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A fascinating problem on digraphs is the existence problem 
of the finite upper bound on s for all vertex-primitive s-arc-
transitive digraphs except directed cycles (which is known to 
be reduced to the almost simple groups case). In this paper, 
we prove that s ≤ 2 for all vertex-primitive s-arc-transitive 
digraphs for almost simple groups with socles alternating 
groups except one case.
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1. Introduction

A digraph (directed graph) Γ is a pair (V Γ, →) with vertex set V Γ and an antisym-
metric irreflexive binary relation → on V Γ . All digraphs considered in this paper are 
finite. For a positive integer s, an s-arc of Γ is a sequence v0, v1, . . . , vs of vertices such 
that vi → vi+1 for each i = 0, 1, . . . , s − 1. A 1-arc is also simply called an arc. A transi-
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tive permutation group G is primitive on a set Ω if G preserves no nontrivial partition 
of Ω (or equivalently, the point stabilizer of G is maximal in G). For an automorphism 
group G of Γ , we call that Γ is (G, s)-arc-transitive if G is transitive on the set of s-arcs 
of Γ , and Γ is G-vertex-primitive if G is primitive on the vertex set of Γ . It is easy to 
see that s-arc-transitive digraphs with s ≥ 2 are necessarily (s − 1)-arc-transitive.

In sharp contrast with the undirected graphs (where a well known result of Weiss 
[21] states that finite undirected graphs other than cycles can only be s-arc-transitive 
for s ≤ 7), Praeger [19] proved that there are infinite many s-arc-transitive digraphs 
for unbounded s other than directed cycles. This interesting gap stimulated a series of 
constructions [6,7,10,17] for such digraphs (which are called highly transitive digraphs
in the literature). However, finding vertex-primitive s-arc-transitive digraphs with s ≥ 2
seems to be a very intractable problem; in a survey paper of Praeger [20] in 1990, she said 
“no such examples have yet been found despite considerable effort by several people”. The 
existence problem of vertex-primitive 2-arc-transitive digraphs besides directed cycles 
has been open until 2017 by Giudici, Li and Xia [11] by constructing an infinite family 
of such digraphs with valency 6, and no vertex-primitive 3-arc-transitive digraphs have 
been found yet. These naturally motivate the following interesting problem (posted by 
Giudici, Li and Xia [11]).

Question A. Is there an upper bound on s for all vertex-primitive s-arc-transitive di-
graphs that are not directed cycles?

A group G is said to be almost simple if there is a nonabelian simple group T such 
that T � G ≤ Aut(T ). A systematic investigation of the O’Nan-Scott types of primitive 
permutation groups has reduced Question A to the almost simple case by proving that 
an upper bound on s for vertex-primitive s-arc-transitive digraphs Γ with AutΓ almost 
simple will be an upper bound on s for all vertex-primitive s-arc-transitive digraphs, see 
[13, Corollary 1.6]. Thus a reasonable strategy for Question A is to investigate the upper 
bound of s for all almost simple groups (the sporadic simple groups case can generally 
be done especially with the help of the computer program). In this paper, we will do this 
for almost simple groups with socle alternating groups. The main result is as follows.

Theorem 1.1. Let Γ be a vertex-primitive s-arc-transitive digraph, with AutΓ an almost 
simple group of socle An, and v a vertex of Γ . Then either

(1) s ≤ 2; or
(2) (Am �Sk) ∩G ≤ Gv ≤ (Sm �Sk) ∩G with m ≥ 8, k > 1 and n = mk, mk or (m!/2)k−1.

We remark that characterizations for part (2) have been given in Lemmas 5.1–5.4
below, which actually shows s ≤ 2 except one case.

The layout of this paper is as follows. We give some background results in Section 2. 
For the digraphs in Theorem 1.1, the vertex stabilizers of the automorphism groups 
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satisfy parts (a)-(f) of Theorem 2.4 below. Parts (a) and (c) are investigated in Section 3, 
part (d) is considered in Section 4, and the remaining wreath product cases are treated 
in Section 5. We complete the proof of Theorem 1.1 in Section 6.

2. Background results

We fix the following notations in the subsequent sections, where G is a group, n is a 
positive integer and p is a prime.

π(G): the set of prime divisors of the order of G.
π(n): the set of prime divisors of n.
np: the maximal power of p dividing n.
Sym(Δ): the symmetric group on a set Δ.
soc(G): the socle of G, namely the product of all minimal normal subgroups of G.
G(∞): the smallest term of the derived subgroups series of G.

