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the Ekedahl–Oort strata of G and those of G1.
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Introduction

This article predates the recent preprints [6] and [7] of the first author joint with 
W. Goldring on the existence of Hasse invariants. See below for a comparative description 
of these papers.

Shimura varieties and G-zips

Let (G, X) be a Shimura datum of Hodge-type and let SK be the Kisin–Vasiu integral 
model of the associated Shimura variety ShK(G, X) at a level K, hyperspecial at p. 
Denote by SK the special fiber of SK and write G for the special fiber of a reductive 
Zp-model of GQp

.
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Recall that Zhang [22] gives a smooth morphism ζ : SK → G-Zipμ, where G-Zipμ
is the stack of G-zips, defined by Pink–Wedhorn–Ziegler in [18] (see also the precursor 
paper [16]) and μ pertains to the cocharacter attached to the Shimura datum. The 
fibers of ζ are termed Ekedahl–Oort strata of SK . In this paper we study the open zip 
stratum Uμ ⊂ G-Zipμ and its corresponding generic Ekedahl–Oort stratum SK,μ ⊂ SK . 
It coincides with the μ-ordinary Newton stratum [21].

Attached to the pair (G, μ), there is a zip datum Z := (G, P, L, Q, M, ϕ) (§1.4), where 
L is the centralizer of μ in G and P corresponds to the stabilizer of the Hodge filtration. 
One attaches to each λ ∈ X∗(L) a line bundle V (λ) on the stack G-Zipμ. Its pull-back 
ζ∗(V (λ)) coincides with the automorphic line bundle VK(λ) naturally attached to λ. For 
example, there exists λω ∈ X∗(L) such that VK(λω) is the Hodge line bundle ω on SK .

Hasse invariants

In this paper, we say that a section h ∈ H0(G-Zipμ, V (λ)) is a Hasse invariant if its 
non-vanishing locus is exactly the μ-ordinary stratum Uμ. There is an explicit integer 
Nμ (Definition 3.2.4) satisfying the following:

Theorem 1 (Theorem 5.1.4). If λ ∈ X∗(L) is Z-ample, there exists a Hasse invariant 
h ∈ H0(G-Zipμ, V (Nμλ)).

For the definition of Z-ample, see Definition 5.1.1. The character λω defining the 
Hodge line bundle is Z-ample. In [6, Th. 3.2.3], a similar result for all strata is proved 
using a group-theoretical counterpart of a flag space of Ekedahl–Van der Geer. The 
methods used here to prove Theorem 1 differ in many aspects from [6]; they are based 
on the study of Ekedahl–Oort strata in the case of a Weil restriction, which we explain 
below.

Furthermore, we want to point out that we do not assume in Theorem 1 that λ
satisfies the condition “orbitally p-close” of [6, Th. 3.2.3]. Hence Theorem 1 gives a 
stronger result than [6, Th. 3.2.3] for the open zip stratum. Another improvement is the 
fact that we determine explicitly the integer Nμ in Theorem 1, whereas [6, Th. 3.2.3]
gives an undetermined integer. This is the smallest integer satisfying the existence of a 
Hasse invariant.

In particular, we obtain the following corollary (Corollary 5.6.1):

Corollary 1. There exists a section hK ∈ H0(SK , ωNμ) whose non-vanishing locus is the 
μ-ordinary locus of SK .

Prior to the present article, Hasse invariants were constructed by a number of au-
thors: E. Goren established the existence of partial Hasse invariants for the case of 
Hilbert–Blumenthal Shimura varieties [9]. In the split unitary case of signature (n −1, 1), 
Ito constructed Hasse invariants for all Ekedahl–Oort strata [11]. Finally, Goldring and 
Nicole constructed a μ-ordinary Hasse invariant for unitary Shimura varieties [8].
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After the present paper appeared on the ArXiv, related results were proved: First, 
[6] extends Corollary 1 to all Ekedahl–Oort strata. For PEL-cases of type A and C, 
Boxer constructed Hasse invariants on all strata in [4], using different methods. More 
recently, [10] constructs μ-ordinary Hasse invariants in the (unramified) unitary case 
using crystalline cohomology (a method similar to the one used in [8]), and [2] extends 
Hernandez’ result to the ramified case.

Let Smin
K denote the minimal compactification of SK and continue to denote by ω

the extension of the Hodge bundle on Smin
K . By a formal argument, the section hK of 

Corollary 1 extends uniquely to a section of ωNμ over Smin
K . Define the μ-ordinary locus 

Smin
K,μ as the non-vanishing locus of this extension. We have the following consequence:

Corollary 2. The μ-ordinary locus Smin
K,μ is affine.

Weil restriction

Our proof of Theorem 1 uses a detailed study of the case when G = ResFpr/Fp
(G1)

for some integer r ≥ 1 and a reductive group G1 over Fpr . Let k be an algebraic closure 
of Fp and identify Gk with G1 × ... ×Gr for Gi = σi−1(G1), where σ ∈ Gal(k/Fp) is the 
geometric Frobenius element. Let μ ∈ X∗(G) be a cocharacter and Z = (G, P, L, Q, M, ϕ)
its associated zip datum (§1.4). For each 1 ≤ j ≤ r, we define a zip datum Zj =
(Gj , P ′

j , L
′
j , Q

′
j , M

′
j , ϕ

r) (§4.2). Our main technical result, which is of independent interest 
for the study of zip strata, is the following.

Theorem 2 (Theorem 4.3.1). The map C �→ C ∩ Gj defines a bijection between zip 
strata for Z in G intersecting Gj and zip strata for Zj in Gj. Furthermore one has 
codimG(C) = codimGj

(C ∩Gj) for all such C.

Moreover, there is a relation between Hasse invariants for G and Hasse invariants for 
each factor (Proposition 5.4.1).

We now give an overview of the paper. In §1, we recall basic facts about the stack 
G-ZipZ . Then, we prove some general results on equivariant Picard groups in §2. The 
next section is dedicated to results about the open zip stratum. In particular we deter-
mine the stabilizer of 1, used to define the integer Nμ. In §4, we study the case of a Weil 
restriction and prove Theorem 2 above. Finally, we prove Theorem 1 and Corollary 1 in 
the last section, combining the results of the previous sections. We also compute Nμ for 
PEL-cases.
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1. G-zips

1.1. Stack of G-zips

Let p be a prime number, and q a power of p. We fix an algebraic closure k of Fq. 
In this paper we define a zip datum over Fq to be a tuple Z = (G, P, L, Q, M, ϕ) where 
G is a connected reductive group over Fq, ϕ : G → G is the relative q-power Frobenius 
homomorphism, P, Q ⊂ G are parabolic subgroups of Gk, L ⊂ P and M ⊂ Q are Levi 
subgroups of P and Q respectively. We suppose that σ(L) = M , where σ( ) denotes 
pullback by q-power absolute Frobenius morphism. The zip group E is defined by

E := {(x, y) ∈ P ×Q,ϕ(x) = y} (1.1.1)

where x ∈ L and y ∈ M are the Levi components of x and y. We let G ×G act on G via 
(a, b) · g := agb−1 and we let E act on G by restricting this action. The stack of G-zips 
is the quotient stack [17]:

G-ZipZ 	 [E\G] . (1.1.2)

1.2. Frame

A frame for Z is a triple (B, T, z) where (B, T ) is a Borel pair in Gk and z ∈ G(k)
satisfying:

(i) B ⊂ Q, zB ⊂ P ,
(ii) ϕ(zB ∩ L) = B ∩M , ϕ(zT ) = T .

