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P. Aluffi in 2004 to define characteristic cycle of a hypersurface
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who named them Aluffi algebras. For a pair of ideals J ⊆ I of
a commutative ring R , the Aluffi algebra of I/ J is called Aluffi
torsion-free if it is isomorphic to the Rees algebra of I/ J . In this
paper, ideals generated by 2-minors of a 2 × n matrix of linear
forms and also edge ideals of graphs are considered and some
conditions are presented which are equivalent to Aluffi torsion-free
property of them.
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Introduction

In the remarkable paper [1], Paolo Aluffi introduced an intermediate graded algebra between
a symmetric algebra and the Rees algebra which he called quasi-symmetric algebra. His purpose was
to describe the characteristic cycle of a hypersurface, parallel to well-known conormal cycle in inter-
section theory. A. Nasrollah Nejad and A. Simis in [14] and then in [15] called such an algebra the
Aluffi algebra. Given a commutative ring R and ideals J ⊂ I ⊂ R , the Aluffi algebra of I/ J is defined by

A R/ J (I/ J ) := S R/ J (I/ J ) ⊗S R (I) R R(I).

The Aluffi algebra is squeezed as S R/ J (I/ J ) � A R/ J (I/ J ) � R R/ J (I/ J ) and is moreover a residue
ring of the ambient Rees algebra R R(I). The kernel of the right-hand surjection is called the module
of Valabrega–Valla as defined in [17] which is the torsion of the Aluffi algebra [15]. Thus, provided
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that I has a regular element modulo J , the Rees algebra of I/ J is the Aluffi algebra modulo its
torsion. The question which motivated this paper is: when is the surjection A R/ J (I/ J ) � R R/ J (I/ J )
an isomorphism. For importance of this question in commutative algebra and intersection theory, we
call a pair of ideals J ⊂ I , Aluffi torsion-free if the surjection A R/ J (I/ J ) � R R/ J (I/ J ) is injective.

Some important examples of Aluffi torsion-free pairs have been appeared explicitly in the following
two results. The first one is due to Huneke [12] who assumes that I is an ideal whose extension
(I + J )/ J on the quotient ring R/ J is generated by a d-sequence. The second one is due to Herzog,
Simis and Vasconcelos and is what they called “Artin–Rees lemma on the nose” [11]. They have
considered that, both ideals I and I/ J are of linear type over R and R/ J , respectively. By the structure
of the Aluffi algebra, it is shown in [15] that the assumption in the second result to the effect that I be
of linear type over R does not intervene the result. Nasrollah Nejad and Simis in [15] give necessary
and sufficient conditions for these algebras to be isomorphic in terms of I-standard basis of J and
also relates this isomorphism with the relation type number of I/ J over R/ J and the Artin–Rees
number of J relative to I .

In geometric settings, let X
i

↪→ Y
j

↪→ Z be closed embeddings of schemes with J ⊂ I ⊂ R the ideal
sheaves of Y and X in Z , respectively. Let Z̃ = Proj(R R(I)) π−→ Z be the blowup of Z along X and
Ỹ = Proj(R R/ J (I/ J )) be the blowup of Y along X . Note that Ỹ embeds in Z̃ as the strict transform

of Y under Z̃ π−→ Z . Let E = π−1(X) be the exceptional divisor of the blowup. Then, E is a sub-
scheme of π−1(Y ). Let R = R(E,π−1(Y )) be the residual scheme of E in π−1(Y ). Here “residual”
is taken in the sense of [7, Definition 9.2.1]. In terms of the ideal sheaves, R is characterized by the
equation IR.I E = Iπ−1(Y ) , where I E , Iπ−1(Y ) are respectively the ideals of E and π−1(Y ) in Z̃ . Aluffi
in [1, Theorem 2.12] proved that Proj(A R/ J (I/ J )) = R(E,π−1(Y )). Fulton in [7, B. 6.10] shows that if i

and j are regular embeddings, then R = Ỹ which is equivalent to say that J ∩ In = J In−1 for all suf-
ficiently large n. S. Keel in [13, Theorem 1] shows that this result holds as long as X ↪→ Y is a linear
embedding and Y ↪→ Z is a regular embedding. The goal of the present work is to find some exam-
ples of Aluffi torsion-free pairs which are in the main streams of research in commutative algebra
and algebraic geometry. To this goal, two major examples are worked out. First we classify all Aluffi
torsion-free ideals generated by 2-minors of a 2 × n matrix of linear forms. Then, we characterize all
Aluffi torsion-free edge ideals of simple graphs.

In Section 2, we consider J as an ideal generated by 2-minors of a 2 × n matrix of linear forms
and I stands for the Jacobian ideal of J . We prove that the pair J ⊆ I is Aluffi torsion-free if and
only if in the Kronecker–Weierstrass normal form of the matrix, there is no any Jordan block. More
precisely, Theorem 2.3 asserts that these conditions are equivalent to say that Ir(Θ) = mr , where r is
codimension of J , Θ stands for the Jacobian matrix of J and m is the homogeneous maximal ideal of
k[X] = k[x1, . . . , xn]. This motivates us to conjecture that, if J ⊂ k[X] is an ideal of codimension r � 2,
generated by 2-forms, and if I denotes the ideal generated by r-minors of the Jacobian matrix Θ of J ,
then I is m-primary if and only if I = mr (Conjecture 2.6).

Section 3 is devoted to find conditions for edge ideal of a graph and its Jacobian ideal to be
Aluffi torsion-free pair. In this regard, we give some necessary and sufficient conditions for graphs
equivalent to the Aluffi torsion-free property. Finally, we present several examples of graphs which
are Aluffi torsion-free or not.

Some of the results of this paper have been conjectured after explicit computations performed by
the computer algebra systems Singular [9] and CoCoA [6].

