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1. Introduction

We wish to understand the structure of the projective coordinate rings of the moduli stack
MC,�p(G) of quasi-parabolic principal G-bundles on a marked projective curve (C, �p) ∈ Mg,n , where
G is a simple complex group and the parabolic structure is given by a Borel subgroup B ⊂ G . Our in-
terest in these objects stems both from the classical value of problems in the moduli of bundles, and
because the graded components of these algebras can be identified with spaces of conformal blocks.
Conformal blocks for the conformal field theory defined by a simple complex Lie algebra g and a
non-negative integer L for marked projective complex curves (C, �p) ∈ M̄g,n occupy an interesting po-
sition in algebraic geometry and mathematical physics. When the curve is allowed to vary, they form
vector bundles over M̄g,n which have been the object of interesting recent work, [F,AGS]. When the
genus of the curve is set to 0, they are the structure spaces for a category of representations of the
specialization of a quantum group at a root of unity. As we will mention below, their combinatorics
have even made appearances in mathematical biology. Because of the variety of applications, we seek
to understand structural features of conformal blocks, and relate them to the commutative algebra of
MC,�p(G).

The moduli stack MC,�p(G) can be expressed as the quotient stack of a product of the affine Grass-
mannian variety Q with the projective variety [G/B]n , by an action of an ind-group LC,�p determined
by the points p1, . . . , pn

MC,�p(G) = LC,�p(G)\\[Q× G/Bn]. (1)

The Picard group of MC,�p(G), calculated in [LS], is a product of n copies of the character group of B
times a copy of Z

P ic
(
MC,�p(G)

) = X (B)n ×Z. (2)

The cone of line bundles with non-zero global sections is a subcone of �n × Z�0 ⊂ X (B)n × Z,
where � is the Weyl chamber of G . The space of global sections H0(MC,�p(G),L(�λ, L)) for a vector of

dominant weights �λ of G , and a non-negative integer L agrees with the space V C,�p(�λ, L) of conformal

blocks of the rational conformal field theory defined by Lie(G) and L, with weights �λ at the marked
points �p and level L. Let RC,�p(�λ, L) be the projective coordinate ring of MC,�p(G) defined by L(�λ, L)

RC,�p(�λ, L) =
∞⊕

N=0

H0(MC,�p(G),L(�λ, L)⊗N)
. (3)

The Hilbert function of this algebra outputs the sequence of dimensions of the spaces of conformal
blocks associated to (N�λ, N L), which can be calculated by the Verlinde formula from conformal field
theory, see [B]. These algebras have been studied before, predominantly in the case when �p is empty.
In this case, elements of RC (1) are known as non-abelian theta functions, and the map to projective
space on the coarse moduli space defined by RC (1) is known as the theta-map. We direct the reader
to the article [P] for a survey of what is known about this ring. For G = SL2(C), the ring of non-abelian
theta functions has also recently been shown to be projectively normal by Abe, [A]. The present paper
is in part motivated by an attempt to extend understanding to the parabolic case, when �p is non-
empty.

The algebra RC,�p(�λ, L) is defined as above only for (C, �p) smooth, however the space V C,�p(�λ, L)

makes sense for any stable curve (C, �p) ∈ M̄g,n . In [M2], we showed that the direct sum⊕
N�0 V C,�p(N�λ, N L) can be given an algebra structure for any stable curve, and over smooth curves

this agrees with the algebra structure on RC,�p(�λ, L). From now on we refer to these fibers RCΓ ,�pΓ
(�λ, L)

for a non-smooth curve (CΓ , �pΓ ) with the same notation. Additionally, these algebras fit together
into a flat sheaf of algebras over M̄g,n . This implies that one can deduce properties of RC,�p(�λ, L)
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Fig. 1. The stable curve corresponding to a trivalent graph.

Fig. 2. A weighting representing a conformal block on a 4-marked curve of genus 1. The external weights are 1, 3, 2, 2, and the
level could be anything bigger than 4, so this may represent an element in V C,p1,p2,p3,p4 (1,3,2,2,4).

for generic (C, �p) by studying the algebra for a particular (C, �p) ∈ M̄g,n . Our strategy is to deduce
properties about RC,�p(�λ, L) by passing to the fiber over non-smooth curves in M̄g,n , where the com-
binatorics of the factorization rules (see [TUY,B]) of conformal blocks can help.

1.1. Conformal blocks as weighted graphs

The stack M̄g,n is stratified by closed substacks indexed by graphs Γ . The lowest components
of this stratification are certain closed points indexed by trivalent graphs Γ with first Betti num-
ber β1(Γ ) = g and n leaves. The curve (CΓ , �pΓ ) corresponding to a trivalent graph Γ is the stable
arrangement of marked copies of P1 with dual graph Γ . (See Fig. 1.)

We now restrict our attention to G = SL2(C). For this group, dominant weights are non-negative
integers r ∈ Z�0. In this case, the factorization rules imply that the space of conformal blocks
V CΓ ,�pΓ

(�r, L) over the point corresponding to a graph Γ has a distinguished basis given by weight-
ings of the edges of Γ by non-negative integers which satisfy a short collection of conditions (see
Fig. 2).

Definition 1.1. For Γ a trivalent graph with n leaves labeled 1, . . . ,n, �r an n-vector of non-negative
integers, and β1(Γ ) = g , we define PΓ (�r, L) ⊂R

|Edge(Γ )| to be the set of non-negative real weightings
of the edges of Γ which satisfy the following conditions.

(1) For any trinode v ∈ Γ with the three incident edge weights w1, w2, w3 must satisfy the triangle
inequalities: |w1 − w2| � w3 � w1 + w2.

(2) For any trinode as above, w1 + w2 + w3 � 2L.
(3) The weight on the edge attached to the i-th leaf equals ri .

We consider this polytope with respect to the lattice of integer points in R
|Edge(Γ )| defined by the

condition that the sum w1 + w2 + w3 ∈ 2Z for any trinode v ∈ Γ . In addition to indexing a basis of
the spaces V C,�p(�r, L), the polytope PΓ (�r, L) captures more information about the algebras RC,�p(�r, L),
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in the sense that the edge-wise addition operation on weightings of Γ is almost the same as the
multiplication operation in these algebras. The following is proved in [StX] for C genus 0, and for
general genus by Proposition 1.5 of [M2].

Theorem 1.2. Let Γ be a trivalent graph with n labeled leaves and the first Betti number equal to g. For
any curve (C, �p) ∈ M̄g,n the algebra RC,�p(�r, L) can be flatly degenerated to the graded semigroup algebra
associated to PΓ (�r, L).

