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We show that every sum of squares in the three-variable 
Laurent series field R( (x, y, z) ) is a sum of 4 squares, as was 
conjectured in a paper of Choi, Dai, Lam and Reznick in the 
1980’s. We obtain this result by proving that every sum of 
squares in a finite extension of R( (x, y) ) is a sum of 3 squares. 
It was already shown in Choi, Dai, Lam and Reznick’s paper 
that every sum of squares in R( (x, y) ) itself is a sum of two 
squares. We give a generalization of this result where R is re-
placed by an arbitrary real field. Our methods yield similar 
results about the u-invariant of fields of the same type.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a field, which we assume to have characteristic different from 2. The Pythago-
ras number p(K) of K is the smallest integer p ≥ 1 or +∞ such that every sum of (finitely 
many) squares in K can be written as a sum of at most p squares in K. (Of course, this 
definition is still valid in characteristic 2.) The u-invariant u(K) in the sense of Elman–
Lam [9] is the supremum of dimensions of anisotropic torsion quadratic forms over K. 
(A quadratic form over K is called torsion if its Witt equivalence class is a torsion element 
in the Witt group of quadratic forms over K.)
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In this paper we study these two invariants in the case of a Laurent series field 
k( (t1, . . . , tn) ) in n ≥ 2 variables over a field k. (The n = 1 case is classical.) Significant
results in this direction already appeared in an influential paper of Choi, Dai, Lam and 
Reznick [5]. We exploit some newly developed methods to prove generalizations of some 
results in that paper.

The first main result is the following:

Theorem 1.1. Let k be a field of characteristic different from 2. Then

p
(
k((x, y))

)
= sup

{
p
(
�(x)

) ∣∣ �/k a finite field extension
}

and

u
(
k((x, y))

)
= 2 sup

{
u
(
�(x)

) ∣∣ �/k a finite field extension
}
.

The proof will be completed in Section 3. The starting point is a result in [5] which 
compares the sums of squares in k( (x, y) ) and those in k( (y) )(x). As direct consequences, 
we get the inequalities

p
(
k((x, y))

)
≤ p

(
k((y))(x)

)
and u

(
k((x, y))

)
≤ u

(
k((y))(x)

)
.

The equalities

p
(
k((y))(x)

)
= sup

{
p
(
�(x)

) ∣∣ �/k a finite field extension
}

and

u
(
k((y))(x)

)
= 2 sup

{
p
(
�(x)

) ∣∣ �/k a finite field extension
}

have been obtained recently by Becher, Grimm and Van Geel [3], using a local–global 
principle proved by Colliot-Thélène, Parimala and Suresh [8] and some valuation-
theoretic arguments. These imply the “≤” part of Theorem 1.1. We will prove the 
inequalities in the other direction by showing that each �(x) is the residue field of a 
discrete valuation on k( (x, y) ) (see Lemma 2.2).

The statement on the Pythagoras number in Theorem 1.1 generalizes the equality 
p(R( (x, y) )) = 2 and the inequality p(Q( (x, y) )) ≤ 8, which were shown in [5, §5]. Our 
theorem implies that p(Q( (x, y) )) = 5, since p(Q(x)) = 5 and p(�(x)) ≤ 5 for every finite 
extension � of Q (cf. [23, Chap. 7, Thm. 1.9]). This seems to give the first example of a 
formally real field k for which p(k( (x, y) )) is not a power of 2.

The result on the u-invariant in Theorem 1.1 can be viewed as a generalization of the 
equality u(C( (x, y) )) = 4, first proved in [5, Thm. 5.16]. The u-invariant of two-variable 
Laurent series fields k( (x, y) ) and their finite extensions has been studied in a number 
of recent papers, e.g., [7,11,12,18,15]. Most of these results deal with the case where k
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is a nonreal field (i.e. a field in which −1 is a sum of squares), and our formula is new 
already in this case.

As another result on the Pythagoras number, we also give a generalization of the 
equality p(R( (x, y) )) = 2 in a different direction. Namely, we show in Theorem 5.1 that 
p(L) ≤ 3 for every finite extension L of R( (x, y) ). This is actually equivalent to the second 
equality in the following theorem.

Theorem 1.2. p(R( (x, y, z) )) = p(R( (x, y) )(z)) = 4.

Choi, Dai, Lam and Reznick conjectured that p(R( (t1, . . . , tn) )) ≤ 2n−1 for every n ≥ 3
(cf. [5, p. 80, §9, Problem 6]). The best upper bound until now (even for n = 3) is 2n, 
as shall be explained in Section 5.

Theorem 1.2 is proved using a local–global principle for isotropy of quadratic forms in 3 
or 4 variables over finite extensions of R( (x, y) ) (cf. [14]). We remark that the statement 
of Theorem 1.2 is still true when R is replaced by an iterated Laurent series field k =
R( (x1) ) · · · ( (xm) ) (Corollary 5.3).

