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Let Λ be an artin algebra. The aim of this paper is to outline a
strong relationship between the Gabriel–Roiter inclusions and the
Auslander–Reiten theory. If X is a Gabriel–Roiter submodule of Y ,
then Y is shown to be a factor module of an indecomposable
module M such that there exists an irreducible monomorphism
X → M . We also will prove that the monomorphisms in a
homogeneous tube are Gabriel–Roiter inclusions, provided the tube
contains a module whose endomorphism ring is a division ring.
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Let Λ be an artin algebra, and mod Λ the category of Λ-modules of finite length. The basic notion
of Auslander–Reiten theory is that of an irreducible map: these are the maps in the radical of modΛ

which do not belong to the square of the radical. They are used in order to define the Auslander–
Reiten quiver Γ (Λ): its vertices are the isomorphism classes [X] of indecomposable Λ-modules X ,
and one draws an arrow [X] → [Y ] provided there exists an irreducible map X → Y . In 1975, Aus-
lander and Reiten have shown the existence of Auslander–Reiten sequences: for any indecomposable
non-injective module X , there exists an exact sequence 0 → X → Y → Z → 0 such that both maps
X → Y and Y → Z are irreducible; here, Z is indecomposable (and not projective) and any inde-
composable non-projective module occurs in this way. The sequence is uniquely determined both by
X and by Z and one writes X = τ Z , and Z = τ−1 X and calls τ the Auslander–Reiten translation.
The middle term Y is not necessarily indecomposable: the indecomposable direct summands Y ′ of Y
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are precisely the modules with an arrow [X] → [Y ′], and also precisely the modules with an arrow
[Y ′] → [Z ].

The Gabriel–Roiter measure μ(M) of a Λ-module M is a rational number defined inductively as
follows: For the zero module M = 0, one sets μ(0) = 0. If M �= 0 is decomposable, then μ(M) is
the maximum of μ(M ′) where M ′ is a proper submodule of M , whereas for an indecomposable
module M , one sets

μ(M) = 2−|M| + max
M ′⊂M

μ
(
M ′).

It is obvious that calculating the maximum of μ(M ′), with M ′ a proper submodule of M , one may
restrict to look at indecomposable submodules M ′ of M . If M is indecomposable and not simple,
then there always exists an indecomposable submodule M ′ ⊂ M such that μ(M) − μ(M ′) = 2−|M| ,
such submodules are called Gabriel–Roiter submodules of M , and the inclusion map M ′ ⊂ M is called
a Gabriel–Roiter inclusion. Note that M may have non-isomorphic Gabriel–Roiter submodules, however
all Gabriel–Roiter submodules of M have at least the same length. Inductively, we obtain for any
indecomposable module M a chain of indecomposable submodules

M1 ⊂ M2 ⊂ · · · ⊂ Mt−1 ⊂ Mt = M

such that M1 is simple and all the inclusions Mi−1 ⊂ Mi for 2 � i � t are Gabriel–Roiter inclusions,
such a sequence is called a Gabriel–Roiter filtration. Given such a Gabriel–Roiter filtration, we have (by
definition)

μ(M) =
t∑

j=1

2−|M j |,

and it will sometimes be convenient to call also the set I = {|M1|, . . . , |Mt |} the Gabriel–Roiter mea-
sure of M . Thus the Gabriel–Roiter measure μ(M) of a module M will be considered either as a finite
set I of natural numbers, or else as the rational number

∑
i∈I 2−i , whatever is more suitable.

The paper is divided into two parts. The first part comprises Sections 1 to 3; here we will discuss
in which way Gabriel–Roiter inclusions are related to Auslander–Reiten sequences.

Theorem A. Let X be a Gabriel–Roiter submodule of Y . Then there is an irreducible monomorphism X → M
with M indecomposable and an epimorphism M → Y such that the composition X → M → Y is injective
(and therefore also a Gabriel–Roiter inclusion).

This result may be reformulated as follows: Let X be a Gabriel–Roiter submodule of Y . Then there is an
irreducible embedding X ⊂ M with M indecomposable and a submodule U of M with X ∩ U = 0 such that
M/U is isomorphic to Y .

The proof of Theorem A will be given in Section 1. Section 2 will exhibit applications, in partic-
ular we will derive some results concerning the existence of indecomposable submodules of a given
module. Section 3 will use Theorem A in order to discuss the so-called take-off part of a bimodule
algebra.

There will be an intermediate Section 4 where we will introduce the notion of a piling submodule;
this notion will be helpful for the further discussions. Note that looking at the piling submodules of
a module M corresponds to the process of constructing inductively Gabriel–Roiter filtrations, starting
with the simple submodules of M and going upwards.