The following result is a consequence (also easy to prove directly) of the so-called 
Legendre’s formula, which will be used repeatedly in this paper.

Lemma 2.1. For each positive integer n and prime p, we have (n!)p < p
n

p−1 .

For positive integers a, m ≥ 2, a prime r is called a primitive prime divisor of am − 1
if r divides am − 1 but not divides ai − 1 for each i = 1, 2, . . . , m − 1. The next is a 
well-known theorem of Zsigmondy (see [2, Theorem IX.8.3]), where the last statement 
follows easily by the Fermat’s Little Theorem.

Lemma 2.2. For positive integers a, m ≥ 2, am − 1 has a primitive prime divisor r if 
(a, m) �= (2, 6) and (2e − 1, 2) with e ≥ 2 an integer. Moreover, r ≡ 1(mod m), and in 
particular r > m.

The next proposition is obtained by Liebeck, Praeger and Saxl, see [16, P. 296, Corol-
lary 5].

Proposition 2.3. Let G be an almost simple group with socle T . Suppose that L is a 
subgroup of G such that π(T ) ⊆ π(L). Then either

(i) T ⊆ L; or
(ii) the possibilities for T and L are given in Table 1.

The maximal subgroups of alternating and symmetric groups are determined by 
Liebeck, Praeger and Saxl [14], providing a starting point of this paper.
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Table 1
Subgroups L with π(T ) ⊆ π(L) and T�L.

Row T L ∩ T Remark
1 Am Al � L ≤ Sl × Sc−l p prime, p < m ⇒ p ≤ l

2 PSp2m(q) (m, q even) L � Ω−
2m(q)

3 PΩ2m+1(q) (m even, q odd) L � Ω−
2m(q)

4 PΩ+
2m(q) (m even) L � Ω2m−1(q)

5 PSp4(q) L � PSp2(q
2)

6 PSL2(p) (p = 2m − 1) L ≤ Zp : Zp−1 G = T.2
7 A6 PSL(2, 5)
8 PSL2(8) 7.2, P1 G = T.3
9 PSL3(3) 13 : 3 G = T.2
10 PSL6(2) P1, P5,PSL5(2)
11 PSU3(3) PSL2(7)
12 PSU3(5) A7
13 PSU4(2) L ≤ 24.A5 or S6
14 PSU4(3) PSL3(4),A7
15 PSU5(2) PSL2(11)
16 PSU6(2) M22
17 PSp4(7) A7
18 Sp4(8)

2B2(8) G = T.3
19 Sp6(2) S8,A8, S7,A7
20 PΩ+

8 (2) L ≤ Pi (i = 1, 3, 4),A9
21 G2(3) PSL2(13)
22 2F4(2)′ PSL2(25)
23 M11 PSL2(11)
24 M12 M11,PSL2(11)
25 M24 M23
26 HS M22
27 McL M22
28 Co2 M23
29 Co3 M23

Theorem 2.4. Let G = An or Sn, and H �= An a maximal subgroup of G. Then H
satisfies one of the following:

(a) H = (Sm × Sk) ∩G, with n = m + k and m < k (intransitive case);
(b) H = (Sm � Sk) ∩G, with n = mk, m > 1 and k > 1 (imprimitive case);
(c) H = AGL(k, p) ∩G, with n = pk and p prime (affine case);
(d) H = (T k.(Out(T ) ×Sk)) ∩G, with T a nonabelian simple group, k > 1 and n = |T |k−1

(diagonal case);
(e) H = (Sm � Sk) ∩G, with n = mk, m ≥ 5 and k > 1 (wreath case);
(f) T �H ≤ Aut(T ), with T a nonabelian simple group, T �= An and H acts primitively 

on Ω (almost simple case).

The following result presents a necessary and sufficient condition of s-arc-transitivity 
of digraphs, refer to [13, Lemma 2.2].

Lemma 2.5. Let Γ be a digraph, and v0 → v1 → · · · → vs−1 → vs be an s-arc of Γ with 
s ≥ 2. Suppose G ≤ AutΓ acts arc-transitively on Γ . Then G acts s-arc-transitively on 
Γ if and only if

Gv1v2...vi
= Gv0v1...vi

Gv1...vivi+1 , for each i ∈ {1, 2, . . . , s− 1}.
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For a group G, an expression G = HK with H and K subgroups of G is called a 
factorization of G, and H and K are called factors of G. In particular, G = HK is 
called a homogeneous factorization if H is isomorphic to K, and is called a maximal 
factorization if both H and K are maximal subgroups of G.