1. Torsion-free Aluffi algebras

Let R be a commutative ring and I an ideal of R . The two most common and important commu-
tative algebras related to the ideal I are the symmetric algebra S R(I) and the Rees algebra R R(I).
Recall that these algebras are defined as

R R(I) :=
⊕
t�0

It ut � R[Iu] ⊂ R[u], S R(I) :=
⊕
t�0

S t
R(I),
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where S t
R(I) = T t

R(I)/((x ⊗ y − y ⊗ x) ∩ T t
R(I)) and T t

R(I) is the tensor algebra of order t . The defini-
tion of R R(I) immediately implies that, it is torsion-free over the base ring R . A natural surjection of
standard R-graded algebras arises from the definition:

S R(I) � R R(I). (1)

This map is injective locally on the primes p ∈ spec(R) such that I � p. It follows from the general
arguments that, provided that I has some regular elements, the kernel is the R-torsion submodule
(ideal) of the symmetric algebra. If the map in (1) is injective, one says that the ideal I is of linear
type, a rather non-negligible notion in parts of syzygy theory of ideals.

Definition 1.1. (See [15].) Let R be Noetherian and J ⊂ I be ideals of R . The Aluffi algebra of I/ J is

A R/ J (I/ J ) := S R/ J (I/ J ) ⊗S R (I) R R(I).

We have the following surjections:

S R/ J (I/ J ) � A R/ J (I/ J ) � R R/ J (I/ J ).

The kernel of the second surjection is the so-called module of Valabrega–Valla (see [17], also [18, 5.1])
which is

VV J⊂I =
⊕
t�2

J ∩ It

J It−1
. (2)

Of course, as an ideal, this kernel is generated by finitely many homogeneous elements, but as a
graded R/ J -module, it is conceivable that it may fail this property. By [15, Proposition 2.5] the
Valabrega–Valla module gives the torsion of the Aluffi algebra.

Definition 1.2. A pair of ideals J ⊂ I of a ring R is said to be Aluffi torsion-free if the map
A R/ J (I/ J ) � R R/ J (I/ J ) is injective.

Note that by [7, B. 6.10] and (2), a pair of ideals J ⊂ I is Aluffi torsion-free if and only if J ∩ In =
J In−1 for all positive integers n.

Example 1.3. Let a1, . . . ,ar be a regular sequence in a Noetherian ring R and let I = 〈a1, . . . ,ar〉. Then,
for each i = 1, . . . , r, the pair J = (an

1, . . . ,an
i ) ⊂ In is Aluffi torsion-free.

Lemma 1.4. Let R = k[X] and J ⊂ R be an ideal generated by forms of the same degree d � 1. Then, J ∩mrt ⊂
Jmr(t−1) for every t � 0 and r � d.

Proof. Let f1, . . . , fm be generators of J and let F be a form on f i ’s such that F ∈ mrt . Then F =∑m
i=1 gi f i , where gi = ∑

aαXα ∈ Rrt−d+δ for δ � 0. Since Rrt−d+δ = Rr−d+δ.Rrt−r , we can rewrite gi
as

gi =
∑

|α|=r−d+δ
|β|=rt−r

aα,βXα+β, hence F =
∑

|α|=r−d+δ

Xα

(
s∑

i=1|β|=rt−r

(
Xβ

)
f i

)
.

Therefore, F ∈ Jmrt−r , as required. �
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Let R = k[X] be the N-graded polynomial ring over a field k, J ⊂ R be a homogeneous ideal and
I ⊂ R be the Jacobian ideal of J , by which we always mean the ideal ( J , Ir(Θ)) where r = ht( J )
and Θ stands for the Jacobian matrix of a set of generators of J . More precisely, if J = ( f1, . . . , f s),
then

Θ =
⎡⎢⎣

∂ f1
∂x1

∂ f2
∂x1

· · · ∂ f s
∂x1

...
...

...
∂ f1
∂xn

∂ f2
∂xn

· · · ∂ f s
∂xn

⎤⎥⎦ .

Corollary 1.5. With the above assumptions and notations, if Ir(Θ) = mr , then the pair J ⊆ I is Aluffi torsion-
free.

Proof. Let t be a positive integer. Then, we have

J ∩ It = J ∩ (
J , Ir(Θ)

)t = J ∩ (
J ,mr)t

= J ∩ (
J t , J t−1mr, . . . , Jmr(t−1)

) + J ∩ mrt

= J
(

J ,mr)t−1 + J ∩ mrt ⊆ J It−1 + J ∩ mrt .

Lemma 1.4 implies that J ∩ mrt ⊆ Jmr(t−1) ⊆ J It−1. �
2. Ideal of 2-minors of a 2 × n matrix of linear forms

We recall the Kronecker–Weierstrass normal form of a 2 × n matrix of linear forms [8]. Assume
that k is an algebraically closed field. Let S be the polynomial ring in variables xij , yij , zi j over k. Let
M be a 2 ×n matrix of linear forms of S . Then, M is conjugate to a matrix obtained by concatenation
of certain blocks such as

[D1 | · · · | Dk | J1 | · · · | J s | B1 | · · · | Bt], (3)

where Di is a “nilpotent block” of length ni + 1:

Di =
[

xi1 xi2 · · · xini 0
0 xi1 · · · xi,ni−1 xini

]
,

J i is a “Jordan block” of length mi with eigenvalue λi ∈ k:

J i =
[

yi1 yi2 · · · yimi

λi yi1 yi1 + λi yi2 · · · yi,mi−1 + λi yimi

]
,

and Bi is a “scroll block” of length li :

Bi =
[

zi1 zi2 · · · zi,li−1 zili
zi0 zi1 · · · zi,li−2 zi,li−1

]
.