At the end of the paper, we propose two conjectures which predict that the formulas 
in Theorem 1.1 have analogs for Laurent series fields in three or more variables.

2. Lower bounds using discrete valuations

Let K be a field of characteristic �= 2. A discrete valuation v of K is called nondyadic
if the residue field κ(v) of v has characteristic different from 2. It has been noticed by 
several authors that the invariants p(K) and u(K) can be bounded from below in terms 
of those of the residue fields κ(v), v ranging over the nondyadic discrete valuations of K.

Unless otherwise stated, we will follow standard notation for quadratic forms as used 
in [17]. As in [3], to avoid case distinction in some statements we set

p′(K) =
{
p(K) if K is (formally) real
s(K) + 1 if K is nonreal

where s(K) denotes the level of K (see e.g. [17, §IX.2]).

Proposition 2.1. (See [3, Propositions 4.3 and 5.2], [25, Proposition 5].) Let v be a 
nondyadic discrete valuation of a field K. Then

p′(K) ≥ p(K) ≥ p′
(
κ(v)

)
and u(K) ≥ 2.u

(
κ(v)

)
.

The equalities hold if v is henselian (meaning that the discrete valuation ring associated 
to v is henselian).

This proposition generalizes the classical facts
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p′
(
K((t))

)
= p

(
K((t))

)
= p′(K) and u

(
K((t))

)
= 2u(K)

(cf. [17, Examples XI.5.9 (6) and Remarks XI.6.28 (2)]).
Also, if L/K is a finite separable field extension, then there is a discrete valuation v

on the rational function field K(x) whose residue field κ(v) is isomorphic to L. So, by 
Proposition 2.1, p(K(x)) ≥ p′(L) and u(K(x)) ≥ 2u(L). The same is true when L/K
is a finite purely inseparable extension. For the Pythagoras number, this follows simply 
because L is nonreal in this case and thus

p′(L) = s(L) + 1 ≤ s(K) + 1 = s
(
K(x)

)
+ 1 = p

(
K(x)

)
.

The argument for the u-invariant was given in [3, Corollary 5.4]. Hence, we have

p
(
K(x)

)
≥ sup

{
p′(L)

∣∣ L/K a finite field extension
}

and

u
(
K(x)

)
≥ 2 sup

{
u(L)

∣∣ L/K a finite field extension
}
.

These inequalities were shown in [3] to be equalities when K is a Laurent series field in 
one variable; this fact will be used in the next section.

We shall now consider the fraction field K of a regular local ring with residue field k

and show that some special algebraic function fields over k arise as residue fields of 
discrete valuations on K.

Lemma 2.2. Let A be a regular local ring of Krull dimension n ≥ 2, and let K and k be 
respectively the fraction field and the residue field of A. Let �/k be a finite field extension.

Then the rational function field �(x1, . . . , xn−1) is the residue field of a discrete valu-
ation on K.

Proof. The proof makes use of the following fact: If L/F is a finite simple extension of 
fields, then the affine line A1

F has a closed point with residue field L. The same is true 
for any algebraic F -variety that contains A1

F as a (locally closed) subvariety.
Now we use a geometric construction to derive a discrete valuation on K with the 

given residue field. Let X = Spec(A) and let X ′ → X be the blowup of X at its closed 
point. The exceptional divisor E in X ′ is isomorphic to Pn−1

k (cf. [19, Thm. 8.1.19]). Let 
k = �0 ⊆ �1 ⊆ · · · ⊆ �r = � be a chain of subfields of � such that �i+1/�i is a simple 
extension for each i ∈ {0, 1, . . . , r − 1}.

Since n ≥ 2, there is a closed point Q ∈ E whose residue field κ(Q) is isomorphic 
to �1. In the blowup X ′′ of X ′ at the point Q, we have an exceptional divisor E′ which 
is isomorphic to Pn−1

�1
. We can choose a closed point on E′ whose residue field is �2 and 

blow up X ′′ at that point. Then we get a regular scheme X(3) which is birational to X
and which contains a divisor isomorphic to Pn−1

� . Repeating this procedure sufficiently 

2



Y. Hu / Journal of Algebra 426 (2015) 243–258 247
many times produces a regular scheme birational to X which contains Pn−1
� as a divisor. 

The generic point of this divisor defines a discrete valuation of K whose residue field is 
�(x1, . . . , xn−1). �

A variant of the above lemma has been noticed independently in [10, Lemma 4.1], 
where the blowup construction is expressed in a purely algebraic form. In geometric 
terms, the proof there is based on the observation that for any simple extension L/k, the 
blowup X ′ of Spec(A) (at its closed point) has a point with residue field L. Our proof 
of Lemma 2.2 uses this fact when L/k is an algebraic simple extension.

By carrying out blowups over polynomials rings over A, it is possible to get similar 
results for discrete valuations on rational function fields over K.

