.4. Hence β ∈
μq−1∞(Cont�1(pq−1)) = μq∞(Cont�1(Eq)). Hence

⋂
q�1 V (Iq) ⊆ ⋂

q�1 μq∞(Cont�1(Eq)). �
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Lemma 5.12. For a positive integer q, let aq = { f ∈ Ô X,p0 | v( f ) � q}. Set zi = xi −∑q−1
j=1 ci, j x

j
1 for 2 � i � n.

Then aq is generated (as an ideal in Ô X,p0 ) by xq
1, z2, . . . , zn.

Proof. By Eq. (11), we have v(xq
1), v(zi) � q for 2 � i � n. Suppose f ∈ aq . Since k�x1, . . . , xn �/

(z2, . . . , zn) � k�x1 �, we can write f = ∑i=n
i=2 hi zi + g(x1), where hi ∈ k�x1, . . . , xn � and g(x1) ∈ k�x1 �.

Then since v( f ) � q, and v(zi) � q, we must have v(g) � q. By Eq. (11), we conclude xq
1 divides g(x1)

in k�x1 �. Hence f is in the ideal generated by xq
1, z2, . . . , zn . �

Lemma 5.13. For every positive integer q, the ideal of Cont�q(aq) in S is Iq .

Proof. First we show Cont�q(aq) ⊆ V (Iq). Suppose β : Spec K �t � → X is an arc corresponding (via
Remark 2.3) to a generic point of Cont�q(aq). Write β∗(xi) = xi,1t + xi,2t2 + · · · for 1 � i � n, where
xi, j ∈ K denotes the image in K of xi, j ∈ S . Since aq is generated by xq

1, z2, . . . , zn (Lemma 5.12) (recall

that zi = xi − ∑q−1
j=1 ci, j x

j
1 for 2 � i � n), we have

xi,1t + xi,2t2 + · · · −
q−1∑
j=1

ci, j
(
x1,1t + x1,2t2 + · · ·) j ∈ (

tq). (14)

The coefficient of t j in Eq. (14) is xi, j − f i, j(x1,1, . . . , x1, j). Hence β corresponds to a prime ideal of S
containing the ideal Iq of S generated by xi, j − f i, j(x1,1, . . . , x1, j) for 2 � i � n and 1 � j � q − 1. Thus
Cont�q(aq) ⊆ V (Iq).

Conversely, suppose β : Spec K �t � → X corresponds (via Remark 2.3) to the generic point of V (Iq).
The coordinate ring of V (Iq) is S/Iq = k[{x1, j} j�1, {xi, j}2�i�n,q� j] (Definition 5.7). Hence K , the
residue field at the generic point of V (Iq), equals K = k({x1, j} j�1, {xi, j}2�i�n,q� j). We have β∗(x1) =
x1,1t + x1,2t2 + · · · ∈ K �t �. Since Iq contains xi, j − f i, j(x1,1, . . . , x1, j) for 1 � j � q − 1 and 2 � i � n,

we have that β∗(xi) = ∑q−1
j=1 f i, j(x1,1, . . . , x1, j)t j + tqri(t) for some ri(t) ∈ K �t � and for each 2 � i � n.

Since
∑

j�1 ci, j(x1,1t + x1,2t2 + · · ·) j = ∑
j�1 f i, j(x1,1, . . . , x1, j)t j for 2 � i � n (Notation 5.3), we have

that β∗ maps xi − ci,1x1 − ci,2x2
1 − · · · − ci,q−1xq−1

1 into the ideal (tq) ⊆ K �t �. Hence by Lemma 5.12,
we have β ∈ Cont�q(aq). So V (Iq) = {β} ⊆ Cont�q(aq). �
Lemma 5.14. The ideal of

⋂
q�1 Cont�q(aq) in S is I . (Note: S is defined in Eq. (13), and I is defined in

Definition 5.9, and aq is defined in Proposition 5.2(2).)

Proof. Since I is a prime ideal, it is enough to show
⋂

q�1 Cont�q(aq) = V (I). By Lemma 5.13, we
have

⋂
q�1

Cont�q(aq) =
⋂
q�1

V (Iq) = V

( ⋃
q�1

Iq

)
= V (I). �

We now finish the proof of Proposition 5.2.