In particular, these conditions imply zT ⊂ L. Frames always exist by [18, 3.7]. For a 
frame (B, T, z), we use the following notation.

(1) Φ ⊂ X∗(T ) denotes the set of T -roots of G.
(2) Φ+ ⊂ Φ is the set of positive roots with respect to B, i.e. such that Uα ⊂ B.
(3) Δ ⊂ Φ+ is the set of positive simple roots.
(4) Denote by W := W (Gk, T ) the Weyl group of Gk. For α ∈ Φ, let sα ∈ W be the 

corresponding reflection. Then (W, {sα}α∈Δ) is a Coxeter group and we denote by 
� : W → N the length function.

(5) For a subset K ⊂ Δ, let WK ⊂ W be the subgroup generated by {sα, α ∈ K}. Let 
w0 ∈ W be the longest element in W and w0,K the longest element in WK .

(6) If R ⊂ G is a parabolic subgroup containing B and D is the unique Levi subgroup 
of R containing T , then the type of R (or of D) is the unique subset K ⊂ Δ such 
that W (D, T ) = WK . The type of an arbitrary parabolic R is the type of its unique 
conjugate containing B. Let I ⊂ Δ (resp. J ⊂ Δ) be the type of P (resp. Q).
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(7) For K ⊂ Δ, let KW (resp. WK) be the set of elements w ∈ W which are of minimal 
length in the coset WKw (resp. wWK).

We say that (B, T, z) is an Fq-frame if B, T are defined over Fq. In this case one has 
z ∈ NG(T ), so z gives rise to an element z ∈ W .

1.3. E-orbits

For w ∈ W we choose a representative ẇ ∈ NG(T ), such that (w1w2)· = ẇ1ẇ2
whenever �(w1w2) = �(w1) + �(w2) (this is possible by choosing a Chevalley system, see 
[1, XXIII, §6]). We often write simply w instead of ẇ. For h ∈ G(k), let OZ(h) be the 
E-orbit of h in G. By [18, Th. 7.5], there is a bijection:

IW → {E-orbits in G}, w �→ Gw := O(zẇ). (1.3.1)

Furthermore, for all w ∈ IW , one has dim(Gw) = �(w) + dim(P ). Endow the locally 
closed subset Gw with the reduced structure, and define the corresponding zip stratum 
of G-ZipZ by Zw := [E\Gw]. We will denote by UZ ⊂ G-ZipZ the unique open zip 
stratum corresponding to w0,Iw0, the longest element in IW . When Z = Zμ for some 
μ ∈ X∗(G), we write Uμ := UZμ

.

1.4. Cocharacters

A cocharacter μ : Gm,k → Gk defines a pair of opposite parabolics P±(μ) such that 
P+(μ) ∩ P−(μ) = L(μ) is the centralizer of μ. The parabolic P+(μ) consists of elements 
g ∈ G such that the limit

lim
t→0

μ(t)gμ(t)−1 (1.4.1)

exists, i.e. such that the map Gm,k → Gk, t �→ μ(t)gμ(t)−1 extends to a morphism of 
varieties A1

k → Gk. The unipotent radical of P+(μ) is the set of such elements g for 
which this limit is 1 ∈ G(k).

Define P := P−(μ), Q := σ (P+(μ)), L := L(μ) and M := σ(L(μ)). The tuple 
Zμ := (G, P, L, Q, M, ϕ) is a zip datum attached to the cocharacter μ. In the following we 
consider only G-zips arising in this way. We write simply G-Zipμ for G-ZipZμ . Replacing 
μ by a conjugate cocharacter does not change the isomorphism class of G-Zipμ. Hence 
the following remark shows that it is harmless to assume that Z admits an Fq-frame.

Remark 1.4.1. Let μ : Gm,k → Gk be a cocharacter and Zμ := (G, P, L, Q, M, ϕ) the zip 
datum attached to μ.

(1) There exists a conjugate cocharacter μ′ := ad(g) ◦μ (for g ∈ G) such that Zμ′ admits 
an Fq-frame.
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(2) Assume (B, T ) is a Borel pair defined over Fq such that B ⊂ Q. Then (B, T, w0w0,I)
is an Fq-frame.

Let G1, G2 be connected Fq-reductive groups and μ1 ∈ X∗(G1), μ2 ∈ X∗(G2) cochar-
acters. Let f : G1 → G2 be an injective homomorphism defined over Fp, such that 
μ2 = fk ◦ μ1. Then f induces naturally a morphism of stacks

f# : G1-Zipμ1 → G2-Zipμ2 . (1.4.2)

For i = 1, 2, denote by Pi, Qi the parabolic subgroups of Gi attached to μi. Using 
(1.4.1), it is clear that f(�1) ⊂ �2 for � = P, L, Q, M and also f(Ru(P1)) ⊂ Ru(P2), 
f(Ru(Q1)) ⊂ Ru(Q2). It follows easily that P1 = f−1(P2), Q1 = f−1(Q2).

2. Picard groups

2.1. Equivariant Picard group

In this section, G denotes an arbitrary connected linear algebraic group over an al-
gebraically closed field k. A variety is an integral k-scheme of finite type. A G-scheme 
is a k-scheme endowed with a G-action a : G × X → X. Let L be a line bundle on a 
G-scheme X. Define the projections p23 : G × G × X → G × X, (g, h, x) �→ (h, x) and 
p2 : G ×X → X, (g, x) �→ x. Finally, write μG for the multiplication map G ×G → G.

Definition 2.1.1. A G-linearization of L is an isomorphism φ : a∗(L ) → p∗2(L ) satisfying 
the cocycle condition

p∗23(φ) ◦ (idG × a)∗(φ) = (μG × idX)∗(φ).

We denote by PicG(X) the group of isomorphism classes of G-linearized line bundles 
on X. Forgetting the G-linearization induces a natural map PicG(X) → Pic(X), whose 
image is the subgroup PicG(X) ⊂ Pic(X) of G-linearizable line bundles. The group 
PicG(X) can be identified with the Picard group of the quotient stack [G\X]. Then 
PicG(X) → Pic(X) is the homomorphism given by pull back by the projection X →
[G\X].

2.2. The general result

For any k-scheme X, define E(X) := O(X)×/k×. If X is an integral k-scheme of finite 
type, E(X) is a finitely generated free abelian group [13, §1.3]. If G is an algebraic group, 
the natural map X∗(G) → E(G) is an isomorphism, by [13, §1.3].

Denote by H1
alg(G, O(X)×) ⊂ H1(G, O(X)×) the subgroup of classes of alge-

braic cocycles, i.e. cocycle maps G(k) → O(X)× induced by an algebraic morphism
G ×X → Gm.
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Theorem 2.2.1. Let G be a smooth algebraic group, and X an irreducible G-variety. There 
are exact sequences:

0 → Gm(X)G

k×
→ E(X)G → X∗(G) → H1

alg(G,Gm(X)) → H1(π0(G)(k), E(X))

0 → H1
alg(G,Gm(X)) → PicG(X) → Pic(X)

If X is normal and G connected, the second exact sequence has an extension by a map 
Pic(X) → Pic(G).

