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We define a sheaf of abelian groups whose cohomology is repre-
sented by the cotangent complex, permitting a rapid introduction
to the theory of the cotangent complex in the same generality as it
was defined by Illusie, but avoiding simplicial methods. We show
how obstructions to some standard deformation problems arise as
the classes of torsors under and gerbes banded by this sheaf. This
generalizes results of Quillen, Rim, and Gaitsgory.
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1. Introduction

If f : X → Y is a smooth morphism of schemes, and Y ′ is a square-zero extension of Y such that
the ideal of Y in Y ′ is OY , then the square-zero extensions X ′ of X over Y ′ are obstructed by a class
ω ∈ H2(X, T X/Y ), where T X/Y is the relative tangent bundle. Should this class vanish, deformations
form a torsor under H1(X, T X/Y ) and automorphisms of any fixed deformation are in bijection with
H0(X, T X/Y ).

This may be explained succinctly by allowing X to vary in the definition of the deformation prob-
lem: the deformations of open subsets of X form a gerbe over X , banded by T X/Y . The obstruction
ω is then the class of this gerbe. If ω vanishes, the gerbe is trivial, meaning it is isomorphic to the
classifying stack of T X/Y -torsors, and then the statements regarding isomorphism classes and auto-
morphisms come from the cohomological classification of torsors.

If we relax the hypothesis that f be smooth, the above argument fails, but a similar description
of obstructions, deformations and automorphisms persists [Il71, Théorème 2.1.7]: letting LX/Y denote
the cotangent complex of X over Y , there is an obstruction ω ∈ Ext2(LX/Y , O X ) whose vanishing is
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equivalent to the existence of a deformation; if a deformation exists, all deformations form a torsor
under Ext1(LX/Y , O X ) and automorphisms of any given solution are in bijection with Ext0(LX/Y , O X ).

The strong resemblance between this result and the one obtained in the smooth case hints that
there may still be a relationship between deformations and banded gerbes. Moreover, it is only the
“local triviality” aspect of a gerbe that fails to apply in the non-smooth case: the solutions to the
deformation problem still form a pseudo-gerbe banded by T X/Y , in the sense that isomorphisms
between any two solutions form a pseudo-torsor under T X/Y , but solutions are not guaranteed to exist
locally, and pairs of solutions are not guaranteed to be locally isomorphic. In other words, the failure
of the “gerbe argument” in the non-smooth case may be attributed to the fact that the deformation
problem is not locally trivial in the Zariski topology on X .

All of this suggests that Illusie’s result may be interpreted in terms of gerbes if we can find a
topology finer than the Zariski topology in which the deformation problem becomes locally trivial.
For affine schemes, such a topology was defined, apparently simultaneously, by Quillen [Qu70] and
Rim [SGA7-1, VI.3].2 Rim speculated [SGA7-1, VI.3.16] that it might be possible to define an analogous
topology for arbitrary schemes, and Quillen apparently made such a definition [Il10] but never pub-
lished it. In [Ga97], Gaitsgory defined a topology on the category of associative algebras on a scheme
and showed that it is fine enough to find local trivializations of deformation problems associated to
quasi-coherent algebras. As Gaitsgory notes [Ga97, Section 0.4], his methods may be adapted easily to
the commutative case, where they can be used to treat the relative deformation theory of a scheme
that is affine over the base. We note, however, that if f : X → Y is a morphism of schemes then O X
is, in general, not quasi-coherent as an f −1 OY -algebra, so Gaitsgory’s results do not apply directly to
the deformation theory of schemes.

The introduction of banded gerbes to explain the obstruction to the existence of algebra extensions
is due to Gaitsgory [Ga95]. That deformations, when they exist, can be viewed as torsors was observed
by Quillen [Qu70, Proposition 2.4(iv)].

In this paper, we will define a new topology on the category of all commutative rings in a topos
and show that it is fine enough to trivialize the standard deformation problems about commutative
rings, but is still coarse enough to glue their solutions. We obtain cohomological obstructions to the
existence of solutions to these problems and a cohomological description of the solutions, should they
exist. As we explain in Section 2, this can be used to apply the ideas of Gaitsgory, Quillen and Rim
to the deformation theory of schemes. We also compare our approach to cotangent cohomology with
Illusie’s, showing that our obstruction groups agree with his. We will complete this comparison in
[Wi11] by showing that the obstruction classes agree as well.