Applying Proposition 2.1 and Lemma 2.2 to the power series ring k[[t1, . . . , tn] ] and 
its fraction field k( (t1, . . . , tn) ), we obtain the following corollary.

Corollary 2.3. For any field k of characteristic different from 2 and any n ≥ 2, one has

p
(
k((t1, . . . , tn))

)
≥ sup

{
p
(
�(x1, . . . , xn−1)

) ∣∣ �/k a finite field extension
}

and

u
(
k((t1, . . . , tn))

)
≥ 2 sup

{
u
(
�(x1, . . . , xn−1)

) ∣∣ �/k a finite field extension
}
.

In [10, Theorem 3.3] the same lower bound for the Pythagoras number was shown for 
algebraic function fields of transcendence degree n over k in place of Laurent series fields 
in n variables.

3. Laurent series in two variables

The goal of this section is to prove Theorem 1.1 and to give some applications. The 
following analogous result will be used in the proof of our theorem.

Theorem 3.1. Let k be a field of characteristic different from 2.

(i) p(k(x)) ≤ p(k( (t) )(x)) and these two Pythagoras numbers are bounded by the same 
2-powers.

(ii) p(k( (t) )(x)) = sup{p(�(x)) | �/k a finite field extension}.
(iii) u(k( (t) )(x)) = 2 sup{u(�(x)) | �/k a finite field extension}.

Proof. (i) The first assertion is contained in [24, Prop. 5.17]. The proof for the second 
assertion already appeared in [5, Thm. 5.18]. (See also [3, Thm. 4.14].)

(ii) [3, Cor. 6.9].
(iii) [3, Thm. 6.6]. �
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It is conjectured in [3, Conjecture 4.16] that the inequality in assertion (i) of The-
orem 3.1 is actually an equality or, equivalently, that p(�(x)) ≤ p(k(x)) for all finite 
extensions �/k.

Given a field k, we will frequently write Rn for the ring of formal power series 
k[[t1, . . . , tn] ] in the variables t1, . . . , tn for each n ≥ 1. Fn will be a shorthand for 
k( (t1, . . . , tn) ), the corresponding field of Laurent series. By convention R0 = F0 = k.

We start the proof of Theorem 1.1 with the assertion on the Pythagoras number in 
the nonreal case. We can prove the following more general fact.

Proposition 3.2. If k is a nonreal field of characteristic different from 2, then for every 
n ≥ 1 one has

s(Fn) = s(k) and p(Fn) = s(k) + 1 = p
(
Fn(t)

)
.

Proof. Since p(K(t)) = s(K) +1 for any nonreal field K, we need only prove the equali-
ties s(Fn) = s(k) and p(Fn) = s(k) + 1. We use induction on n. The case n = 1, as 
discussed previously, is a special case of Proposition 2.1.

Assume n ≥ 2. The inclusions k ⊆ Fn ⊆ Fn−1( (tn) ) yield

s
(
Fn−1((tn))

)
≤ s(Fn) ≤ s(k).

But s(Fn−1( (tn) )) = s(Fn−1) = s(k) by the n = 1 case and the induction hypothesis. 
This proves s(Fn) = s(k).

For the Pythagoras number, we have p(Fn) ≤ s(Fn) + 1 = s(k) + 1. On the other 
hand, Lemma 2.2 together with Proposition 2.1 shows that

p(Fn) ≥ p′
(
k(x1, . . . , xn−1)

)
= s

(
k(x1, . . . , xn−1)

)
+ 1 = s(k) + 1.

Alternatively, one can prove the inequality p(Fn) ≥ s(k) + 1 by showing that tn cannot
be expressed as a sum of s(k) squares in the field Fn−1( (tn) ). �

For a nonreal field k, one has

p
(
k(x)

)
= s(k) + 1 ≥ s(�) + 1 = p

(
�(x)

)
for any finite extension �/k. So the result on the Pythagoras number in Theorem 1.1 in the 
nonreal case is covered by Proposition 3.2. The real case will be treated in Theorem 3.4.

Lemma 3.3. Let k be a field of characteristic different from 2. Consider the rings k[[t] ][x] ⊆
k[x][[t] ] ⊆ k[[x, t] ].

(i) Every f ∈ k[x][[t] ] (resp. f ∈ k[[x, t] ]) admits a factorization f = u2g, where u is a 
unit in k[x][[t] ] (resp. in k[[x, t] ]) and g ∈ k[[t] ][x].
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(ii) Suppose k is real. Then for every m ≥ 1, every sum of m squares in k[x][[t] ] (resp. 
in k[[x, t] ]) is of the form a2b, where a lies in k[x][[t] ] (resp. in k[[x, t] ]) and b is a sum 
of m squares in k[[t] ][x].

Proof. (i) In the ring k[x][[t] ] (resp. k[[x, t] ]) every unit is the product of a square and an 
element in k∗ ⊆ k[[t] ][x]. So it is enough to factorize f as f = ug with u a unit in k[x][[t] ]
(resp. k[[x, t] ]) and g ∈ k[[t] ][x]. We may assume t � f .