Lemma 2.6. ([12, Proposition 3.3]) Let G be an almost simple group with socle T . Suppose 
G = AB is a homogeneous factorization. Then one of the following holds.

(a) Both A and B contain T .
(b) A and B are almost simple groups with socles both isomorphic to S, and (T, S) is 

listed in the following table, where q is a prime power and f ≥ 2.

T A6 M12 Sp4(2
f ) PΩ+

8 (q)

S A5 M11 Sp2(4
f ) Ω7(q)

Lemma 2.7. ([12, Lemma 3.5]) Let R � Sk be a wreath product with base group M =
R1 × · · · × Rk, where R1 ∼= · · · ∼= Rk

∼= R, and T � Sk ≤ G ≤ R � Sk with T ≤ R. 
Suppose G = AB is a homogeneous factorization of G such that A is transitive on 
{R1, . . . , Rk}. Denote by φi(A ∩ M) the projection of A ∩M on Ri for i = 1, 2, . . . , k. 
Then φ1(A ∩M) ∼= · · · ∼= φk(A ∩M) and π(T ) ⊆ π(φ1(A ∩M)).

Lemma 2.8. Let G be an almost simple group with socle T = PSLk(q), where k ≥ 2
and q = pe is a prime power. If G = HK with H and K subgroups of G such that 
π(H) ∩ π(K) ⊇ π(G) \ π(p(p − 1)), then either

(i) at least one of H and K contains T ; or
(ii) k = 2 and q = 2e − 1 ≥ 7 is a Mersenne prime.

Proof. Let H0 and K0 be maximal subgroups of G containing H and K, respectively. 
Then G = H0K0 is a maximal factorization. Such factorizations for G being an almost 
simple group with socle PSL(d, q) are classified in [15, TABLE 1]. By checking the list, 
the lemma follows. �

We give an observation to end this section. Denote by val(Γ ) the out-valency of a 
regular digraph Γ .

Lemma 2.9. Let Γ be a (G, s)-arc-transitive digraph with G ≤ AutΓ and s ≥ 1. Then 
val(Γ )s | |Gv| for each v ∈ V Γ .

Proof. Set m = val(Γ ), and let v = v0 → v1 → · · · → vs be an s-arc of Γ . Since 
Γ is (G, s)-arc-transitive, Gv0v1...vi−1 is transitive on the out-neighbor set Γ+(vi−1) :=
{u ∈ V Γ | vi−1 → u} for each i = 1, 2, . . . , s. Then since |Γ+(v)| = val(Γ ) = m, we 



80 J. Pan et al. / Journal of Algebra 544 (2020) 75–91
deduce |Gv0v1...vi−1 : Gv0v1...vi
| = m. It follows |Gv| = |Gv0 | = ms|Gv0v1...vs

|, and hence 
val(Γ )s | |Gv|. �
3. Subgroups (a) and (c)

For convenience, we make the following hypothesis.

Hypothesis 3.1. Let Γ be a G-vertex-primitive (G, s)-arc-transitive digraph with val(Γ )
≥ 3, where s ≥ 1 and G = An or Sn with n ≥ 5 is an automorphism group of Γ . Take 
an arc u → v of Γ , and let g ∈ G such that ug = v and set w = vg. Then u → v → w is 
a 2-arc of Γ . Set Ω = {1, 2, . . . , n}. Then G acts naturally on Ω.

Under Hypothesis 3.1, Gvw = Gg
uv and Gv is a maximal subgroup of G. Hence Gv

satisfies one of parts (a) − (f) of Theorem 2.4. In this section, we suppose Hypothesis 3.1
holds and investigate the cases where Gv satisfies parts (a) and (c).

Lemma 3.2. Suppose Gv satisfies part (a) of Theorem 2.4. Then s = 1.

Proof. Suppose for a contradiction that s ≥ 2. By assumption, Gv
∼= (Sm×Sk) ∩G with 

n = m +k and m < k. If m = 1, G is 2-transitive on V Γ , so Γ is an undirected complete 
graph, a contradiction.

