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Introduction

This article predates the recent preprints [6] and [7] of the first author joint with
W. Goldring on the existence of Hasse invariants. See below for a comparative description
of these papers.

Shimura varieties and G-zips

Let (G, X) be a Shimura datum of Hodge-type and let Sk be the Kisin—Vasiu integral
model of the associated Shimura variety Shi (G, X) at a level K, hyperspecial at p.
Denote by Sk the special fiber of Sk and write G for the special fiber of a reductive
Zp-model of Gq, -
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Recall that Zhang [22] gives a smooth morphism ¢ : Sk — G-Zip*, where G-Zip*
is the stack of G-zips, defined by Pink—Wedhorn—Ziegler in [18] (see also the precursor
paper [16]) and p pertains to the cocharacter attached to the Shimura datum. The
fibers of ¢ are termed Ekedahl-Oort strata of Sk. In this paper we study the open zip
stratum U,, C G-Zip* and its corresponding generic Ekedahl-Oort stratum Sk, C Sk.
It coincides with the p-ordinary Newton stratum [21].

Attached to the pair (G, ), there is a zip datum Z := (G, P, L, Q, M, @) (§1.4), where
L is the centralizer of u in G and P corresponds to the stabilizer of the Hodge filtration.
One attaches to each A € X*(L) a line bundle ¥ () on the stack G-Zip*. Its pull-back
¢*(¥ (X)) coincides with the automorphic line bundle ¥ (\) naturally attached to A. For
example, there exists A\, € X*(L) such that ¥k (\,) is the Hodge line bundle w on Sk.

Hasse invariants

In this paper, we say that a section h € H°(G-Zip#, ¥ ()\)) is a Hasse invariant if its
non-vanishing locus is exactly the p-ordinary stratum U,. There is an explicit integer
N, (Definition 3.2.4) satisfying the following:

Theorem 1 (Theorem 5.1.4). If X € X*(L) is Z-ample, there exists a Hasse invariant
h € H(G-Zip", ¥ (N,\)).

For the definition of Z-ample, see Definition 5.1.1. The character )\, defining the
Hodge line bundle is Z-ample. In [6, Th. 3.2.3], a similar result for all strata is proved
using a group-theoretical counterpart of a flag space of Ekedahl-Van der Geer. The
methods used here to prove Theorem 1 differ in many aspects from [6]; they are based
on the study of Ekedahl-Oort strata in the case of a Weil restriction, which we explain
below.

Furthermore, we want to point out that we do not assume in Theorem 1 that A
satisfies the condition “orbitally p-close” of [6, Th. 3.2.3]. Hence Theorem 1 gives a
stronger result than [6, Th. 3.2.3] for the open zip stratum. Another improvement is the
fact that we determine explicitly the integer N, in Theorem 1, whereas [6, Th. 3.2.3]
gives an undetermined integer. This is the smallest integer satisfying the existence of a
Hasse invariant.

In particular, we obtain the following corollary (Corollary 5.6.1):

Corollary 1. There exists a section hx € H°(Sk,w™N#) whose non-vanishing locus is the
p-ordinary locus of Sk .

Prior to the present article, Hasse invariants were constructed by a number of au-
thors: E. Goren established the existence of partial Hasse invariants for the case of
Hilbert-Blumenthal Shimura varieties [9]. In the split unitary case of signature (n—1,1),
Tto constructed Hasse invariants for all Ekedahl-Oort strata [11]. Finally, Goldring and
Nicole constructed a p-ordinary Hasse invariant for unitary Shimura varieties [8].



100 J.-S. Koskivirta, T. Wedhorn / Journal of Algebra 502 (2018) 98-119

After the present paper appeared on the ArXiv, related results were proved: First,
[6] extends Corollary 1 to all Ekedahl-Oort strata. For PEL-cases of type A and C,
Boxer constructed Hasse invariants on all strata in [4], using different methods. More
recently, [10] constructs p-ordinary Hasse invariants in the (unramified) unitary case
using crystalline cohomology (a method similar to the one used in [8]), and [2] extends
Hernandez’ result to the ramified case.

Let ST denote the minimal compactification of Sk and continue to denote by w
the extension of the Hodge bundle on S, By a formal argument, the section hx of
Corollary 1 extends uniquely to a section of w™r over SWi. Define the p-ordinary locus
S?Z as the non-vanishing locus of this extension. We have the following consequence:

min

Corollary 2. The p-ordinary locus SEY, is affine.
Weil restriction

Our proof of Theorem 1 uses a detailed study of the case when G' = Resy, /r,(G1)
for some integer r > 1 and a reductive group G over F, . Let k be an algebraic closure
of F,, and identify G, with G x ... x G, for G; = 0"~ 1(G;), where o € Gal(k/F,) is the
geometric Frobenius element. Let 4 € X*(G) be a cocharacter and Z = (G, P, L, Q, M, )
its associated zip datum (§1.4). For each 1 < j < r, we define a zip datum Z;, =
(Gj, P}, L%, Q% M, ") (§4.2). Our main technical result, which is of independent interest
for the study of zip strata, is the following.

Theorem 2 (Theorem 4.3.1). The map C +— C N G; defines a bijection between zip
strata for Z in G intersecting G; and zip strata for Z; in Gj;. Furthermore one has
codimg(C) = codimg, (C' N Gj) for all such C.

Moreover, there is a relation between Hasse invariants for G and Hasse invariants for
each factor (Proposition 5.4.1).

We now give an overview of the paper. In §1, we recall basic facts about the stack
G-ZipZ. Then, we prove some general results on equivariant Picard groups in §2. The
next section is dedicated to results about the open zip stratum. In particular we deter-
mine the stabilizer of 1, used to define the integer INV,,. In §4, we study the case of a Weil
restriction and prove Theorem 2 above. Finally, we prove Theorem 1 and Corollary 1 in
the last section, combining the results of the previous sections. We also compute N, for
PEL-cases.
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1. G-zips
1.1. Stack of G-zips

Let p be a prime number, and ¢ a power of p. We fix an algebraic closure k of F,.
In this paper we define a zip datum over F, to be a tuple Z = (G, P,L,Q, M, ¢) where
G is a connected reductive group over Fg, ¢ : G — G is the relative g-power Frobenius
homomorphism, P,Q C G are parabolic subgroups of Gy, L C P and M C @ are Levi
subgroups of P and @ respectively. We suppose that o(L) = M, where o( ) denotes
pullback by g-power absolute Frobenius morphism. The zip group F is defined by

E:={(a,y) € P x Q@) =7} (LL11)

where T € L and § € M are the Levi components of x and y. We let G x G act on G via
(a,b) - g := agb~! and we let E act on G by restricting this action. The stack of G-zips
is the quotient stack [17]:

G-zip® ~ [E\G]. (1.1.2)
1.2. Frame

A frame for Z is a triple (B, T, z) where (B, T) is a Borel pair in Gy and z € G(k)
satisfying:

(i) BCQ,*BCP,
(i) o*BNL)y=BNM, p(*T)=T.