The second part, Sections 5 and 6, deals with modules belonging to homogeneous tubes, or, more
generally, to modules which have a suitable filtration such that all the factors are isomorphic to a
given indecomposable module M . Recall that a component of the Auslander–Reiten quiver of Λ is
called a homogeneous tube provided it is of the form ZA∞/τ . The indecomposable modules belonging
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to a homogeneous tube T will always be labeled as M[t] with t ∈ N1 such that M[1] is of smallest
possible length in T and any M[t] has a filtration with t factors isomorphic to M[1]; the module
M[1] will be called the boundary module of T . Also, a module is said to be a brick provided its
endomorphism ring is a division ring.

Theorem B. Let T be a homogeneous tube with indecomposable modules M[t], where t ∈ N1 . Let m � 2.

(a) Given a Gabriel–Roiter filtration of M[m], then there is a submodule of M[m] isomorphic to M[1] which
occurs in the filtration.

(b) If M[1] is a brick, then M[m] has a unique Gabriel–Roiter submodule, namely the unique submodule of
M[m] which is isomorphic to M[m − 1].

The proof of Theorem B will be given in Sections 5 and 6. Note that there is a wealth of artin
algebras with homogeneous tubes: according to Crawley–Boevey, any tame k-algebra with k an al-
gebraically closed field has homogeneous tubes, but there are also many wild artin algebras having
homogeneous tubes. The case of tame hereditary algebras has been studied very carefully by Bo Chen,
in particular see [C, Corollary 4.5] which provides a proof of Theorem B in this case.

The results of this paper have been presented in a series of lectures in Bahia Bianca (spring 2006),
as well as at the university of Bielefeld (2006 and 2007), and the author is grateful for corresponding
helpful comments. Also, he thanks Dr. Dengming Xu and one of the referees for suggesting several
improvements for the paper, in particular for the proof of Theorem 1.1.

1. Proof of Theorem A

Here is a more precise statement.

1.1. Theorem. Let X be a Gabriel–Roiter submodule of Y . Let φi : X → Ni be irreducible maps with Ni in-
decomposable such that φ = (φi) : X → ⊕t

i=1 Ni is a source map for X. Then there is an index i and an
epimorphism ψ : Ni → Y such that ψφi is a monomorphism (and thus a Gabriel–Roiter inclusion).

Second formulation. Let X be a Gabriel–Roiter submodule of Y . Let φi : X → Ni be irreducible maps with Ni
indecomposable such that φ = (φi) : X → ⊕t

i=1 Ni is a source map for X. Then there is an index i such that
φi is injective, and there is a submodule U ⊂ Ni with φi(X) ∩ U = 0 such that Ni/U is isomorphic to Y .

Relevance. Recall that any indecomposable module Y which is not simple has a Gabriel–Roiter sub-
module X and X is indecomposable again. Thus, the theorem asserts that in order to construct all the
indecomposable modules Y , one can proceed inductively as follows, starting with the simple modules.
In order to find indecomposable modules Y which are not simple, we consider an indecompos-
able module X already constructed, an irreducible monomorphism f : X → M , and an epimorphism
g : M → Y such that the composition g f : X → Y is injective. Of course, we can assume that f is an
embedding. The epimorphism g is determined by its kernel U , thus by a submodule U of M such
that X ∩ U = 0. The picture to have in mind is the following:

In this way we obtain all the possible Gabriel–Roiter inclusions, and thus all the indecomposable mod-
ules Y . According to 1.1, we only have to look at finitely many irreducible embeddings X → Mi = M
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(and this information is stored in the Auslander–Reiten quiver of Λ). The new datum required is the
submodule U of M with X ∩ U = 0. (Unfortunately, we do not know any criterion on U which tells us
whether we obtain a Gabriel–Roiter inclusion, not even whether we get an indecomposable module
Y = M/U .)

Anyway, we should add that the irreducibility of an embedding X → M yields that for any proper
submodule M ′ of M with X ⊆ M ′ , the embedding X ⊆ M ′ splits, thus there is a submodule U of
M with M ′ = X ⊕ U . In this way, the submodules U to be considered correspond to the proper
submodules of M/X .

Also, let us stress that here we deal with a quite unusual conjunction of indecomposable modules:
as we know, the modules X, M, Y are indecomposable. Since both embeddings of X into M and into
Y are mono-irreducible, also the factor modules M/X and Y /X � M/(X + U ) are indecomposable.

Proof of Theorem 1.1. Let u : X → Y be a Gabriel–Roiter inclusion. We denote by Sing(X, Y ) the set
of maps f : X → Y which are not monomorphisms and we know that Sing(X, Y ) is closed under
addition, see [R4] or [R5].