Thus assume m ≥ 2 in the following. Notice that G has a unique conjugacy class of 
(Sm × Sk) ∩G, the action of G on V Γ is permutation equivalent to the natural induced 
action of G on Ω{m}, the set of m-subsets of Ω. We may thus identify V Γ with Ω{m}

and set v = Δ := {1, 2, . . . , m}. Then Gv = (Sym{1, . . . , m} × Sym{m + 1, . . . , n}) ∩G. 
Let φ be the projection of Gv on Sym{m + 1, . . . , n}. It is easy to see that φ(Gv) =
Sym{m + 1, . . . , n}.

Since w = Δg �= Δ, we may assume Δg ∩ {m + 1, . . . , n} = {h1, . . . , hl} and 
Δg−1 ∩ {m + 1, . . . , n} = {k1, . . . , kl}, with 1 ≤ l ≤ m. Since s ≥ 2, Gv = GuvGvw

by Lemma 2.5, hence φ(Gv) = φ(Guv)φ(Gvw). Consequently, we obtain the following 
homogeneous factorization

Sym{m + 1, . . . , n} = (Sym{k1, . . . , kl} × Sym({m + 1, . . . , n} \ {k1, . . . , kl})) ·

(Sym{h1, . . . , hl} × Sym({m + 1, . . . , n} \ {h1, . . . , hl})) (1)

If n − m ≤ 4, as 2 ≤ m < k = n − m, we have n − m = 3 or 4, and one easily 
verifies Equation (1) is impossible in the case, a contradiction. Suppose n − m ≥ 5, 
by Lemma 2.6, the only possibility is n − m = 6 and l = 1 or 5. Then Equation (1)
leads to

Sym{m + 1, . . . ,m + 6} = Sym{i1, . . . , i5}Sym{j1, · · · , j5},
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where {i1, . . . , i5} and {j1, . . . , j5} are distinct subsets of {m +1, . . . , m +6}. Noting that 
Sym{i1, . . . , i5} ∩ Sym{j1, · · · , j5} ≤ S4, we derive that Sym{i1, . . . , i5}Sym{j1, · · · , j5}
is of order divisible by 25, which is a contradiction as 25 � | |S{m+1,...,m+6}|. �
Lemma 3.3. Suppose Gv satisfies part (c) of Theorem 2.4. Then s = 1.

Proof. Suppose for a contradiction that s ≥ 2. By assumption, Gv
∼= AGL(k, p) ∩G with 

n = pk and p a prime, so soc(Gv) ∼= Zk
p. If k = 1, then Zp : Z(p−1)/2 ≤ Gv ≤ Zp : Zp−1, 

and as Gv = GuvGvw and Gvw = Gg
uv, we have soc(Guv) = soc(Gvw) = soc(Gv) ∼= Zp. 

It follows

(soc(Gv))g = (soc(Guv))g = soc(Gg
uv) = soc(Gvw) = soc(Gv). (2)

Consequently, soc(Gv) � G as 〈Gv, g〉 = G, hence G acts unfaithfully on V Γ , a contra-
diction. If k ≥ 2, since n ≥ 5, (k, p) �= (2, 2). If (k, p) = (2, 3), then Gv

∼= Z2
3 : 2A4

or Z2
3 : 2S4, a direct computation by Magma [3] shows that Gv has no homogeneous 

factorization Gv = GuvGvw with |Gv : Guv| ≥ 3, a contradiction.
Thus assume in the following that k ≥ 2, and (k, p) �= (2, 2) and (2, 3). Then Gv

is insoluble. Let M be a normal subgroup of AGL(k, p) such that M ∼= Zk
p : Zp−1, 

and set Gv = GvM/M , Guv = GuvM/M and Gvw = GvwM/M . Then Gv is almost 
simple with soc(Gv) ∼= PSLk(p). Since Gv = GuvGvw and Guv

∼= Gvw, we conclude 
π(Guv) = π(Gvw) = π(Gv) and Gv = GuvGvw. It follows

π(Guv) ∩ π(Gvw) ⊇ (π(Guv) ∩ π(Gvw)) \ π(M) ⊇ π(Gv) \ π(p(p− 1)).

By Lemma 2.8, either

(i) at least one of Guv and Gvw contains soc(Gv); or
(ii) k = 2 and p = 2e − 1 ≥ 7 is a Mersenne prime.