In particular, these conditions imply *7T" C L. Frames always exist by [18, 3.7]. For a
frame (B, T, z), we use the following notation.

(1) ® C X*(T) denotes the set of T-roots of G.

(2) &4 C D is the set of positive roots with respect to B, i.e. such that U, C B.

(3) A C D, is the set of positive simple roots.

(4) Denote by W := W (Gy,T) the Weyl group of G. For a € ®, let s, € W be the
corresponding reflection. Then (W, {ss}taca) is a Coxeter group and we denote by
£: W — N the length function.

(5) For a subset K C A, let Wi C W be the subgroup generated by {s,, o € K}. Let
wo € W be the longest element in W and wg, i the longest element in Wik

(6) If R C G is a parabolic subgroup containing B and D is the unique Levi subgroup

of R containing T, then the type of R (or of D) is the unique subset K C A such

that W (D, T) = Wk. The type of an arbitrary parabolic R is the type of its unique

conjugate containing B. Let I C A (resp. J C A) be the type of P (resp. Q).
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(7) For K C A, let W (resp. W) be the set of elements w € W which are of minimal
length in the coset Wxw (resp. wWiy).

We say that (B,T,z) is an F-frame if B, T are defined over F,. In this case one has
z € Ng(T), so z gives rise to an element z € W.

1.8. E-orbits

For w € W we choose a representative w € Ng(T), such that (wjwse) = Wyt
whenever ¢(wyws) = £(wy) + £(ws) (this is possible by choosing a Chevalley system, see
[1, XXIII, §6]). We often write simply w instead of . For h € G(k), let Oz(h) be the
E-orbit of h in G. By [18, Th. 7.5], there is a bijection:

W — {E-orbits in G}, w — Gy = O(z1b). (1.3.1)

Furthermore, for all w € W, one has dim(G,,) = ¢(w) + dim(P). Endow the locally
closed subset G,, with the reduced structure, and define the corresponding zip stratum
of G-zip? by Z, = [E\G]. We will denote by Uz C G-Zip® the unique open zip
stratum corresponding to wg jwo, the longest element in W. When Z = Z,, for some
p € X*(G), we write Uy, :=Usz,,.

1.4. Cocharacters

A cocharacter p : Gy, — Gy, defines a pair of opposite parabolics Py (p) such that
Py (1) N P_(u) = L) is the centralizer of u. The parabolic Py (i) consists of elements
g € G such that the limit

: -1

lim pu(t)gpu(t) (1.4.1)
exists, i.e. such that the map G, x — G, t — u(t)gu(t)~" extends to a morphism of
varieties Aj — Gj. The unipotent radical of Py (u) is the set of such elements g for
which this limit is 1 € G(k).

Define P := P_(u), Q@ := o (Py(n)), L := L(u) and M := o(L(u)). The tuple
Z,:=(G,P,L,Q, M, ) is a zip datum attached to the cocharacter p. In the following we
consider only G-zips arising in this way. We write simply G-Zip* for G-ZipZ». Replacing
1 by a conjugate cocharacter does not change the isomorphism class of G-Zip*. Hence
the following remark shows that it is harmless to assume that Z admits an IF,-frame.

Remark 1.4.1. Let i : Gy, 1, — Gy, be a cocharacter and 2, := (G, P,L,Q, M, ¢) the zip
datum attached to pu.

(1) There exists a conjugate cocharacter ' := ad(g)op (for g € G) such that Z,,, admits
an F,-frame.
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(2) Assume (B,T) is a Borel pair defined over Fy such that B C Q. Then (B, T, wowo,r)
is an F,-frame.

Let G, G2 be connected F,-reductive groups and p1 € X, (G1), p2 € X..(G2) cochar-
acters. Let f : G — G2 be an injective homomorphism defined over [Fj,, such that
2 = fr o pu1. Then f induces naturally a morphism of stacks

f#:Gy-Zip" — Go-ZipH=. (1.4.2)

For i = 1,2, denote by P;,Q; the parabolic subgroups of G; attached to ;. Using
(1.4.1), it is clear that f(0O;) € Oz for O = P,L,Q, M and also f(R,(P1)) C R,(P2),
F(R.(Q1)) C Ru(Q2). Tt follows easily that P = f~1(P), Q1 = f~1(Q2).

2. Picard groups
2.1. Equivariant Picard group

In this section, G denotes an arbitrary connected linear algebraic group over an al-
gebraically closed field k. A variety is an integral k-scheme of finite type. A G-scheme
is a k-scheme endowed with a G-action a : G x X — X. Let £ be a line bundle on a
G-scheme X. Define the projections pas: G x G x X — G x X, (g,h,z) — (h,z) and
p2: Gx X = X, (g9,2) — . Finally, write ug for the multiplication map G x G — G.

Definition 2.1.1. A G-linearization of .# is an isomorphism ¢ : a*(.Z) — p5(%) satisfying
the cocycle condition

P23() © (ida x a)™(¢) = (ug x idx)*(¢)-

We denote by Pic%(X) the group of isomorphism classes of G-linearized line bundles
on X. Forgetting the G-linearization induces a natural map Pic%(X) — Pic(X), whose
image is the subgroup Picg(X) C Pic(X) of G-linearizable line bundles. The group
Pic®(X) can be identified with the Picard group of the quotient stack [G\X]. Then
PicG(X) — Pic(X) is the homomorphism given by pull back by the projection X —
[G\X].

2.2. The general result

For any k-scheme X, define £(X) := O(X)* /k*. If X is an integral k-scheme of finite
type, £(X) is a finitely generated free abelian group [13, §1.3]. If G is an algebraic group,
the natural map X*(G) — &£(G) is an isomorphism, by [13, §1.3].