Proof. Both steps, establishing the flat sheaf of algebras over M̄g,n , and defining and analyzing the or-
dering, appear in [M2] (see also [A]). For any curve (C, �p), the algebra RC,�p(�r, L) is in a flat family with
the algebra over the curve (CΓ , �pΓ ) of type Γ by Proposition 1.5 of [M2]. By analyzing RCΓ ,�pΓ

(�r, L)

with respect to the distinguished basis given by the factorization rules, it can be found that multi-
plication in this algebra is “lower triangular” with respect to a natural ordering on the weightings
w of Γ . That is, if [w1] and [w2] are the elements of RCΓ ,�pΓ

(�r, L) corresponding to weightings w1,
w2 then [w1] × [w2] = [w1 + w2] + lower terms. Taking the associated graded algebra of RCΓ ,�pΓ

(�r, L)

with respect to this term order then yields the graded toric algebra C[PΓ (�r, L)]. A standard Reese
algebra construction then yields a flat family over C with general fiber RCΓ ,�pΓ

(�r, L) and special fiber
C[PΓ (�r, L)]. �

The conditions satisfied by the weights w ∈ PΓ (�r, L) around each internal vertex are called the
quantum Clebsch–Gordon conditions. Weightings of graphs which satisfy these conditions are known
by various names in mathematical physics, such as Feynman diagrams or spin diagrams, see [Ko].
Analysis of these polytopes and other convex sets of spin diagrams also appears in computational
biology, specifically in the work of Buczynska and Wiesniewski on phylogenetic algebraic varieties,
[BW,Bu]. The polytope PΓ (�r, L) is a cross-section of the cone τ (Γ ) corresponding to Buczynska’s
graphical phylogenetic toric variety introduced in [Bu] to study the Jukes–Cantor statistical model on
graphs.

A good deal of information is preserved by flat degeneration, such as the degree, the Hilbert func-
tion of RC,�p(�r, L), and commutative algebra features like the Gorenstein property. In theory, all of
these details can be computed from the polytopes PΓ (�r, L). A non-trivial consequence of this ob-
servation is that the equivalent polyhedral information for PΓ (�r, L), the volume and the number of
lattice points, etc., is independent of the graph Γ . It should be noted that the degeneration tech-
nique we are using here applies to other groups G as well, except the resulting degenerations are not
toric. Perhaps this issue can be resolved with a better understanding of the underlying combinatorial
representation theory.

1.2. Statement of results

Depending on the property of RC,�p(�r, L) one wishes to study, certain toric degenerations can be
more suited to the task than others. Next we describe the conditions we place on Γ with respect
to �r in order to ensure the polytope PΓ (�r, L) is suited to our needs. We will use three special graph
topologies, depicted in Fig. 3.

Definition 1.3. A trivalent tree T is said to be caterpillar if every vertex is connected by an edge to
some leaf.

Notice that a caterpillar tree has two pairs of leaves which share a common vertex. We call these
paired leaves, and we say they are at the head or tail of the caterpillar.

Definition 1.4. A trivalent graph Γ is said to be a caterpillar graph if it is obtainable from a caterpillar
tree by adding a loop on one of the leaves at the head or tail, or by adding a doubled edge at the
midpoint of one of the edges.
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Fig. 3. From the top, a caterpillar tree, a caterpillar graph, and a tree-like graph.

Fig. 4. (r1, r2, r3, r4) is compatible with the graph when r1 + r2, r3 + r4 ∈ 2Z.

Definition 1.5. A trivalent graph Γ of genus g with n leaves is tree-like if it is obtained from a trivalent
tree with g + n leaves by adding loops on g leaves.

In our analysis of PΓ (�r, L) for Γ tree-like, we require that �r and Γ satisfy a condition, which we
call compatibility.

Definition 1.6. For the polytope PΓ (�r, L) we say a vector �r is “compatible” with a graph Γ if any odd
ri is assigned to a leaf-edge which shares a vertex with the leaf-edge of another odd r j (see Fig 4).

Recall that for any lattice point in PΓ (�r, L), the weights at any trinode of Γ sum to an even
number. It is a simple combinatorial exercise to show that this implies that the number of odd-
weighted leaf-edges of Γ is always even. As a consequence, we obtain that there are only conformal
blocks with weights �r if an even number of the ri are odd, this implies the following.

Proposition 1.7. Whenever V C,�p(�r, L) has dimension > 0, there is a tree-like graph Γ which is compatible
with �r.

The compatibility property was critical in the proof of the following theorem, from [M1].
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Theorem 1.8. Let T be a trivalent tree, and L > 1, and let �r be compatible with T , then C[PT (�r,2L)] is
generated in degree 1, and the binomial ideal of relations I PT (�r,2L) is generated by polynomials of degree � 3.

Our first result is a generalization of Theorem 1.8 to tree-like graphs.

Theorem 1.9. Let Γ be tree-like, and L > 1, and �r compatible with Γ , then C[PΓ (�r,2L)] is generated in
degree 1, and the binomial ideal of relations I PΓ (�r,2L) is generated by polynomials of degree � 3.

In [M1] there are examples which show that certain degree 3 polynomials are necessary to gen-
erate I PΓ (�r,L) . However, when we choose Γ to have the caterpillar graph topology, the relations can
become more tractable.

Theorem 1.10. Let Γ be a caterpillar graph, then C[PΓ (2�r,2L)] is generated in degree 1, and the presenting
ideal I PΓ (2�r,2L) has a quadratic, square-free Gröbner basis.

A consequence is that any non-empty PΓ (�r, L) becomes “nice” (normal, with quadratically gen-
erated binomial ideal) when we take its Minkowski square, PΓ (2�r,2L). Using the flat degeneration,
these theorems can be lifted back to the algebras RC,�p(�r, L).

Theorem 1.11. For any �r, L > 1, and C a generic curve, RC,�p(�r,2L) is generated in degree 1 with ideal of
relations generated in degree 3. For any �r, L, RC,�p(2�r,2L) is Koszul. In particular, it has quadratic relations.

Proof. We give a sketch of the argument. Let Γ and �r be compatible. We assume that both prop-
erties have been proved for the appropriate toric algebra C[PΓ (�r, L)]. This implies the correspond-
ing statements for the fiber RCΓ ,�pΓ

(�r, L) by standard properties of associated graded algebras. The
moduli M̄g,n is a connected, Noetherian Deligne–Mumford stack over C, therefore for any closed
point q : Spec(C) → M̄g,n there is a dense open substack U with an étale Noetherian affine cover
Q : Spec(A) → U . The fiber of our sheaf of algebras is then equal to the fiber of the pullback sheaf
over q′ : Spec(C) → Spec(A) for some closed point of Spec(A).