Let φ = (φi) : X → ⊕t
i=1 Ni be the source map, with all Ni indecomposable. We obtain maps

ψi : Ni → Y such that
∑

i ψiφi = u. Since u is a monomorphism and Sing(X, Y ) is closed under
addition, we see that at least one of the maps ψiφi , say ψ1φ1 has to be a monomorphism. As a
consequence, also φ1 is a monomorphism. We claim that ψ1 is surjective. Assume for the contrary
that the image Z of ψ1 is a proper submodule of Y , write ψ1 = νψ ′

1 with ψ ′
1 : N1 → Z and ν : Z → Y

the inclusion map. Let X ′ be the image of ψ1φ1, it is contained in Z and we write ψ ′
1φ1 = ν ′ g

with g : X → X ′ and ν ′ : X ′ → Z the inclusion map. Note that g is an isomorphism, since ψ1φ1 is a
monomorphism. With X also X ′ is a Gabriel–Roiter submodule of Y and the inclusions X ′ ⊆ Z ⊂ Y
show that X ′ is a direct summand of Z , thus there is a retraction r : Z → X ′ (with rν ′ = 1X ′ ). But
then

g−1rψ ′
1φ1 = g−1rν ′g = g−1 g = 1X

shows that φ1 is a split monomorphism. This contradicts the fact that φ1 is irreducible. Therefore ψ1
has to be surjective. In the statement of Theorem 1.1, we write ψ = ψ1. �

This kind of argumentation can be used inductively:

1.2. Theorem. Assume that X = M0 is a Gabriel–Roiter submodule of Y . Then either

(a) there is a natural number n � 1 such that there are indecomposable modules Mi+1 and irreducible maps
fi : Mi → Mi+1 with 0 � i < n and Mn = Y such that the map fn−1 · · · f0 is a monomorphism (and thus
a Gabriel–Roiter inclusion) and fn−1 · · · f1 is an epimorphism, or else:

(b) there is an infinite sequence of indecomposable modules Mi+1 , of irreducible maps fi : Mi → Mi+1 with
i � 0 and of maps gi : Mi → Y with i � 1 such that for any m � 1 the composition gm fm−1 · · · f0 is a
monomorphism (and thus a Gabriel–Roiter inclusion) and gm fm−1 · · · f1 is an epimorphism.

Proof. By induction on m � 1, we try to construct an indecomposable module Mm , an irreducible
map fm−1 : Mm−1 → Mm and a map gm : Mm → Y such that gm fm−1 · · · f0 is a monomorphism and
gm fm−1 · · · f1 is an epimorphism. For m = 1, this has been done in 1.1.

Now consider the case m � 2 and assume that appropriate modules M1, . . . , Mm−1 and maps
f0, . . . , fm−2 as well as g1, . . . , gm−1 have been constructed. If gm−1 is an isomorphism, then we
replace fm−2 by gm−1 fm−2 : Mm−2 → Y . Of course, with fm−2 also gm−1 fm−2 is irreducible, therefore
we obtain the case (a) with n = m − 1.

Thus, we can assume that gm−1 is not an isomorphism. Since we know by induction that
gm−1 fm−2 · · · f1 and therefore also gm−1 is an epimorphism, we see that gm−1 is not a monomor-
phism. It follows that gm−1 can be factored through the source map of Mm−1, say gm−1 = ∑

i ψiφi ,
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with irreducible maps φi : Mm−1 → Ni , maps ψi : Ni → Y , and indecomposable modules Ni . It follows
that

gm−1 fm−2 · · · f0 =
∑

i

ψiφi fm−2 · · · f0.

Here, we see that a Gabriel–Roiter inclusion is written as a sum of maps, thus there is an index i, such
that ψiφi fm−2 · · · f0 is injective. We can assume that i = 1 and we let Mm = N1, fm−1 = φ1 : Mm−1 →
Mm and gm = ψ1 : Mm → Y . By construction, Mm is indecomposable and fm−1 is irreducible. Also,
the composition gm fm−1 · · · f0 is a monomorphism.

It remains to be shown that gm fm−1 · · · f1 is an epimorphism. If not, then its image Z is a proper
submodule of Y which contains the image X ′ of the Gabriel–Roiter inclusion gm fm−1 · · · f1 f0. But
then X ′ would be a direct summand of Z and this would imply that f0 is a split monomorphism, in
contrast to the fact that f0 is irreducible. This completes the proof. �
2. Applications

An obvious consequence of Theorem A is the following:

2.1. Corollary. If X is a Gabriel–Roiter submodule of some module Y , then there exists an irreducible monomor-
phism X → M with M indecomposable.