Denote by HL,(G,O(X)*) C HY(G,0(X)*) the subgroup of classes of alge-
braic cocycles, i.e. cocycle maps G(k) — O(X)* induced by an algebraic morphism
Gx X — Gy,
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Theorem 2.2.1. Let G be a smooth algebraic group, and X an irreducible G-variety. There
are eract sequences:

Gm(X)¢

0— %%

= E(X)9 = X*(GQ) = Hyjy(G,Gn(X)) = H' (m0(G)(k), E(X))

0= Hy,(G, Gy (X)) = Pic®(X) — Pic(X)

If X is normal and G connected, the second eract sequence has an extension by a map
Pic(X) — Pic(G).

Proof. This is [13, Prop. 2.3, Lem. 2.2 in characteristic 0. The same proof applies to
arbitrary characteristic. O

2.8. Some consequences

Corollary 2.3.1. Let G be a smooth connected algebraic group X a normal irreducible
G-variety. There is an exact sequence of abelian groups

1= kX = (0(X)*)¢ = £(X) = X*(G) = PicY(X) — Pic(X) — Pic(G)
Proof. As G is connected, it acts trivially on the discrete group £(X). O

Corollary 2.3.2. Let G be a smooth connected algebraic group and H a smooth subgroup
of G. There is an exact sequence of abelian groups

0—-&(G/H)— X*"(G) » X*(H) — Pic(G/H) — Pic(Q).
Proof. Apply Theorem 2.2.1 for X = G and G = H. Note that H acts trivially on
E(G) = X*(G). Tt follows that H'(mo(H),E(G)) = Hom(mo(H),E(G)) = 0 because

7o(H) is finite and £(G) is torsion-free. O

Corollary 2.3.3. Let G be a connected linear algebraic F,-group. There is an exact se-
quence

0 — X*(G) - X*(G) - Hom(G(F,), k™) — Pic(G)
where the first map is x — o - X — X-

Proof. Apply Corollary 2.3.2 for H := G(F,) and note that the Lang—Steinberg map
G — G, x — p(r)r~! induces an isomorphism of varieties G/H ~ G. 0O
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3. The open orbit
3.1. Intersection of parabolic subgroups

Let k be an algebraically closed field and G a reductive group over k. Recall the
following result:

Proposition 3.1.1. Let P and Q be two parabolic subgroups in G with unipotent radicals
U and V, respectively. Let T C PN Q be a mazximal torus and let L C P and M C Q
denote the Levi subgroups containing T .

(1) The subgroups PNQ, LNM, LNV, MNU, UNV are smooth and connected.

(2) The group (PN Q).U is a parabolic subgroup of G contained in P, with Levi sub-
groups LN M.

(3) Any element x € PNQ can be written uniquely as a product x = abed, witha € LNM,
beLNV,ceMnU,deUNV.

Proof. The smoothness of P N Q@ follows from [1, XXVI, Lem. 4.1.1]. This implies the
smoothness of the other subgroups. For the rest, see [5, Prop. 2.1]. O

The last statement means that P N Q is the product of the varieties LN M, LNV,
MNU,UNYV. In particular:

Corollary 3.1.2. Retain the notation of Proposition 3.1.1. fUNV = M NU = {1}, then
PNQCL.

For a parabolic subgroup P and a Levi subgroup L C P, denote by 6 : P — L the
natural projection modulo the unipotent radical of P.

Corollary 3.1.3. Retain the notation of Proposition 3.1.1.

(1) For allz € PNQ, one has 0F (z) e LN Q and@ﬁ(x) e PNM.

(2) For allz € PNQ, one has 95(9%(96)) = 9163[(01;(96)) eLNM.

(3) Assume T C B C PN Q for some Borel B. Then PN Q is a parabolic with Levi
LN M and for all x € PN Q, one has 95(9]%(9:)) = 9%(95(33)) = GILDQA%(:E)

(4) Assume G is defined over Fy and let ¢ : G — G the q-th power Frobenius. Then
o (07 (@) = 078 (o().

Proof. Using the notation of Proposition 3.1.1(3), write = abed € PNQ. Then 6F (z) =
ab € LNQ and similarly 9?/[(:5) = ac € PNM which shows (1). This implies % (91?4(:6)) =
a= HAQ/[ (6F (x)) and hence (2). The first part of (3) is Proposition 3.1.1(2). For the second
part, write = 0F (x)u with u € R,(P) € R.,(PNQ). Now 6F (z) = 6%, (67 (x)) v with
v € R,(Q) C Ry(PNQ). The result follows. The last assertion is clear. O
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3.2. Stabilizer

We fix a cocharacter p : Gy, — Gk and we assume that Z, admits an Fg-frame
(B,T, z). By Remark 1.4.1(2), we can take z := wowp, . Let B_ be the unique Borel
subgroup such that BN B_ = T. Note that B_ C P. The maximal element of /W is
n = wo,jwo = 2z~ 1. By (1.3.1), the unique open E-orbit in G is G, = E - (2) = E - 1.

Since dim(E) = dim(G), the stabilizer Stabg (1) C E is a finite group scheme (usually
not smooth), that we now determine. We denote by S,eq its underlying reduced subgroup
scheme. By definition, one has

Stabg(l) = {(z,y) € E, x = y}. (3.2.1)

The first projection F — P identifies Stabg (1) with a subgroup S C P N Q. Define:

Pot:mUiP , Qo:ZHUiQ , LoizﬂUiL.

i€Z €L 1€Z

Since B C Qo and B_ C Py and (B,T) is defined over F,, we see that Py and Qg are
opposite parabolic F,-subgroups such that Py N Qo = Lg. The type of Py (resp. Qo) is

N; o'l (resp. ), 0%J).
Lemma 3.2.1.

(1) One has QoN P C L.
(2) One has S C QoN L.
(3) One has Syea = SN Lo = Lo(F,) (considered as a finite constant group scheme).