The ideas in this paper may be applied easily to similar deformation problems of other algebraic
objects. We leave these applications to the reader for now. We hope to explain some of them (such as
stable maps and sheaves of modules) in future work. In [Wi11], we will explain how the theory de-
veloped here can be used in place of sheaves of simplicial commutative rings to develop the standard
properties of the cotangent complex [Il71, II.2].

2. Summary of results

In this section we shall state our results in the context of schemes in order to give them a geomet-
ric appearance; statements in the generality of ringed topoi follow in the body of the text. In order
to deduce the statements about schemes given in this section from the algebraic statements that fol-
low, one need only observe that infinitesimal extensions of a scheme are equivalent to infinitesimal
extensions of their structure sheaves, in either the Zariski or étale topology.

Suppose that f : X → Y is a morphism of Z -schemes, and consider the problem of extending f to
a fixed square-zero extension X ′ of X over Z with ideal J (cf. [Il71, Problème III.2.2.1.2]). Diagram-
matically, we are attempting to complete the commutative diagram of solid arrows

2 Quillen attributed his definition to Grothendieck with a pre-publication reference to SGA4 that I could not trace. It may be
that Quillen was only crediting Grothendieck with the idea of using the topology generated by universal effective epimorphisms,
and not specifically for the definition of the cotangent cohomology in this way. On the other hand, Quillen’s topology is identical
to Rim’s, so it may also be that Quillen intended to refer to Rim’s exposé in SGA7.
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X Y

X ′ Z

with a dashed arrow making both triangles commute. In Section 5, we shall define a site
g−1 O Z -Alg/ f −1 OY , which we show in Section 6 is fine enough to ensure that the deformation
problem is locally trivial. In the statement of the theorem, we abbreviate the name of the site to
O Z -Alg/OY .

Theorem. The extensions HomX (X ′, Y ) of f to f ′ : X ′ → Y form a torsor on O Z -Alg/OY under the

sheaf of abelian groups DerO Z (OY , J ) (defined in Section 6). The class of this torsor in H1(O Z -Alg/OY ,

DerO Z (O y, J )) obstructs the existence of a lift. Provided that the obstruction vanishes, all lifts form a torsor
under DerO Z (OY , J ).

Now consider a morphism of schemes f : X → Y and a fixed extension Y ′ of Y with ideal I . Also
assume given a homomorphism ϕ : f ∗ I → J for some quasi-coherent sheaf J on X . We search for a
completion of the diagram

X X ′

f ′

Y Y ′

(1)

in which X ′ is a square-zero extension of X by the ideal J and the induced morphism f ′∗ I → J
coincides with ϕ (cf. [Il71, Problème III.2.1.2.1]). We show in Section 8 that this deformation prob-
lem also becomes locally trivial in f −1 OY -Alg/O X . Once again abbreviating the name of the site to
OY -Alg/O X , we obtain

Theorem. The completions of Diagram (1) form a gerbe on OY -Alg/O X banded by DerOY (O X , J ). The class

in H2(OY -Alg/O X ,DerOY (O X , J )) of this gerbe obstructs the existence of a solution to this problem. If the

obstruction vanishes, solutions form a torsor under H1(OY -Alg/O X ,DerOY (O X , J )), and the automorphism

group of any solution is H0(OY -Alg/O X ,DerOY (O X , J )).

In the case where I = 0 and Y = Y ′ , an extension always exists, so this implies

Corollary. There is an equivalence of categories between the category of completions of the diagram

X X ′

Y ,

by a scheme X ′ that is a square-zero extension of X with ideal J and the category of torsors on OY -Alg/O X

under the sheaf of abelian groups DerOY (O X , J ). Isomorphism classes are in bijection with H1(OY -Alg/O X ,

DerOY (O X , J )) and automorphisms of any object are in bijection with H0(OY -Alg/O X ,DerOY (O X , J )).
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How do these obstructions compare to those defined by Illusie? In Section 9, we prove

Theorem. The cotangent complex LX/Y [Il71, II.1.2.3] represents cohomology of the sheaves DerOY (O X , J ) on
the site OY -Alg/O X , in the sense that

Extp(LX/Y , J ) = H p(
OY -Alg/O X ,DerOY (O X , J )

)
.

This shows that our obstruction groups are the same as Illusie’s. In [Wi11], we show that the
obstruction classes agree with Illusie’s by the identification above.