Then the statement for the ring k[[x, t] ] is classical (cf. [26, p. 145, Cor. 1]).
Let us consider the statement for the ring k[x][[t] ]. Write f =

∑
i≥0 fi(x)ti with fi ∈

k[x]. Applying a Weierstrass lemma as stated in [5, Lemma 5.3] to the rings A = k[x][[t] ], 
B = k[x] and the subspace C ⊆ B of polynomials of degree < d := deg(f0) together with 
p = f , we get an expression xd = qf + r, where q ∈ k[x][[t] ] and r ∈ k[[t] ][x] has degree 
< d in x. Considering this equation modulo t, we see that the constant term q0 ∈ k[x]
of q ∈ k[x][[t] ] is of degree 0 in x. Hence, q is a unit in k[x][[t] ] and we can take u = 1/q
and g = xd − r.

(ii) See [5, Thm. 5.20]. �
The Pythagoras number of a ring can be defined as in the case of a field (cf. [5, p. 45]). 

If A is an integral domain, we denote by Frac(A) its fraction field.
The following result strengthens [5, Cor. 5.21].

Theorem 3.4. Let k be a real field. Then the rings

k[[x, t]], k[x][[t]], k[[t]][x], k((x, t)), Frac
(
k[x][[t]]

)
and k((t))(x)

have the same Pythagoras number, which is equal to

sup
{
p
(
�(x)

) ∣∣ �/k a finite field extension
}
.

Proof. From Lemma 3.3 (ii) it follows that

p
(
k((x, t))

)
≤ p

(
k[[x, t]]

)
≤ p

(
k[x][[t]]

)
≤ p

(
k[[t]][x]

)
and

p
(
k((x, t))

)
≤ p

(
Frac

(
k[x][[t]]

))
≤ p

(
k((t))(x)

)
.

On the other hand, the proof of [5, Thm. 5.18] has actually shown the equality 
p(k[[t] ][x]) = p(k( (t) )(x)). So it suffices to show

p
(
k((x, t))

)
≥ sup

{
p
(
�(x)

) ∣∣ �/k a finite field extension
}

= p
(
k((t))(x)

)
.

But this follows by combining Theorem 3.1 (ii) and Corollary 2.3. �
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Remark 3.5. Recall that the earlier mentioned [3, Conjecture 4.16] would imply (equiv-
alently) that one can replace sup{p(�(x)) | �/k finite extension} by p(k(x)) in the 
statement of Theorem 3.4, i.e. that one would obtain the equality p(k( (x, y) )) = p(k(x)). 
We observe that this is indeed the case when k is either real closed (e.g. k = R) or a 
number field (i.e. finite extension of Q).

The equality sup{p(�(x)) | �/k finite extension} = p(k(x)) is trivially true when k is 
real closed. For k a nonreal number field it follows from Proposition 3.2, and the case 
where k is a real number field follows either from Theorem 3.1 (i) (when p(k(x)) = 4), 
or directly from the general result 4 ≤ p(�(x)) ≤ 5 for any real number field �, due to 
Pourchet and Hsia–Johnson (cf. [23, Chap. 7, Thm. 1.9]). In particular, we have

p
(
Q((x, y))

)
= 5.

For a field K of characteristic different from 2, we denote by (
∑

K2)∗ the multiplica-
tive group of nonzero sums of squares in K. This is the same as the group of totally 
positive elements in K∗ by [17, Thm. VIII.1.12], and coincides with K∗ if K is nonreal.

The author thanks K. Becher for helpful discussions on the following lemma, which 
should be well known to experts.

Lemma 3.6. 1 Let L/K be an extension of fields of characteristic different from 2 such 
that the natural homomorphism ϕ : K∗/K∗2 → L∗/L∗2 is surjective.

Then the natural homomorphism of Witt rings ψ : W (K) → W (L) is surjective.
If furthermore the restriction of ϕ to totally positive squares classes (

∑
K2)∗/K∗2 →

(
∑

L2)∗/L∗2 is surjective, then so is the restriction of ψ to the torsion parts of the 
fundamental ideals of Witt classes of even dimensional forms I(K)tors → I(L)tors.

Proof. The Witt group of a field is generated by one-dimensional forms, so the first asser-
tion follows immediately. For the second assertion, we use the fact that the torsion part 
of the fundamental ideal is generated as a group by two-dimensional forms of the shape 
α.〈1, −β〉 = 〈α, −αβ〉, where α is an arbitrary nonzero field element and β is a totally 
positive one. The latter fact is trivially true for nonreal fields as every two-dimensional 
form is of that shape, and it is shown in [21, Satz. 22] in the case of real fields. �

We can now prove the following theorem, which covers the result on the u-invariant 
in Theorem 1.1.