Proof. Assertion (1) follows from Corollary 3.1.2, because LoNR,(P) € LNR,(P) = {1}
and Ru(Qo) N Ru(P) € Q1 Ru(P) = {1},

We now prove (2). Let z € S be an arbitrary element. By definition of E, one has
o(0F (z)) = 09 (z). Since z € PN Q, one has 67 (z) € Q by Corollary 3.1.3. Hence
9%(1‘) € 0(Q) and we deduce x € o(Q) because R,(Q) C R,(B) C o(Q). Now we can
apply the same argument to o(Q) to show = € 02(Q). Continuing this process, we get
x € Qp. Since S C P, we also have S C L by (1). This shows (2).

To prove (3), we show first Syeqa C Lo. It suffices to show S(k) C Lo(k). Let € S(k).
Again ¢(0F (z)) = 09 (z), so 09 (z) € P by Corollary 3.1.3. We deduce that 0% (z) €
o~ }(P) and then x € 0~1(P). Repeating the argument, we get z € P,. Since S C Qo
by (2), we conclude Sieq C Lo. For & € Lo, * € Speq if and only if p(z) = z, so
Sred = Lo(F,). Since the Lang-Steinberg map Lo — Lo, z + z~'p(x) is étale, it follows
that the algebraic group SN Ly = {x € Ly, ¢(x) = x} is smooth, equal to the constant
group Ly(F,), hence SN Ly = Sreq = Lo(F,). O
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Denote by S° C S is the identity component of S. Since S is a finite group-scheme
over a perfect field, S ~ S° X S;eq and in particular

X*(S) = X*(Spea) x X*(S°). (3.2.2)
Lemma 3.2.2.
(1) Ifz €8, then 67°(x) € Sred.
(2) One has S° C Ry (Qo) N L.
(3) One has X*(S5°) =0, in particular X*(S) = X*(Sea) = Hom(Lg(Fy), k*).
Proof. We prove first (1). Let # € S be an element. One has p(0F (z)) = ]?/[(x)

definition and = € Qo N L by Lemma 3.2.1(2). Hence 0 (z) = z and ¢(z) = HAQ/[( )
Using Corollary 3.1.3, we deduce

(070 () = 072 (p(2)) = 072 (05 (2)) = 05 (65 (2)) = 027 (x)
It follows that 0%’ (x) € Lo(Fg) = Sred, which proves (1). We obtain a group homomor-

phism H%’ : S — Sieq, which is necessarily trivial on S°, hence S° C Ker(ﬁg‘:) = R.(Qo),
which proves (2). Finally, (3) is a direct consequence of (2). O

Define a group homomorphism ¢: X*(Lo) — X*(Lo), x — x — x © ®. It is clear that
¢ is injective.

Corollary 3.2.3. Assume Pic(Lg) = 0 (e.g., if the derived group of G is simply connected).
Then one has

(1) Coker(¢) = X*(9).
(2) The order of X*(S) is |det(¢)].

Proof. Assertion (1) follows from Corollary 2.3.3 and (2) is an immediate conse-
quence. 0O

Definition 3.2.4. We define the integer N, as the exponent of the finite group X*(S) =
Hom(Lo(Fy), k™).

Corollary 3.2.5. Assume G is split over F, and that the derived group of G is simply
connected. Then N, = q— 1.

Proof. Since G is F-split, one has ( =1 — g, so the result follows. O
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3.8. Line bundles on G-Zip*

The first projection £ — P induces an identification X*(F) = X*(P) = X*(L).
For a character A € X*(L), let ¥ ()\) be the line bundle on G-Zip? ~ [E\G] attached
to A via X*(E) — Pic”(G). A global section s € H°(G-ZipZ, ¥ ()\)) is a regular map
s: Gy — A} satisfying the condition

s(e-g) = Ae)s(g), Vge G, e€E. (3.3.1)

Recall that Uz denotes the unique open zip stratum in G-ZipZ. Similarly, a section
s € H°(U,, 7 (\)) is a regular map s : G,, — A} satisfying (3.3.1).

Lemma 3.3.1. Let A € X*(L) be a character.

(1) One has dim,(H°(G-ZipH, ¥ (X)) < dimg(H°(U,, ¥ (X)) < 1.
(2) The space H°(U,,, ¥ (N,\)) has dimension one.

Proof. The inclusion U, C G-Zip* induces an injection H°(G-ZipH, ¥ (X)) — H°(U,,,
¥ ()\)). By (3.3.1), an element f € H°(U,, ¥ (\)) is uniquely determined by the value of
f at a given point of G,, which proves (1).

The space H(U,,, ¥ (X)) is nonzero if and only if A : L — k* is trivial on the subgroup
S C L. Since N, induces the trivial character on S, we deduce (2). O

4. Weil restriction and G-zips
4.1. Notations

Let » > 1 be an integer. Let G; be a connected reductive group over Fyo» and G =
Resy,, /r,(G1). Let o € Gal(k/F,) be the g-th power arithmetic Frobenius. Over k, the
group G decomposes as a product

Gy=G1 x---xG, (4.1.1)

where G; = 0*~1(G1). The Frobenius sends G; onto G;+1 (indices taken modulo ).
Let p : Gpmp — Gi be a cocharacter and Z, := (G, P,L,Q, M, ) its attached zip
datum. Assume further that (B,T) is an Fg-Borel pair such that B C Q. For z :=
wowo,7, the triple (B,T,z) is an F,-frame for Z, (Remark 1.4.1(2)). For each O =
P,L,Q,M,B,T, one has a decomposition O = [];_, O;. Since (B, T is defined over F,
one has o(B;) = B;11 and o(T;) = T;41. By definition one has o(L;) = M;41.
The Weyl group W := W(G,T) decomposes into a product (as a Coxeter group)

W:WIX"'XW’M
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where W; := W(G;,T;). Let wo; be the element of maximal length in W;. The Frobenius
induces an automorphism of Coxeter groups of W again denoted by o and we have
o(W;) = Wita.

Let I be the type of P. Then !W decomposes as ‘W = W, x --- x "W, where
I; C A; is the type of the P;. Then one has z = (z1, ..., 2;) where z; = wp jwo,z; for all
j =1,...,r. Using the parametrization (1.3.1), the E-orbits of codimension one in G are
given by

Oja::E'(1,...,1771'}07]‘5.()4@07]‘,1,...71), 1§j§r,a€Aj\Ij. (412)

)

Remark 4.1.1. An element of E can be written in the form ((z1,...,2:), (y1,¥2,---,Yr))
with z; € P;, y; € Q; and @(92 (z;)) = GQ”’I (yi+1) for all 1 < i < r (indices taken

M1
modulo 7).