Proof of Proposition 5.2. Since S/I � k[{x1, j} j�1] is a domain, the ideal I is a prime ideal. By
Lemma 5.11, the ideal of C is I . Hence C is irreducible. We have C = ⋂

q Cont�q(aq) because by
Lemmas 5.11 and 5.14, their ideals are the same.

It remains to show valC = v . Let γ : Spec k�t � → X be the arc centered at p0 with γ ∗(x1) = t and
γ ∗(xi) = Pi(t) for 2 � i � n. Then γ ∈ C since the ideal in S corresponding to γ , namely the ideal
generated by x1,0, x1,1 − 1, x1,m , xi,0, and xi, j − ci, j for m � 2, 2 � i � n, and j � 1 contains I . Hence
for any f ∈ O X,p0 , we have valC ( f ) � ordγ ( f ) = v( f ).
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For the reverse inequality, first suppose f ∈ O X,p0 is such that s := v( f ) < ∞. Let γ ∈ C be such
that valC ( f ) = ordγ ( f ). Since f ∈ as and γ ∈ Cont�s(as), we have ordγ ( f ) � s, i.e. valC ( f ) � v( f ).

Next suppose v( f ) = ∞. Set φi = xi − Pi(x1) for 2 � i � n. Since

k�x1, . . . , xn �/(φ2, . . . , φn) � k�x1 �,

we can write f = ∑n
i=2 φihi + g(x1) for hi ∈ k�x1, . . . , xn � and g ∈ k�x1 �. Since v( f ) = ∞, we have

g = 0 by Eq. (11). Let γ ∈ C , and write γ ∗(x1) = ∑
j�1 a jt j . Since xi, j − f i, j(x1,1, . . . , x1, j) ∈ I for 2 �

i � n and j � 1, we have γ ∗(xi) = ∑
j�1 f i, j(a1, . . . ,a j)t j = ∑

j�1 ci, j(a1t +a2t2 +· · ·) j = Pi(γ
∗(x1)) =

γ ∗(Pi(x1)). Hence γ ∗(φi) = 0, and so γ ∗( f ) = γ ∗(
∑n

i=2 φihi) = 0. So ordγ ( f ) = ∞. Since γ ∈ C was
arbitrary, we have valC ( f ) = ∞, as desired. �
5.3. General case

Lemma 5.15. Let X be a nonsingular variety of dimension n (n � 2) over an algebraically closed field k
of characteristic zero. Let α : Spec k�t � → X be a normalized arc (Definition 3.2). Set p0 = α(o). Let
α∗ : Ô X,p0 → k�t � be the k-algebra homomorphism induced by α. Suppose γ : Spec k�t � → X satisfies
γ (o) = p0 and ker(α∗) ⊆ ker(γ ∗), where γ ∗ : Ô X,p0 → k�t � is the k-algebra homomorphism induced by γ .
Assume γ is not the trivial arc (Definition 2.6). Then

(1) There exists a morphism h : Spec k�t � → Spec k�t � such that γ = α ◦h, i.e. γ is a reparametrization of α.
(2) h∗ : k�t � → k�t � is a local homomorphism.
(3) Set N = ordt(h). Then ordγ = N ordα on Ô X,p0 . (We use the convention that ∞ = N · ∞.)

Proof. (Due to Mel Hochster.) We use Notation 3.3. Suppose γ is not the trivial arc. By Lemma 3.4,
Aγ has dimension one, and so ker(γ ∗) is a prime ideal of height n − 1. The same is true for ker(α∗),
and so our assumption ker(α∗) ⊆ ker(γ ∗) implies ker(α∗) = ker(γ ∗). Hence Aα = Aγ . By Lemma 3.5,
the map α∗ (resp. γ ∗) induces an isomorphism α∗ : Ãα → k�φα � (resp. γ ∗ : Ãγ → k�φγ �) for some
φα ∈ k�t � (resp. φγ ∈ k�t �). Since α is normalized, we have ordt(φα) = 1 by Proposition 3.6.