Over a Noetherian affine base, we obtain the statement on generators and relations from an ap-
plication of Nakayama’s lemma to the graded components of the algebra and its presenting ideal.
The statement on the Koszul property results from the fact that Betti numbers of the correspond-
ing generalized Koszul complex (see [E, Ex. 17.22]) do not increase under specialization because their
graded components are locally free modules. We may reduce to this case because the generic point
of M̄g,n is étale-covered by the generic point of Spec(A), and the fiber over this point is obtained by
base-change. �
Remark 1.12. Naturally, this theorem applies in the case when �r is empty. In this case it implies that
the above generation and relation properties hold for the projective coordinate ring of the square of
the line bundle L on MC (SL2(C)), for generic C . The generation result is weaker than the result
of Abe, [A], however the result on relations is new. Abe’s strategy is similar to ours, he employs a
filtration built from the factorization rules, however he stops short of a toric degeneration. It is at
present unknown to us if Abe’s results can be replicated with an inspired choice of graph Γ .

Remark 1.13. When Γ is a tree and L is very large, the algebra C[PΓ (�r, L)] is also realized as a toric
degeneration of a projective coordinate ring of the moduli of �r-weighted points on the projective line,
M�r = SL2(C)�r\\[P1]n . Theorem 1.10 then shows that this projective coordinate ring has a quadratic,
square-free Gröbner basis when �r is even, a result also obtained by Herring and Howard, [HH].

1.3. Building blocks of PΓ (�r, L)

Theorems 1.8, 1.9, and 1.10 are proved by understanding the structure of PΓ (�r, L) as a fiber prod-
uct of rational polytopes. In [M1], the polytopes PT (�r, L) for a trivalent tree T were shown to be
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Fig. 5. Splitting the separating edges of Γ (top) produces the union of graphs Γ̂ (bottom).

“balanced”, a geometric feature which endows a polytope with several nice algebraic properties. The
technical observation that makes these theorems work is the fact that the balanced property is stable
with respect to certain kinds of fiber products.

Definition 1.14. Let P1 ⊂ R
n , P2 ⊂ R

m and Q ⊂ R
k be lattice polytopes, and let π1 : Rn → R

k and
π2 : Rm → R

k be lattice maps which take Pi into Q . The fiber product P1 ×Q P2 ⊂ R
n+m−k is defined

to be the subset of points (x, y) ∈ P × Q ⊂ R
n+m such that π1(x) = π2(y).

We will prove Theorem 1.9 by following a similar strategy to the program used in [M1]. The
conditions which define PΓ (�r, L) are all localized around individual trinodes of Γ , which implies we
may represent PΓ (�r, L) as a fiber product of polytopes defined on the components of an “exploded
graph” Γ̂ . This is a graph obtained from Γ by splitting any edge in Γ which separates the graph into
two disjoint components. (See Fig. 5.)

See also Fig. 14. The connected components of Γ̂ each have a special polytope associated to
them, we call these the “building blocks” of PΓ (�r, L). The strategy is to first analyze the build-
ing block polytopes, establishing that they have the algebraic features we want, then show these
features are stable under fiber product. When Γ is tree-like, the polytopes given by weightings of
the components of Γ̂ are single loops with an edge, or a trinode with 0, 1, or 2 edges with edge
weight fixed to a specific value (say r, or r, s). When Γ is caterpillar, no trinodes with 0 fixed
edges appear, but a loop with 2 edges can appear, see Fig. 6. There is a depiction of each poly-
tope beneath its corresponding graph. See Figs. 10, 7, 8, and 9 for more detailed illustrations of these
polytopes.

We call the polytope corresponding to a loop with an edge B(L), weightings of a trinode with one
or two fixed edges (with value equal to r, s) P3(r, L) or P3(r, s, L) respectively, general weightings of
a trinode P3(L), and a loop with two edges B2(L). The polytope B2(L) is 4 dimensional, so the image
depicted in the figure is a projection into R

2.
Here is where compatibility and the assumption that we work with even level 2L are used. It

is another simple combinatorial exercise to verify that when Γ,�r are compatible, all non-leaf and
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Fig. 6. The building blocks of PΓ (�r, L).

non-loop edges of Γ are weighted with an even number. This greatly simplifies the structure of the
building block polytopes. The main technical part of this paper is to develop and clarify the polytope
properties that make this construction work. As fiber products are categorical operations, we view the
natural habitat for the above theorems as closure properties of a category of polytopes under certain
fiber products. We define this category next.

1.4. The category P

For the following definitions see [St]. For a lattice polytope P ⊂ R
n let Σ : X P → R be an as-

signment of real numbers to the lattice points of P . The function Σ defines a term order on the
polynomial ring C[X P ]. For a monomial xm = xm1

1 . . . xmk
k , we define Σ(m) = ∑k

i=1 miΣ(xi). For two
monomials, we say xm � xn when deg(m) < deg(n) or deg(m) = deg(n) and Σ(m) � Σ(n).

The polytope P defines a graded algebra C[P ], where the m-th graded component has a basis
given by the lattice points XmP of the m-th Minkowski sum mP = P + · · · + P , and the product
operation is lattice point addition. Let I P ⊂ C[X P ] be the toric ideal which is the kernel of the map
C[X P ] → C[P ]. For a polynomial f ∈ I P , the initial form inΣ( f ) with respect to Σ is defined to be
the sum of the monomials in f which are largest under the term order defined by Σ .

Definition 1.15. A monomial xm is said to be standard with respect to a term order Σ if it is not an
initial form of any polynomial in I P .

For a lattice point b ∈ mP , we let �b be the set of monomials in C[X P ] which map to b. The
difference of any two elements in �b is a member of I P . The function Σ defines a partial ordering
on �b , and the minimal elements of this partial ordering are the standard monomials.

Definition 1.16. We define the category P to have pairs (P ,Σ) as objects, where P is a lattice poly-
tope in some R

n , and Σ is a term order on P . A morphism π : (P ,Σ) → (Q ,Γ ) is a linear map on
π : P → Q , induced by a map on lattices, such that the standard monomials of Σ map to standard
monomials of Γ .

The following is the most general result we will prove about the category P . We say (Q ,Σ) has
unique standard monomials if the sets �b always have a unique minimal element when they are
non-empty.

Proposition 1.17. If π1 : (P1,Σ1) → (Q ,Σ) and π2 : (P2,Σ2) → (Q ,Σ) are maps in P , and if (Q ,Σ) has
unique standard monomials, then the fiber product object (P1,Σ1) ×(Q ,Σ) (P2,Σ2) exists in P .
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The category of lattice polytopes comes with a fiber product, so the content of this proposition
is in showing that there is a term order on P1 ×Q P2 with maps to (P1,Σ1), (P2,Σ2) satisfying
the universal property of a fiber product. Next, we formalize properties of balanced polytopes first
observed in [M1] by showing that the category P has a distinguished subcategory that is closed
under fiber product.

Definition 1.18. A term order Σ on a lattice polytope P is said to be “flag” when a monomial xm

from P is standard if and only if every degree 2 divisor of xm is standard, and xn is standard for any
x ∈ X P .