4.2. The zip datum Z;

For j =1,...,r, define parabolic subgroups in G; by

r—1

mai i+j) and Q;:ﬂai(iji)

=0

where the index i of P;, @; is taken modulo 7. Clearly B; C P} and B; C Q) since B is
defined over F,. The Levi subgroups of ij and Q; containing T} are respectively

r—1

ﬂoz i+j) and Mj= ﬂ M;—;)

=0 =0

Lemma 4.2.1. The tuple Z; := (G, P}, L}, Q;, M}, ¢") is a zip datum over Fyr.

Proof. This follows from the relations

r—1 r—1
oLy =)o " (Liy;) = [ o (Lj—+1) ﬂ =M. O (421)
=0 =0

Denote by E; C Pj x Q; the attached zip group. For (z,y) € Ej write T := 9];{ (z)
J
and set

uj(z,y) = (" @), ., "N @), 2, 0(T), ..., " (F) €G
vj(z,y) = (@7 E), .. "N @) y 0(T), .., " (F) €G (4.2.2)
v (2, y) = (uj(w,y),v(2,y)) € E.
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This gives an injective group homomorphism ; : E; — E. Consider G as a subgroup
of G by identifying it with {1} x --- x {1} x G; x {1} x --- x {1}. Define

EY .={ccE, ¢ -G; =G,}. (4.2.3)
It is clear that ~;(E}) C EU).

Remark 4.2.2. Let ¢ = ((z1,...,2+), (Y1,.-.,9r)) be an element of E. The following are
equivalent.

(i) e € EW
(i) There exists g; € G; such that ¢ - g; € Gj.
(iii) z; =y, for all 4 # j.

For each 1 < d < r, we define a parabolic subgroups ]Bd,j in Ggyj—1 and éd,j in Ggyj
by intersecting Galois translates of the parabolic subgroups P;, Q; as follows:

r—1 d—1
Paji= () o Pyy)  and  Quy = () 0" (Qayji) (4.2.4)
i=d—1 =0

where the index m in P,, and @,, is taken modulo r. Note that by definition one has
Py ;= Pjand Q,; = Q). One has the formulas:

ﬁd)j = 0_1(ﬁd+1’j) NPgrj—1 foralll <d<r—1, forallj (4.2.5)
éd,j = a(éd,lyj) N Qa+j for all 2 <d <, for all j. (4.2.6)

Lemma 4.2.3.

(1) Let 1 <j<rande= ((x1,...,2,.),(y1,...,4.)) € EU (k). Then for all1 <d <r,
one has xqyj—1 € ﬁd’j and Yqy; € de,j, where the inder m in T, Ym s taken
modulo r. In particular, x; € P} and y; € Q.

(2) Furthermore, one has (v;,y;) € E}(k).

Proof. We first prove (1) by decreasing induction on d. For d = r we have z;_; € ISM =
P;_; so there is nothing to prove. Fix an integer 1 < d < r. By Remark 4.2.2 we have
x; = y; for all i # j. By induction, we may assume yq4; = a4+, € ﬁd-&-l,j- Applying
Corollary 3.1.3(1) to Pgy1; and Qqy; in Ggy; (both containing the torus Tyy;), we
obtain

91?4?:1 (Ya+5) € ﬁdJrLj' (4.2.7)

By definition of F, one has for all i € Z
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01 (21) ) = 031, (i) (42.8)
e (0 (@) ) =057 (Yit1)- 2.

Lgtj—1

Combining (4.2.7) and (4.2.8) for i = d + j — 1, we get ¢ (de”_l(xdﬂ,l)) € Py

It follows that ijxj(xdﬂ-,l) lies in Pyij;_1 N O'_l(ﬁd+17j) = ﬁd,j (because ¢ is a

k-valued point). One has Bd_ﬂ;1 - ﬁdﬁ' C Pytj—1, 80 Ry(Paytj—1) C f)dd'. We deduce
Zaij_1 € Py, which proves the first part of (1).

The second part of (1) is proved by increasing induction on d. It is clear for d = 1. For
1 < d < r, we assume by induction yg4j—1 = Tatj—1 € @d,l’j. By Corollary 3.1.3(2),
we have HPd“’l(derj_l) € Q4_1,;- Using (4.2.8) for i = d+j — 1, we find 9]("\2/[21 (Ya+j) €

Latj—1 ~ - ~
Qatj No(Qa-1,) = Qa,;- Since Ry(Qa+j) C Qqa; we deduce yq4; € Qq,j, which shows
the second part of (1).

We now prove (2). We must show ¢" (Gf{ (xj)) = 05\?4",_ (y;). For this we use again an
J J

auxiliary parabolic subgroup ﬁdyj in G; defined for all j and 1 < d <7 by:
~ d—1
PdJ‘ = ﬂ O'_Z<Pi+j). (429)
i=0

Let Zd’j the Levi subgroup of ﬁd,j containing Tj. Clearly ]31’]» = P; and ]3“]' = P]{ . We
use increasing induction on 1 < d < r to show:

o (07 (2)) = 62 (yass). *)
Note that this makes sense because of (1). For d = 1 this is (4.2.8) for ¢ = j. Assume
that (*) holds for d and apply the operator ¢ o 02: to (*). Using Corollary 3.1.3(4),
(2) and the fact that z; = y; for i # j, we get:

d+1 ISd+1,.7‘ ) — Pgyj Qd,j )
¥ (aid+1,j (xj)) = (eLcH—j’ (91\74,1' (yd+J))>
0, . P
=¢ (9%2 (QLZE (yd+j)))
0Qa.; Py
=075 (0027 )

O'Cj Qi
= 07200 (65757 (yass))

0Qd,;NQdtj+1
oMa,jNMayjt1

(yd+j+1)

= 69:d+1’j (

d+j+1
Masr, Yd+j+1);

which is (*) for d+1, and this proves the claim. For d = r in (*), we obtain ¢" (91;{ (xj)) =

9%7, (yj), as desired. O
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4.3. A result on orbits

Let X denote the set of E-orbits in G, and &; C X the set of E-orbits intersecting
G; C G. By equation (4.1.2), we have C; o, € X forall 1 <j <rand a € A;\ I;. Also
note that G, = E'-1 € &j for all j. The set of E-orbits (resp. Ej-orbits) is a partially
ordered set with respect to closure relations.