Proof. This is [13, Prop. 2.3, Lem. 2.2] in characteristic 0. The same proof applies to 
arbitrary characteristic. �
2.3. Some consequences

Corollary 2.3.1. Let G be a smooth connected algebraic group X a normal irreducible 
G-variety. There is an exact sequence of abelian groups

1 → k× → (O(X)×)G → E(X) → X∗(G) → PicG(X) → Pic(X) → Pic(G)

Proof. As G is connected, it acts trivially on the discrete group E(X). �
Corollary 2.3.2. Let G be a smooth connected algebraic group and H a smooth subgroup 
of G. There is an exact sequence of abelian groups

0 → E(G/H) → X∗(G) → X∗(H) → Pic(G/H) → Pic(G).

Proof. Apply Theorem 2.2.1 for X = G and G = H. Note that H acts trivially on 
E(G) = X∗(G). It follows that H1(π0(H), E(G)) = Hom(π0(H), E(G)) = 0 because 
π0(H) is finite and E(G) is torsion-free. �
Corollary 2.3.3. Let G be a connected linear algebraic Fq-group. There is an exact se-
quence

0 → X∗(G) → X∗(G) → Hom(G(Fq), k×) → Pic(G)

where the first map is χ �→ σ · χ − χ.

Proof. Apply Corollary 2.3.2 for H := G(Fq) and note that the Lang–Steinberg map 
G → G, x �→ ϕ(x)x−1 induces an isomorphism of varieties G/H 	 G. �
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3. The open orbit

3.1. Intersection of parabolic subgroups

Let k be an algebraically closed field and G a reductive group over k. Recall the 
following result:

Proposition 3.1.1. Let P and Q be two parabolic subgroups in G with unipotent radicals 
U and V , respectively. Let T ⊂ P ∩ Q be a maximal torus and let L ⊂ P and M ⊂ Q

denote the Levi subgroups containing T .

(1) The subgroups P ∩Q, L ∩M , L ∩ V , M ∩ U , U ∩ V are smooth and connected.
(2) The group (P ∩Q) .U is a parabolic subgroup of G contained in P , with Levi sub-

groups L ∩M .
(3) Any element x ∈ P∩Q can be written uniquely as a product x = abcd, with a ∈ L ∩M , 

b ∈ L ∩ V , c ∈ M ∩ U , d ∈ U ∩ V .

Proof. The smoothness of P ∩ Q follows from [1, XXVI, Lem. 4.1.1]. This implies the 
smoothness of the other subgroups. For the rest, see [5, Prop. 2.1]. �

The last statement means that P ∩ Q is the product of the varieties L ∩M , L ∩ V , 
M ∩ U , U ∩ V . In particular:

Corollary 3.1.2. Retain the notation of Proposition 3.1.1. If U ∩V = M ∩U = {1}, then 
P ∩Q ⊂ L.

For a parabolic subgroup P and a Levi subgroup L ⊂ P , denote by θPL : P → L the 
natural projection modulo the unipotent radical of P .

Corollary 3.1.3. Retain the notation of Proposition 3.1.1.

(1) For all x ∈ P ∩Q, one has θPL (x) ∈ L ∩Q and θQM (x) ∈ P ∩M .
(2) For all x ∈ P ∩Q, one has θPL (θQM (x)) = θQM (θPL (x)) ∈ L ∩M .
(3) Assume T ⊂ B ⊂ P ∩ Q for some Borel B. Then P ∩ Q is a parabolic with Levi 

L ∩M and for all x ∈ P ∩Q, one has θPL (θQM (x)) = θQM (θPL (x)) = θP∩Q
L∩M (x).

(4) Assume G is defined over Fq and let ϕ : G → G the q-th power Frobenius. Then 
ϕ 
(
θPL (x)

)
= θσPσL (ϕ(x)).

Proof. Using the notation of Proposition 3.1.1(3), write x = abcd ∈ P ∩Q. Then θPL (x) =
ab ∈ L ∩Q and similarly θQM (x) = ac ∈ P∩M which shows (1). This implies θPL (θQM (x)) =
a = θQM (θPL (x)) and hence (2). The first part of (3) is Proposition 3.1.1(2). For the second 
part, write x = θPL (x)u with u ∈ Ru(P ) ⊆ Ru(P ∩Q). Now θPL (x) = θQM

(
θPL (x)

)
v with 

v ∈ Ru(Q) ⊆ Ru(P ∩Q). The result follows. The last assertion is clear. �
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3.2. Stabilizer

We fix a cocharacter μ : Gm,k → Gk and we assume that Zμ admits an Fq-frame 
(B, T, z). By Remark 1.4.1(2), we can take z := w0w0,I . Let B− be the unique Borel 
subgroup such that B ∩ B− = T . Note that B− ⊂ P . The maximal element of IW is 
η = w0,Iw0 = z−1. By (1.3.1), the unique open E-orbit in G is Gη = E · (zη) = E · 1.

Since dim(E) = dim(G), the stabilizer StabE(1) ⊂ E is a finite group scheme (usually 
not smooth), that we now determine. We denote by Sred its underlying reduced subgroup 
scheme. By definition, one has

StabE(1) = {(x, y) ∈ E, x = y}. (3.2.1)

The first projection E → P identifies StabE(1) with a subgroup S ⊂ P ∩Q. Define:

P0 :=
⋂
i∈Z

σiP , Q0 :=
⋂
i∈Z

σiQ , L0 :=
⋂
i∈Z

σiL.

Since B ⊂ Q0 and B− ⊂ P0 and (B, T ) is defined over Fq, we see that P0 and Q0 are 
opposite parabolic Fq-subgroups such that P0 ∩ Q0 = L0. The type of P0 (resp. Q0) is ⋂

i σ
iI (resp. 

⋂
i σ

iJ).

Lemma 3.2.1.

(1) One has Q0 ∩ P ⊂ L.
(2) One has S ⊂ Q0 ∩ L.
(3) One has Sred = S ∩ L0 = L0(Fq) (considered as a finite constant group scheme).

Proof. Assertion (1) follows from Corollary 3.1.2, because L0∩Ru(P ) ⊆ L ∩Ru(P ) = {1}
and Ru(Q0) ∩Ru(P ) ⊆ Q ∩Ru(P ) = {1}.

We now prove (2). Let x ∈ S be an arbitrary element. By definition of E, one has 
ϕ(θPL (x)) = θQM (x). Since x ∈ P ∩ Q, one has θPL (x) ∈ Q by Corollary 3.1.3. Hence 
θQM (x) ∈ σ(Q) and we deduce x ∈ σ(Q) because Ru(Q) ⊂ Ru(B) ⊂ σ(Q). Now we can 
apply the same argument to σ(Q) to show x ∈ σ2(Q). Continuing this process, we get 
x ∈ Q0. Since S ⊂ P , we also have S ⊂ L by (1). This shows (2).