Theorem 3.7. For any field k of characteristic different from 2, one has

u
(
k((x, t))

)
= u

(
Frac

(
k[x][[t]]

))
= u

(
k((t))(x)

)
= 2. sup

{
u
(
�(x)

) ∣∣ �/k a finite extension
}
.

1 The present form of this lemma is kindly suggested by an anonymous referee.
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Proof. The last equality was proved in [3, Thm. 6.6].
We first show the inequalities u(k( (x, t) )) ≤ u(Frac(k[x][[t] ])) ≤ u(k( (t) )(x)). It is suffi-

cient to prove that the corresponding homomorphisms given by scalar extension

W
(
k((t))(x)

)
tors −→ W

(
Frac

(
k[x][[t]]

))
tors −→ W

(
k((x, t))

)
tors

are surjective. Note that all these fields are real if and only if k is real. In the nonreal 
case, the Witt groups are torsion groups (cf. [17, Corollary XI.2.3]), and in the real case, 
the torsion parts of the Witt groups coincide with the torsion parts of the fundamental 
ideals as can be easily seen from [17, Thm. VIII.3.2]. That the first homomorphism and 
the composition (and hence also the second homomorphism) are surjective follows from 
Lemma 3.6, as soon as we verified that the hypotheses on the natural maps of square 
classes are satisfied for the respective fields. The latter is done in Lemma 3.3.

Finally, we have

u
(
k((t))(x)

)
= 2. sup

{
u
(
�(x)

) ∣∣ �/k a finite extension
}
≤ u(k((x, t)))

by Corollary 2.3. This completes the proof. �
Remark 3.8. (1) If k is a nonreal field, the inequality u(k( (x, t) )) ≤ u(k( (t) )(x)) is implicitly 
contained in [5]. However, even in the nonreal case the first two equalities in Theorem 3.7
seem to have escaped earlier notice. Moreover, the relation u(k( (x, t) )) = u(k( (t) )(x)) has 
a mixed characteristic version: For a complete discrete valuation ring A, one has

u
(
Frac(A[[x]])

)
= u

(
Frac

(
A[x]

))
,

as can be shown analogously (using [3, Thm. 6.6] and an analog of Corollary 2.3).
(2) If us(k) denotes the strong u-invariant of k as defined in [25, Definition 2] or 

[3, §5], i.e.,

us(k) = 1
2 sup

{
u(L)

∣∣ L/k a finitely generated extension of transcendence degree 1
}
,

then Theorem 3.7 implies that u(k( (x, t) )) ≤ 4us(k). In the nonreal case, [12, Cor. 4.2]
gives a generalization of this inequality.

Let us close this section with some examples where our results, combined with some 
recent work of others, can give refinements of earlier results (especially those obtained 
in [5, §5]).

Example 3.9. Let k0 be a real closed field or a number field, and let k be a finitely 
generated extension of transcendence degree d ≥ 1 over k0. Then

sup
{
p
(
�(x)

) ∣∣ �/k a finite extension
}
≤

{
2d+1 if k0 is real closed,
d+2
2 if k0 is a number field.
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When k0 is real closed, the upper bound is due to Pfister (cf. [23, Chap. 7, Examp-
les 1.4 (4)]). When k is a number field, it was shown in [6, Thm. 4.1] assuming Milnor’s 
conjecture and another conjecture by Kato that have both been solved in [20] and [16]
respectively.

On the other hand, if k is real, one has (see e.g. [10])

p
(
k(x)

)
≥

{
d + 2 if k0 is real closed,
d + 3 if k0 is a number field.

(By [10, Prop. 2.2], there is a finite real extension k′0 of k0 such that k′0(x1, . . . , xd) arises 
as the residue field of a discrete valuation on k(x). In the number field case, this implies 
that p(k(x)) ≥ p(k′0(x)) + d − 1 ≥ d + 3.)

Therefore, for k real, one has
{
d + 2 ≤ p

(
k((x, y))

)
≤ 2d+1 if k0 is real closed,

d + 3 ≤ p
(
k((x, y))

)
≤ 2d+2 if k0 is a number field.

In some special cases, one can get a better lower bound. For example, if k =
Q(x1, . . . , xd), then p(k( (x, y) )) ≥ p(k(x)) ≥ d + p(Q(x)) = d + 5.

In the case where k0 is real closed, one has

2d+1 ≤ u(L) ≤ 2d+3 − 2d− 8

for every finitely generated extension L/k0 of transcendence degree d + 1. The upper 
bound was shown in [9, Thm. 4.11] if d = 1 and follows from [2, Thm. 3] if d ≥ 2. Thus, 
Theorem 3.7 (or Theorem 1.1) yields

2d+2 ≤ u
(
k((x, y))

)
≤ 2d+4 − 4d− 16.

In particular,

8 ≤ u
(
R(t)((x, y))

)
≤ 12.

The upper bound here is sharper than the upper bound one can get directly from 
[2, Thm. 3] (without using Theorem 3.7).