Theorem 4.3.1. The map C — C N G; defines a bijection between X; and the set of
Ej-orbits in Gj. Furthermore one has codimg(C) = codimg, (C' N G;) for all C € X.

Proof. First we prove that C' N G; is an E;-—orbit. Let u,v € C'NGy. We can find an
element

e=(x1,...,zr), W1,..-,yr) EE

such that € -« = v. Then one has ¢ € EU) by Remark 4.2.2, so (zj,y;) € £} by
Lemma 4.2.3. Thus ¢ N G; is contained in a E’-orbit. Let g € C'N G and (v,y) € E7.
Write u; = uj(z,y) and v; := v;(x,y) defined as in (4.2.2). One has (u;,v;) € EV)
and zgy~! = ujgvj*l, so C'NGj is exactly an E;-—orbit. Hence the map C'— C' NG is
well-defined. The bijectivity is clear.

We now prove the second assertion. Let g € CNG; and € = ((z1, ..., xr), (Y1, .., Yr)) €
Stabp(g)(k). It follows from Lemma 4.2.3(2) that (x;,y;) € Stabg; (g). Hence we obtain
a homomorphism

d; : Stabg(g)red — StabE_;_ (@red, € (x),95). (4.3.1)
The injective homomorphism v; : Ej — E induces a map Stabp:(g) — Stabg(g) such
that d;07; = id, so in particular, §; is surjective. Note that K; := Ker(d;), as a subgroup

of E, is independent of C' € X; and of g € C'NG;. Taking g = 1, we see that K is finite
because Stabg(1) is. The result follows. O

4.4. Stabilizers

Define subgroups S := Stabg(1) and E} := Stabg; (1). We just saw in (4.3.1) that
there is a surjective morphism d; : Sred — (5% )rea With finite kernel K. More precisely:

Lemma 4.4.1. One has K; = 1. In particular, §; induces an isomorphism Sreq — (S})red.
Proof. Let ¢ = (z,2) € K; with z = (21,...,2,). By Lemma 3.2.1 (3), one has z; €

L; N M; for all 1 <4 < r. The condition € € E then implies p(z;) = x;41 for all . Since
€ € K, we have z; = 1, so the result follows. O
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5. Hasse invariants
5.1. Main result

Let p : Gy — Gk be a cocharacter and Z = (G, P,L,Q, M, ) the attached zip
datum. Let (B, T, z) be an F,-frame for Z, with z = wowp ;. Note that L C ¢71Q is a
Levi subgroup, so X*(c71Q) = X*(L).

Definition 5.1.1. A character A € X*(L) is Z-ample if one of the following equivalent
conditions is satisfied

(i) The attached line bundle on G/o~1Q is anti-ample.
(ii) One has (A\,a") <0 foralla € A\ o~ 1J.

Let Gy, G2 be connected Fy-reductive groups and p; € X*(G1), p2 € X*(G2) cochar-
acters. Let f : G; — G2 be an injective homomorphism defined over F,. For ¢ = 1,2,
write Z,, = (G, P;, L;, Qi, M;, ¢). Recall that f induces a homomorphism L; — Lo
(§1.4).

Lemma 5.1.2. If A € X*(Ls) is Zo-ample, then f*(\) € X*(Ly) is Z1-ample.

Proof. Since f~'(Q1) = Q2 and since f is defined over F,, we have an embedding
G1/07 Q1 — Go/o71Qs. Hence the claim follows from (ii) of Definition 5.1.1. O

Definition 5.1.3. Let A € X*(L) be a character. We say that a section f €
HOY(G-zip#, ¥ (\)) is a Hasse invariant if its non-vanishing locus is exactly U,,.

We now state the main result of this article:

Theorem 5.1.4. If A € X*(L) is Z-ample, there exists a Hasse invariant h €
HY(G-zipH, ¥ (N, N)).

We first consider the case when P = B_ is a Borel, then the more general case when
P is defined over F, (in these cases, note that G, coincides with the open P x @ orbit
in G). Then we show the result for a Weil restriction of degree r when P defined over Fy-.
Finally we prove the general case.

5.2. The Borel case

Assume first P = B_, and thus @Q = B. For y € X*(T), denote by .Z(x) the at-
tached line bundle on G/B. If x is B-dominant, define V, := H°(G/B, % (x)). It is a
G-representation, and it is known [3, §1, p. 654] that there is a unique B-eigenvector
fx € V4, and the corresponding character is —wox. Thus f, identifies with a function
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fx : G = Ay satisfying f, (tugt’u’) = x(wotwo)x(t') fx(g) for all ¢t,t' € T, u,u’ € R, (B)
and g € G. Furthermore the divisor of f, is

div(fy) = Z(X,av>Da (5.2.1)

aEA

where D, = BwgsqB. The function h,(g) := f,(wog) satisfies the relation

hy(agb™") = x(@)x(b) ' hy(9) = x(@)x (@)~ hy(g) (5.2.2)

for all (a,b) € E and g € G. Hence h, € H°(G-Zip#, ¥ ()\)) for A= x — x o .
Now let A € X*(T') be Z-ample and fix m > 1 such that A is defined over Fgm. One
has A = xy — x o ¢ for

1

pm =1

X=- A+ Aop+..+A0p™ ) e X (T)®Q. (5.2.3)
Since A is Z-ample, the character A o " is Z-ample for all » > 1, hence (p™ — 1)x is
B-dominant regular character. It follows from the previous discussion that ¥'((p™ — 1))
admits a Hasse invariant hy. Let ho € H°(U,, ¥ (N,))) given by Lemma 3.3.1(2). Then
necessarily hiv“ = hgm_l (up to a nonzero scalar) by the same lemma. Since G is normal,
it follows that hs extends to a Hasse invariant.