This shows that a lot of modules cannot be Gabriel–Roiter submodules of other modules. For
example:

(1) Injective modules (of course).
(2) Let Λ be the path algebra of the n-Kronecker quiver: this is the quiver with 2 vertices a, b and

n arrows from a to b. If n � 2, then Λ is representation-infinite and has a preinjective compo-
nent. If X is an indecomposable preinjective module, then no irreducible map X → Y with Y
indecomposable is a monomorphism.

(3) Consider the n-subspace quiver for some n � 1 (this is the quiver with n + 1 vertices, such
that there is a unique sink whereas the remaining vertices are sources, and such that there is
precisely one arrow from any source to the sink). Let X be an indecomposable module of the
form τ−t P where t � 1, where P is the unique simple projective module. Then there is no irre-
ducible map X → Y with Y indecomposable, which is a monomorphism, thus X cannot occur as
a Gabriel–Roiter submodule. For example, for n = 4 this concerns all the indecomposable prepro-
jective modules X of length 6t + 1 with t � 1.

Less trivial are the following consequences of Theorem A:
Let p be the maximal length of an indecomposable projective module, let q be the maximal length

of an indecomposable injective module.

2.2. Corollary. Let X → Y be a Gabriel–Roiter inclusion. Then |Y | � pq|X |.

Proof. Of course, X cannot be injective. It is well known that for an indecomposable non-injective
module X , one has |τ−1(X)| � (pq −1)|X |, thus the middle term X ′ of the Auslander–Reiten sequence
starting in X has length at most pq|X |. Theorem A asserts that Y is a factor module of X ′ , thus also
|Y | � pq|X |. �

This result is already mentioned in [R4], as a corollary to Lemma 3.1 of [R4]. Also, there we have
shown that 2.2 implies the “successor lemma”. Here are two further consequences.
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2.3. Corollary. Let M be an indecomposable module and 1 � a < |M| a natural number. Then there exists an
indecomposable submodule M ′ of M with length in the interval [a + 1, pqa].

Proof. Take a Gabriel–Roiter filtration M1 ⊂ · · · ⊂ Mn = M . Let i be maximal with |Mi | � a. Then
1 � i < n, thus Mi+1 exists and a < |Mi+1| � pq|Mi | � pqa. �
2.4. Corollary. Let M be an indecomposable module and assume that all indecomposable proper submodules
of M are of length at most b. Then |M| � pqb.

Proof. Let X be a Gabriel–Roiter submodule of M . By assumption, |X | � b, thus |M| � pq|X | �
pqb. �

Reformulation: Let N be a class of indecomposable modules. Recall that a module M is said to
be N -critical provided it does not belong to add N , but any proper indecomposable submodule of M
belongs to N . Corollary 2.4 asserts the following: if all the modules in N are of length at most b,
then any N -critical module is of length at most pqb.

Observe that the last two corollaries do not refer at all to Gabriel–Roiter notions.

3. The take-off part of a bimodule algebra

A rational number (or a finite set of natural numbers) will be said to be a Gabriel–Roiter measure
for Λ, provided there is an indecomposable Λ-module with this measure. For any Gabriel–Roiter
measure J , we denote by A( J ) the set of isomorphism classes of indecomposable modules with
measure J (or representatives of these isomorphism classes). Recall from [R3] the following: If Λ

is a representation-infinite artin algebra, there is a countable sequence of Gabriel–Roiter measures
I1 < I2 < · · · (the so-called “take-off measures”) for Λ such that any other Gabriel–Roiter measure I
for Λ satisfies It < I for all t . Obviously, I1 = {1} and it is easy to see that I2 = {1, t}, where t is the
largest possible length of a local Λ-module of Loewy length 2.

In this section, we consider the finite dimensional hereditary algebras with s = 2, where s denotes
the number of simple modules, thus we deal with representations of a bimodule F MG , where F , G are
division rings. We assume that Λ = [ F M

0 G

]
is representation-infinite. Of course, we require that Λ is

an artin algebra, thus there is a commutative field k contained in the center both of F and of G and
acting centrally on M and such that dimk M is finite. Let a = dim F M,b = dim MG . The assumption
that Λ is representation-infinite means that ab � 4.

Often we will present an indecomposable module by just writing down its dimension vector (note
that a representation of the bimodule F MG is a triple (F X, G Y , γ ), where γ : F MG ⊗G Y → F X is
F -linear, its dimension vector is the pair (dim F X,dim G Y )).