Let I2(M) be the ideal generated by 2-minors of M . Since this ideal does not change under con-
jugation of the matrix, we will assume that M is in the form of Kronecker–Weierstrass normal
form.
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Lemma 2.1. (See [19].) Let M be a 2 × n matrix of linear forms in the Kronecker–Weierstrass normal form

[D1 | · · · | Dk | J11 | · · · | J1l1 | · · · | J s1 | · · · | J sls | B1 | · · · | Bt],
where each J i j is a Jordan block with length pij and eigenvalue λi . Suppose that, there is at least one Jordan
block with eigenvalue zero and [

y1 y2 · · · y j

0 y1 · · · y j−1

]
be the Jordan block with smallest length. Then, the ideal (I2(M) : y1) is generated by all indeterminates ap-
pearing in the second row of M.

Proof. Let M ′ be the matrix obtained by deleting the column
[ y1

0

]
and substituting y1 with 0 in the

matrix M . Denote by J the ideal generated by indeterminates in the second row of M . Then we have
the following sequence:

0 → S

J
(−1)

y1−→ S

I2(M)
→ S

(I2(M ′), y1)
→ 0. (4)

We claim that this sequence is exact. To prove it, we compare Hilbert series of them. By [5, (2.2.3),
(2.5.5)], the Hilbert series of S/I2(M) is

1

(1 − ν)t

(
1 + Aν

1 − ν
+

s∑
i=1

li∑
j=1

pij

(1 − ν)li− j+1

)
+ G(ν),

where A = ∑t
i=1 mi − 1, and G(ν) is a polynomial which is the Hilbert series of a matrix consisting

of all nilpotent blocks of M . In the other hand,

H S S/(I2(M ′),y1)(ν) = H S S ′/I2(M ′)(ν),

where S ′ is the ring S without y1. Since M ′ has one column less than M , then

H S S ′/I2(M ′)(ν) = 1

(1 − ν)t

(
1 + Aν

1 − ν
+

s∑
i=1

li∑
j=1

pij

(1 − ν)li− j+1
− ν

(1 − ν)l1

)
+ G(ν).

Hence

H S S/I2(M)(ν) − H S S/(I2(M ′),y1)(ν) = ν

(1 − ν)t+l1
,

where l1 is the number of Jordan blocks with eigenvalue zero. Note that the number of indetermi-
nates which does not appear in the second column of M is t + l1. Therefore, S/ J is isomorphic with
a polynomial ring with t + l1 indeterminates. Thus, the sequence (4) is exact and J = (I2(M) : y1). �

Note that in the above lemma, assuming that y1 is in the Jordan block with the smallest length is
necessary. For example, in the matrix[

y1 y2 w1 w2 w3

0 y1 0 w1 w2

]
,

we have y2 w1 ∈ I2(M) but y2 is not in the second row.
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Proposition 2.2. Let M be a 2 ×m matrix of linear forms in the Kronecker–Weierstrass normal form (3). Then,
the height of I2(M) is given by the following formulas.

(i) If M consists of only k � 1 nilpotent blocks, then

ht
(

I2(M)
) =

k∑
i=1

ni .

(ii) If M consists of t � 1 scroll and k � 0 nilpotent blocks, then

ht
(

I2(M)
) =

k∑
i=1

ni +
t∑

i=1

li − 1.

(iii) If M consists of k � 0 nilpotent, t � 0 scroll and s � 1 Jordan blocks, then

ht
(

I2(M)
) =

k∑
i=1

ni +
t∑

i=1

li +
s∑

i=1

mi − γ ,

where γ is the maximum number of Jordan blocks with the same eigenvalue.

Proof. (i) Let M be of the form

M =
[

x1,1 x1,2 · · · x1,n1 0

0 x1,1 · · · x1,n1−1 x1,n1

∣∣∣∣ · · ·
∣∣∣∣ xk,1 xk,2 · · · xk,nk 0

0 xk,1 · · · xk,nk−1 xk,nk

]
.

By [3, p. 15],

I2(M) = 〈x1,1, x1,2, . . . , x1,n1 , . . . , xk,1, xk,2, . . . , xk,nk 〉2.

Therefore, (i) is clear.
(ii) If M consists of only t scroll blocks, then by [5], the Hilbert series of S/I2(M) is equal to

1 + (m − 1)ν

(1 − ν)t+1
.

This proves the assertion in case (ii) when we have only scroll blocks.
Suppose that M consists of t � 1 scroll and k � 1 nilpotent blocks. In this case, proof is by induc-

tion on number of columns of M . Let x11 be the first indeterminate in the first nilpotent block. We
have the following short exact sequence:

0 → S

I2(M) : x11

x11−−→ S

I2(M)
→ S

(I2(M), x11)
→ 0.

Note that

S � S ′
′ ,
(I2(M), x11) I2(M )
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where M ′ is the matrix obtained by deleting the first column of M and replacing 0 instead of x11 in
the second column of M , and S ′ is the polynomial ring S without x11. By induction hypothesis, there
is h′(ν) ∈ Z[ν] such that, the Hilbert series of S ′/I2(M ′) is of the form

h′(ν)

(1 − ν)c−1−(δ−2)
= h′(ν)

(1 − ν)c−(δ−1)
,

where δ = ∑k
i=1 ni + ∑t

i=1 li , and c is number of all indeterminates appearing in M .
If li � 3, for i = 1, . . . , t , then, the ideal I2(M) : x11 is generated by all indeterminates. If for some

1 � i � t , 1 � li � 2, then, zu
i,li

∈ I2(M) : x11, for some positive integer u. Since the ideal (I2(M) : x11)

is zero-dimensional, therefore, the Hilbert series of S/(I2(M) : x11)(−1) is simply νh(ν) for some
h(ν) ∈ Z[ν]. By using the above short exact sequence and additive property of Hilbert series, we
obtain the Hilbert series of S/I2(M):

H S/I2(M)(ν) = νh(ν)(1 − ν)c−(δ−1) + h′(ν)

(1 − ν)c−(δ−1)
.