First assume case (i) occurs. Without loss of generality, we may suppose Guv ⊇
soc(Gv). Since Gv is almost simple, soc(Guv) = soc(Gv) ∼= PSLk(p). Then as

(M ∩Gvw).Gvw
∼= Gvw

∼= Guv
∼= (M ∩Guv).Guv,

and M is soluble, both Guv and Gvw have the same unique insoluble composition factor 
PSLk(p). Since

Gvw/(Gvw ∩ soc(Gv)) ∼= Gvwsoc(Gv)/soc(Gv) ≤ Gv/soc(Gv)

is soluble, PSLk(p) is a composition factor of Gvw ∩ soc(Gv), we further conclude 
soc(Gvw) = soc(Gv) as Gv is almost simple.
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If both Guv and Gvw have nontrivial intersections with soc(Gv), then Guv ∩ soc(Gv)
has a subgroup 〈a1〉 ∼= Zp, and there exist a2, . . . , ak such that soc(Gv) = 〈a1〉 × · · · ×
〈ak〉 ∼= Zk

p. Set Δ = {〈a1〉, 〈a2〉, . . . , 〈ak〉}. Since soc(Gv) is the unique minimal normal 
subgroup of ASL(k, p), SL(k, p) and so PSLk(p) acts transitive on Δ (note that the 
center Z(SL(k, p)) acts trivially on Δ), we conclude soc(Guv) = soc(Gv) because Guv ⊇
PSLk(p). Similarly, one has soc(Gvw) = soc(Gv). It then follows from Equation (2) that 
soc(Gv) � G, hence G acts unfaithfully on V Γ , a contradiction.

Suppose one of Guv and Gvw, say Guv, has trivial intersection with soc(Gv). Then 
Guv ≤ GL(d, p), and as Gv = GuvGvw and Guv has a composition factor isomorphic 
to PSL(d, p), one easily derives |Guv : Guv ∩ Gvw| = rpd and G(∞)

uv
∼= SL(d, p), where 

r | p − 1. If d = 2, then |Guv|p = |PSL(2, p)|p = p, so Guv has no subgroup with 
index rp2, a contradiction. Suppose d � 4. Let L = Guv/Z(Guv) and R = (Guv ∩
Gvw)Z(Guv)/Z(Guv). Then soc(L) ∼= PSL(d, p) and |L:R| = r1p

d with r1 | r. Observe 
that |PSL(d, p)| is divisible by (p − 1)2 and |PSL(d, p)|p = pd(d−1)/2 > pd, we conclude 
that π(L) = π(R). It then follows from Proposition 2.3 that soc(L) = PSL(6, 2), namely 
(d, p) = (6, 2). Consequently, we have Guv

∼= PSL(6, 2), which is a contradiction as 
PSL(6, 2) has no subgroup of index 26.

Therefore, d = 3 and G(∞)
uv

∼= SL(3, p). Let M be a maximal subgroup of G(∞)
uv

containing G(∞)
uv ∩ Gvw. Since |G(∞)

uv : G(∞)
uv ∩ Gvw| divides |Guv : Guv ∩ Gvw|, we have 

|G(∞)
uv :M | = r2p

e, where r2 | p − 1 and 0 ≤ e ≤ 3. If e ≤ 2, then |G(∞)
uv /Z(G(∞)

uv ) :
MZ(G(∞)

uv )/Z(G(∞)
uv )| divides (p − 1)p2. Since

|G(∞)
uv /Z(G(∞)

uv )| = |PSL(3, p)| = 1
(3, p− 1)p

3(p− 1)2(p + 1)(p2 + p + 1),

one easily sees that |G(∞)
uv /Z(G(∞)

uv )| is divisible by (p − 1)2, hence π(G(∞)
uv /Z(G(∞)

uv )) =
π(MZ(G(∞)

uv )/Z(G(∞)
uv )). By Proposition 2.3, we obtain MZ(G(∞)

uv ) = G
(∞)
uv (notice 

that G(∞)
uv /Z(G(∞)

uv ) ∼= PSL(3, 3) is not the case), so the commutator subgroup M ′ =
(G(∞)

uv )′ = G
(∞)
uv , a contradiction. Hence |G(∞)

uv : M | = r2p
3. Checking the maximal sub-

groups of SL(3, p), refer to [4, Tables 8.3, 8.4], the only possibility is M ∼= Zp2+p+1:Z3, so 

|G(∞)
uv :M | = p3 · (p2−1)(p−1)

3 . Then since |G(∞)
uv :M | divides p3(p −1), it follows that p = 2, 

Gv
∼= AGL(3, 2) and Guv

∼= Gvw
∼= GL(3, 2). However, in this case, |V Γ | = |G : Gv| = 15

and |val(Γ )| = |Gv : Guv| = 8 > |V Γ |/2, so Γ is an undirected graph, again a contradic-
tion.