Proposition 1.19. If π1 : (P1,Σ1) → (Q ,Σ) and π2 : (P2,Σ2) → (Q ,Σ) are maps in P , and if (Q ,Σ) has
unique standard monomials, then (P1,Σ1) and (P2,Σ2) flag implies (P1,Σ1) ×(Q ,Σ) (P2,Σ2) flag.

Balanced polytopes are examples of polytopes with flag term orders. Geometrically, the term or-
der divides the polytope into sub-polytopes, and the standard monomials are simply monomials with
components all corresponding to lattice points from the same sub-polytope, called a “standard re-
gion”. In the case of balanced polytopes, these regions are all lattice sub-polytopes of the unit cube.
Theorem 1.9 above is a consequence of the following propositions. Recall that a rational lattice poly-
tope P is said to be normal when the graded algebra C[P ] is generated in degree 1, by the elements
corresponding to the lattice points of P .

Proposition 1.20. Let (P1,Σ1) ×(Q ,Σ) (P2,Σ2) be a fiber product of flag elements over (Q ,Σ) with unique
standard monomials. If each (Pi,Σi) is normal, then (P1,Σ1) ×(Q ,Σ) (P2,Σ2) is normal.

For (P ,Σ) we call a binomial xn − xm ∈ I P a standard relation if both monomials are composed of
lattice points from the same standard region.

Proposition 1.21. Let (P1,Σ1) ×(Q ,Σ) (P2,Σ2) be a fiber product of flag objects over (Q ,Σ) with unique
standard monomials. If the standard relations of (Pi,Σi) are generated by standard relations of degree ki , then
I(P1,Σ1)×(Q ,Σ)(P2,Σ2) is generated in degree max{k1,k2}.

Properties of fiber products over a toric algebra have been studied before by Sullivant in [Su].
These theorems can be viewed as refinements of Theorem 2.8 in [Su]. In our results, the assumption
that the base of the fiber product have strict unique factorization has been removed by restricting our
study to fiber products of binomial ideals.

1.5. The concatenation product on term orders

The second technical result, used to prove theorem 1.10, is a version of Sullivant’s Theorem 2.9 in
[Su]. Here we also remove a restriction that the base of the fiber product have unique factorization
by only considering binomial ideals. We define another operation in P .

Definition 1.22. Define (P1,Σ1) �(Q ,Σ) (P2,Σ2) in P on the fiber product polytope P1 ×Q P2
with term order given by the following rule on monomials. For lattice points (V 1, W1), (V 2, W2) ∈
(P1,Σ1) �(Q ,Σ) (P2,Σ2) we say (V 1, W1) < (V 2, W2) if

(1) Σ1(V 1) < Σ1(V 2) or
(2) the Σ1 values are equal, and Σ2(W1) < Σ2(W2).

For monomials x(V 1,W1)...(Vk,Vk), x(U1,Y1)...(U	,Y	) we first order by degree, then with the sum weighting
Σ1 ⊕ Σ2, we then break ties by writing both sets of exponents in decreasing order with the above
ordering and we declare (V 1, W1) . . . (Vk, Wk) > (U1, Y1) . . . (U	, Y	), if (V i, W i) > (Ui, Yi) at the first
place they differ.
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Proposition 1.23. If the presenting ideals of (P1,Σ1), (P2,Σ2), and (Q ,Σ) all have quadratic, square-free
Gröbner bases with respect to their term orders, then so does the presenting ideal of (P1,Σ1)�(Q ,Σ) (P2,Σ2).

Using this, we establish Theorem 1.10 from the fact that the presenting ideals of intervals [0, L]
and the building block polytopes have quadratic, square-free Gröbner bases. Note that although we do
not assume that the base of our fiber products has unique factorization, we do assume this “locally”
by requiring the polytope to have a quadratic square-free Gröbner basis.

2. The category P , and flag term orders

In this section we review some basic properties of term orders on toric ideals. We discuss geo-
metric decompositions of the polytope induced by a term order, and the corresponding algebra we
cover some properties of the category P , flag term orders, and balanced polytopes. First, we recall
the initial complex �Σ(P ) of a term order, see Chapter 8 of [St].

Definition 2.1. Let P be a lattice polytope, and Σ a term order on P . Define the simplicial complex
�Σ(P ) on the vertex set X P as follows. A set S ⊂ X P defines a face of �Σ(P ) if every monomial with
support S is standard.

If S ∈ �Σ(P ) and F ⊂ S has a monomial xm supported on its entries which is not standard then
one can make a non-standard monomial supported on S by multiplying by the remaining generators
in S \ F , this establishes that �Σ(P ) is a simplicial complex. Morphisms in the category P preserve
the information in these simplicial complexes.

Proposition 2.2. Let π : (P ,Σ) → (Q ,Γ ) be a morphism in P then π induces a simplicial map π∗ :
�Σ(P ) → �Γ (Q ).

Proof. Let S define a face in �Σ(P ). Any monomial xm with support S is standard, implying its image
π(x)m is standard with respect to Γ in Q . Since this holds for any monomial, all monomials with
support π∗(S) = {π(xi) | xi ∈ S} must be standard, which means π∗(S) ∈ �Γ (Q ). �

For flag term orders Σ , we will be concerned with the convex hulls |S| ⊂ P of the faces of �Σ(P ).
Let Σ be a flag term order, and let b ∈ P be some rational point. Then Nb is a lattice point of N P
for some N � 0. Let xm be a standard monomial which maps to b. Then b is in the convex hull of
the lattice points defined by the xi , and by the flag property, this collection defines a face S ∈ �Σ(P ).
Similarly, if b ∈ |S| is any rational point, then we have

b =
∑

xi∈S

si xi (4)

for rational si . This implies for some N � 0 that the monomial defined by
∑

xi∈S(Nsi)xi = Nb is
standard. If b ∈ |S| is a lattice point, this implies S ∪ {b} is also in �Σ(P ) as Nb is defines a standard
monomial, implying (N + 1)b = ∑

xi∈S Nsi xi + b defines a standard monomial as well. The following
proposition shows that the interiors of maximal faces of �Σ(P ) do not intersect.

Proposition 2.3. Let (P ,Σ) be flag, and let S, T ⊂ �Σ(P ), and suppose the intersection int|S| ∩ int|T | is
non-empty. Then S ∪ T is also in �Σ(P ).

Proof. Let b ∈ int|S| ∩ int|T |, be a rational point, this implies that b can be written as convex sums in
both sets S and T

b =
∑

xi∈S

rixi =
∑

y j∈T

ti yi . (5)
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In particular the numbers t j and si can be taken non-zero for all i, j. Choose N � 0 so that Nsi and
Nt j are integers for all i, j, then we have found monomial expressions for Nb ∈ N P with support in
S and T respectively. This implies that these monomials are both standard, and further implies that
the following expressions correspond to standard monomials

2Nb =
∑

xi∈S

(2Nri)xi =
∑

xi∈S

(Nri)xi +
∑

y j∈T

(Nti)yi . (6)

So the set S ∪ T is also in �Σ(P ). �
Taken together, these observations imply the following.