I claim that the inclusion k�φα � ⊆ k�t � is actually an equality. It suffices to find a j ∈ k such
that t = ∑

j�1 a j(φα) j . Suppose φα = ∑
j�1 b jt j , where b j ∈ k and b1 �= 0. We proceed to define a j

by induction on j. Set a1 = b1
−1. Suppose a1, . . . ,ad−1 have been specified. The coefficient of td in∑

j�1 a j(φα) j is adbd
1 + Q d(a1, . . . ,ad−1,b1, . . . ,bd) for some polynomial Q d . We require this coeffi-

cient to be 0. We can solve the equation

adbd
1 + Q d(a1, . . . ,ad−1,b1, . . . ,bd) = 0

for ad since b1 �= 0. This completes the induction, and we have t = ∑
j�1 a j(φα) j .

Let h : Spec k�t � → Spec k�t � be induced by the k-algebra homomorphism h∗ : k�t � → k�t � de-
fined by the composition

k�t � = k�φα � (α∗)−1−−−−→ Ãα = Ãγ
γ ∗−−→ k�φγ � ⊆ k�t �.

The last inclusion is an inclusion of local k-algebras and all other maps are isomorphisms. Hence
h∗ is a local homomorphism. For f ∈ Ô X,p0 , we have γ ∗( f ) = γ ∗( f ) = h∗ ◦ α∗( f ) = h∗ ◦ α∗( f ), and
hence γ = α ◦ h. If ordt(h) = N and a = ordα( f ), then the order of t in γ ∗( f ) = h∗ ◦ α∗( f ) is Na, i.e.
ordγ ( f ) = N ordα( f ). �
Notation 5.16. We denote by (X∞)0 the subset of points of X∞ with residue field equal to k. If
D ⊆ X∞ , then we set D0 = D ∩ (X∞)0.

Here is the main theorem of this paper.
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Theorem 5.17. Let X be a nonsingular variety of dimension n (n � 2) over a field k. Let α : Spec k�t � → X
be a normalized arc (Definition 3.2). Set p0 = α(o) and v = ordα . Let Ei and pi be the sequence of divisors
and centers, respectively, of v (described in Definition 2.8). Let μq : Xq → X be the composition of the first
q blowups of centers of v. Let

C =
⋂
q>0

μq∞
(
Cont�1(Eq)

) ⊆ X∞. (15)

Let aq = { f ∈ Ô X,p0 | v( f ) � q}. Let

C ′′ =
⋂
q�1

Cont�q(aq) ⊆ X∞.

Set C(v) = {γ ∈ X∞ | ordγ = v, γ (o) = p0} ⊆ X∞.

For an arc γ : Spec k�t � → X, let γ ∗ : Ô X,γ (o) → k�t � be the induced k-algebra homomorphism. Set
I = {γ ∈ X∞ | γ (o) = α(o), ker(α∗) ⊆ ker(γ ∗) ⊆ Ô X,α(o)}.

Let R = {α ◦ h ∈ X∞ | h : Spec k�t � → Spec k�t �}, where h is a morphism of k-schemes.
Then:

(1) C is an irreducible subset of X∞ and valC = v.
(2) Assume k is algebraically closed and has characteristic zero. The following closed subsets of (X∞)0 are

equal (we use Notation 5.16):

C(v)0 = C0 = C ′′
0 = (I)0 = R.

Proof of Theorem 5.17. (Part (1)) Let r be a nonnegative integer such that the lift of α to Xr is a
nonsingular arc. For q > r, let μq,r : Xq → Xr be the composition of the blowups along the centers
of v , starting at Xr+1 → Xr and ending at the blowup Xq → Xq−1. Let

C ′ =
⋂
q>r

μq,r∞
(
Cont�1(Eq)

) ⊆ (Xr)∞.

Note that

C = μr∞(C ′) ⊆ X∞.

By Proposition 5.2, C ′ is irreducible. Hence C is irreducible. Since the generic point of C ′ maps
to the generic point of C , we have that valC ′ = valC , i.e. valC ′ (μ∗

r ( f )) = valC ( f ) for f ∈ O X,p0 . Since
v = valC ′ by Proposition 5.2, we conclude v = valC .