Example 3.10. This example gives a new class of fields k for which p(k( (x, y) )) = 4.
Let k0 be a real closed field. For each m ≥ 0, let km = k0( (x1) ) · · · ( (xm) ) be an iterated 

Laurent series field over k0. We will show in Corollary 5.3 that p(km( (t1, t2) )(x)) = 4 for 
every m. Combining Theorem 3.1 (i) and Theorem 3.4, we get p(km( (t1, t2) )( (x, y) )) = 4.

In particular,

p
(
R((x1)) · · · ((xm))((t1, t2))((x, y))

)
= 4, ∀m ≥ 0.
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4. Comparison results using Weierstrass preparation

In this section, we use Weierstrass-type theorems for power series in several variables 
to generalize some comparison results in the previous section.

Let k be a field and n ≥ 1 an integer. A power series f ∈ Rn = k[[t1, . . . , tn] ] is said to 
be regular in tn if f(0, . . . , 0, tn) �= 0 in k[[tn] ].

Lemma 4.1. Assume the field k has characteristic different from 2. Let f ∈ Rn be a power 
series regular in tn and let m be an integer such that 1 ≤ m ≤ s(k).

If f is a sum of m squares in Rn, then there is a factorization f = a2b, where a ∈ Rn

and b is a sum of m squares in Rn−1[tn].

Proof. The proof is similar to that of [5, Thm. 5.20].
Write f =

∑m
i=1 g

2
i with gi ∈ Rn. Let d be the tn-adic valuation of f(0, . . . , 0, tn) ∈

k[[tn] ]. If d = 0, then f is a unit in Rn and α := f(0, . . . , 0) is a nonzero element in k. 
In this case α−1f is a square in Rn, and clearly α =

∑m
i=1 gi(0, . . . , 0)2 is a sum of m

squares in Rn−1[tn]. So we may take b = α and a ∈ Rn a square root of α−1f .
Now assume d > 0, so that 0 =

∑m
i=1 gi(0, . . . , 0)2 in k. Since m ≤ s(k) by assumption, 

one has gi(0, . . . , 0) = 0 for every i. By [26, p. 139, Thm. 5], each gi can be written as 
gi = hif + ri, where hi ∈ Rn and ri ∈ Rn−1[tn] with degtn(ri) < d. Then the power 
series

u := 1 − 2
m∑
i=1

gihi + f
m∑
i=1

h2
i ,

is a unit and is a square in Rn since u(0, . . . , 0) = 1, and one has

∑
r2
i =

∑
(gi − hif)2 =

∑
g2
i − 2f

∑
gihi + f2

∑
h2
i = fu.

Now taking a ∈ Rn such that a2 = u−1 and b =
∑

r2
i finishes the proof. �

For a commutative ring A and an integer m ≥ 1, we denote by DA(m) the set of 
nonzero sums of m squares in A.

Proposition 4.2. Let k be a real field and m ≥ 1 an integer.
Then given finitely many elements f1, . . . , fr ∈ DRn

(m), there is an automorphism σ
of the ring Rn such that σ(fi) ∈ R2

n ·DRn−1[tn](m) for every 1 ≤ i ≤ r. If n ≤ 2, we may 
take σ to be the identity.

Proof. The case with n = 1 is left to the reader. If n = 2, this is part of Lemma 3.3. For 
general n, it suffices to apply [26, p. 147, Corollary] to get an automorphism σ such that 
all the σ(fi) are regular in tn. Then the result follows from Lemma 4.1. �
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In general, the automorphism σ in the above proposition may not preserve the subring 
Rn−1[tn].

Proposition 4.3. Assume k is of characteristic different from 2. For every torsion form 
φ over Fn = k( (t1, . . . , tn) ), there is an automorphism σ of Fn and a torsion form ψ over 
Fn−1(tn) such that σ∗[φ] = [ψ] in W (Fn), where

σ∗ : W (Fn) −→ W (Fn); 〈f1, . . . , fr〉 �−→
〈
σ(f1), . . . , σ(fr)

〉
denotes the automorphism of the Witt group W (Fn) induced by σ. If n ≤ 2, one can take 
σ to be the identity.

Proof. We may assume φ = 〈f1, . . . , fr〉, where all the coefficients fi lie in Rn.
First assume k is a nonreal field. By [26, p. 145, Cor. 1 and p. 147, Corollary], there 

is an automorphism σ of Rn such that for every i the power series σ(fi) admits a 
factorization σ(fi) = uigi, where ui is a unit in Rn and gi ∈ Rn−1[tn]. When n ≤ 2, one 
can take σ to be the identity. (If n = 2, one has fi = tri1 f ′

i for some ri ≥ 0 and f ′
i regular 

in t2.) Putting

λi := ui(0, . . . , 0) ∈ k∗ and hi := λigi,

we get a form ψ := 〈h1, . . . , hr〉 which is defined over Fn−1(tn) and isomorphic to

σ(φ) :=
〈
σ(f1) . . . , σ(fr)

〉
over Fn.