Now assume case (ii) occurs. Then Gv
∼= PSL2(p).o with o = 1 or Z2, and we may 

assume none of Guv and Gvw contains soc(Gv) by (i). Since Gv = GuvGvw, we have 
(interchange Guv and Gvw if necessary) Guv ≤ Zp : Z p−1

2
.o, hence |Guv|2 ≤ |o| as 

p = 2e − 1. Since Guv
∼= Guv/(Guv ∩M), we have |Guv|2 ≤ |M |2|o| = 2|o|. It follows

2e+1|o| = 2|PSL2(2e − 1).o|2 = |Gv|2 ≤ |Guv|22 ≤ 4|o|2 ≤ 8|o|,

implying e ≤ 2 and so p ≤ 3, also a contradiction. �
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4. Subgroups (d)

Suppose Hypothesis 3.1 holds. In this section, we consider that case where Gv satisfies 
part (d) of Theorem 2.4, namely

Gv = (T k.(Out(T ) × Sk)) ∩G,

with T a nonabelian simple group, k ≥ 2 and n = |T |k−1.
Let M be a normal subgroup of T k.(Out(T ) × Sk) isomorphic to T k.Out(T ). Set 

Gv = GvM/M , Guv = GuvM/M and Gvw = GvwM/M . Notice that T � Ak = T k :
Ak ≤ Gv ≤ Aut(T ) � Sk = Aut(T )k : Sk, and let φi be the projection of Gv ∩M on the 
i-component of Aut(T )k for 1 ≤ i ≤ k. Clearly, Ak ≤ Gv ≤ Sk, and φi(Gv ∩M) is almost 
simple with socle T .

Lemma 4.1. If Γ is (G, 2)-arc-transitive, then (interchange Guv and Gvw if necessary) 
Guv ≤ Sk is transitive and φ1(Guv ∩ M) ∼= · · · ∼= φk(Guv ∩ M). Further, either 
φi(Guv ∩ M) ⊇ T , or the couple (T, φi(Guv ∩ M)) (as (T, L) there) satisfies Table 1
of Proposition 2.3.

Proof. Since Γ is (G, 2)-arc-transitive, Gv = GuvGvw, hence Gv = GuvGvw. Since Gv
∼=

Ak or Sk, by [12, Lemma 2.3], at least one of Guv or Gvw, say Guv, is a transitive 
subgroup of Sk. It then follows from Lemma 2.7 that φ1(Guv∩M) ∼= · · · ∼= φk(Guv∩M), 
and π(T ) ⊆ π(φ1(Guv ∩M)). Now by Proposition 2.3, the lemma follows. �

The following lemma treats the case where φ1(Guv ∩M) contains T .

Lemma 4.2. Assume T ⊆ φ1(Guv ∩M). Then s ≤ 2.

Proof. Suppose on the contrary s ≥ 3. By Lemma 4.1, we may assume φ1(Guv ∩M) ∼=
. . . ∼= φk(Guv ∩M) ∼= T.o with o ≤ Out(T ), and Guv ≤ Sk is transitive. It follows that 
Guv∩M has a unique insoluble composition factor T with multiplicity (say l) dividing k.

We first prove l = k. If not, then l ≤ k
2 as l | k. It is known (or see [16, P. 297, Corollary 

6]) that there is a prime r ≥ 5 such that r | |T | but r � | |Out(T )|. So |Guv ∩M |r = |T |lr ≤
|T |k/2r , and hence

val(Γ )r = |Gv|r
|Guv|r

≥ |Gv|r
|Guv ∩M |r|Sk|r

≥ |T |kr (k!)r
|T |k/2r (k!)r

= |T |k/2r .