To prove (3), we show first Sred ⊂ L0. It suffices to show S(k) ⊂ L0(k). Let x ∈ S(k). 
Again ϕ(θPL (x)) = θQM (x), so θQM (x) ∈ P by Corollary 3.1.3. We deduce that θPL (x) ∈
σ−1(P ) and then x ∈ σ−1(P ). Repeating the argument, we get x ∈ P0. Since S ⊂ Q0

by (2), we conclude Sred ⊂ L0. For x ∈ L0, x ∈ Sred if and only if ϕ(x) = x, so 
Sred = L0(Fq). Since the Lang–Steinberg map L0 → L0, x �→ x−1ϕ(x) is étale, it follows 
that the algebraic group S ∩ L0 = {x ∈ L0, ϕ(x) = x} is smooth, equal to the constant 
group L0(Fq), hence S ∩ L0 = Sred = L0(Fq). �
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Denote by S◦ ⊂ S is the identity component of S. Since S is a finite group-scheme 
over a perfect field, S 	 S◦ � Sred and in particular

X∗(S) 	 X∗(Sred) ×X∗(S◦). (3.2.2)

Lemma 3.2.2.

(1) If x ∈ S, then θQ0
L0

(x) ∈ Sred.
(2) One has S◦ ⊂ Ru(Q0) ∩ L.
(3) One has X∗(S◦) = 0, in particular X∗(S) = X∗(Sred) = Hom(L0(Fq), k×).

Proof. We prove first (1). Let x ∈ S be an element. One has ϕ(θPL (x)) = θQM (x) by 
definition and x ∈ Q0 ∩ L by Lemma 3.2.1(2). Hence θPL (x) = x and ϕ(x) = θQM (x). 
Using Corollary 3.1.3, we deduce

ϕ(θQ0
L0

(x)) = θQ0
L0

(ϕ(x)) = θQ0
L0

(θQM (x)) = θQM (θQ0
L0

(x)) = θQ0
L0

(x)

It follows that θQ0
L0

(x) ∈ L0(Fq) = Sred, which proves (1). We obtain a group homomor-
phism θQ0

L0
: S → Sred, which is necessarily trivial on S◦, hence S◦ ⊂ Ker(θQ0

L0
) = Ru(Q0), 

which proves (2). Finally, (3) is a direct consequence of (2). �
Define a group homomorphism ζ : X∗(L0) → X∗(L0), χ �→ χ − χ ◦ ϕ. It is clear that 

ζ is injective.

Corollary 3.2.3. Assume Pic(L0) = 0 (e.g., if the derived group of G is simply connected). 
Then one has

(1) Coker(ζ) = X∗(S).
(2) The order of X∗(S) is | det(ζ)|.

Proof. Assertion (1) follows from Corollary 2.3.3 and (2) is an immediate conse-
quence. �
Definition 3.2.4. We define the integer Nμ as the exponent of the finite group X∗(S) =
Hom(L0(Fq), k×).

Corollary 3.2.5. Assume G is split over Fq and that the derived group of G is simply 
connected. Then Nμ = q − 1.

Proof. Since G is Fq-split, one has ζ = 1 − q, so the result follows. �
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3.3. Line bundles on G-Zipμ

The first projection E → P induces an identification X∗(E) = X∗(P ) = X∗(L). 
For a character λ ∈ X∗(L), let V (λ) be the line bundle on G-ZipZ 	 [E\G] attached 
to λ via X∗(E) → PicE(G). A global section s ∈ H0(G-ZipZ , V (λ)) is a regular map 
s : Gk → A1

k satisfying the condition

s(ε · g) = λ(ε)s(g), ∀g ∈ G, ε ∈ E. (3.3.1)

Recall that UZ denotes the unique open zip stratum in G-ZipZ . Similarly, a section 
s ∈ H0(Uμ, V (λ)) is a regular map s : Gη → A1

k satisfying (3.3.1).

Lemma 3.3.1. Let λ ∈ X∗(L) be a character.

(1) One has dimk(H0(G-Zipμ, V (λ))) ≤ dimk(H0(Uμ, V (λ))) ≤ 1.
(2) The space H0(Uμ, V (Nμλ)) has dimension one.

Proof. The inclusion Uμ ⊂ G-Zipμ induces an injection H0(G-Zipμ, V (λ)) → H0(Uμ,

V (λ)). By (3.3.1), an element f ∈ H0(Uμ, V (λ)) is uniquely determined by the value of 
f at a given point of Gη, which proves (1).

The space H0(Uμ, V (λ)) is nonzero if and only if λ : L → k× is trivial on the subgroup 
S ⊂ L. Since Nμλ induces the trivial character on S, we deduce (2). �
4. Weil restriction and G-zips

4.1. Notations

Let r ≥ 1 be an integer. Let G1 be a connected reductive group over Fqr and G =
ResFqr/Fq

(G1). Let σ ∈ Gal(k/Fq) be the q-th power arithmetic Frobenius. Over k, the 
group G decomposes as a product

Gk = G1 × · · · ×Gr (4.1.1)

where Gi = σi−1(G1). The Frobenius sends Gi onto Gi+1 (indices taken modulo r).
Let μ : Gm,k → Gk be a cocharacter and Zμ := (G, P, L, Q, M, ϕ) its attached zip 

datum. Assume further that (B, T ) is an Fq-Borel pair such that B ⊂ Q. For z :=
w0w0,I , the triple (B, T, z) is an Fq-frame for Zμ (Remark 1.4.1(2)). For each � =
P, L, Q, M, B, T , one has a decomposition � =

∏r
i=1 �i. Since (B, T ) is defined over Fq, 

one has σ(Bi) = Bi+1 and σ(Ti) = Ti+1. By definition one has σ(Li) = Mi+1.
The Weyl group W := W (G, T ) decomposes into a product (as a Coxeter group)

W = W1 × · · · ×Wr,
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where Wi := W (Gi, Ti). Let w0,i be the element of maximal length in Wi. The Frobenius 
induces an automorphism of Coxeter groups of W again denoted by σ and we have 
σ(Wi) = Wi+1.

Let I be the type of P . Then IW decomposes as IW = I1W1 × · · · × IrWr where 
Ii ⊂ Δi is the type of the Pi. Then one has z = (z1, ..., zr) where zj = w0,jw0,Ij for all 
j = 1, ..., r. Using the parametrization (1.3.1), the E-orbits of codimension one in G are 
given by

Cj,α := E · (1, . . . , 1, ẇ0,j ṡαẇ0,j , 1, . . . , 1) , 1 ≤ j ≤ r, α ∈ Δj \ Ij . (4.1.2)

Remark 4.1.1. An element of E can be written in the form ((x1, . . . , xr) , (y1, y2, . . . , yr))
with xi ∈ Pi, yi ∈ Qi and ϕ(θPi

Li
(xi)) = θ

Qi+1
Mi+1

(yi+1) for all 1 ≤ i ≤ r (indices taken 
modulo r).

4.2. The zip datum Zj

For j = 1, ..., r, define parabolic subgroups in Gj by

P ′
j =

r−1⋂
i=0

σ−i(Pi+j) and Q′
j =

r−1⋂
i=0

σi(Qj−i)

where the index i of Pi, Qi is taken modulo r. Clearly B−
j ⊂ P ′

j and Bj ⊂ Q′
j since B is 

defined over Fq. The Levi subgroups of P ′
j and Q′

j containing Tj are respectively

L′
j =

r−1⋂
i=0

σ−i(Li+j) and M ′
j =

r−1⋂
i=0

σi(Mj−i)

Lemma 4.2.1. The tuple Zj := (Gj , P ′
j , L

′
j , Q

′
j , M

′
j , ϕ

r) is a zip datum over Fqr .