Now consider the case with k real. Then the form φ is Witt equivalent to ψ1⊥ · · · ⊥ψm

for some binary torsion forms ψj = cj .〈1, −dj〉 with cj , dj ∈ Rn. Each dj is a sum of 
squares in Fn, and we may assume it is already a sum of squares in Rn.

By Proposition 4.2, there is an automorphism σ of Rn, which we may take to be the 
identity if n ≤ 2, such that each of the σ(dj) is a sum of squares in Rn−1[tn] up to a 
square in Rn. We may and we will further assume that σ is chosen such that each σ(cj)
admits a factorization σ(cj) = ujej , where uj is a unit in Rn and ej ∈ Rn−1[tn]. (For 
n ≥ 3, it suffices to choose σ such that all the σ(dj) and σ(cj) are regular in tn.) Thus, 
there are elements d′j , c′j ∈ Rn−1[tn] such that d′j is a sum of squares in Rn−1[tn] and

d′jσ(dj)−1 ∈ R2
n, c′jσ(cj)−1 ∈ R2

n

for every j. Now the form

ψ := c′1.
〈
1,−d′1

〉
⊥ · · ·⊥c′m.

〈
1,−d′m

〉
is a torsion form over Fn−1(tn) with the desired property. �
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Corollary 4.4. Assume k is of characteristic different from 2. For every n ≥ 1, one has 
p(Fn) ≤ p(Fn−1(x)) and u(Fn) ≤ u(Fn−1(x)).

Proof. First consider the assertion about the Pythagoras number. If k is nonreal, 
then p(Fn) = p(Fn−1(x)) by Proposition 3.2. So we may assume k is real and m :=
p(Fn−1(x)) < ∞. We want to show that every sum of squares f in Fn is a sum of m
squares. By Proposition 4.2, there is an automorphism σ of Fn such that σ(f) ∈ DFn

(m). 
This implies f ∈ DFn

(m).
For the assertion about the u-invariant, let u = u(Fn−1(x)) ≤ ∞ and let φ be a 

torsion form over Fn. We need to show that the anisotropic part φan of φ has dimension 
at most u. Indeed, Proposition 4.3 provides an automorphism σ of the field Fn such that 
[σ(φ)] = σ∗[φ] = [ψ] ∈ W (Fn) for some torsion form ψ over Fn−1(tn). Hence,

dimφan = dim σ(φ)an ≤ dimψan ≤ u = u
(
Fn−1(tn)

)
,

completing the proof. �
5. Laurent series fields in three variables

Pfister proved that for any integer r ≥ 1, if F is a field of characteristic different from 2 
such that every (r + 1)-fold Pfister form over F (

√
−1) is hyperbolic, then p(F ) ≤ 2r

(cf. [23, Chap. 6, Thm. 3.3]). Combined with Milnor’s conjecture (proved in [20]), this 
shows that if the cohomological 2-dimension cd2(F (

√
−1)) of the field F (

√
−1) is at 

most r, then p(F ) ≤ 2r. For example, for F = R( (t1, . . . , tn) ), one has cd2(F (
√
−1)) ≤ n

by [1, XIX, Cor. 6.3]. Hence p(R( (t1, . . . , tn) )) ≤ 2n for all n ≥ 1. In particular, this 
argument yields p(R( (t1, t2, t3) )) ≤ 8.

Our goal here is to determine the precise value of p(R( (t1, t2, t3) )).

Theorem 5.1. Let k be a real field such that p(k(x, y)) ≤ 4 (e.g., k real closed). Then

p
(
k((t1, t2, t3))

)
= p

(
k((t1, t2))(x)

)
= 4

and 2 ≤ p(L) ≤ 3 for every finite extension L of k( (t1, t2) ).

Proof. In fact, one has p(K(x, y)) ≥ 4 for any real (but not necessarily real closed) 
field K. (It is classical that the Motzkin polynomial (cf. [23, Chap. 1, Example 2.4]) is 
not a sum of fewer than 4 squares in R(x, y). It is not difficult to see that the same is true 
if R is replaced with an arbitrary real closed field. Since any real field K is contained in 
a real closed field, the same result holds over K(x, y).) So the hypothesis p(k(x, y)) ≤ 4
is equivalent to p(k(x, y)) = 4.

We have thus p(k( (t1, t2, t3) )) ≥ p(k(x, y)) = 4 by Corollary 2.3. (As pointed out by 
Becher, one can also prove p(k( (t1, t2, t3) )) ≥ 4 by using the Motzkin polynomial.) In view 
of Corollary 4.4, the two equalities asserted in the theorem will follow from the inequality 
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p(k( (t1, t2) )(x)) ≤ 4. By [4, Thm. 3.5], which is an extended version of a theorem of Pfister 
(cf. [17, Examples XI.5.9 (3)]), this last condition is equivalent to each of the following 
two conditions:

(1) p(L) ≤ 3 for every finite extension L of k( (t1, t2) ).
(2) s(L) ≤ 2 for every finite nonreal extension L of k( (t1, t2) ).