Proposition 2.4. Let (P ,Σ) be flag. The polytope P is geometrically subdivided into convex regions Si ⊂ P ,
the convex hulls of the maximal facets of �Σ(P ). The lattice points in a region Si are precisely the members of
the corresponding maximal facet.

For any rational point b ∈ S a maximal face, we can find some set {x0, . . . , xn} ⊂ S such that
b is in the convex hull of x0, . . . , xn . If this set is not equal to S , this can only be because two
monomials in some �Nb , with N � 0 get the same minimal Σ weight, so Σ cannot be a total term
order. Conversely, when Σ defines a total term order on monomials, all maximal faces S ∈ �Σ(P ) are
simplices.

We will now show that when (P ,Σ) is flag, much of the algebra of C[P ] is captured by the
algebras C[Si], Si ∈ �Σ(P ). The following lemma allows us to reduce generation and relation degrees
for C[P ] to those of the C[Si].

Lemma 2.5. For any monomial a1 . . .aN ∈ P where (P ,Σ) is flag, a1 . . .aN is related to a standard monomial
by degree 2 relations.

Proof. Let a1 + · · · + aN = b ∈ N P , and recall �b , the set of monomials which map to b. If xa1...aN is
standard, there is nothing to do, so suppose this is not the case, then by definition of flag term orders,
it has a non-standard degree 2 divisor, say xa1a2 . We replace xa1a2 with xA1 A2 standard, then

Σ(a1a2 . . .aN) > Σ(A1 A2 . . .aN). (7)

We repeat this procedure on A1 A2 . . .aN . This algorithm must terminate by the finiteness of �b . �
Corollary 2.6. For (P ,Σ) flag with maximal facets S1, . . . , Sk of KΣ , any relation xa1...an = xb1...bN can be
taken to a relation in some Si by degree 2 relations.

Proof. We must have a1 + · · · + aN = b1 + · · · + bM = b for some b ∈ N P , therefore any standard
factorization of b must be made from the lattice points of an Si which contains 1

N b. The previous
proposition shows that both sides of this relation can be converted to such a standard relation by
degree 2 moves. �

The content of this last corollary is that generating sets of relations for the Si , along with the
degree 2 relations of the form xa1a2 = xA1 A2 , with one side standard, suffice to generate the binomial
ideal I P .
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2.1. Balanced polytopes

We now define a special term order function Σ2. We will recall the definition of balanced poly-
topes from [M1], and show that they always have Σ2 as a flag term order.

Definition 2.7. Define Σ2 : Zn → Z to be the function which takes a vector (a1, . . . ,an) to the sum of
the squares of its entries

∑n
i=1 a2

i .

Example 2.8. To motivate the use of this function, consider a number b ∈ Z�0 and the set �N (b) of N
tuples (x1, . . . , xN ) ∈ Z

N
�0 such that

∑
xi = b. We can partially order these tuples by weighting them

with Σ2. For b = 2, the set �3(3) = {[003], [012], [111]}, and these are ordered by Σ2 as follows,

[111] < [012] < [003]. (8)

We call the operation with takes a pair of numbers (x, y) to (� x+y
2 �, � x+y

2 �) “balancing”. For any
pair of numbers x, y we have that x2 + y2 � � x+y

2 �2 + � x+y
2 �2, while x + y = � x+y

2 � + � x+y
2 �. For any

pair xi , x j from the a tuple as above, balancing yields a tuple which still sums to b, with a lower Σ2

value. Furthermore, the number Σx2
i is minimized over the set of n non-negative integers numbers

with sum b exactly when any xi and x j differ by at most 1. This implies that the minimal tuple with
respect to Σ2 is of the form (x + 1, x + 1, . . . , x, . . . , x) where b = Nx + M with M the number of
entries of the form x + 1. We can play this same game with a tuple of vectors (�x1, . . . , �xN ) ⊂ Z

m
�0

which sum to a fixed vector �b ∈ Z
n . We call the operation that takes two vectors �x, �y to the vectors

with entries the balancing of the pairs of entries of �x, �y a balancing of m-vectors. Once again, this
operation lowers the Σ2 value of (�x, �y), unless these vectors were already balanced with respect to
each other.

Proposition 2.9. For any tuple of vectors {�x1, . . . , �xN } ⊂ Z
m
�0 there is a tuple {�b1, . . . , �bN } ⊂ Z

m
�0 with the

following properties.

(1)
∑ �bi = ∑ �xi .

(2) Each tuple of numbers {bi
1, . . . ,bi

M} is balanced.

(3) Σ2(�b1, . . . , �bN ) � Σ2(�x1, . . . , �xN ), with equality only when each tuple of numbers {xi
1, . . . , xi

M} is bal-
anced.

(4) The �bi all lie in a common translate of the unit cube in Z
m
�0 .

Proof. We construct a {�b1, . . . , �bN } by doing pairwise balancings, beginning with the set {�x1, . . . , �xN }.
Since each operation lowers the Σ2 value, this process terminates. Number 1 above follows because
this algorithm does not change the total sum of the vectors, numbers 2 and 3 are consequences of
the algorithm and imply number 4. �
Definition 2.10. We say a lattice polytope P ⊂ R

m is balanced if each tuple of lattice points
b1, . . . ,bN ∈ P has a balancing in X P , the lattice points of P .

Proposition 2.11. A polytope P ⊂ R
n is balanced if and only if (P ,Σ2) is flag, and the convex hulls of the

maximal elements in �Σ2 (P ) are sub-polytopes of translates of the unit n-cube.

Proof. If P is balanced, then the balanced monomials of P are clearly the standard monomials with
respect to Σ2, so we verify that the flag properties are satisfied. First note that for any x ∈ X P , xn is
a balanced monomial. Furthermore, a monomial xn is balanced if and only if the entries in any two
generators dividing xn differ by 1 or 0, which is the case if and only if any degree 2 divisor of xn is
balanced. This is exactly the flag condition.
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If (P ,Σ2) is flag, and the fundamental regions Si are all subsets of translates of the unit cube then
the algorithm in Lemma 2.5 above gives a balancing of any monomial. �
Corollary 2.12. Let P be a balanced polytope, then P is normal if and only if each maximal cubical region Ci

is normal. Furthermore, the ideal I P is generated in degree bounded by the degrees required to generate the
ideals ICi .

3. Fiber products of polytopes

The previous section establishes that balanced polytopes make up a special subclass of polytopes
with a flag term order, which make up a special class of polytopes with term orders. In this section we
show that each of these classes is closed under special types of fiber products. The guiding principle
here is that fiber products will exist and be well-behaved when the base has unique factorization
properties. First we present a useful motivating proposition.

Proposition 3.1. Let P1 and P2 be normal polytopes with maps π1 , π2 to Q a normal polytope with unique
factorization, then P1 ×Q P2 is normal.