In this fraction, the numerator is not divisible by (1−ν). Therefore, dimension of S/I2(M) is c−(δ−1)

and height of I2(M) is δ − 1. This completes the proof of case (ii).
(iii) Suppose that M has s � 1 Jordan blocks. Also in this case, the proof is by induction on number

of columns of M . Let γ be the maximum number of Jordan blocks with the same eigenvalues λ. After
some suitable elementary column and row operations, we obtain a matrix conjugate to M such that
lengths and types of all blocks are preserved and the blocks with eigenvalue λ have become to blocks
with eigenvalue zero (for details, see the proof of the main theorem in [4]). Let y11 be the first
indeterminate in the smallest Jordan block with eigenvalue zero. The above short exact sequence is
valid if we substitute x11 by y11. In this case,

S

(I2(M), y11)
� S ′

I2(M ′)
,

where M ′ is the matrix obtained by M deleting first column and replacing 0 instead of y11, and S ′
is the polynomial ring S without y11. By induction hypothesis, there is h′(ν) ∈ Z[ν] such that, the
Hilbert series of S ′/I2(M ′) is of the form

h′(ν)

(1 − ν)c−1−(δ−γ −1)
= h′(ν)

(1 − ν)c−(δ−γ )
,

where δ = ∑k
i=1 ni + ∑t

i=1 li + ∑s
i=1 mi . Note that, the ideal (I2(M) : y11) is generated by all inde-

terminates appearing in the second row of M [21]. The number of indeterminates appearing in the
second row is δ − γ . Therefore, the Hilbert series of S/(I2(M) : y11)(−1) is

ν

(1 − ν)c−(δ−γ )
.

The Hilbert series of S/I2(M) is

H S/I2(M)(ν) = ν + h′(ν)

(1 − ν)c−(δ−γ )
.

Therefore, dimension of S/I2(M) is c − (δ − γ ) and height of I2(M) is δ − γ . �
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Theorem 2.3. Let M be a 2×n matrix of linear forms in a polynomial ring S over an algebraically closed field k.
Suppose that I2(M) has codimension r > 1. Denote by Θ the Jacobian matrix of I2(M). Then, the following
conditions are equivalent:

(a) Ir(Θ) = mr ;
(b) the Kronecker–Weierstrass normal form of M does not have any Jordan block, or it consists of only some

nilpotent blocks and some Jordan blocks of length 1;
(c) the pair I2(M) ⊆ (I2(M), Ir(Θ)) is Aluffi torsion-free,

where m is the irrelevant maximal ideal of S and Ir(Θ) is the ideal generated by r-minors of Θ .

Proof. (a) ⇒ (b) Let M be a matrix which has at least one Jordan block. Suppose that γ is the maxi-
mum number of Jordan blocks with the same eigenvalue λ. As stated in the proof of Proposition 2.2,
we may assume that λ is zero. Let the block J1 be one of the Jordan blocks with length greater than 1
and eigenvalue zero. It is in the form:[

y1,1 y1,2 · · · y1,m1

0 y1,1 · · · y1,m1−1

]
.

By Proposition 2.2, height of I2(M) is

r =
k∑
1

ni +
s∑
1

mi +
t∑
1

li − γ .

But, the variable y1,m1 appears only in r − 1 quadratic forms in generators of I2(M) and therefore, it
appears only in r − 1 rows in the Jacobian matrix of I2(M). This is enough to know that yr

1,m1
is not

in the ideal of r-minors of the Jacobian matrix of I2(M) and then, Ir(Θ) �= mr .
If there is no any Jordan block of length greater than 1, and there is at least one scroll block and

some at least one Jordan block of length 1, then the variable z1l1 appears in r − 1 quadratic forms
in I2(M) and the same argument as above shows that zr

1l1
/∈ Ir(Θ).

(b) ⇒ (a) If the Kronecker–Weierstrass normal form of M does not have any Jordan block, then,
M falls within one of the following cases.

(i) M has only scroll blocks.
(ii) M has only nilpotent blocks.

(iii) M has nilpotent and scroll blocks.
(iv) M has nilpotent and Jordan blocks of length 1.

In each case, we show that Ir(Θ) = mr .
Case (i). First assume that there is only one scroll block:

M =
[

z1 z2 · · · zm−1 zm

z0 z1 · · · zm−2 zm−1

]
.

We prove that for each monomial of degree m − 1, there is an (m − 1)-minor of Θ such that the
monomial is initial term of the minor with lexicographic order. By

A = [
zi1 zi2 . . . zir

∣∣ (c11, c12) (c21, c22) . . . (cr1, cr2)
]

we mean the r-minor of Θ such that the entry [A]kl = ∂ f(cl1,cl2)/∂zk , where f(cl1,cl2) is the 2-minor of
M obtained by columns cl1 and cl2. The following equations are clear:
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zm−1
0 = [

z2 z3 . . . zm
∣∣ (1,2) (1,3) . . . (1,m)

]
,

zm−1
1 = [

z1 z3 . . . zm
∣∣ (1,2) (2,3) . . . (2,m)

]
,

...

zm−1
i = [

zi zi−2 . . . z0 zi+2 . . . zm
∣∣ (i, i + 1) (i − 1, i) . . . (1, i) (i + 1, i + 2) . . . (i + 1,m)

]
,

...

zm−1
m−1 = [

zm−1 zm−3 . . . z0
∣∣ (m − 1,m) (m − 2,m − 1) . . . (1,m − 1)

]
,

zm−1
m = [

zm−2 zm−3 . . . z0
∣∣ (m − 1,m) (m − 2,m) . . . (1,m)

]
.