3. Review of topologies, sites, and topoi

If X is an object of a category C , a sieve of X is a subfunctor of the functor of points of X . It is
frequently preferable to view a sieve as a fibered subcategory over C of the category C/X of objects of
C over X . We shall pass back and forth between these perspectives without comment. See [SGA4-1,
I.4] for more above sieves (in French: cribles).

The sieve of X generated from a collection S of maps Y → X is (as a fibered category) the collec-
tion of all Z → X that factor through some Y → X in S .

A topology on a category C is a collection J (X) of sieves of X for each object X of C . These
are generally called the covering sieves of the topology. The collections are required to comply with
the conditions T1 (change of base), T2 (local character), and T3 (inclusion of the sieves generated
by identity maps) of [SGA4-1, Définition II.1.1]. We shall usually describe the sieves in each J (X) by
giving generators. These generators are called covering families.

Every category possesses a canonical topology [SGA4-1, Définition II.2.5], the finest in which all
representable functors are sheaves.

If C is a category with a topology, a family S of objects of C is called a collection of topological
generators of C if every object X of C is covered by a sieve generated by maps from objects of S to X
[SGA4-1, Définition II.3.0.1]. We shall depart from the definitions [SGA4-1, I.1.1.5] and [MLM94, III.2.1]
and call C , together with its topology, a site if C possesses a set of topological generators.

If C is a category with a topology, a functor F : C◦ → Sets is called a sheaf if the natural map

F (X) → Hom(R, F )

is a bijection for every X in C and for every covering sieve R of X [SGA4-1, Définition II.2.1]. Here,
Hom(R, F ) refers to maps of presheaves. If C0 is the full subcategory of C spanned by a collection of
generators of C with its induced topology, then the restriction map identifies the category of sheaves
on C with the category of sheaves on C0. If C is a site then C is generated topologically by a small
subcategory, which ensures that the sheaves on C form a category, which is frequently denoted C̃ .

Any presheaf on a site C has an associated sheaf. If X is an object of C then the associated sheaf
of the functor represented by X is denoted ε(X). This determines a functor ε : C → C̃ .

A site C is called a topos if its topology is the canonical one and the functor ε : C → C̃ described
above is an equivalence. Once again, our definition is slightly different from [SGA4-1, Définition IV.1.1];
it is equivalent to [MLM94, Definition III.4.3]. Every topos E has a final object, which we will denote
by the same letter E .

A morphism of topoi f : C → C ′ is a pair of functors f ∗ : C ′ → C and f∗ : C → C ′ such that f∗ is
right adjoint to f ∗ and f ∗ is exact. Every topos admits an essentially unique morphism to the topos
Sets.

We shall depart again from [SGA4-1, IV.4.9.1] in the definition of a morphism of sites, and declare
that a morphism between sites is a morphism between their associated topoi. This extrinsic definition
can be made intrinsic (see e.g. [MLM94, Theorem VII.10.1]), but we will be content to recall here that
a morphism of sites can be induced from a cocontinuous functor C → C ′ or from a left exact continuous
functor C ′ → C .
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A functor f : C → C ′ between sites is cocontinuous if, for any X ∈ C and any covering sieve R of
f (X), the collection of all Y → X such that f (Y ) ∈ R is a covering sieve [SGA4-1, Définition III.2.1,
Proposition III.2.3]. A left exact functor g : C ′ → C is continuous if and only if it takes covering families
to covering families [SGA4-1, Définition III.1.1, Proposition III.1.3, Proposition III.1.6]. If f is left adjoint
to g then cocontinuity of f coincides with continuity of g [SGA4-1, Proposition III.2.5].

By [Gr57, Théorème 1.10.1], every topos has enough injective sheaves of abelian groups. This per-
mits us to define the derived functors of f∗ (applied to sheaves of abelian groups) for any morphism
of topoi f : C → C ′ . In the case where C ′ = Sets, these derived functors are denoted F �→ H p(C, F ).

Suppose that A
u−→ B

v−→ C is a sequence of morphisms of topoi. Since u∗ has an exact left
adjoint it preserves injectives and we obtain a spectral sequence for the composition of functors
[Gr57, Théorème 2.4.1]

R p v∗
(

Rqu∗ F
) ⇒ R p+q(vu)∗ F

for any sheaf of abelian groups on A. In terms of derived categories, we have R v∗ ◦ Ru∗ = R(vu)∗ . In
the case where C = Sets the spectral sequence above specializes to

H p(
B, Rqu∗ F

) ⇒ H p+q(A, F ).