Proof. This follows from the relations

σrL′
j =

r−1⋂
i=0

σr−i(Li+j) =
r−1⋂
i=0

σi+1(Lj−(i+1)) =
r−1⋂
i=0

σi(Lj−i) = M ′
j . � (4.2.1)

Denote by E′
j ⊂ P ′

j × Q′
j the attached zip group. For (x, y) ∈ E′

j write x := θ
P ′

j

L′
j
(x)

and set

uj(x, y) := (ϕr−j+1(x), ..., ϕr−1(x), x, ϕ(x), . . . , ϕr−j(x)) ∈ G

vj(x, y) := (ϕr−j+1(x), ..., ϕr−1(x), y, ϕ(x), . . . , ϕr−j(x)) ∈ G

γ (x, y) := (u (x, y), v (x, y)) ∈ E.

(4.2.2)
j j j
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This gives an injective group homomorphism γj : E′
j → E. Consider Gj as a subgroup 

of G by identifying it with {1} × · · · × {1} ×Gj × {1} × · · · × {1}. Define

E(j) := {ε ∈ E, ε ·Gj = Gj}. (4.2.3)

It is clear that γj(E′
j) ⊂ E(j).

Remark 4.2.2. Let ε = ((x1, . . . , xr) , (y1, . . . , yr)) be an element of E. The following are 
equivalent.

(i) ε ∈ E(j)

(ii) There exists gj ∈ Gj such that ε · gj ∈ Gj .
(iii) xi = yi for all i 
= j.

For each 1 ≤ d ≤ r, we define a parabolic subgroups P̃d,j in Gd+j−1 and Q̃d,j in Gd+j

by intersecting Galois translates of the parabolic subgroups Pi, Qi as follows:

P̃d,j :=
r−1⋂

i=d−1

σd−i−1(Pi+j) and Q̃d,j :=
d−1⋂
i=0

σi(Qd+j−i) (4.2.4)

where the index m in Pm and Qm is taken modulo r. Note that by definition one has 
P̃1,j = P ′

j and Q̃r,j = Q′
j . One has the formulas:

P̃d,j = σ−1(P̃d+1,j) ∩ Pd+j−1 for all 1 ≤ d ≤ r − 1, for all j (4.2.5)

Q̃d,j = σ(Q̃d−1,j) ∩Qd+j for all 2 ≤ d ≤ r, for all j. (4.2.6)

Lemma 4.2.3.

(1) Let 1 ≤ j ≤ r and ε = ((x1, . . . , xr) , (y1, . . . , yr)) ∈ E(j)(k). Then for all 1 ≤ d ≤ r, 
one has xd+j−1 ∈ P̃d,j and yd+j ∈ Q̃d,j, where the index m in xm, ym is taken 
modulo r. In particular, xj ∈ P ′

j and yj ∈ Q′
j.

(2) Furthermore, one has (xj , yj) ∈ E′
j(k).

Proof. We first prove (1) by decreasing induction on d. For d = r we have xj−1 ∈ P̃r,j =
Pj−1 so there is nothing to prove. Fix an integer 1 ≤ d < r. By Remark 4.2.2 we have 
xi = yi for all i 
= j. By induction, we may assume yd+j = xd+j ∈ P̃d+1,j . Applying 
Corollary 3.1.3(1) to P̃d+1,j and Qd+j in Gd+j (both containing the torus Td+j), we 
obtain

θ
Qd+j

Md+j
(yd+j) ∈ P̃d+1,j . (4.2.7)

By definition of E, one has for all i ∈ Z
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ϕ
(
θPi

Li
(xi)

)
= θ

Qi+1
Mi+1

(yi+1). (4.2.8)

Combining (4.2.7) and (4.2.8) for i = d + j − 1, we get ϕ 
(
θ
Pd+j−1
Ld+j−1

(xd+j−1)
)
∈ P̃d+1,j . 

It follows that θPd+j−1
Ld+j−1

(xd+j−1) lies in Pd+j−1 ∩ σ−1(P̃d+1,j) = P̃d,j (because ε is a 

k-valued point). One has B−
d+j−1 ⊂ P̃d,j ⊂ Pd+j−1, so Ru(Pd+j−1) ⊂ P̃d,j . We deduce 

xd+j−1 ∈ P̃d,j , which proves the first part of (1).
The second part of (1) is proved by increasing induction on d. It is clear for d = 1. For 

1 < d ≤ r, we assume by induction yd+j−1 = xd+j−1 ∈ Q̃d−1,j . By Corollary 3.1.3(2), 
we have θPd+j−1

Ld+j−1
(xd+j−1) ∈ Q̃d−1,j . Using (4.2.8) for i = d + j−1, we find θQd+j

Md+j
(yd+j) ∈

Qd+j ∩ σ(Q̃d−1,j) = Q̃d,j . Since Ru(Qd+j) ⊂ Q̃d,j we deduce yd+j ∈ Q̃d,j , which shows 
the second part of (1).

We now prove (2). We must show ϕr
(
θ
P ′

j

L′
j
(xj)

)
= θ

Q′
j

M ′
j
(yj). For this we use again an 

auxiliary parabolic subgroup P̂d,j in Gj defined for all j and 1 ≤ d ≤ r by:

P̂d,j :=
d−1⋂
i=0

σ−i(Pi+j). (4.2.9)

Let L̂d,j the Levi subgroup of P̂d,j containing Tj . Clearly P̂1,j = Pj and P̂r,j = P ′
j . We 

use increasing induction on 1 ≤ d ≤ r to show:

ϕd
(
θ
P̂d,j

L̂d,j
(xj)

)
= θ

Q̃d,j

M̃d,j
(yd+j). (*)

Note that this makes sense because of (1). For d = 1 this is (4.2.8) for i = j. Assume 
that (*) holds for d and apply the operator ϕ ◦ θ

Pd+j

Ld+j
to (*). Using Corollary 3.1.3(4), 

(2) and the fact that xi = yi for i 
= j, we get:

ϕd+1
(
θ
P̂d+1,j

L̂d+1,j
(xj)

)
= ϕ

(
θ
Pd+j

Ld+j

(
θ
Q̃d,j

M̃d,j
(yd+j)

))

= ϕ
(
θ
Q̃d,j

M̃d,j

(
θ
Pd+j

Ld+j
(yd+j)

))

= θ
σQ̃d,j

σM̃d,j
ϕ
(
θ
Pd+j

Ld+j
(yd+j)

)

= θ
σQ̃d,j

σM̃d,j

(
θ
Qd+j+1
Md+j+1

(yd+j+1)
)

= θ
σQ̃d,j∩Qd+j+1

σM̃d,j∩Md+j+1
(yd+j+1)

= θ
Q̃d+1,j

M̃d+1,j
(yd+j+1),

which is (*) for d +1, and this proves the claim. For d = r in (*), we obtain ϕr
(
θ
P ′

j

L′
j
(xj)

)
=

θ
Q′

j

M ′
j
(yj), as desired. �
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4.3. A result on orbits

Let X denote the set of E-orbits in G, and Xj ⊂ X the set of E-orbits intersecting 
Gj ⊂ G. By equation (4.1.2), we have Cj,α ∈ Xj for all 1 ≤ j ≤ r and α ∈ Δj \ Ij . Also 
note that Gη = E · 1 ∈ Xj for all j. The set of E-orbits (resp. E′

j-orbits) is a partially 
ordered set with respect to closure relations.