Let P1, P2, . . . be the sequence of preprojective modules, with non-zero maps Pi → Pi+1

with End(P2n−1) = F , and End(P2n) = G , for all n.
Note that always A(I1) consists of the simple Λ-modules. Here we show that the remaining take-

off modules are the modules Pn with n � 2.

Proposition. For n � 2, A(In) = {Pn}.

For n = 2, the assertion is true according to the general description of I2. For n > 2, we use induc-
tion. We have to consider three cases:
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Case 1. Consider first a bimodule F MG with a,b � 2. Then all the non-zero maps Pn → Pn+1 are
monomorphisms. Also, since all the irreducible maps ending in Pn are monomorphisms, the monomor-
phisms Pn−1 → Pn are Gabriel–Roiter inclusions.

Consider some n > 2 and assume that the assertion is true for n −1. Since there is a Gabriel–Roiter
inclusion Pn−1 → Pn , it follows that In = In−1 ∪ {t} with t � |Pn|. Thus let Y be indecomposable
with μ(Y ) = In , let X be a Gabriel–Roiter submodule of Y . Then μ(X) = In−1, thus by induction
X = Pn−1. But now we can apply Theorem 1.1 above which shows that Y is a factor module of Pn .
Since |Y | = t � |Pn|, we see that Y = Pn .

Case 2. F ⊂ G , and M = F GG , thus a = [G : F ]. Then we deal with the preprojective modules

• The non-zero maps P2n−1 → P2n are injective and are Gabriel–Roiter inclusions.
• The non-zero maps P2n → P2n+1 are surjective.
• The non-zero maps P2n−1 → P2n+1 are injective and are Gabriel–Roiter inclusions.

Consider some 2n and assume that the assertion is true for 2n − 1. The argument is the same as
in Case 1, using Theorem 1.1.

Also, consider some 2n + 1 and assume that the assertion is true for 2n − 1 and 2n. Since the
irreducible maps starting in P2n are epi, we see that I2n+1 cannot start with I2n . Since there are
Gabriel–Roiter inclusions P2n−1 → P2n+1, we see that I2n+1 = I2n−1 ∪ {t} with |P2n| > t � |P2n+1|.

Thus let Y be indecomposable with μ(Y ) = I2n+1, let X be a Gabriel–Roiter submodule of Y . Then
μ(X) = I2n−1, thus by induction X = P2n−1. But now we can apply 1.2. It shows that Y is a factor
module of P2n+1. Since |Y | = t � |P2n+1|, we see that Y = P2n+1.

Case 3. G ⊂ F , and M = F FG , thus b = [F : G]. Then we deal with the preprojectives

The non-zero maps P2n−1 → P2n are surjective, for n � 2, whereas P1 → P2 is injective (and this
is a Gabriel–Roiter inclusion).

• The non-zero maps P2n → P2n+1 are injective and are Gabriel–Roiter inclusions.
• The non-zero maps P2n → P2n+2 are injective and are Gabriel–Roiter inclusions.

Proof. As in Case 2, but taking into account the additional Gabriel–Roiter inclusion P1 → P2. �
4. Piling submodules

We call an indecomposable submodule U of some module Y piling, provided μ(V ) � μ(U ) for all
indecomposable submodules V of Y with |V | � |U |; actually, it is sufficient to check the condition for
the indecomposable submodules V of Y with |V | < |U |. Namely, if there exists an indecomposable
submodule V of Y with |V | = |U | and μ(V ) > μ(U ), then there exists a proper submodule V ′ of V
with μ(V ′) > μ(U ). There is the following alternative description:

4.1. Lemma. An indecomposable submodule U of Y is piling if and only if μ(Y ) starts with μ(U ) (this means
that μ(U ) = μ(Y ) ∩ {1,2, . . . , |U |}).

Proof. Let U be an indecomposable submodule of Y , let U1 ⊂ U2 ⊂ · · · ⊂ Us = U and Y1 ⊂ Y2 ⊂ · · · ⊂
Yt be Gabriel–Roiter filtrations, where Yt ⊆ Y is an indecomposable submodule with μ(Yt) = μ(Y ).
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First, assume that U is piling in Y . We claim that |Ui | = |Yi | for 1 � i � s. If not, then there is some
minimal i with |Ui | �= |Yi | and since μ(U ) � μ(Y ), we must have |Ui | > |Yi |. But then V = Yi is a
submodule of Y with |V | < |U | and μ(V ) = {|Y1|, . . . , |Yi |} > μ(U ), a contradiction to the assumption
that U is piling in Y .