See [SGA4-2, Exposé V] for more about the Cartan–Leray spectral sequences.
If X• is a hypercover of E [SGA4-2, V.7.3.1] then there is a spectral sequence [SGA4-2, V.7.4.0.3]

H p(
X•, Hq(F )

) ⇒ H p+q(E, F ).

More specifically, if I• is a resolution of F by sheaves that are acyclic for each of the X p , then the
double complex Γ (X•, I•) computes the cohomology of F . We refer the reader to [SGA4-2, V.7] for
more details.

4. Review of torsors and gerbes

We restrict attention to torsors and gerbes under abelian groups. Suppose that E is a topos and
G is a sheaf of abelian groups on E . A G-torsor is a sheaf F on E with an action a : G × F → F of G
such that

1. (pseudo-torsor) the map (a, p2) : G × F → F × F is an isomorphism of sheaves, and
2. (local triviality) F covers E .

If F satisfies only the first condition then F is called a pseudo-torsor under G . The second condition
says that, locally in E , the sheaf F admits a section. Since a section of a torsor trivializes it, the second
condition says that F is locally isomorphic to G as a sheaf with G-action.

Theorem. (Cf. [Gi71, Remarque III.3.5.4].) Isomorphism classes of torsors under an abelian group G are in
bijection with H1(E, G). Isomorphisms between any two torsors form a pseudo-torsor under H0(E, G). In
particular, automorphisms of a torsor are in canonical bijection with H0(E, G).

A gerbe on E banded by G is a stack F [Gi71, Définition 1.2.1] on E with an action of G on the
morphism sheaves of G that is compatible with composition and satisfies

1. (pseudo-gerbe) for any two sections ξ,η of F over U , the sheaf Isom(ξ,η) is a G-pseudo-torsor
on U ,

2. (local triviality for morphisms) any two sections of F over U are locally isomorphic, and
3. (local triviality for objects) F covers E .
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If F satisfies only the first condition, we call F a pseudo-gerbe banded by G . The second condition
ensures that Isom(ξ,η) forms a GU -torsor for each pair of sections ξ,η ∈ Γ (E/U , F ). As in the case
of torsors, the final condition means that sections of F exist locally in E . Since a section of F induces
an equivalence of banded gerbes between F with BG , the classifying stack of G-torsors, we say that
a banded gerbe is locally isomorphic to BG .

Theorem. (Cf. [Gi71, Théorème IV.3.4.2].) Equivalence classes of gerbes on E banded by an abelian group
G are in bijection with H2(E, G). If F is a gerbe banded by G then sections of F form a pseudo-torsor
under H1(E, G). Isomorphisms between any two sections of F form a torsor under H0(E, G). In particular,
automorphisms of any section of F are in canonical bijection with H0(E, G).

5. The topos of commutative rings

All rings and algebras are commutative and unital.
Now let (E, A) be a ringed topos [SGA4-1, IV.11.1.1], and let B an A-algebra. Let A-Alg(E)/B (or

A-Alg/B for short) be the category of pairs (U , C) where U ∈ E and C is an AU -algebra with a map
to BU . A morphism of A-Alg/B from (U1, C1) to (U2, C2) is a map f : U1 → U2 of E and a map
C1 → f ∗C2 of AU1 -algebras commuting with the projections to BU1 .

Definition. A family of maps (Ui, Ci) → (U , C) in A-Alg/B is covering if, for any V → U and any finite
set of sections Λ ⊂ Γ (V , C), there exists, locally in V , a map V → Ui for some i and a lift of Λ to
Γ (V , Ci).

To understand this topology, it may be helpful to consider the case where E is a point. In that
case, A → B is a ring homomorphism, and a family of A-algebra maps Ci → C over B is considered
to be covering if every finite set of elements of C can be lifted to some Ci .

Now let E be an arbitrary topos and suppose that R is a sieve of (U , C) in A-Alg(E)/B . If V → U
is a map of E and Λ ⊂ Γ (V , C) is finite, let (V , AV [Λ]) → (U , C) be the induced map of A-Alg/B . Let
Q (Λ) the collection of all W → V such that it is possible to complete the diagram

(W , AW [Λ]) (V , AV [Λ])

(U ′, C ′) (U , C)

with (U ′, C ′) in R . Then for R to be a covering sieve means that Q (Λ) is a covering sieve of V in E
for every Q (Λ) arising as above.