Theorem 4.3.1. The map C �→ C ∩ Gj defines a bijection between Xj and the set of 
E′

j-orbits in Gj. Furthermore one has codimG(C) = codimGj
(C ∩Gj) for all C ∈ Xj.

Proof. First we prove that C ∩ Gj is an E′
j-orbit. Let u, v ∈ C ∩ Gj . We can find an 

element

ε = ((x1, . . . , xr) , (y1, . . . , yr)) ∈ E

such that ε · u = v. Then one has ε ∈ E(j) by Remark 4.2.2, so (xj , yj) ∈ E′
j by 

Lemma 4.2.3. Thus σ ∩ Gj is contained in a E′
j-orbit. Let g ∈ C ∩ Gj and (x, y) ∈ E′

j . 
Write uj := uj(x, y) and vj := vj(x, y) defined as in (4.2.2). One has (uj , vj) ∈ E(j)

and xgy−1 = ujgv
−1
j , so C ∩ Gj is exactly an E′

j-orbit. Hence the map C �→ C ∩ Gj is 
well-defined. The bijectivity is clear.

We now prove the second assertion. Let g ∈ C∩Gj and ε = ((x1, ..., xr), (y1, ..., yr)) ∈
StabE(g)(k). It follows from Lemma 4.2.3(2) that (xj , yj) ∈ StabE′

j
(g). Hence we obtain 

a homomorphism

δj : StabE(g)red → StabE′
j
(g)red, ε �→ (xj , yj). (4.3.1)

The injective homomorphism γj : E′
j → E induces a map StabE′

j
(g) → StabE(g) such 

that δj ◦γj = id, so in particular, δj is surjective. Note that Kj := Ker(δj), as a subgroup 
of E, is independent of C ∈ Xj and of g ∈ C ∩Gj . Taking g = 1, we see that Kj is finite 
because StabE(1) is. The result follows. �
4.4. Stabilizers

Define subgroups S := StabE(1) and E′
j := StabE′

j
(1). We just saw in (4.3.1) that 

there is a surjective morphism δj : Sred → (S′
j)red with finite kernel Kj . More precisely:

Lemma 4.4.1. One has Kj = 1. In particular, δj induces an isomorphism Sred → (S′
j)red.

Proof. Let ε = (x, x) ∈ Kj with x = (x1, ..., xr). By Lemma 3.2.1 (3), one has xi ∈
Li ∩Mi for all 1 ≤ i ≤ r. The condition ε ∈ E then implies ϕ(xi) = xi+1 for all i. Since 
ε ∈ Kj , we have xj = 1, so the result follows. �
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5. Hasse invariants

5.1. Main result

Let μ : Gm,k → Gk be a cocharacter and Z = (G, P, L, Q, M, ϕ) the attached zip 
datum. Let (B, T, z) be an Fq-frame for Z, with z = w0w0,I . Note that L ⊂ σ−1Q is a 
Levi subgroup, so X∗(σ−1Q) = X∗(L).

Definition 5.1.1. A character λ ∈ X∗(L) is Z-ample if one of the following equivalent 
conditions is satisfied

(i) The attached line bundle on G/σ−1Q is anti-ample.
(ii) One has 〈λ, α∨〉 < 0 for all α ∈ Δ \ σ−1J .

Let G1, G2 be connected Fq-reductive groups and μ1 ∈ X∗(G1), μ2 ∈ X∗(G2) cochar-
acters. Let f : G1 → G2 be an injective homomorphism defined over Fp. For i = 1, 2, 
write Zμi

= (Gi, Pi, Li, Qi, Mi, ϕ). Recall that f induces a homomorphism L1 → L2
(§1.4).

Lemma 5.1.2. If λ ∈ X∗(L2) is Z2-ample, then f∗(λ) ∈ X∗(L1) is Z1-ample.

Proof. Since f−1(Q1) = Q2 and since f is defined over Fp, we have an embedding 
G1/σ

−1Q1 → G2/σ
−1Q2. Hence the claim follows from (ii) of Definition 5.1.1. �

Definition 5.1.3. Let λ ∈ X∗(L) be a character. We say that a section f ∈
H0(G-Zipμ, V (λ)) is a Hasse invariant if its non-vanishing locus is exactly Uμ.

We now state the main result of this article:

Theorem 5.1.4. If λ ∈ X∗(L) is Z-ample, there exists a Hasse invariant h ∈
H0(G-Zipμ, V (Nμλ)).

We first consider the case when P = B− is a Borel, then the more general case when 
P is defined over Fq (in these cases, note that Gη coincides with the open P ×Q orbit 
in G). Then we show the result for a Weil restriction of degree r when P defined over Fqr . 
Finally we prove the general case.

5.2. The Borel case

Assume first P = B−, and thus Q = B. For χ ∈ X∗(T ), denote by L (χ) the at-
tached line bundle on G/B. If χ is B-dominant, define Vχ := H0(G/B, L (χ)). It is a 
G-representation, and it is known [3, §1, p. 654] that there is a unique B-eigenvector 
fχ ∈ Vχ, and the corresponding character is −w0χ. Thus fχ identifies with a function 
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fχ : G → A1 satisfying fχ(tugt′u′) = χ(w0tw0)χ(t′)fχ(g) for all t, t′ ∈ T , u, u′ ∈ Ru(B)
and g ∈ G. Furthermore the divisor of fχ is

div(fχ) =
∑
α∈Δ

〈χ, α∨〉Dα (5.2.1)

where Dα = Bw0sαB. The function hχ(g) := fχ(w0g) satisfies the relation

hχ(agb−1) = χ(a)χ(b)−1hχ(g) = χ(a)χ(ϕ(a))−1hχ(g) (5.2.2)

for all (a, b) ∈ E and g ∈ G. Hence hχ ∈ H0(G-Zipμ, V (λ)) for λ = χ − χ ◦ ϕ.
Now let λ ∈ X∗(T ) be Z-ample and fix m ≥ 1 such that λ is defined over Fqm . One 

has λ = χ − χ ◦ ϕ for

χ = − 1
pm − 1

(
λ + λ ◦ ϕ + ... + λ ◦ ϕm−1) ∈ X∗(T ) ⊗Q. (5.2.3)

Since λ is Z-ample, the character λ ◦ ϕr is Z-ample for all r ≥ 1, hence (pm − 1)χ is 
B-dominant regular character. It follows from the previous discussion that V ((pm−1)λ)
admits a Hasse invariant h1. Let h2 ∈ H0(Uμ, V (Nμλ)) given by Lemma 3.3.1(2). Then 
necessarily hNμ

1 = hpm−1
2 (up to a nonzero scalar) by the same lemma. Since G is normal, 

it follows that h2 extends to a Hasse invariant.