All above minors are upper triangular.
Let za1

j1
za2

j2
· · · zas

js
be a given monomial of degree r = m − 1. Take the minor

[
zd1 . . . zdr

∣∣ (h11,h12) (h21,h22) . . . (hr1,hr2)
]

such that a1 of zi ’s are first a1 entries of the minor of zm−1
j1

. Then, for the succeeding a2 of zi ’s choose

first a2 entries of the minor of zm−1
j2

, which they are not appeared in the previous chooses and also
the columns are not repeated. Continuing this process, we get a minor which its main diagonal is
the given monomial za1

j1
za2

j2
· · · zas

js
and this monomial is initial of the minor. To show the last state-

ment, note that entries below the main diagonal do not effect the initialness of the main diagonal.
Example 2.4 illustrates concretely this argument.

Now let M be of the form

M =
[

z1,1 z1,2 · · · z1,l1−1 z1,l1

z1,0 z1,1 · · · z1,l1−2 z1,l1−1

∣∣∣∣ · · ·
∣∣∣∣ zc,1 zc,2 · · · zc,lc−1 zc,lc

zc,0 zc,1 · · · zc,lc−2 zc,lc−1

]
.

First consider the lexicographic order on terms of S with respect to z1,0 > z1,1 > · · · > zc,lc and write
the generators of I2(M) with this order:

I2(M) = ( f1, . . . , ft , ft+1, . . . , fk),

where z1,0 appears in f1, . . . , ft and does not appear in ft+1, . . . , fk . Then, the Jacobian matrix of
I2(M) is of the form:

Θ =

⎡⎢⎢⎣
−z1,2 −z1,3 · · · −z1,l1 · · · −zc,1 · · · −zc,lc 0 0 · · · 0 0

∗ Θ ′

⎤⎥⎥⎦ . (5)

In this matrix, the block Θ ′ is Jacobian matrix of I2(M ′) where M ′ is a matrix obtained by deleting
first column of M . By induction on number of columns of M , we have Ir−1(Θ

′) = m′ r−1, where m′ is
the ideal m without z1,0. By the form of Θ , it is clear that

zi, j〈z1,1, z1,2, . . . , zc,lc 〉r−1 ⊆ Ir(Θ), 1 � i � c, 1 � j � li, (i, j) �= (1,1).

Therefore,

〈z1,2, . . . , z1,l1 , . . . , zc,1, . . . , zc,lc−1, zc,lc 〉r ⊆ Ir(Θ).
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In other hand, if we assume the degree reverse lexicographic order with respect to z1,0 > z1,1 >

· · · > zc,lc , the Jacobian matrix of I2(M) is of the form:⎡⎢⎢⎣ Θ ′′ ∗

0 0 · · · 0 0 −z1,0 −z1,1 · · · −z1,l1−1 · · · −zc,0 · · · −zc,lc−2

⎤⎥⎥⎦ ,

where the block Θ ′′ is Jacobian matrix of I2(M ′′) where M ′′ is a matrix obtained by deleting the last
column of M . Note that the latter matrix is obtained by some changes of columns of the matrix Θ .
Again by induction on number of columns of the matrix M , we have Ir−1(Θ

′′) = m′′ r−1, where m′′ is
the ideal m without zc,lc . Then, it is clear that

zi, j〈z1,0, z1,2, . . . , zc,lc−1〉r−1 ⊆ Ir(Θ), 1 � i � c, 0 � j � li − 1, (i, j) �= (c, lc − 1).

Therefore,

〈z1,0, . . . , z1,l1−1, . . . , zc,0, . . . , zc,lc−1, zc,lc−2〉r ⊆ Ir(Θ).

Changing the first and last blocks of M and repeating the above argument, completes the proof in
this case.

Case (ii). If the matrix M consists of only nilpotent blocks, then by Proposition 2.2, I2(M) = m2 and
clearly Ir(Θ) = mr .

Case (iii). Let M be a matrix obtained by concatenation of some scroll blocks and some nilpotent
blocks:

M = [D1 | · · · | Dr | B1 | · · · | Bt].
Let x11 be the first entry of the first nilpotent block D1. Then, x2

11 ∈ I2(M) and with the same method
of case (i), the Jacobian matrix of I2(M) will be in the form of (5) with all indeterminates appearing
in the top-left block. Using induction on number of columns of M proves the theorem in this case.

Case (iv). Let M be a matrix consisting of k � 0 nilpotent blocks and s Jordan blocks:

M =
[

x1,1 · · · 0 · · ·
0 · · · x1,n1 · · ·

xk,1 · · · 0
0 · · · xk,nk

y1 · · · yγ yγ +1 · · · ys

0 · · · 0 λ1 yγ +1 · · · λs ys

]
.

If k > 0, then the same argument as case (iii) concludes case (iv). If there is no any nilpotent block,
take y1, y2, ys and use the induction argument as in case (iii).

(a) ⇒ (c) It follows from Corollary 1.5.
(c) ⇒ (b) Let M has Jordan blocks of length greater than 1. In this case, it is clear that

f = (y1,1 yr−1
1,m1

) ∈ Ir(Θ) \ I2(M) but, f 2 ∈ I2(M). Therefore, f 2 ∈ I2(M)∩ Ir(Θ)2 but, f 2 /∈ I2(M)Ir(Θ).