5.3. The case when P defined over F,

Assume P is defined over F,. Then so is @, and M = L = PN Q. Since G, is a
P x Q-orbit, it is a union of B_ x B-orbits. Its complement is

G\G,= |J woCa. (5.3.1)
a€A\J

Define x € X*(L)®Q as in (5.2.3), and x2 := (p™ —1)x € X*(L), which is B-dominant.
By the previous case, we can find a regular function h,, : G — A; whose divisor is

div(hy,) = Y (x2,0")woDa = Y (xa,0")wDa. (5.3.2)
aEA acA\J

Since X is Z-ample, —x2 is Z-ample, hence (x2,a") > 0 for all @ € A\ J. We claim
that h,, is a section of ¥/ ((p™ — 1)A). Since div(h,,) is E-equivariant, it follows from
[13, §1] that h,, is an E-eigenfunction, i.e. there is a character § € X*(L) such that
hy,(agb™t) = 0(a)hy,(g) for all (a,b) € E and g € G. Taking a,b € T and comparing
with (5.2.2) shows 8 = x2 — x2 0 ¢ = (p™ — 1), which proves the claim. Hence h,, €
HO(G-zip*, ¥ ((p™ — 1)) is a Hasse invariant. Finally, we conclude as in the Borel case
that #(N,\) admits a Hasse invariant too.
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5.4. The Weil restriction case

Let G = Resy_, /r,(G1) as in §4.1 and retain the notations therein. For A € X*(L),
denote by A; € X*(L;) the character induced by the inclusion L; — L. Let A =
(A1, Ar) € X*(L) and f € H(Uz, ¥ ()\)) nonzero (hence non-vanishing). Since G,,NG,
is the open Ej-orbit in G (Lemma 4.3.1), f restricts to a non-vanishing section f; over
Uz, of a certain line bundle, determined in the next proposition.

Proposition 5.4.1. Let A € X*(L) and f € H*(Uz, V' (\)).

(1) One has f; € H'(Uz,, ¥ (\})), for X; := Z::_ol Aipj o' € X*(L}) (indices taken
modulo r).

(2) f extends to G-Zip® if and only if f; extends to Gj-Zip®i for all 1 < j <r.

(3) f extends to a Hasse invariant if and only if f; does for all 1 < j <r.

Proof. We prove (1). Consider the map ~; : £} — E defined in (4.2.2). For all ; =
(aj,b;) € E} and g; € Gy, note that €; - g; = v;(¢) - g;. Hence f; satisfies fj(e; - g;) =
f(vi(e) - g5) = Myi(€)) f(g5) = A(v;(€)) fi(g5)- Since A’ = A o7, the result is proved.

We can write div(f) = >7_, ZaeAJ\I,- njaCja with n; o € Z, using the notation
introduced in (4.1.2). Since C" := Cj , N Gj is a codimension one Ej-orbit, the sign of
njo is the same as the sign of the multiplicity of f; along C’. This proves assertions (2)
and (3). O

Lemma 5.4.2. Let A € X*(L) be a Z-ample character. Then N} is Z;-ample.

Proof. Let a € Aj\I;. One has (\},a") = Z::_Ol (Nigjopt,aV) = Z::_Ol p (it ot (aV)).
All the summands are non-positive numbers and (\;, @) < 0, hence the result. O

Corollary 5.4.3. Assume that Pi, ..., P, are defined over Fyr. If A € X*(L) is Z-ample,
there exists a Hasse invariant h € HY(G-Zip", ¥ (N, N)).

Proof. Let h € H°(Uz, 7 (N,A)) denote the section of Lemma 3.3.1(2). Using Propo-
sition 5.4.1, we need to show that h; € H°(Uz, ¥ (\)) extends to G;-Zip®/. By
Lemma 5.4.2, i € X*(L’) is Z;-ample. Since Z; is a zip datum over Fyr, and P} is
defined over F,~ by assumption, the result follows from the previous case (§5.3). O

5.5. The general case

Let G be a connected reductive F,-group, it : Gy, 1 — Gi a cocharacter, and Z =
(G,P,L,Q, M, ) its zip datum over F,. Assume (B, T, z) is an Fy-frame with z = wowp 1.
Fix r > 1 such that P is defined over Fy-. Define G = Resy, . /r, (G) and identify G, with
G X ... X Gf. Consider the diagonal embedding ¢ : G — G. The cocharacter i ==t o0 u
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defines a zip datum Z = (G,P7I~/7Q,M,<p), where P = P x ... x P and similarly for
L,Q,M.

Similarly we define T := T x ... x T, B := B X ... x B and %z := (2,...,2). Then
(B,T,%) is an F,-frame for Z. The embedding ¢ induces naturally a morphism of stacks
# : G-Zipt — G-ZipP. Zip strata in G are parametrized by the set W= 1w x...x w,
where I is the type of P. Using (1.3.1), it is clear that :# induces the diagonal embedding
IW — IW on zip strata. In particular:

Lemma 5.5.1. One has (%)~ (Up) = U,,.

If A = (A,..., \r) € X*(L), then one has (t#)*(#(\)) = ¥ (A1 + ... + \,-). Hence
Lemma 5.5.1 implies that the restriction of a Hasse invariant for the weight X is a Hasse
invariant for the weight Ay + ... + \,.

Let A € X*(L) be a Z-ample character and set X := (), ..., \). It is clearly Z-ample.
Since P is defined over Fg-, Corollary 5.4.3 implies that there exists a Hasse invariant
h for ¥ (Nz))). Tts restriction to G-Zip# is a Hasse invariant for the weight rNz\.
As before, we conclude that there is also a Hasse invariant for the weight N,A. This
terminates the proof of Theorem 5.1.4.

5.6. Shimura varieties of Hodge-type

Let (G, X) be a Shimura datum of Hodge type with reflex field E, given by a reductive
group G over Q and a G(R)-conjugacy class of morphisms S — Gg. For hg € X, define
to : Goc = Gg as po(2) = ho,c(z, 1) using the identification S¢ ~ G, ¢ X Gy, c given
by z — (z,%) on R-points.

Fix a prime number p such that Gg, is unramified and let G be a reductive Z,-model
of Gg,. Fix a neat compact open subgroup K C G(Ay) such that K = KPK, with
K? C G(A%) and K, = G(Z,). Let Shx (G, X) denote the attached Shimura variety
over E. For a prime p of E above p, there is a smooth canonical Of y-model Sk of
Shi (G, X), by [19] and [12].

Let Sk := Sk ®0y,, k(p) be its special fiber, where x(p) is the residual field of p. The
conjugacy class of pg can be lifted to G, and there exists a representative u defined over
Op, because G is quasi-split. Define G := G ®z, F, and write again y € X,(G) for the
induced cocharacter.