It is immediate from this description of the topology that any (U , C) in A-Alg/B is covered by the
collection of all (V , AV [S]) → (U , C) as S varies among all finite sets. Therefore the pairs (V , AV [S])
generate the topology of A-Alg/B and we are free to say that in this topology, any A-algebra is
locally a finitely generated polynomial ring. Furthermore, we obtain a set of topological generators for
A-Alg/B by taking the collection of all (V , AV [S]) such that V lies in a set of topological generators
for E .

Remark. This topology is slightly more complicated than the ones used by Gaitsgory, Quillen, and
Rim. Analogues of those topologies would work here, but this topology has a technical advantage in
its possession of a set of topological generators. This permits us to make use of topoi without making
recourse to universes.
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6. Deformation of homomorphisms

Let A be a sheaf of rings on E and B → C a homomorphism of A-algebras. Suppose that C ′
is a square-zero extension of C , as an A-algebra, with ideal J . Consider the problem of lifting the
homomorphism B → C to a map B → C ′ (cf. [Il71, Problème III.2.2.1.1]).

Putting B ′ = C ′ ×C B , this problem immediately reduces to that of finding a section of B ′ over B .
We denote the set of such sections HomA

B (B, B ′).
The difference between any two sections of B ′ over B is an A-derivation from B into J . Denoting

the set of all such derivations by DerA(B, J ) we may say that HomA
B (B, B ′) is a DerA(B, J )-pseudo-

torsor. If B is allowed to vary we obtain a sheaf DerA(B, J ) on A-Alg/B , represented by the object
(E, B + J ), where B + J is the trivial square-zero extension of B by J . Then B ′ represents a DerA(B, J )-
pseudo-torsor on A-Alg/B .

In fact, B ′ is a DerA(B, J )-torsor on A-Alg/B , since the map (E, B ′) → (E, B) is covering in A-Alg/B .
The cohomological classification of torsors now implies

Theorem 1. Let ω ∈ H1(A-Alg/B,DerA(B, J )) be the class of B ′ as a torsor under DerA(B, J ). Then ω = 0 if
and only if B ′ admits a section as an A-algebra over B. In that case, the sections form a torsor under

H0(A-Alg/B,DerA(B, J )
) = DerA(B, J ).

7. Extensions of algebras

Suppose that B is an A-algebra in the topos E and J is a B-module. Let ExalA(B, J ) be the category
of square-zero A-algebra extensions of B with ideal J . These categories fit together into a fibered
category ExalA(B, J ) over A-Alg/B . We saw in Theorem 1 that any B ′ ∈ ExalA(B, J ) represents a
DerA(B, J )-torsor on A-Alg/B , so we obtain a fully faithful functor

ExalA(B, J ) → BDerA(B, J ) (2)

from ExalA(B, J ) to the classifying stack of DerA(B, J )-torsors on A-Alg/B .

Lemma. Every DerA(B, J )-torsor is representable by a square-zero A-algebra extension of B by J .

Suppose that P is a DerA(B, J )-torsor. Let B ′ be the sheaf on E whose sections over U are pairs
(b,b′) where b is a section of B over U , corresponding to a map b : AU [x] → B (denoted by the same
letter), and b′ is a section of b∗ P over (U , AU [x]).

We can give B ′ a ring structure as follows. Suppose (b,b′) and (c, c′) are two sections of B ′ . Choose
a cover R of (E, B) over which P is trivial. Then E can be covered by objects U such that there is a
(U , C) ∈ R and both bU and cU lift to Γ (U , C). There is therefore a map

(bU , cU ) : AU [x, y] → C

and (bU , cU )∗ PC is trivial because PC is trivial. A trivial DerA(B, J )-torsor is certainly representable
(by B + J ), so let B ′

C be an extension of C by J representing (bU , cU )∗ PC . We are given maps
b′

U : AU [x] → B ′
C and c′

U : AU [y] → B ′
C over C . Since B ′

U is a ring, these extend uniquely to a map
(b′

U , c′
U ) : AU [x, y] → B ′

C over C . Restricting this, via the maps AU [x] ∼= AU [x + y] → AU [x, y] and
AU [x] ∼= AU [xy] → AU [x, y], yields sections that we will denote b′