Let M has t > 0 scroll blocks and s > 0 Jordan blocks of length 1. Then, f1 = z1l1−1zr−1
1l1

and

f2 = zr−1
1l1

y1 are in Ir(Θ), but they are not in I2(M). In other hand, f1 f2 ∈ I2(M) ∩ Ir(Θ)2 but,
f1 f2 /∈ I2(M)Ir(Θ). �
Example 2.4. Let M be the matrix[

z1 z2 z3 z4 z5 z6 z7
z0 z1 z2 z3 z4 z5 z6

]
.

Following is illustration of some monomials as initials of minors.
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z6
0 = [

z2 z3 z4 z5 z6 z7
∣∣ (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

]
,

z6
1 = [

z1 z3 z4 z5 z6 z7
∣∣ (1,2) (2,3) (2,4) (2,5) (2,6) (2,7)

]
,

z6
2 = [

z2 z0 z4 z5 z6 z7
∣∣ (2,3) (1,2) (3,4) (3,5) (3,6) (3,7)

]
,

z6
3 = [

z3 z1 z0 z5 z6 z7
∣∣ (3,4) (2,3) (1,3) (4,5) (4,6) (4,7)

]
,

z6
4 = [

z4 z2 z1 z0 z6 z7
∣∣ (4,5) (3,4) (2,4) (1,4) (5,6) (5,7)

]
,

z6
5 = [

z5 z3 z2 z1 z0 z7
∣∣ (5,6) (4,5) (3,5) (2,5) (1,6) (6,7)

]
,

z6
6 = [

z6 z4 z3 z2 z1 z0
∣∣ (6,7) (5,6) (4,6) (3,6) (2,6) (1,6)

]
,

z6
7 = [

z5 z4 z3 z2 z1 z0
∣∣ (6,7) (5,7) (4,7) (3,7) (2,7) (1,7)

]
,

z0z2
1z4z2

7 = In
([

z2 z3 z4 z0 z5 z1
∣∣ (1,2) (2,3) (2,4) (1,4) (6,7) (2,7)

])
.

The sub-matrix corresponding to the last monomial is⎡⎢⎢⎢⎢⎢⎣
−z0 2z2 z3 0 0 z6

0 −z1 z2 z1 0 0
0 0 −z1 −z0 0 0

−z2 0 0 −z4 0 0
0 0 0 0 −z7 0

2z1 −z3 z4 z3 0 −z7

⎤⎥⎥⎥⎥⎥⎦ .

Remark 2.5. Let X ⊂ Pn
k be a projective algebraic set of dimension d with defining ideal I2(M) where

M is a matrix of linear forms in k[x0, . . . , xn] and k is algebraically closed. Theorem 2.3 gives a crite-
rion to check nonsingularity of X , that is, the Kronecker–Weierstrass normal form of M does not have
any Jordan block, or it consists of only some nilpotent blocks and some Jordan blocks of length 1 if
and only if X is nonsingular.

Note that by proof of the above theorem, in case that M does not have any Jordan block, then the
ideal Ir(Θ) is m-primary but, in the case that M has Jordan blocks, it is not m-primary. This means
that the following conditions are equivalent:

(a) Ir(Θ) = mr ;
(b) Ir(Θ) is m-primary.

This remark initiates the following conjecture.

Conjecture 2.6. Let J denote the ideal generated by quadrics in a polynomial ring S, such that r = ht( J ) � 2.
Then, the following conditions are equivalent:

(a) Ir(Θ) = mr ;
(b) Ir(Θ) is m-primary,

where Θ is the Jacobian matrix of J and m is the irrelevant maximal ideal of S.

Corollary 2.7. Let J ⊂ R = k[x1, . . . , xn] denote a codimension 2 ideal generated by 3 quadrics with the fol-
lowing free resolution:

0 → R2 → R3 → J → 0.

Let I2(Θ) denote the ideal generated by the 2-minors of the Jacobian matrix Θ of the generators of J . If I2(Θ)

is m = (x1, . . . , xn)-primary, then the pair J ⊂ ( J , I2(Θ)) is Aluffi torsion-free. In particular V ( J ) ⊆ Pn−1 is
nonsingular.
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Proof. By the Hilbert–Burch theorem, J is generated by 2-minors of the syzygy matrix M of J . By
assumption, the transpose of M is a 2 × 3 matrix of linear forms in R . Since I2(Θ) is m-primary,
Theorem 2.3 implies that the Kronecker–Weierstrass normal form of M does not have Jordan block
and I2(Θ) = m2. Then by Corollary 1.5, the pair J ⊂ ( J , I2(Θ)) is Aluffi torsion-free. Since the Jacobian
ideal has codimension n, then the additional assertion at the end of the statement is clear. �

Recall that an n × n (generic) Hankel matrix is of the form

H =

⎡⎢⎢⎢⎢⎣
x1 x2 · · · xn−1 xn

x2 x3 · · · xn xn+1
...

...
...

...

xn−1 xn · · · x2n−3 x2n−2
xn xn+1 · · · x2n−2 x2n−1

⎤⎥⎥⎥⎥⎦ ,

and a generalized Hankel matrix is concatenation of some Hankel matrices (with different indetermi-
nates).

Corollary 2.8. Let J be the ideal of 2-minors of a generalized Hankel matrix. Then, the pair J ⊆ ( J , Ir(Θ)) is
Aluffi torsion-free.

Proof. By [20, Theorem 2.2], J is generated by 2-minors of a 2 × m matrix which has only scroll
blocks. Now, use Theorem 2.3 to complete the proof. �
Examples 2.9.

(i) The rational normal scroll in Pd
k , could be realized as the variety of the ideal J generated by

2-minors of a matrix consisting only scroll blocks [10]. If I is the Jacobian ideal of J , then by
Theorem 2.3, the pair J ⊆ I is Aluffi torsion-free.