Since s ≥ 3, by Lemma 2.9, val(Γ )3r ≤ |Gv|r, thus |T |3k/2r ≤ |T |kr (k!)r. However, as 
(k!)r < r

k
r−1 by Lemma 2.1, we conclude |T |k/2r < r

k
r−1 , which is a contradiction as 

r ≥ 5.
Thus l = k. Consequently, Guv ∩ M ⊇ soc(Gv) ∼= T k. Since Guv is transitive, and 

the centralizer of soc(Gv) is Gv is trivial, we further conclude that soc(Gv) is the unique 
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minimal normal subgroup of Guv, namely soc(Guv) = soc(Gv). Set N = soc(Gvw). 
Then N ∼= T k is the unique minimal normal subgroup of Gvw as Gvw

∼= Guv. Clearly, 
N ∩ soc(Gv) � Gvw, by the minimality of N , either N ∩ soc(Gv) = 1 or N = soc(Gv). 
For the former case, we have

N = N/(N ∩ soc(Gv)) ∼= soc(Gv)N/soc(Gv) ≤ Gv/soc(Gv) ≤ Out(T ) × Sk.

By Lemma 2.1, we obtain |T |kr = |N |r < (k!)r < r
k

r−1 , a contradiction. Therefore, 
soc(Gvw) = soc(Gv) = soc(Guv). It then follows from Equation (2) that soc(Gv) is 
normal in 〈Gv, g〉 = G, thus G acts unfaithfully on V Γ , yielding a contradiction. �

To treat the candidates in Table 1, we first prove two lemmas.

Lemma 4.3. Suppose Γ is (G, 2)-arc-transitive. Then for each prime r, we have

|T |r < r|φ1(Guv ∩M)|2r.

Proof. Suppose |φ1(Guv ∩M)|r = rl and G ∼= An.o with o ≤ Z2. Then

|Guv|r ≤ |Guv ∩M |r|Ak.o|r ≤ |φ1(Guv ∩M)|kr |Ak.o|r = rkl(k!
2 )r|o|r.

Since Γ is (G, 2)-arc-transitive, Gv = GuvGvw, we obtain

|T |kr |Out(T )|r(
k!
2 )r|o|r ≤ |Gv|r ≤ |Guv|2r ≤ r2kl(k!

2 )2r|o|2r.

This together with Lemma 2.1 implies |T |kr ≤ r2kl(k!)r < r2kl+ k
r−1 , hence |T |r <

r2l+ 1
r−1 < r2l+1, the lemma follows. �

Lemma 4.4. Suppose Γ is (G, 3)-arc-transitive. Then for each prime r, we have

|T |2kr < r
k

r−1 |φ1(Guv ∩M)|3kr |Out(T )|r.

Proof. Suppose |φ1(Guv ∩ M)|r = rl and G ∼= An.o with o ≤ Z2. Then |Guv|r ≤
rkl(k!

2 )r|o|r, and since val(Γ ) = |Gv : Guv|, we obtain

val(Γ )r = |Gv|r
|Guv|r

≥
|T |kr |Out(T )|r(k!

2 )r|o|r
rkl(k!

2 )r|o|r
≥ |T |kr

rkl
.

Since Γ is (G, 3)-arc-transitive, by Lemma 2.9, val(Γ )3 | |Gv|. It follows that |T |3kr divides 
r3kl|T |kr |Out(T )|r(k!)r, then the lemma follows by Lemma 2.1. �

We now analyse the candidates in Table 1. The discussions need information of the 
orders and the outer automorphism groups of certain simple groups, for those we refer 
to [15, P. 18–20].
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Table 2
Triples (|T |r, |Out(T )|, |φ1(Guv ∩ M)|r) of ‘sporadic’ cases in Lemma 4.5.

l T |T |r |Out(T )| |φ1(Guv ∩ M)|r r

9 PSL3(3) 33 2 3 3
11 PSU3(3) 33 2 3 3
12 PSU3(5) 53 6 5 5
14 PSU4(3) 36 8 32 3
15 PSU5(2) 35 2 3 3
16 PSU6(2) 36 6 32 3
17 PSp4(7) 74 2 7 7
18 Sp4(8) 34 6 3 3
21 G2(3) 36 3 ≤ 32 3
22 2F4(2)′ 33 2 3 3
26 HS 53 2 5 5
27 McL 36 2 32 3
28 Co2 36 1 32 3
29 Co3 37 1 32 3

Lemma 4.5. Suppose Gv satisfies Row l of Table 1, where l ∈ {6, 9, 11, 12, 14 − 18, 21, 22, 
26 − 29}. Then s = 1.

Proof. Suppose on the contrary, s ≥ 2. We divide the proof into two cases.

Row 6. Then T = PSL2(p) with p = 2m − 1 a Mesenna prime, and φ1(Guv ∩M) ≤ Zp :
Zp−1. It follows |T |2 = 2m and |φ1(Guv ∩M)|2 ≤ 2. Hence Lemma 4.3 implies 2m < 23, 
thus m ≤ 2 and T is soluble, a contradiction.