U + c′
U and b′

U c′
U of (b + c)∗ PC and

(bc)∗ PC , respectively. These give us sections (bU + cU ,b′
U + c′

U ) and (bU cU ,b′
U c′

U ) of B ′ over U .
The uniqueness of the constructions above implies that they patch together to give a ring structure

on B ′ over E , which makes (E, B ′) an object of A-Alg/B . The verifications of commutativity, associa-
tivity, etc. are essentially the same, using a trio of sections of C instead of a pair. To check that B ′
represents P , one only needs to produce an isomorphism between P and the object represented by
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B ′ under the assumption that P admits a section and B is a finitely generated polynomial algebra
over A, since the pairs (U , AU [S]) such that P U is trivial and S is finite generate the topology of
A-Alg/B . Under these assumptions, the construction clearly provides the isomorphism, and this varies
in a functorial way with free A-algebras B . �
Remark. Let F be the fibered category of pairs (U , B → C) where B → C is an A-algebra morphism
over U and morphisms are commutative squares. The projection F → A-Alg sending the object above
to (U , C) makes F into a fibered category over A-Alg and the proof of the lemma demonstrates that
F is a stack over A-Alg.

The cohomological classification of torsors now gives us

Theorem 2. The functor (2) is an equivalence. Isomorphism classes in the category ExalA(B, J ) are therefore
in bijection with H1(A-Alg/B,DerA(B, J )).

8. Deformation of algebras

Let A be a sheaf of rings on E and B an A-algebra. Suppose that A′ is an extension of A with ideal
I (not necessarily square-zero). Fix a B-module J and an A → B homomorphism ϕ : I → J . Define
DefA(A′, B,ϕ) to be the category of completions of the diagram

0 I A′ A 0

0 J B ′ B 0

by an extension B ′ of B by J (cf. [Il71, Problème 2.1.2.1]). Allowing B to vary, these categories fit
together into a fibered category DefA(A′, B,ϕ) over A-Alg/B . (Note that the special case I = 0 recovers
ExalA(B, J ) = DefA(A, B,0).)

If B ′ and B ′′ are any objects in DefA(A′, B,ϕ) then the difference between any two isomorphisms
between B ′ and B ′′ is a derivation B → J , i.e., an element of DerA(A′, B,ϕ). It follows from the lemma
of Section 7 that DerA(A′, B,ϕ) is a stack, so this tells us that DefA(A′, B,ϕ) is a pseudo-gerbe banded
by DerA(B, J ), and DefA(A′, B,ϕ) is a pseudo-gerbe over A-Alg/B , banded by DerA(B, J ). In fact, we
have

Proposition. DefA(A′, B,ϕ) is a gerbe over A-Alg/B, banded by DerA(B, J ).

We must check that DefA(A′, B,ϕ) admits a section locally in A-Alg/B , and that any two sections
are locally isomorphic. Since B is locally a polynomial algebra over A, it’s sufficient for the local
existence to show that DefA(A′, B,ϕ) admits a section when B is a polynomial algebra over A. But
then we could take B ′ = A′[S] �I[S] J , the extension obtained by pushing out the extension A′[S] of
A[S] by I[S] by the canonical map I[S] → J .

To prove that any two sections B ′ and B ′′ of DefA(A′, B,ϕ) are locally isomorphic, we shall con-
struct their difference B ′′′ = B ′′ − B ′ and show that it is a trivial extension of B as an algebra over
A′ − A′ = A + I . Before making this precise, note that we may replace A′ by A′/I2, and therefore
assume that I2 = 0, without changing the deformation problem. The ring B ′′ ×B B ′ is an extension of
B by the ideal J × J and there is a morphism of exact sequences,
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0 I × I A′ ×A A′ A 0

0 J × J B ′ ×B B ′′ B 0.

We push out these sequences via the difference maps I × I → I and J × J → J sending (x, y) to x− y.
This yields a map of exact sequences

0 I A + I A 0

0 J B ′′′ B 0.

Note that B ′′ can be recovered functorially from B ′ and B ′′′ by an addition procedure inverse to the
difference procedure just executed. Thus to show that B ′ and B ′′ are locally isomorphic, as extensions
of B compatible with A′ , it is equivalent to show that B ′′′ is locally isomorphic to the trivial extension
B + J of B , with its trivial (A + I)-algebra structure.