Second, assume that μ(U ) = μ(Y ) ∩ {1,2, . . . , |U |}. Let V be an indecomposable submodule of Y
with |V | � |U | and assume that μ(V ) > μ(U ). If V 1 ⊂ V 2 ⊂ · · · ⊂ Vr = V is a Gabriel–Roiter filtration
of V , then there must be some 1 � j � min(s + 1, r) such that |Ui | = |V i| for 1 � i < j and either
j = s + 1 or else |U j | > |V j|. The case j = s + 1 cannot happen, since otherwise |U | = |Us| = |V s| <

|V s+1| � |V |, but |V | � |U |. Thus we have |V j| < |U j |. But then μ(V ) > μ(Y ), since |V i| = |Ui | = |Yi |
for 1 � i < j and |V j| < |U j | = |Y j |. This is impossible: a submodule V of Y always satisfies μ(V ) �
μ(Y ). �

Note that all the submodules in a Gabriel–Roiter filtration of an indecomposable module are piling,
but usually there are additional ones: for example all simple submodules are piling. The fact that a
submodule U of Y is piling depends only on the isomorphism class of U and the set of isomorphism
classes of submodules V of Y with |V | � |U | (but for example not on the embedding of U into Y ).
Here are some further properties:

4.2. Assume that U ⊆ V ⊆ W . If U is piling in V and V is piling in W , then U is piling in W .

Proof. If μ(W ) starts with μ(V ) and μ(V ) starts with μ(U ), then obviously μ(W ) starts with
μ(U ). �
4.3. If U ⊆ V ⊆ W and U is a piling submodule of W , then also of V .

Proof. Let X be a submodule of V with |X | � |U |. Consider X as a submodule of W and conclude
that μ(X) � μ(U ). �
4.4. If U ⊆ X ⊕ Y is a piling submodule, then at least one of the maps U → X or U → Y is an embedding with
piling image.

Proof. Recall the strong Gabriel property: Assume that U , X1, . . . , Xn are indecomposable modules
and there are given maps f i : U → Xi such that the map f = ( f i)i : U → ⊕

Xi = X is a monomor-
phism and its image is a piling submodule of X . Then at least one of the maps f i is a monomorphism
(and its image is a piling submodule of Xi). Now let U ⊆ X ⊕ Y be a piling submodule. According to
the strong Gabriel property, one of the maps U → X , U → Y is an embedding, say f : U → X . Since
U is piling in X ⊕ Y , it follows that f (U ) is piling in X . �
5. Piling submodules of modules with a homogeneous M-filtration

5.1. Let M be an indecomposable module. An M-filtration of a module Y is a chain of modules

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y

such that M[i]/M[i − 1] � M for all 2 � i � m; the number m is called the M-length of Y . Observe
that a module Y with an M-filtration is just an iterated self-extension of the module M .

In case all the modules M[i] are indecomposable and the inclusion maps are mono-irreducible
maps, we call this a homogeneous M-filtration. For example, if T is a homogeneous tube of the
Auslander–Reiten quiver of Λ and M is the boundary module of T , then any module belonging to
T has a homogeneous M-filtration.

On the other hand, it is easy to construct modules M with self-extensions

0 → M → M[2] → M → 0
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where M[2] is indecomposable such that the inclusion M → M[2] is not mono-irreducible. For exam-
ple, take the quiver with vertices a, b, c, one arrow a → b, two arrows b → c. Then any indecompos-
able module M with dimension vector (1,1,1) is as required.

The aim of this section is to study Gabriel–Roiter filtrations of modules with a homogeneous M-
filtration.

5.2. Theorem. Let Y be a module with a homogeneous M-filtration. Let U be a piling submodule of Y .

(a) If |U | � |M|, then U is isomorphic to a submodule of M.
(b) If |U | � |M|, then any Gabriel–Roiter filtration of U contains a module isomorphic to M.

5.3. Corollary. Let Y be a module with a homogeneous M-filtration. Then any Gabriel–Roiter filtration of Y
contains a module isomorphic to M.

This is the special case of (b) where U = Y . On the other hand, the assertion (a) of Theorem B is
a direct application of 5.3: Given a homogeneous tube T with modules M[t], then any module M[t]
has a homogeneous M[1]-filtration.

Before we start with the proof of Theorem 5.2, we insert a general observation:

5.4. Let X → Y be a proper inclusion with X �= 0 and Y indecomposable ( for example a Gabriel–Roiter inclu-
sion). Assume that Y ′ is a submodule of Y with X + Y ′ = Y . Then |Y ′| > |Y /X |.