Proof. Let (b1,b2) ∈ N[P1 ×Q P2], with b = π1(b1) = π2(b2) ∈ N Q . By the normality of P1 and P2, we
have b1 = xn and b2 = ym for monomials in the lattice points of P1 and P2 respectively. We must also
have π1(xn) = π2(ym), so the components of these monomials must be the same up to reordering,
this means for every component xi we can find a yi a component of ym such that π1(xi) = π2(yi).
This allows us to express (b1,b2) as a product of lattice points of P1 ×Q P2. �

For two elements (P1,Σ1), (P2,Σ2) ∈ P the product polytope P1 × P2 has a natural term order
given by Σ1 ⊕ Σ2(u, v) = Σ1(u) + Σ2(v). This order also makes sense on a fiber product P1 ×Q P2 ⊂
P1 × P2. We now prove that the fiber product of (P1,Σ1), (P2,Σ2) ∈P over an element (Q ,Σ) with
unique standard monomials is a fiber product object in P .

Proof of Proposition 1.17. We show that a monomial x[a1,b1]...[ak,bk] is standard with respect to
Σ1 ⊕ Σ2 if and only if xa1,...,ak and yb1,...,bk are standard with respect to Σ1 and Σ2 respectively.
This establishes that the projection maps to P1 and P2 are morphisms in P , and that any polytope
(D,Γ ) ∈P with a map to (Q ,Σ) which factors by π1 and π2 must have a map to the fiber product.

If both xa1,...,ak and yb1,...,bk are standard with respect to Σ1 and Σ2, then x[a1,b1],...,[ak,bk] must be
minimal with respect to Σ1 ⊕ Σ2, as any alternative factorization induces alternative factorizations of
a1 + · · · + ak and b1 + · · · + bk . So we must show that x[a1b1],...,[akbk] standard implies that xa1,...,ak and
yb1,...,bk are standard.

Suppose x[a1,b1],...,[ak,bk] is a monomial in P1 ×Q P2 with xa1...ak not standard, we will show that
this implies that x[a1,b1],...,[ak,bk] is not standard. Let xA1...Ak be a standard monomial for a1 + · · · + ak ,
and yB1...Bk the same for b1 +· · ·+bk . Then π1(A1 . . . Ak) = π2(B1 . . . Bk) = π1(a1 . . .ak) = π2(b1 . . .bk)

and it can be arranged that π1(Ai) = π2(Bi) by the unique standard monomial property of Q .
This allows us to form the fiber product monomial x[A1 B1]...[Ak Bk] , which must be a member of
�[a1b1]+···+[akbk] . However, Σ1 ⊕Σ2([A1 B1] . . . [Ak Bk]) = Σ1(A1 . . . Ak)+Σ2(B1 . . . Bk) < Σ1(a1 . . .ak)+
Σ2(b1 . . .bk) = Σ1 ⊕ Σ2([a1b1] . . . [akbk]). �

As a corollary we obtain a proof of Proposition 1.19.

Proof of Proposition 1.19. Let x[a1,b1]...[ak,bk] be a monomial for P1 ×Q P2 such that each pair
x[ai ,bi ][a j ,b j ] is standard. By the previous proposition this implies that both a1, . . . ,ak and b1, . . . ,bk
define standard monomials, which implies their image is standard as a Q monomial, and therefore
x[a1,b1]...[ak,bk] is standard. �
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We also get an expression for the simplicial complex �Σ1⊕Σ2 (P1 ×Q P2).

Proposition 3.2. Let (P1,Σ1) and (P2,Σ2) be flag, then a maximal facet S ∈ �Σ1⊕Σ2 (P1 ×Q P2) is of the
form S1 ×Q S2 for S1 ∈ �Σ1 (P1) and S2 ∈ �Σ2 (P2).

Proof. Since any standard support is a subset S ⊂ S1 ×Q S2, it suffices to show that S1 ×Q S2 is a
facet of �Σ1⊕Σ2 (P1 ×Q P2). Let [a1,b1] . . . [ak,bk] be the list of all points in S1 ×Q S2. Any monomial
xm with support in this set maps to monomials π1(m),π2(m) with support in S1 and S2 respectively,
this means that π1(m) and π2(m) define standard monomials, so xm must be standard as well. �

When (P1,Σ1), (P2,Σ2), and (Q ,Σ) are flag, a facet S ∈ �Σ1⊕Σ2 (P1 ×Q P2) corresponds to a
convex region in P1 ×Q P2. By Proposition 3.2 above, S is the fiber product polytope of its images
in P1 and P2 over a maximal facet of �Σ(Q ), a sub-polytope of Q with unique factorization. When
we restrict our attention to balanced polytopes, a fiber product (P1,Σ

2) ×(Q ,Σ2) (P2,Σ
2) where the

maps are coordinate projections, gives a flag pair (P1 ×Q P2,Σ
2 ⊕Σ2). By our discussion, the standard

regions of this term order are all fiber products of cubical sub-polytopes of P1 and P2 over cubical
sub-polytopes of Q , so they are all cubical. However, the term order Σ2 ⊕ Σ2 is double Σ2 over the
coordinates from Q

Σ2 ⊕ Σ2(V , x, W ) = Σ2(V ) + 2Σ2(x) + Σ2(W ). (9)

So this is not quite the Σ2 term order. An equivalence in the category P occurs when a polytope P
has two term orders with the same standard monomials, we will show that this occurs when we take
the fiber product of balanced polytopes.

Proposition 3.3. Let P1 ×Q P2 be a fiber product of balanced polytopes with π1 : P1 → Q and π2 : P2 → Q
induced by coordinate projections. Then the product term order Σ2 ⊕ Σ2 has the same standard monomials
as the term order given by Σ2 on the fiber product.

Proof. A monomial xn is standard with respect to Σ2 ⊕ Σ2 if and only if it is of the form
x(V 1,x1,W1)...(Vk,xk,Wk) where x(V 1,x1)...(Vk,xk) and y(x1,W1)...(xk,Wk) are standard for (P1,Σ

2) and
(P2,Σ

2), and are therefore balanced. This is the case if and only if the tuple (V 1, x1, W1) . . . (Vk,

xk, Wk) is balanced. �
In particular, a fiber product of balanced polytopes over maps which are coordinate projections

is a balanced polytope. We are interested in fiber products primarily because we can control their
generators and relations. We establish this by proving Propositions 1.20 and 1.21. These will be used
to lift the commutative algebra properties from the building blocks discussed in the last section to
PΓ (�r, L).