Let f : @ — Sk be the universal abelian scheme obtained by pull-back from the
Siegel-type Shimura variety. The de Rham cohomology H}s(A/Sk) together with its
Hodge filtration and conjugate filtration define naturally a G-zip over Sk [22, Th. 2.4.1].
This induces a smooth morphism of stacks [22, Th. 3.1.2]

(:Sxk — G-Zip”. (5.6.1)
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The geometric fibers of ¢ are the Ekedahl-Oort strata of Sk. In particular, the open
stratum Sk, := ("*(U,) is called the p-ordinary locus of Sk. The Hodge line bundle
of Sk is defined as

w = fu(det(Qy /s, ))- (5.6.2)

It is ample on Sk by [15]. Denote by P C Gg the parabolic subgroup attached to
(G, o). For a character A € X*(P), there is an automorphic line bundle Vg (A) on Sk
attached to A and its special fiber coincides with the line bundle ¢*(V(A)). Furthermore,
there exists a character A, € X*(P) such that w = V(\,). Denote by N, the integer
defined in §3.3.

Corollary 5.6.1. There exists a section hx € H(Sg,w™V») whose non-vanishing locus is

Sk -

Proof. It suffices to check that A\, is Z-ample. This is clear for Siegel-type Shimura
varieties. The general Hodge-type case then follows from Lemma 5.1.2. O

Remark 5.6.2. The section hg coincides with the one constructed by W. Goldring and the
first author as a special case of [6, Cor. 4.2.3] since the k-vector space H°(G-Zip*, ¥ ()\))
has at most dimension 1 for all A € X*(L) (Lemma 3.3.1(2)).

Let 8?“’ denote the minimal compactification of Sk constructed by Madapusi Pera
and let S™™ denote its special fiber. By [14], the Hodge bundle w extends naturally to an
ample line bundle on S}, which we continue to denote by w. We make the assumption
that G has no factor isomorphic to PGLa g. In this case, the boundary of S®™ has
codimension > 2. By normality of S the section hx extends uniquely to a section
of wNk over SE™. Define the p-ordinary locus SR as the non-vanishing locus of this
extension. Since SE'" is projective, we deduce:

Corollary 5.6.3. The p-ordinary locus S’%E 1s affine.
5.7. Calculation of N,, for Shimura varieties of PEL type

We now calculate the integer IV, for pairs (G, ) defined by a Shimura datum of PEL
type with G connected. Retain the notation of §3.2. Recall that IV, is the exponent of
X*(S) = Hom(Lo(Fp), k™) (Definition 3.2.4). The classification of PEL data (see e.g.,
[20, 2.2 and 2.3]) shows that there is an exact sequence

1-]]Gi—» G5 G, — 1,

i=1

where each group G; is one of the following reductive groups.
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(AL) Resg,,/r, GLy,
(AU) Resg,, /r, U(n),
(C) Resg,, /r, Spag-

Concretely one often has m = 1, which we will assume for simplicity. Hence we have an
exact sequence

1= G =G5 Gup, — 1, (5.7.1)

where G1 = Resy,, jr, G' for G' € {GLy,U(n), Spag}. Any Levi Fy-subgroup of Gy is
of the form Resg . /r, L' for some Levi Fr-subgroup L' C G’. In particular, there exists
a Levi Fyr-subgroup Lg of G’ such that Lo N G1 = Resy,, /r, Ly. As finite fields are of
cohomological dimension 1 we have an exact sequence

1 = Lo(Fpr) = Lo(Fp) = F — 1. (5.7.2)

The case G' = GL,. In this case the sequences (5.7.1) and (5.7.2) split and Ly is
a product of general linear groups. Hence the abelianization L'(F,-)*> of L'(F,-) is a
product of copies of ]F;fr except if one of the general linear groups is GLy, p =2,and r = 1
(GLo(FFy) is isomorphic to the symmetric group S3 and G Ly(F2)?" has 2 elements). The
exponent of Hom(L{(F,-), k) is the same as that of the prime-to-p-part of L'(F,)2",
which is p” — 1 in any case. As (5.7.2) splits, N, = lem(p”" — 1,p—1) =p" — 1.

The case G’ = U(n). In this case Lg is isomorphic to a product of groups of the form
H:= Res]szT JF,(GLg) and at most one group M whose Fj,-valued points are given by

M(F,) = {g € GU(V,¢),n(g) € F;' },

where (V, ¢) is an hermitian space over ). By the first case, the exponent of X*(H (FF,))
is p®" — 1 for each such group H. Over k, one has My, ~ GL,, X ... x GL,, x G,,. Hence
X*(M) identifies naturally with Z"*! such that (ai,...,a,,b) € Z"+! corresponds to
the character (Aj,..., A, A) — APT], det(A;)%. The Galois action on X*(M) is given
by o(ai,...,ar,b) = (—ar,—aq,...,—ar—1,b). It follows from Corollary 2.3.3 that the
exponent of X*(M(F,)) is p” — (—1)". Hence N, = lem(p” — (=1)",p*" — 1) = p?" — 1.

The case G’ = Spay. We first claim that again (5.7.2) splits (although (5.7.1) usually
does not split in this case). Let V' be a symplectic space of dimension 2g over Fyr. Then
(5.7.1) is on FF,-valued points the exact sequence

1= Sp(V) = {g9g€GSp(V),n(g) € IE‘;} — IF; — 1,

where 7 is the multiplier homomorphism. There is only one proper parabolic sub-
group given by a minuscule cocharacter for group of Dynkin type C, namely the Siegel
parabolic. Hence Ly is the subgroup of symplectic similitudes V' — V that preserve a de-
composition V' = U; @Us, where Uy and Us are totally isotropic subspaces of dimension g,
hence
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Lo(Fp) = {(g1,92) € GL(U1)(Fpr) x GL(Us)(Fpr), 9195 € F)f idur, }

where ( )* denotes the duality of U; and Us induced by to the symplectic pairing. One
has GL(Uy)(Fpr) = Ly(F,) by g1 — (91,97 '*). Therefore a splitting of (5.7.2) is given
by F; — L()(]Fp), (0 d (a idUl,idUQ).

As above, we deduce N, =p" — 1.

Remark 5.7.1. In the unitary case, the integer N, = p?" — 1 agrees with the results
of [8]. One can show that the Hasse invariant of Corollary 5.6.1 coincides with those of
[8] and [4].
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