Proof. The submodule Y ′ of Y maps onto Y ′/(X ∩ Y ′) � (X + Y ′)/X = Y /X with kernel X ∩ Y ′ . If
|Y ′| � |Y /X |, then this surjective map has to be an isomorphism, thus X ∩Y ′ = 0. But then Y = X ⊕Y ′ ,
whereas Y is indecomposable and 0 �= X �= Y . �
Proof of 5.2(a). Assume that |U | � |M|. According to 5.4, we see that M[m − 1] + U is a proper
submodule of Y , thus M[m−1]+U = M[m−1]⊕U ′ for some submodule U ′ of Y which is isomorphic
to a proper submodule of M . Now U is a piling submodule of Y , thus also of M[m − 1]⊕ U ′ , therefore
of M[m − 1] or of U ′ . In the first case, use induction on m. In the second case, just recall that U ′ is
isomorphic to a submodule of M . �
Proof of 5.2(b). We can assume that M is not simple, since otherwise M[m] is serial and nothing has
to be shown.

Let U1 ⊂ U2 ⊂ · · · ⊂ Us = U be a Gabriel–Roiter filtration of U . Assume that |Ur | < |M| and
|Ur+1| � |M| by assumption, such an r must exist, since M is not simple and |Us| � |M|. We ap-
ply (a) to the submodule Ur (as a piling submodule of U it is piling in Y ) and see that Ur is
isomorphic to a submodule M ′ of M . From the definition of a Gabriel–Roiter filtration it follows
that |Ur+1| � |M|. Thus |Ur+1| = |M|. Now we apply (a) to the submodule Ur+1 and see that Ur+1 is
isomorphic to M . �
6. Modules with homogeneous M-filtrations, where M is a brick

6.1. We will assume now in addition that the endomorphism ring of M is a division ring, thus that
M is a brick. Then we can use the process of simplification [R1]: Let F (M) be the full subcategory of
all modules which have an M-filtration. The new assumption implies that this category F (M) is an
abelian category, even a length category, and M is its only simple object. Of course, the M-filtrations
of an object Y are just the composition series of Y when considered as an object of F (M). Thus, if Y
has an M-filtration

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y
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with all M[i] for 1 � i � m indecomposable, then Y considered as an object of F (M) is uniform, thus
M is the only submodule of Y isomorphic to M .

In case Y has a unique M-filtration

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y

then Y , considered as an object in F (M) is even serial and then all the factors M[t]/M[s] with
0 � s < t � m are indecomposable (here, M[0] = 0).

Conversely, if Y has the M-filtration

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y

and all the factor modules M[i]/M[i −2] with 2 � i � m are indecomposable (again, we set M[0] = 0),
then Y has only one M-filtration.

6.2. Theorem. Assume that M is a brick. Let Y be a module with a homogeneous M-filtration and assume that

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y

is the only M-filtration of Y . If U is a piling submodule of Y and |U | � |M|, then U = M[ j] for some 1 � j � m.

Remark. The assumption |U | � |M| is important. For example, if |M| � 2, then the socle of M[m] is
of length at least m, thus for m � 2, there are many simple submodules and all are piling.

Proof of 6.2. We can assume that M is not simple, since otherwise M[m] is a serial module and the
submodules M[ j] are the only non-zero submodules.

We use induction on m. For m = 1 nothing has to be shown. Thus let m � 2. Let U be a piling
submodule of Y and |U | � |M|. We use the second induction, now on |U | in order to show that U =
M[ j] for some j. The induction starts with |U | = |M|. In this case 5.2(a) shows that U is isomorphic
to M , but according to the process of simplification, any submodule of Y isomorphic to M is equal
to M , thus U = M = M[1].

Now let |U | > |M|. Let U ′ be a Gabriel–Roiter submodule of U .
First, assume that |U ′| < |M|. Then, according to 5.2(a), there is a submodule M ′ of M which is

isomorphic to U ′ . Using the definition of a Gabriel–Roiter sequence, and the fact that there is the
inclusion M ′ ⊂ M with M indecomposable, we see that |U | � |M|, but this contradicts the assumption
|U | > |M|.

Next, consider the case |U ′| � |M|. By the second induction, we see that U ′ = M[ j] for some j � 1.
Of course, since U ′ is a proper submodule of Y , we see that j < m. The inclusion M[ j] ⊂ M[ j + 1]
and the definition of a Gabriel–Roiter filtration shows that |U | � |M[ j + 1]|. Claim: We can assume
that M[m − 1] + U is a proper submodule of M[m].

Otherwise, we easily see that M[m]/M[ j] = M[m − 1]/M[ j] ⊕ U/M[ j]. But the process of simpli-
fication shows that M[m]/M[ j] is indecomposable. Also, U/M[ j] = U/U ′ is non-zero, thus M[m −
1]/M[ j] = 0 and U = M[m].