(ii) Consider the rational map F : P2
k ��� P4

k given by

F (y0 : y1 : y2) = (
y2

0 : y2
1 : y0 y1 : y0 y2 : y1 y2

)
.

The image of this map is given by the ideal

J = 〈
x2

2 − x0x1, x2x3 − x0x4, x2x4 − x1x3
〉
.

Note that J is generated by 2-minors of the matrix[
x2 x1 x4
x0 x2 x3

]
,

which consists of two scroll blocks. Therefore, the pair J ⊆ I is Aluffi torsion-free.

3. Edge ideal of a graph

Let I be a monomial ideal in the polynomial ring k[x1, . . . , xn]. It is known that the ideal of
r-minors of the Jacobian matrix of I is again a monomial ideal (see [16] and [2]). We provide an-
other simple proof for this fact in Lemma 3.1.

Let M be an m × n matrix and 1 � r � min{m,n} be an integer. A transversal of length r in M or
an r-transversal of M is a product of r entries of M with different rows and columns. In other words,
an r-transversal of M is product of entries of the main diagonal of an r × r sub-matrix of M after
suitable changes of columns and rows.
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Lemma 3.1. Let I be an ideal of k[x1, . . . , xn] generated by monomials m1, . . . ,ms. Let Θ be the Jacobian
matrix of I and 1 � r � min{n, s}. Then, any r-minor of Θ is a monomial.

Proof. Let f = [a1, . . . ,ar | b1, . . . ,br] represent an r-minor of Θ . That is, 1 � a1 < a2 < · · · < ar � n
are rows and 1 � b1 < b2 < · · · < br � s are columns of the matrix Θ appearing in the chosen r-minor.
The corresponding sub-matrix is

⎡⎢⎢⎣
∂ma1
∂xb1

∂ma2
∂xb1

· · · ∂mar
∂xb1

...
...

...
∂ma1
∂xbr

∂ma2
∂xbr

· · · ∂mar
∂xbr

⎤⎥⎥⎦ .

Note that, any term of f is an r-transversal. This term is nonzero if in any factor
∂mai
∂xb j

of it,

mai is divisible by xb j and in this case,
∂mai
∂xb j

= γ
mai
xb j

, where the integer γ is the highest power of xb j

appearing in mai . Therefore, any nonzero term of f is of the form:

β
ma1 · · ·mar

xb1 · · · xbr

,

where β is an integer. The minor f is sum of the same monomials with possibly different coefficients
and therefore, it is a monomial. �

Let G be a finite simple graph on a vertex set V (G) = {v1, . . . , vn}. Recall that the edge ideal
I(G) of G is the ideal in the ring k[x1, . . . , xn] generated by xi x j provided that {vi, v j} is an edge
in G . Let v be a vertex in G . Degree of v is number of all vertices adjacent to v . For a subset A
of V (G), the set of all vertices adjacent to some vertices in A is called neighborhood of A and denoted
by N(A). A subset B of vertices of G is called an independent set if there is no any edge between
each two vertices of B . A matching in G is a subset of edges of G such that there is no any common
vertex between any two of them. In this section, we identify any edge vi with the corresponding
indeterminate xi .

Lemma 3.2. Let G be a graph with n vertices, I(G) edge ideal of G and Θ the Jacobian matrix of I(G). Let
g ∈ k[x1, . . . , xn] be a monomial and r a positive integer. The following conditions are equivalent.

(i) g is an r-transversal of Θ .
(ii) There are r different edges e1 = {x11 , x12 }, . . . , er = {xr1 , xr2 } such that vertices x11 , . . . , xr1 are different

and g = x12 · · · xr2 .

Moreover, let the set {xi1 , . . . , xis } is independent. Then there is an r-transversal of the form g = xα1
i1

· · · xαs
is

with 0 � α j � deg(xi j ) for 1 � j � s and
∑

α j = r, if and only if |N({xi1 , . . . , xis })| � r.

Proof. Generators of the ideal I(G) are of the form xi x j where {xi, x j} is an edge in G and each entry
of the Jacobian matrix Θ is zero or of the form xi where xi is belonging to an edge in G . Equivalence
of (i) and (ii) is clear by definition of r-transversal of Θ .

By Lemma 3.1, any r-transversal of Θ is a monomial of degree r. Let g = xα1
i1

· · · xαs
is

be an r-trans-
versal of Θ . It means that there is an r × r sub-matrix of Θ , which admits b1 times xi1 , . . . , and
bs times xis in different rows and columns. In the matrix Θ , the entry xi j appears exactly deg(vi j )

times. Therefore α j � deg(xi j ) for each 1 � j � s. Moreover, if A = {xi1 , . . . , xis } is an independent set
of vertices, then the set N(A) contains vertices which are adjacent to some vertices in A and there
are |N(A)| different edges between A and N(A) with different ends in B . Now, it is clear that there is
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an r-transversal of the form g = xα1
i1

· · · xαs
is

with 0 � α j � deg(xi j ) for 1 � j � s and
∑

α j = r, if and
only if |N(A)| � r. �

We say that a graph G is Aluffi torsion-free if the pair I(G) ⊆ (I(G), Ir(Θ)) is Aluffi torsion-free,
where r is height of I(G) and Θ is Jacobian matrix of I(G).

Theorem 3.3. Let G be a graph and ht(I(G)) = r > 1. Then G is not Aluffi torsion-free if and only if there are
adjacent vertices x1 , x2 and other vertices xi1 , . . . , xis for some integer s � 1, such that

(i) the sets {x1, xi1 , . . . , xis } and {x2, xi1 , . . . , xis } both are independent, and
(ii) |N({xi1 , . . . , xis })| = r − 1.