Proof of Proposition 1.20. The polytope (P1 ×Q P2,Σ1 ⊕ Σ2) is flag by Proposition 1.19, so it is tiled
by the convex hulls of the maximal facets of �Σ1⊕Σ2 (P1 ×1 P2). By Proposition 3.2 these are all fiber
products of normal polytopes over polytopes with unique factorization, and are therefore normal. �
Proof of Proposition 1.21. If x(a1,b1)...(ak,bk) − x(A1,B1)...(Ak,Bk) is in the ideal for the fiber product then
it can be converted to a relation in some maximal facet of �Σ1⊕Σ2 (P1 ×Q P2) by degree 2 relations,
so we may assume without loss of generality that xa1...ak = xA1...Ak and yb1...bk = yB1...Bk are rela-
tions among standard monomials in P1 and P2 respectively. Any relation among standard monomials
xa1...ak − xa′

1...a′
k can be lifted in some way to a relation x(a1,b1)...(ak,bk) − x(a′

1,bi1 )...(a′
k,bik

) in P1 ×Q P2 be-
cause Q has unique factorization. This way, (a1,b1) . . . (ak,bk) can be converted to (A1, B1) . . . (Ak, Bk)

by relations among standard monomials of P1 and P2. �
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4. Fiber products and quadratic square-free Gröbner bases

The class of polytopes with flag term orders has a distinguished subclass given by those total term
orders with a quadratic square-free Gröbner basis. The “quadratic” part of this distinction is equivalent
to the condition that any monomial with standard degree 2 divisors must itself be standard, and
“square-free” implies that the powers of any lattice point must be standard. The standard regions Si of
these polytopes are unit simplices. We now know that fiber products in this subcategory yield normal
polytopes with a flag term order, however there is not enough information in the fiber product order
Σ1 ⊕ Σ2 to yield a total term order, and a Gröbner basis. The issue is that for standard monomials
defined by �v, �x, �w in P1, Q and P2 respectively, there could be many ways to form a fiber product
monomial,

(v1, x1, w1) . . . (vk, xk, wk). (10)

If two elements wi and w j ∈ P1 map to the same x j ∈ Q , then we could plausibly permute these
entries to obtain distinct, new standard monomials with respect to Σ1 ⊕Σ2. The standard monomials
in the fiber product are exactly those obtained by fixing v1, . . . , vn in some order and permuting the
w1, . . . , wk while respecting the shared x1, . . . , xk , so we must establish an order on these sets. Each
standard region in P1 ×P P2 is a fiber product of simplices with well-ordered lattice points over a
simplex with well-ordered lattice points, so to prove Proposition 1.23, we can reduce to the following
proposition.

Proposition 4.1. Let P1 , P and P2 be unit simplices each with a fixed well-ordering Σ1,Σ,Σ2 on their lattice
points. Then P1 ×P P2 has a quadratic square-free Gröbner basis defined by the orderings Σ1 , Σ , and Σ2

Proof. This follows from a modification of Corollary 2.11 in [Su]. To define the new term order, we
use the � term order. We have (V 1, W1) < (V 2, W2) if V 1 < V 2 or V 1 = V 2 and W1 < W2, and

[(
V 1

1 , W 1
1

) · · · (V 1
k , W 1

k

)]
>

[(
V 2

1 , W 2
1

) · · · (V 2
k , W 2

k

)]
(11)

if (V 1
i , W 1

i ) = (V 2
i , W 2

i ) for all i < 	 for some 	 and V 1
	 > V 2

	 or V 1
	 = V 2

	 with W 1
	 > W 2

	 , where
we’ve listed the terms of the monomials in decreasing order. Assume now that both monomials map
to the same lattice point, then the sets {V 1

i } and {V 2
i } are the same, as are {W 1

i } and {W 2
i }, so we

may assume without loss of generality that V 1
i = V 2

i . In this case, if W 1
	 > W 2

	 then W 1
m = W 2

	 for
some m > 	, so for the first monomial we can form the relation

(
V	, W 1

	

)(
Vm, W 1

m

) = (
V	, W 1

m

)(
Vm, W 1

	

)
. (12)

Performing this exchange must yield a lower monomial. This implies that an arbitrary monomial
can be taken to the associated standard monomial with degree 2 weight-lowering relations. Now
consider a monomial of the form x(V ,W ),...,(V ,W ) , and let x(V 1,W1),...,(Vk,Wk) be another standard mono-
mial with the same Σ1 ⊕Σ2 weight. This implies that (V 1, . . . , Vk) = (V , . . . , V ) and (W1, . . . , Wk) =
(W , . . . , W ), since both Σ1 and Σ2 define total term orders. �

We remark that the argument above can be adapted to show that if (P1,Σ1) and (P2,Σ2) are
flag, then the so is P1 ×Q P2 with respect to the � term order.

5. The building blocks of PΓ (�r, L)

In this section we construct and study the building block polytopes, showing that these are all
balanced polytopes. Recall that we always take fiber product over the interval [0, L]. This polytope is
balanced, and the maximal facets of �Σ2 ([0, L]) are the unit length intervals, [k,k + 1].
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Fig. 7. The polytope P3(r, L).

The polytope P3(L) is dimension 3 and B2(L) is dimension 4, but the other building blocks have
dimension � 2. In the case of a balanced dimension 2 polytope P , every intersection of a translate of
the unit square with P must be a lattice polytope, so P is a convex union of squares and triangles.
In particular, all the facets of P are parallel to the lines y = 0, x = 0, y = x or y = −x, and conversely
any lattice polytope in R

2 with this property is balanced.

Proposition 5.1. Let P be a balanced polytope in R
2 , then I P has a quadratic, square-free Gröbner basis.

Proof. We define a term order on C[X P ] and leave it to the reader to verify that it is quadratic and
square-free. First order the elements by degree, then by Σ2, then by the Lexicographic ordering on
the square, where [1,1] > [1,0] > [0,1] > [0,0]. �

From this result we can deduce a corollary for dimension 2 balanced polytopes.

Theorem 5.2. Let P be a fiber product of a finite number of dimension 2 balanced polytopes over balanced
polytopes of dimension 2 or 1. Then I P has a quadratic square-free Gröbner Basis.

From now on we use the assumption that the parameters �r are adapted to the graph in question.
In this case, the condition that every trinode v ∈ Γ must have an even sum implies that every non-
loop and non-leaf edge must have an even weight. For a tree-like graph Γ , the disconnected graph Γ̂

has four kinds of components, a single loop with a pendant edge, and trinodes with 2,1, or 0 pendant
leaf edges. For a caterpillar graph Γ̂ the components are all loops with pendant edges, or trinodes
with 1 or 2 fixed edges. For a tree-like graph, the building blocks we must consider are exactly those
pictured in Figs. 10, 7, 8, and 9. For a caterpillar graph we also must use the polytope pictured in
Fig. 11.