It is easy to see that finite extensions of k( (t1, t2) ) have Pythagoras number at least 2. 
So it remains to prove that condition (2) is satisfied.

Fix a finite nonreal extension L/k( (t1, t2) ) and let R be the integral closure of k[[t1, t2] ]
in L. Call a discrete valuation w of L divisorial if there is a regular integral scheme 
X equipped with a proper birational morphism X → Spec(R) such that w is defined 
by a codimension 1 point of X. For such a discrete valuation w, the completion Lw is 
nonreal as L is, and the residue field κ(w) is (isomorphic to) either a finite extension of 
k(x) or the fraction field of a complete discrete valuation ring whose residue field � is a 
finite extension of k. (This fact is probably evident to algebraic geometers. A detailed 
explanation can be found in [13, Cor. 2.3.26].) In the former case, the hypothesis on 
k(x, y) = k(x)(y) implies that s(κ(w)) ≤ 2 (by Pfister’s theorem or [4, Thm. 3.5]). In 
the latter case, we have s(κ(w)) = s(�) ≤ 2 since p(k(x)) ≤ p(k(x, y)) ≤ 4. Hence, we 
have s(Lw) = s(κ(w)) ≤ 2 in any case.

It is proved in [14, Thm. 1.1] that the isotropy of quadratic forms of rank 3 or 4 over 
L satisfies the local–global principle with respect to the divisorial valuations of L. This 
implies immediately s(L) ≤ 2 as desired. �
Remark 5.2. (1) The hypothesis p(k(x, y)) ≤ 4 in Theorem 5.1 is satisfied if k is a 
hereditarily euclidean field (cf. [4, Cor. 4.6]).

(2) If a field k satisfies p(k(x, y)) ≤ 4, then so does any iterated Laurent series field 
k′ = k( (x1) ) · · · ( (xm) ). Indeed, we may assume k′ = k( (x1) ) by induction and we need 
only to show s(L) ≤ 2 for every finite nonreal extension L of k′(x). The argument for 
a similar statement given in our proof of Theorem 5.1 works verbatim, since we have a 
local–global principle for 3-dimensional quadratic forms over L (see e.g. [8, Thm. 3.1]).

Corollary 5.3. Let k0 be a real closed field and k = k0( (x1) ) · · · ( (xm) ) an iterated Laurent 
series field over k0.

Then we have

p
(
k((t1, t2, t3))

)
= p

(
k((t1, t2))(x)

)
= 4

and 2 ≤ p(L) ≤ 3 for every finite extension L of k( (t1, t2) ).

Proof. Immediate from Theorem 5.1 and Remark 5.2 (2). �
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Note that for the field k in the above corollary, Pfister’s method (mentioned at the 
beginning of this section) can only give the upper bound 2m+3.

Now consider the field Fn = k( (t1, . . . , tn) ) for general n. For any n ≥ 2, we have shown 
(in Corollaries 2.3 and 4.4)

p
(
Fn−1(x)

)
≥ p(Fn) ≥ sup

{
p
(
�(x1, . . . , xn−1)

) ∣∣ �/k a finite field extension
}
.

This motivates the following:

Conjecture 5.4. For every integer n ≥ 2 and every field k of characteristic different 
from 2, one has

p
(
Fn−1(x)

)
= p(Fn) = sup

{
p
(
�(x1, . . . , xn−1)

) ∣∣ �/k a finite field extension
}
.

By Proposition 3.2, the conjecture holds for arbitrary n if k is nonreal and everything 
is equal to p(k(x1, . . . , xn−1)) in this case. The conjecture also holds for general k and 
n = 2 due to Theorem 3.1 (ii). In addition, we have shown that the conjecture holds for 
n = 3 whenever k is real and such that p(k(x, y)) ≤ 4.

Moreover, if [3, Conjecture 4.15] were to hold for all real fields, then we could re-
place sup{p(�(x1, . . . .xn−1))} by p(k(x1, . . . , xn−1)) in the conjecture without making it 
weaker.

An immediate consequence of the conjecture is the inequality p(R( (t1, . . . , tn) )) ≤ 2n−1

for n ≥ 4, which was conjectured in [5].
For the u-invariant, similar considerations lead us to propose the following conjecture.

Conjecture 5.5. For every integer n ≥ 2 and every field k of characteristic different 
from 2, one has

u
(
Fn−1(x)

)
= u(Fn) = 2 sup

{
u
(
�(x1, . . . , xn−1)

) ∣∣ �/k a finite field extension
}
.

For a real closed field k and n ≥ 2, if the equality u(k(x1, . . . , xn−1)) = 2n−1 holds as 
conjectured by Pfister [22], then the above conjecture implies u(k( (t1, . . . , tn) )) = 2n.
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