Proof. Let G be not Aluffi torsion-free. Then, there is an integer t � 2 such that

I(G) ∩ (
I(G), Ir(Θ)

)t �= I(G)
(

I(G), Ir(Θ)
)t−1

. (6)

Note that the right-hand side is always a subset of the left-hand side and it is enough to check
the reverse inclusion. Let g be a monomial in left-hand side which is not in right-hand side
of (6). Then g = g1 · · · gt such that gi ∈ (I(G), Ir(Θ)). If for some 1 � i � t , gi ∈ I(G), then g =
gi(g1 · · · gi−1 gi+1 · · · gt) ∈ I(G)(I(G), Ir(Θ))t−1, which is a contradiction. Note that an r-transversal
gi belongs to I(G) if and only if the set of vertices appearing in gi is not independent.

The monomial g is in I(G) then there are adjacent vertices xk , xl such that xkxl | g , but
xkxl � gi for each i = 1, . . . , t . Without loss of generality, let xk | g1 and xl | g2. In this situa-
tion, g1 g2 ∈ I(G) ∩ (I(G), Ir(Θ))2. If g1 g2 ∈ I(G)(I(G), Ir(Θ)), then g3 g4 · · · gt ∈ (I(G), Ir(Θ))t−2 and
g ∈ I(G)(I(G), Ir(Θ))t−1 which is again a contradiction. Therefore, we may assume that g = g1 g2 ∈
I(G) ∩ (I(G), Ir(Θ))2 \ I(G)(I(G), Ir(Θ)) and gi ∈ Ir(Θ) \ I(G) for i = 1,2. Moreover, x1 | g1, x2 | g2
and x1 is adjacent to x2.

Assume that g1 = x1xα1
i1

· · · xαs
is

and g2 = x2xβ1
j1

· · · xβt
jt

, such that
∑

αi = ∑
β j = r − 1 and both sets

A = {x1, xi1 , . . . , xis } and B = {x2, x j1 , . . . , x jt } are independent. If the set {xi1 , . . . , xis , x j1 , . . . , x jt } is
dependent, then g1 g2 ∈ (I(G))2 ⊆ I(G)(I(G), Ir(Θ)), a contradiction. By the same argument, it is not
possible that x1 is adjacent to some vertex in B \ {x2} and simultaneously x2 is adjacent to some
vertex in A \ {x1}. Assume that x2 is not adjacent to any vertex in A \ {x1}. We claim that the vertices
x1, x2 and xi1 , . . . , xis satisfy conditions (i) and (ii).

By the procedure of the above argument, the vertices x1, x2 and xi1 , . . . , xis clearly satisfy condi-
tions (i). In other hand, xα1

i1
· · · xαs

is
is an (r −1)-transversal of Θ and by Lemma 3.2, |N({xi1 , . . . , xis })| �

r − 1. We know that xα1
i1

· · · xαs
is

xβ1
j1

· · · xβt
jt

is not in Ir(Θ) and thus there is no any r-transversal
of Θ dividing it. This means that for any subset C of {xi1 , . . . , xis , x j1 , . . . , x jt }, |N(C)| < r. Therefore
|N({xi1 , . . . , xis })| = r − 1, as required.

Conversely, let there are vertices x1, x2 and xi1 , . . . , xis satisfying conditions (i) and (ii). Let
g3 = x2xi1 · · · xis . Then g3 is an r-transversal of Θ and g1 g3 ∈ I(G) ∩ (I(G), Ir(Θ))2. By Lemma 3.2,
condition (ii) guarantees that g1 g3/x1x2 /∈ (I(G), Ir(Θ)). Therefore, G is not Aluffi torsion-free. �
Examples 3.4.

(i) A complete graph Kn for n > 2 is Aluffi torsion-free. Because all vertices are adjacent to each
other and there is no any vertex satisfying condition (i) of the above theorem.

(ii) A complete r-partite graph is Aluffi torsion-free. In contrary if it is not Aluffi torsion-free, then,
there are two adjacent vertices v1, v2 and at least one another vertex w which is adjacent to
none of v1 and v2. In this case, v1 and w belongs to the same part and also v2 and w belongs
to the same part. Therefore v1 and v2 are in the same part which is a contradiction.

(iii) A complete graph minus edges in a matching is Aluffi torsion-free, where by a graph G minus an
edge e, we mean a graph resulting from G which the edge e is deleted and the vertices at the
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ends of e are remaining. Note that, if G is a complete graph minus a matching, then any vertex
can be independent to at most only one other vertex. Therefore, item (i) of Theorem 3.3 is not
valid.

(iv) The cycles C3 and C4 are Aluffi torsion-free, but, for each n � 5, the cycle Cn is not Aluffi torsion-
free. Let n be even and {v1, . . . , vn} be the set of vertices of G such that vi ∼ vi+1 for 1 � i � n−1
and vn ∼ v1. Take v1 and v2 which are adjacent and v4, v6, . . . , vn−2 which are independent.
Clearly condition (i) of Theorem 3.3 is satisfied. Note that, ht(I(G)) = n

2 and degree of each vertex
is 2. Moreover, N({v4, v6, . . . , vn−2}) = {v3, v5, . . . , vn−1} which has cardinality n

2 − 1. This is
condition (ii) of Theorem 3.3. If n is odd, then, the vertices v1, v2 and v4, v6, . . . , vn−1 by the
same argument as above, satisfy conditions of Theorem 3.3.

(v) Any path Pn is not Aluffi torsion-free. It follows by the same argument as item (iv) taking the
same vertices.

(vi) A star graph is not Aluffi torsion-free. Recall that a graph G is called star if there is a vertex v ,
such that all other vertices are adjacent to v and there is no any other edge.

Remark 3.5. Let G be a finite simple graph. Then, for J = I(G), the edge ideal of G , Conjecture 2.6
holds.
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