The (A + I)-algebra structure of B ′′′ is determined by the A-algebra structure induced from the
section A → A + I . It is therefore equivalent to show that any extension of B by J as an A-algebra is
locally isomorphic to B + J . This was the content of Theorem 1. �

The cohomological classification of banded gerbes now provides

Theorem 3. Let ω be the class in H2(A-Alg/B,DerA(B, J )) corresponding to the banded gerbe DefA(A′, B,ϕ).
Then ω = 0 if and only if DefA(A′, B,ϕ) is non-empty.

In that case, DefA(A′, B,ϕ) is isomorphic as a banded gerbe to the classifying stack of DerA(B, J )-torsors.
Hence, isomorphism classes in DefA(A′, B,ϕ) form a torsor under the group H1(A-Alg/B,DerA(B, J )), and
the automorphism group of any fixed object of DefA(B, J ) is canonically isomorphic to the group DerA(B, J ) =
H0(A-Alg/B,DerA(B, J )).

9. The cohomology of free algebras

Suppose that E is a topos, A a sheaf of algebras on E , and S a sheaf of sets on E . Let J be a sheaf
of A[S]-modules. We wish to compare the cohomology groups of DerA(A[S], J ) on A-Alg/A[S] and
J S on E/S . We construct several sites to mediate between the A-Alg/A[S] and E/S .

Let Sets(E) and Sets∗(E), or Sets and Sets∗ for short, be the sites whose common underlying
category is the category of pairs (U , T ) where U is an object of E and T is a sheaf of sets on U .
A map (U1, T1) → (U2, T2) is a map f : U1 → U2 and a map T1 → f ∗T2. (From another point of
view, this category is the category of arrows in E .)

We shall say that a family of morphisms (Ui, Ti) → (U , T ) is covering in Sets∗ if, for any
f : V → U and any finite subset Λ ⊂ Γ (V , f ∗T ), there is, locally in V , a factorization of f through
g : V → Ui , for some i, and a lift of Λ to Γ (V , g∗Ti). The topology on Sets is defined in the same
way, except Λ is restricted to be a 1-element set.

Remark. The topologies on Sets and Sets∗ are genuinely different. In the case where E is the punctual
topos (i.e., the category of sets), the category of sheaves on Sets(E) may be identified with the cate-
gory of sets; the category of sheaves on Sets∗(E) may be identified with the category of presheaves
on the category of finite sets.
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The topology on Sets is finer than that on Sets∗ , so there is a morphism of sites Sets → Sets∗ (the
identity functor is cocontinuous). This induces a map Φ : Sets/(E, S) → Sets∗/(E, S), for any sheaf of
sets S on E .

There is also a functor Sets∗/(E, S) → A-Alg/A[S] which sends (U , T ) to (U , AU [T ]). This functor
is left exact, and by definition, it takes covers to covers so it is continuous by [SGA4-1, Proposi-
tion III.1.6] and we get a morphism of sites Ψ : A-Alg/A[S] → Sets∗/(E, S).

Finally, we have a cocontinuous functor Sets(E) → E sending (U , T ) to i!T , where i is the
canonical morphism of topoi from E/U to E [SGA4-1, IV.5.1–2]. This induces a morphism of sites
Ξ : Sets/(E, S) → E/S . Putting all of these morphisms together, we obtain the following diagram of
morphisms of sites.

Sets/(E, S)

ΦΞ

A-Alg/A[S]
Ψ

E/S Sets∗/(E, S)

Proposition. The morphisms Φ and Ψ are acyclic.

First consider Ψ : A-Alg/A[S] → Sets∗/(E, S). To see that R pΨ∗ F = 0 for p > 0 is a local problem
in Sets∗/(E, S). We can therefore reduce to the case where S is the constant sheaf associated to
some finite set S0, since pairs (V , T ) where T is constant and finite generate the topology of Sets∗/E .
We must show that if α ∈ H p(A-Alg/A[S],Ψ ∗(U , T )) then α can be trivialized on some cover of
(U , T ). But Ψ ∗(U , T ) = (U , AU [T ]) and all covering sieves of (U , AU [T ]) in A-Alg/A[S] are pulled
back from covering sieves of the final object of E , hence are pulled back from covering sieves of
(E, S) in Sets∗/(E, S). Since α can certainly be trivialized on some covering sieve of (U , AU [T ]), any
covering sieve of Sets∗/(E, S) that pulls back via Ψ to this one will trivialize α in Sets∗/(E, S).