5.3. The case when P defined over Fq

Assume P is defined over Fq. Then so is Q, and M = L = P ∩ Q. Since Gη is a 
P ×Q-orbit, it is a union of B− ×B-orbits. Its complement is

G \Gη =
⋃

α∈Δ\J
w0Cα. (5.3.1)

Define χ ∈ X∗(L) ⊗Q as in (5.2.3), and χ2 := (pm−1)χ ∈ X∗(L), which is B-dominant. 
By the previous case, we can find a regular function hχ2 : G → A1 whose divisor is

div(hχ2) =
∑
α∈Δ

〈χ2, α
∨〉w0Dα =

∑
α∈Δ\J

〈χ2, α
∨〉w0Dα. (5.3.2)

Since λ is Z-ample, −χ2 is Z-ample, hence 〈χ2, α∨〉 > 0 for all α ∈ Δ \ J . We claim 
that hχ2 is a section of V ((pm − 1)λ). Since div(hχ2) is E-equivariant, it follows from 
[13, §1] that hχ2 is an E-eigenfunction, i.e. there is a character θ ∈ X∗(L) such that 
hχ2(agb−1) = θ(a)hχ2(g) for all (a, b) ∈ E and g ∈ G. Taking a, b ∈ T and comparing 
with (5.2.2) shows θ = χ2 − χ2 ◦ ϕ = (pm − 1)λ, which proves the claim. Hence hχ2 ∈
H0(G-Zipμ, V ((pm − 1)λ) is a Hasse invariant. Finally, we conclude as in the Borel case 
that V (Nμλ) admits a Hasse invariant too.
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5.4. The Weil restriction case

Let G = ResFqr/Fq
(G1) as in §4.1 and retain the notations therein. For λ ∈ X∗(L), 

denote by λj ∈ X∗(Lj) the character induced by the inclusion Lj → L. Let λ =
(λ1, ..., λr) ∈ X∗(L) and f ∈ H0(UZ , V (λ)) nonzero (hence non-vanishing). Since Gη∩Gj

is the open E′
j-orbit in Gj (Lemma 4.3.1), f restricts to a non-vanishing section fj over 

UZj
of a certain line bundle, determined in the next proposition.

Proposition 5.4.1. Let λ ∈ X∗(L) and f ∈ H0(UZ , V (λ)).

(1) One has fj ∈ H0(UZj
, V (λ′

j)), for λ′
j :=

∑r−1
i=0 λi+j ◦ ϕi ∈ X∗(L′

j) (indices taken 
modulo r).

(2) f extends to G-ZipZ if and only if fj extends to Gj-ZipZj for all 1 ≤ j ≤ r.
(3) f extends to a Hasse invariant if and only if fj does for all 1 ≤ j ≤ r.

Proof. We prove (1). Consider the map γj : E′
j → E defined in (4.2.2). For all εj =

(aj , bj) ∈ E′
j and gj ∈ Gj , note that εj · gj = γj(ε) · gj . Hence fj satisfies fj(εj · gj) =

f(γj(ε) · gj) = λ(γj(ε))f(gj) = λ(γj(ε))fj(gj). Since λ′
j = λ ◦ γj , the result is proved.

We can write div(f) =
∑r

j=1
∑

α∈Δj\Ij nj,αCj,α with nj,α ∈ Z, using the notation 
introduced in (4.1.2). Since C ′ := Cj,α ∩ Gj is a codimension one E′

j-orbit, the sign of 
nj,α is the same as the sign of the multiplicity of fj along C ′. This proves assertions (2) 
and (3). �
Lemma 5.4.2. Let λ ∈ X∗(L) be a Z-ample character. Then λ′

j is Zj-ample.

Proof. Let α ∈ Δj\Ij . One has 〈λ′
j , α

∨〉 =
∑r−1

i=0 〈λi+j◦ϕi, α∨〉 =
∑r−1

i=0 pi〈λi+j , σi(α∨)〉. 
All the summands are non-positive numbers and 〈λj, α∨〉 < 0, hence the result. �
Corollary 5.4.3. Assume that P1, ..., Pr are defined over Fqr . If λ ∈ X∗(L) is Z-ample, 
there exists a Hasse invariant h ∈ H0(G-Zipμ, V (Nμλ)).

Proof. Let h ∈ H0(UZ , V (Nμλ)) denote the section of Lemma 3.3.1(2). Using Propo-
sition 5.4.1, we need to show that hj ∈ H0(UZj

, V (λ′
j)) extends to Gj-ZipZj . By 

Lemma 5.4.2, λ′
j ∈ X∗(L′

j) is Zj-ample. Since Zj is a zip datum over Fqr , and P ′
j is 

defined over Fqr by assumption, the result follows from the previous case (§5.3). �
5.5. The general case

Let G be a connected reductive Fq-group, μ : Gm,k → Gk a cocharacter, and Z =
(G, P, L, Q, M, ϕ) its zip datum over Fq. Assume (B, T, z) is an Fq-frame with z = w0w0,I . 
Fix r ≥ 1 such that P is defined over Fqr . Define G̃ := ResFqr/Fq

(G) and identify Gk with 
Gk × ... × Gk. Consider the diagonal embedding ι : G → G̃. The cocharacter μ̃ := ι ◦ μ
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defines a zip datum Z̃ = (G̃, P̃ , L̃, Q̃, M̃, ϕ), where P̃ = P × ... × P and similarly for 
L, Q, M .

Similarly we define T̃ := T × ... × T , B̃ := B × ... × B and z̃ := (z, ..., z). Then 
(B̃, T̃ , ̃z) is an Fq-frame for Z̃. The embedding ι induces naturally a morphism of stacks 
ι# : G-Zipμ → G̃-Zipμ̃. Zip strata in G̃ are parametrized by the set ĨW̃ := IW×... ×IW , 
where I is the type of P . Using (1.3.1), it is clear that ι# induces the diagonal embedding 
IW → ĨW̃ on zip strata. In particular:

Lemma 5.5.1. One has (ι#)−1(Uμ̃) = Uμ.

If λ̃ = (λ1, ..., λr) ∈ X∗(L̃), then one has (ι#)∗(V (λ̃)) = V (λ1 + ... + λr). Hence 
Lemma 5.5.1 implies that the restriction of a Hasse invariant for the weight λ̃ is a Hasse 
invariant for the weight λ1 + ... + λr.

Let λ ∈ X∗(L) be a Z-ample character and set λ̃ := (λ, ..., λ). It is clearly Z̃-ample. 
Since P̃ is defined over Fqr , Corollary 5.4.3 implies that there exists a Hasse invariant 
h̃ for V (Nμ̃λ̃)). Its restriction to G-Zipμ is a Hasse invariant for the weight rNμ̃λ. 
As before, we conclude that there is also a Hasse invariant for the weight Nμλ. This 
terminates the proof of Theorem 5.1.4.

5.6. Shimura varieties of Hodge-type

Let (G, X) be a Shimura datum of Hodge type with reflex field E, given by a reductive 
group G over Q and a G(R)-conjugacy class of morphisms S → GR. For h0 ∈ X, define 
μ0 : Gm,C → GC as μ0(z) = h0,C(z, 1) using the identification SC 	 Gm,C ×Gm,C given 
by z �→ (z, z) on R-points.

Fix a prime number p such that GQp
is unramified and let G be a reductive Zp-model 

of GQp
. Fix a neat compact open subgroup K ⊂ G(Af ) such that K = KpKp with 

Kp ⊂ G(Ap
f ) and Kp = G(Zp). Let ShK(G, X) denote the attached Shimura variety 

over E. For a prime p of E above p, there is a smooth canonical OE,p-model SK of 
ShK(G, X), by [19] and [12].