Since M[m − 1] + U is a proper submodule of M[m], we see that M[m − 1] + U = M[m − 1] ⊕ C
for some submodule C of Y and C is isomorphic to a proper submodule of M . Write the inclusion
map U → M[m − 1] ⊕ C in the form [ f , f ′]t , where f : U → M[m − 1] and f ′ : U → C . Since U
is a piling submodule of Y and U ⊆ M[m − 1] ⊕ C ⊂ Y , it follows that U is a piling submodule of
M[m − 1] ⊕ C , thus either f or f ′ is an embedding with piling image. However |U | > |M| whereas
|C | < |M|, thus f : U → M[m − 1] is an embedding, and its image is a piling submodule. Now we use
the induction on m in order to conclude that f (U ) = M[i] for some i. In particular, U is isomorphic to
M[i]. But there is no non-zero homomorphism M[i] → C , since C is a proper submodule of M (using
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simplification). This shows that f ′ = 0 and therefore the embedding U → M[m − 1] ⊕ C is just the
map f : U → M[m − 1]. It follows that U = M[i]. �
6.3. Corollary. Assume that M is a brick. Let Y be a module with a homogeneous M-filtration and assume that

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m] = Y

is the only M-filtration of Y . If m � 2, then Y has precisely one Gabriel–Roiter submodule, namely M[m − 1].

Proof. Let X be a Gabriel–Roiter submodule of Y = M[m], where m � 2. A Gabriel–Roiter submodule
is a piling submodule. If |X | � |M|, then by 5.2(a), X is isomorphic to a submodule M ′ of M . With
X also M ′ is a Gabriel–Roiter submodule of Y , thus the inclusions M ′ ⊆ M ⊂ M[2] ⊆ M[m] show that
M ′ = M (and m = 2). Thus X is isomorphic to M . However the process of simplification asserts that
M is the only submodule of M[m] isomorphic to M . This shows that X = M[1].

Thus we can assume that |X | > |M| and use Theorem 6.2. �
6.4. Proof of Theorem B(b). Let T be a homogeneous tube of the Auslander–Reiten quiver of Λ.
Denote the modules in T by M[m], where |M[m]| = m|M| and M = M[1]. Assume in addition that
M is a brick. Since M is a brick, we can consider the abelian category F (M) which contains all the
modules M[m]. We have a chain of inclusions

M = M[1] ⊂ M[2] ⊂ · · ·
and for m � 2, the factor module M[m]/M[m − 2] is indecomposable (here again, we set M[0] = 0).
This shows that any M[m] has the unique M-filtration

M = M[1] ⊂ M[2] ⊂ · · · ⊂ M[m],
thus we can use the previous corollary.

6.5. Remarks. In 6.3 as well as in Theorem B(b), the assumption m � 2 is important: the module
M = M[1] usually will have more than one Gabriel–Roiter submodules. For example consider the
four-subspace-quiver and T a homogeneous tube containing a module M of length 6. The module M
has 4 maximal submodules and all are Gabriel–Roiter submodules.

Well-known examples of homogeneous tubes such that the endomorphism ring of the boundary
module M is a division ring are the homogeneous tubes of a tame hereditary algebra, of a tubular
algebra or of a canonical algebra [R2]. As we have mentioned in the introduction, tame hereditary
algebras have been considered by Bo Chen in [C].

For a tubular algebra, the boundary modules of homogeneous tubes are of unbounded length. The
same is true in case Λ is a tame hereditary or a canonical k-algebra and the algebraic closure of k is
not a finite field extension of k.

At the end of the paper, let us consider also modules of infinite lengths. We consider again a ho-
mogeneous tube T with indecomposable modules M[m], where t ∈ N1. There is a chain of irreducible
maps

M[1] → M[2] → · · · → M[m] → M[m + 1] → · · · ,
and we denote by M[∞] the corresponding direct limit; such a module is called a Prüfer module.

6.6. Corollary. Let T be a homogeneous tube with indecomposable modules M[m] and assume that M[1] is a
brick. Then the Gabriel–Roiter measure of M[∞] is a rational number.
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Proof. The module M[∞] has a Gabriel–Roiter filtration starting with a Gabriel–Roiter filtration of
M[1] and then using precisely the modules M[m]. Let X be a Gabriel–Roiter submodule of M[1]. Note
that the length of M[m] is sm, with s = |M[1]|. Thus

γ
(
M[∞]) = γ (X) +

∑

m�1

2−|M[m]| = γ (X) +
∑

m�1

2−sm = γ (X) + 1

2s − 1
. �
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