(Part (2)) We show C(v)0 ⊆ C ′′
0 ⊆ C0 ⊆ C(v)0. Separately we will establish C ′′

0 = I0.
First we check C(v) ⊆ C ′′ . If γ ∈ X∞ is such that γ (o) = p0 and ordγ = v , then γ ∈ Cont�q(aq) for

every q � 1, and so γ ∈ C ′′ . Since C ′′ is closed, we have C(v) ⊆ C ′′.
Now we show C ′′

0 ⊆ C0. Let γ ∈ C ′′
0 , and assume without loss of generality that γ is not the

trivial arc. We claim that ker(α∗) ⊆ ker(γ ∗). Let f ∈ ker(α∗). Then v( f ) = ∞, and so f ∈ aq for every
q ∈ Z�0. Hence ordγ ( f ) � q for all q ∈ Z�0. Therefore ordγ ( f ) = ∞, so f ∈ ker(γ ∗). By Lemma 5.15
there exists h : Spec k�t � → k�t � such that γ = α ◦ h. It follows that γ has the same sequence of
centers as α. Indeed, if αq : Spec k�t � → Xq is the unique lift of α to an arc on Xq , then αq ◦ h is
the unique lift of γ to an arc on Xq . Since h∗ is a local homomorphism, we have that h maps the
closed point of Spec k�t � to the closed point of Spec k�t �. Hence the center of αq is the same as the
center of αg ◦ h. So α and γ have the same sequence of centers. We conclude γ ∈ C . Note that this
argument also shows C ′′

0 ⊆ R . For the inclusion C ′′
0 ⊇ R , let f ∈ aq and h : Spec k�t � → Spec k�t � be a
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morphism of k-schemes. Then ordα◦h( f ) = ordt(h∗α∗( f )) � q, since ordt α
∗( f ) � q and h∗ is a local

homomorphism. Thus α ◦ h ∈ C ′′
0 .

To see that C ⊆ C(v), let β be the generic point of C . Note that ordβ = v and π(β) = p0, and so
β ∈ C(v). Hence C ⊆ C(v).

Now we show C ′′
0 = (I)0. Let J be the kernel of the map α∗ : Ô X,p0 → k�t �. If f ∈ J , then

ordα( f ) = ∞ and hence f ∈ aq for every q � 1. Let γ ∈ C ′′
0 . Since a1 is the maximal ideal of Ô X,p0 ,

we have γ (o) = p0, i.e. γ ∈ π−1(p0). Also, since ordγ ( f ) � q for every q � 1, we have ordγ ( f ) = ∞.
Hence γ ∈ (I)0.

For the reverse inclusion C ′′
0 ⊇ (I)0, let γ ∈ (I)0. Then J ⊆ ker(γ ∗), and hence by Lemma 5.15 we

have that either γ is the trivial arc or ordγ = N ordα for some positive integer N . In both cases we
have γ ∈ C ′′

0 . �
As a corollary, we show that k-arc valuations are determined by their sequence of centers.

Corollary 5.18. Let X be a nonsingular variety over an algebraically closed field k of characteristic zero. Let
v : O X,p → Z�0 ∪ {∞} be a normalized k-arc valuation, where p ∈ X is the center of v on X. Then v is
uniquely determined by its sequence of centers, that is, if v ′ : O X,p → Z�0 ∪ {∞} is another normalized k-arc
valuation with the same sequence of centers as v, then v = v ′ on O X,p .

Proof. Let α : Spec k�t � → X (resp. α′ : Spec k�t � → X ) be such that v = ordα (resp. v ′ = ordα′ ).
Let C be as in Eq. (15). We have α′ ∈ C (since the sequence of centers is the same for both v, v ′).
By Theorem 5.17, we have C0 = C ′′

0 , where C ′′ := ⋂
q�1 Cont�q(aq) and aq = { f ∈ Ô X,p | v( f ) � q}.

Hence α′ ∈ C ′′ , which means ordα′ � v = ordα on Ô X,p . By symmetry, we have ordα′ � ordα . Hence
ordα′ = ordα , i.e. v ′ = v . �
Remark 5.19. If X is a surface and if v is a divisorial valuation, then the set

C =
⋂
q>0

μq∞
(
Cont�1(Eq)

)

equals the cylinder associated to v in [ELM, Example 2.5], namely μr∞(Cont�1(Er)), where r is such
that pr is a divisor.

Proof. If r is such that pr ∈ Xr (Definition 2.8) is a divisor, then C = μr∞(Cont�1(Er)) since
μq∞(Cont�1(Eq)) ⊇ μq+1∞(Cont�1(Eq+1)), and for q > r we have equality since the maps μq,r are
isomorphisms. Hence C = μr∞(Cont�1(Er)), which is the set in [ELM, Example 2.5]. �
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