Now consider Φ : Sets/(E, S) → Sets∗/(E, S). If R is a covering sieve of some object (U , T ) of
Sets/(E, S), then let R ′ be the collection of all finite disjoint unions of objects of R . If R is a covering
sieve of Sets/(E, S) which trivializes a cohomology class, then R ′ is a covering sieve of Sets∗/(E, S)

which trivializes the same cohomology class. Therefore this map is acyclic as well. �
Lemma. There is a canonical isomorphism Φ∗(E, J ) � Ψ∗DerA(A[S], J ) for any sheaf of A[S]-modules J .

This is a matter of unwinding the definitions. For (U , T ) ∈ Sets∗/(E, S), we have

Γ
(
(U , T ),Φ∗(E, J)

) = Γ
(
(U , T ), (E, J)

) = HomU (T , J U ).

On the other hand,

Γ
(
(U , T ),Ψ∗DerA

(
A[S], J

)) = Γ
((

U , A[T ]),DerA
(

A[S], J
))

= DerAU

(
AU [T ], JU

)

= HomU (T , J U )

using the universal property of A[T ]. �
Since Φ and Ψ are acyclic, this proves that RΦ∗(E, J ) = RΨ∗DerA(A[S], J ). We can therefore com-

pute the cohomology of DerA(A[S], J ) by computing the cohomology of (E, J ) on Sets/(E, S).

Lemma. The natural map J → RΞ∗Ξ∗ J is an isomorphism.
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The projection Sets/(E, S) → E/S sending (U , T ) to T is left exact and induces an exact left adjoint
Ξ! to Ξ∗ [SGA4-1, Proposition I.5.4 4]. Therefore, Ξ∗ preserves injectives. Since Ξ∗ is also exact,
this implies RΞ∗Ξ∗ J = Ξ∗Ξ∗ J . The natural map J → Ξ∗Ξ∗ J is certainly an isomorphism, since
Ξ∗ J = (E, J ) and Hom(E,S)((E, T ), (E, J)) = HomS (T , J ). �

Let u : E/S → E and v : A-Alg/A[S] → E denote the projections. Then the lemma implies that
R v∗DerA(A[S], J ) = Ru∗ J .

Lemma. There is a canonical isomorphism R Hom(ZS , J ) � Ru∗u∗ J for any sheaf of abelian groups J on E.

Since u∗ has an exact left adjoint on sheaves of abelian groups [SGA4-1, Proposition IV.11.3.1], both
RHom(ZS , J ) and Ru∗u∗ J can be computed by taking an injective resolution of J in E . It’s therefore
sufficient to remark that Hom(ZS , J ) = Hom(S, J ), by definition. �

Putting all of the lemmas together, we find that

R v∗DerA
(

A[S], J
) = R HomZ

(
ZS , J

) = R HomA[S]
(

A[S]S , J
) = R Hom(ΩA[S]/A, J ).

Corollary. If J is injective and B is a free A-algebra then for every p > 0, the group H p(A-Alg/B,DerA(B, J ))
vanishes.

Since ΩB/A is functorial in B , this permits us to compute the cohomology of DerA(B, J ) for any
sheaf B of A-algebras and any B-module J using hyper-Čech cohomology. Let B• be the standard
simplicial resolution of B by free A-algebras [Il71, I.1.5.5 b, II.1.2.1.1]. By [Il71, I.1.5.3], the resolution
B• → B is a homotopy equivalence on the underlying sheaves of sets. This implies in particular that
it is a hypercover, so the corollary above implies that R v∗DerA(B, J ) is computed by the complex C
with

C p,q = v∗DerA
(

B p, J q)

for any injective resolution J• of J . Taking B• = P A(B) we obtain the cotangent complex as LB/A =
ΩB•/A ⊗B• B by [Il71, II.1.2.3], and then

R v∗DerA(B, J ) � v∗DerA
(

B•, J•) = HomB•
(
ΩB•/A, J•)

= HomB
(
ΩB•/A ⊗B• B, J•)

� R Hom(LB/A, J ).

This proves that the cotangent complex represents the functor sending J to the cohomology of
DerA(B, J ):

Theorem 4. Let v denote the projection A-Alg(E)/B → E. If J is any B-module, then there is an isomorphism
in the derived category of sheaves of B-modules

R v∗DerA(B, J) � R Hom(LB/A, J ).

In particular,

Extp(LB/A, J ) = H p(
A-Alg(E)/B,DerA(B, J )

)

for all p.
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