Let SK := SK ⊗OE,p
κ(p) be its special fiber, where κ(p) is the residual field of p. The 

conjugacy class of μ0 can be lifted to G, and there exists a representative μ defined over 
OEp

because G is quasi-split. Define G := G ⊗Zp
Fp and write again μ ∈ X∗(G) for the 

induced cocharacter.
Let f : A → SK be the universal abelian scheme obtained by pull-back from the 

Siegel-type Shimura variety. The de Rham cohomology H1
dR(A/SK) together with its 

Hodge filtration and conjugate filtration define naturally a G-zip over SK [22, Th. 2.4.1]. 
This induces a smooth morphism of stacks [22, Th. 3.1.2]

ζ : SK −→ G-Zipμ. (5.6.1)
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The geometric fibers of ζ are the Ekedahl–Oort strata of SK . In particular, the open 
stratum SK,μ := ζ−1(Uμ) is called the μ-ordinary locus of SK . The Hodge line bundle 
of SK is defined as

ω := f∗(det(ΩA /SK
)). (5.6.2)

It is ample on SK by [15]. Denote by P ⊂ GQ the parabolic subgroup attached to 
(G, μ0). For a character λ ∈ X∗(P), there is an automorphic line bundle VK(λ) on SK

attached to λ and its special fiber coincides with the line bundle ζ∗(V(λ)). Furthermore, 
there exists a character λω ∈ X∗(P) such that ω = V(λω). Denote by Nμ the integer 
defined in §3.3.

Corollary 5.6.1. There exists a section hK ∈ H0(SK , ωNμ) whose non-vanishing locus is 
SK,μ.

Proof. It suffices to check that λω is Z-ample. This is clear for Siegel-type Shimura 
varieties. The general Hodge-type case then follows from Lemma 5.1.2. �
Remark 5.6.2. The section hK coincides with the one constructed by W. Goldring and the 
first author as a special case of [6, Cor. 4.2.3] since the k-vector space H0(G-Zipμ, V (λ))
has at most dimension 1 for all λ ∈ X∗(L) (Lemma 3.3.1(2)).

Let Smin
K denote the minimal compactification of SK constructed by Madapusi Pera 

and let Smin
K denote its special fiber. By [14], the Hodge bundle ω extends naturally to an 

ample line bundle on Smin
K , which we continue to denote by ω. We make the assumption 

that Gad has no factor isomorphic to PGL2,Q. In this case, the boundary of Smin
K has 

codimension > 2. By normality of Smin
K , the section hK extends uniquely to a section 

of ωNμ over Smin
K . Define the μ-ordinary locus Smin

K,μ as the non-vanishing locus of this 
extension. Since Smin

K is projective, we deduce:

Corollary 5.6.3. The μ-ordinary locus Smin
K,μ is affine.

5.7. Calculation of Nμ for Shimura varieties of PEL type

We now calculate the integer Nμ for pairs (G, μ) defined by a Shimura datum of PEL 
type with G connected. Retain the notation of §3.2. Recall that Nμ is the exponent of 
X∗(S) = Hom(L0(Fp), k×) (Definition 3.2.4). The classification of PEL data (see e.g., 
[20, 2.2 and 2.3]) shows that there is an exact sequence

1 →
m∏
i=1

Gi → G
η−→ Gm,Fp

→ 1,

where each group Gi is one of the following reductive groups.
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(AL) ResFpr/Fp
GLn,

(AU) ResFpr/Fp
U(n),

(C) ResFpr/Fp
Sp2g.

Concretely one often has m = 1, which we will assume for simplicity. Hence we have an 
exact sequence

1 → G1 → G
η−→ Gm,Fp

→ 1, (5.7.1)

where G1 = ResFpr/Fp
G′ for G′ ∈ {GLn, U(n), Sp2g}. Any Levi Fp-subgroup of G1 is 

of the form ResFpr/Fp
L′ for some Levi Fpr -subgroup L′ ⊂ G′. In particular, there exists 

a Levi Fpr -subgroup L′
0 of G′ such that L0 ∩ G1 = ResFpr/Fp

L′
0. As finite fields are of 

cohomological dimension 1 we have an exact sequence

1 → L′
0(Fpr) → L0(Fp) → F×

p → 1. (5.7.2)

The case G′ = GLn. In this case the sequences (5.7.1) and (5.7.2) split and L′
0 is 

a product of general linear groups. Hence the abelianization L′(Fpr)ab of L′(Fpr) is a 
product of copies of F×

pr except if one of the general linear groups is GL2, p = 2, and r = 1
(GL2(F2) is isomorphic to the symmetric group S3 and GL2(F2)ab has 2 elements). The 
exponent of Hom(L′

0(Fpr), k×) is the same as that of the prime-to-p-part of L′(Fpr)ab, 
which is pr − 1 in any case. As (5.7.2) splits, Nμ = lcm(pr − 1, p − 1) = pr − 1.

The case G′ = U(n). In this case L0 is isomorphic to a product of groups of the form 
H := ResFp2r/Fp

(GLd) and at most one group M whose Fp-valued points are given by

M(Fp) = {g ∈ GU(V, φ), η(g) ∈ F×
p },

where (V, φ) is an hermitian space over Fpr . By the first case, the exponent of X∗(H(Fp))
is p2r − 1 for each such group H. Over k, one has Mk 	 GLm × ... ×GLm ×Gm. Hence 
X∗(M) identifies naturally with Zr+1 such that (a1, ..., an, b) ∈ Zr+1 corresponds to 
the character (A1, ..., Ar, λ) �→ λb

∏
i det(Ai)ai . The Galois action on X∗(M) is given 

by σ(a1, ..., ar, b) = (−ar, −a1, ..., −ar−1, b). It follows from Corollary 2.3.3 that the 
exponent of X∗(M(Fp)) is pr − (−1)r. Hence Nμ = lcm(pr − (−1)r, p2r − 1) = p2r − 1.

The case G′ = Sp2g. We first claim that again (5.7.2) splits (although (5.7.1) usually 
does not split in this case). Let V be a symplectic space of dimension 2g over Fpr . Then 
(5.7.1) is on Fp-valued points the exact sequence

1 → Sp(V ) → {g ∈ GSp(V ), η(g) ∈ F×
p } → F×

p → 1,

where η is the multiplier homomorphism. There is only one proper parabolic sub-
group given by a minuscule cocharacter for group of Dynkin type C, namely the Siegel 
parabolic. Hence L0 is the subgroup of symplectic similitudes V → V that preserve a de-
composition V = U1⊕U2, where U1 and U2 are totally isotropic subspaces of dimension g, 
hence
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L0(Fp) = {(g1, g2) ∈ GL(U1)(Fpr) ×GL(U2)(Fpr), g1g
−1∗
2 ∈ F×

p idU1}

where ( )∗ denotes the duality of U1 and U2 induced by to the symplectic pairing. One 
has GL(U1)(Fpr ) ∼= L′

0(Fp) by g1 �→ (g1, g
−1∗
1 ). Therefore a splitting of (5.7.2) is given 

by F×
p → L0(Fp), α �→ (α idU1 , idU2).

As above, we deduce Nμ = pr − 1.

Remark 5.7.1. In the unitary case, the integer Nμ = p2r − 1 agrees with the results 
of [8]. One can show that the Hasse invariant of Corollary 5.6.1 coincides with those of 
[8] and [4].
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