The balanced polytope P3(L) corresponding to the weightings of an internal trinode has
dimension 3. It is the convex hull of (0,0,0), (L, L,0), (L,0, L), and (0, L, L). For L > 1, the
standard regions of this polytope with respect to Σ2 appear in [M1, Fig. 3]. For L = 1, this
polytope is a non-normal sub-polytope of the unit square, this is the reason for the L > 1
condition in Theorem 1.9. It was shown in [M1] that each of the standard regions of P3(L)

are normal, with quadratic generating relations, except for the region at the origin, the con-
vex hull of [0,0,0], [1,1,0], [1,0,1], [0,1,1], and [1,1,1]. This polytope has one cubic rela-
tion,
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Fig. 8. The polytope P3(r, s, L).

Fig. 9. The polytope P3(L).

Fig. 10. The polytope B(L).

[0,1,1][1,0,1][1,1,0] = [0,0,0][1,1,1][1,1,1], (13)

this is why Theorem 1.9 stipulates that relations are generating by quadrics and cubics instead of just
quadrics.

Next we analyze the polytope B2(L). A lattice point of this polytope is given by 4 non-negative
integers (2x, y1, y2,2z) which satisfy the triangle inequalities and the parity condition. The conditions
defining weightings force the quantities y1 + y2 and y1 − y2 are forced to be even integers. We begin
by subjecting this polytope to a change of coordinates
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Fig. 11. The polytope B2(L), projected into the plane, the fibers over the corners are all points, and the fiber over the center is
a square.

A = y1 − y2

2
, (14)

B = y1 + y2

2
. (15)

Under this transformation, B2(L) becomes the polytope on four numbers x, z, A, B subject to the
conditions, x, z, B � 0; −x,−z � A � x, z; x, z � B � 2L. The projection of B2(L) onto the A, B plane
produces a quadrilateral, shown in Fig. 11 with the fibers of the projection depicted above each
lattice point. The polytope B2(L) has Z/2 × Z/2 symmetry, which divides it into four isomorphic
quadrants. We represent these quadrants with interlacing diagrams on 4 numbers below. Arrows in
the diagrams point from smaller entries to larger entries, in particular the polytope corresponding
to an interlacing diagram with a single arrow a → b with entries bounded by L is the simplex with
vertices [00], [0L], [LL] in R

2 (see Fig. 12).
Every entry at the top of a diagram is less than or equal to L, and every element at the bottom is

greater than or equal to 0.

Proposition 5.3. The quadrant Q 1(L) is a balanced polytope.

Proof. We establish that every element in a Minkowski sum q ∈ Q 1(K L) has a balancing. Consider
the interlacing diagram in the top left of the above diagram. For K1 + K2 = K we form two new
elements, one in Q 1(k1L) and the other in Q 1(K2L) by multiplying q by K1

K (resp. K2
K ) and taking

ceiling (resp. floor). Since K1 and K2 were arbitrary, we can repeat this process until we obtain K
elements in Q 1(L). Note that this proves Q (L) and therefore B2(L) are normal polytopes.

Given two elements q1,q2 ∈ Q 1(L) obtained from q by this process, we can then form the balanc-
ing q′

1, q′
2 of q1 + q2 in Q 1(2L) in the same way. By Proposition 2.9, the resulting new factorization

q′
1,q′

2, . . . of q has Σ2 weight less than or equal to the Σ2 weight of the original factorization, with
equality occuring exactly when the entries of q1,q2 are balanced with respect to each other. This
implies that if a factorization of q is not balanced, we may lower its Σ2 weight with some pairwise
balancing, and after a finite number of these moves, we obtain a balanced factorization of q. �
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Fig. 12. Interlacing diagrams representing quadrants of B2(L).

Remark 5.4. The above proof can be adapted to any polytope defined by interlacing patterns. For
example, this style of proof can be used to establish that the Gel’fand–Tsetlin polytope GT(λ) defined
by a dominant SLn(C) weight λ is balanced.

Since B2(L) is composed of 4 isomorphic copies of Q 1(L), it follows that it is a balanced polytope
as well. We now introduce a term order on the lattice points of B2(L). For two lattice points, we
first order by degree, then we order by the Σ2 term order. We complete this to a total term order
as follows, [x, z, A, B] < [x′, z′, A′, B ′] iff B < B ′ , or B = B ′ , and z < z′ , or B = B ′, z = z′ , and x < x′ , or
B = B ′ , z = z′ , x = x′ , and z < z′ . This induces a monomial order on polynomial ring C[XB2(L)], which
surjects onto the semigroup algebra C[B2(L)].

Proposition 5.5. The term order defined above induces a quadratic square-free Gröbner basis on the binomial
ideal I B2(L) ⊂ C[XB2(L)].

Proof. We sketch the proof. First, by design, any standard region of the above term order will be a
sub-set of a standard region of the Σ2 ordering. Note that we have shown that the standard regions
of this term order are the intersections of B2(L) with some integer translate v + C4 of the unit cube.
These are all isomorphic to polytopes with entries between 0 and 1, subject to the inequalities defined
by some sub-interlacing diagram of the defining diagram of Q 1(1). A selection of these are depicted
in Fig. 13.

First we treat the polytope Q (1). The semigroup defined by this polytope is generated by six
lattice points, [1100], [1000], [0100], [0000], [0010], [1101], subject to one relation, [1100][0000] =
[1000][0100]. It follows that Q (1) has a quadratic square-free Gröbner basis with respect to the
above term order.

We now consider the polytopes corresponding to proper subdiagrams. Any such diagram has no
loops, so it follows that the corresponding balanced piece of Q i(L) can be represented, as in Proposi-
tion 1.23, as a fiber product of simplices with term orders over unit intervals. Furthermore, this fiber
product can always be ordered in such a way that the resulting term order agrees with the one de-
fined above. As a consequence of Proposition 1.23, each balanced piece of each Q i(L) has a quadratic,
square-free Gröbner basis with respect to the term order, and it follows that I B2(L) has such a Gröbner
basis as well. �
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Fig. 13. Interlacing subdiagrams representing balanced regions of B2(L).

Fig. 14. Gluing building block polytopes with a fiber product.

Each of the above polytopes, P3(L), B(L), B2(L), P3(s, r, L) and P3(r, L) come with distinguished
maps to the interval [0, L] given by projecting onto the weight on a non-loop edge and dividing by 2.
The polytope P3(L) has three such projections, P3(r, L), and B2(L) have two, and B(L) and P3(s, r, L)

each have one. Each of these maps is given by forgetting coordinates off the edge, so they correspond
to a coordinate projection. If a monomial is balanced then it is easy to verify that any map which
forgets coordinates gives another balanced monomial. This implies that each of the edge projections
above are morphisms in P to ([0, L],Σ2). This allows us to prove Propositions 1.9 and 1.10.

Proof of Propositions 1.9, 1.10. In the first case, PΓ (�r, L) is a fiber product of balanced polytopes
satisfying the stated conditions, therefore PΓ (�r, L) inherits these conditions by Propositions 1.20, 1.21.

The second case is similar, only we use Proposition 1.23 to establish that PΓ (�r, L) inherits a
quadratic, square-free Gröbner basis. �
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