Remaining rows. Then the simple groups T are specific with no parameter, and either 
φ1(Guv ∩M) ∩T or φ1(Guv∩M) is given in Table 1. Since φ1(Guv ∩M)/(φ1(Guv∩M) ∩
T ) ≤ Out(T ), we have |φ1(Guv ∩ M)|r ≤ |Out(T )|r|φ1(Guv ∩ M) ∩ T |r. Then a direct 
computation shows that the triple (|T |r, |Out(T )|, |φ1(Guv ∩M)|r) for some prime r lies 
in Table 2. For each row there, we always have |T |r ≥ r|φ1(Guv ∩ M)|2r, contradicting 
Lemma 4.3. �
Lemma 4.6. Suppose Gv satisfies Row l of Table 1 with 1 ∈ {2 −5, 7, 8, 10, 13, 19, 20, 23 −
25}. Then s ≤ 2.

Proof. Suppose on the contrary, s ≥ 3. We consider each row in the following.

Row 2. Then

|T | = |PSp2m(q)| = qm
2

m∏

i=1
(q2i − 1)

with m, q even. Set q = 2e. Assume em �= 6. By Lemma 2.2, 2em − 1 = qm − 1 has 
a primitive prime divisor r > em. Set (qm − 1)r = rl. Since r does not divide qi − 1
and qm+i − 1 (as qm+i − 1 = qm(qi − 1) + (qm − 1)) for each 1 ≤ i ≤ m − 1, we have
|T |r = (qm − 1)r(q2m − 1)r = r2l. Since Ω−

2m(q) � φ1(Guv ∩M), r > em and
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|Ω−
2m(q)| = 1

2
qm(m−1)(qm + 1)

m−1∏

i=1
(q2i − 1),

we conclude |φ1(Guv ∩M)|r = (qm − 1)r = rl, and as q is even, |Out(T )| = e if m ≥ 3, 
and |Out(T )| = 2e if m = 2, so r � | |Out(T )|. Then Lemma 4.4 implies r4kl < r3kl+ k

r−1 , a 
contradiction.

Assume now em = 6. Since m is even, (q, m) = (2, 6) or (23, 2), and T = PSp12(2)
or PSp4(8) respectively. For both cases, we have |T |7 = 72, |φ1(Guv ∩ M)|7 = 7, and 
|Out(T )| = 1 if m = 6 and |Out(T )| = 6 if m = 2. By Lemma 4.4, we obtain 74k < 73k+ k

6 , 
also a contradiction.

Row 3. Then

|T | = |PΩ2m+1(q)| = 1
2q

m2
m∏

i=1
(q2i − 1)

with m even and q = pe an odd prime power.
If (p, e, m) = (2t−1, 1, 2) for some t, one easily deduces |T |p = p4 and |φ1(Guv∩M)|p =

p2. Since Out(T ) = Z2, Lemma 4.4 implies p8k < p6k+ k
p−1 , a contradiction.

Assume (p, e, m) �= (2t − 1, 1, 2). By Lemma 2.2, pem − 1 = qm − 1 has a primitive 
prime divisor r > em. With similarly discussion as in Row 1, we have |T |r = (qm −
1)2r, |φ1(Guv ∩ M)|r = (qm − 1)r and (r, |Out(T )|) = (r, 2e) = 1. It then follows from 
Lemma 4.4 that (qm − 1)2kr < (qm − 1)krr

k
r−1 , also a contradiction.

Row 4. Then

|T | = |PΩ+
2m(q)| = 1

(4, qm − 1)q
m(m−1)(qm − 1)

m−1∏

i=1
(q2i − 1)

with m even. Set q = pe with p a prime.
Assume first (p, em) �= (2, 6). Then pem − 1 = qm − 1 has a primitive prime divisor 

r > em. Set (qm − 1)r = rl. A similar discussion as in the proof of Row 1 implies 
|T |r = (qm − 1)2r = r2l, and since

|Ω2m−1(q)| = 1
2q

(m−1)2
m−1∏

i=1
(q2i − 1),

we have |φ1(Guv ∩ M)|r = (qm − 1)r = rl. Notice that |Out(T )| divides 24e and 
(r, |Out(T )|) = 1, Lemma 4.4 implies r4kl < r3kl+ k

r−1 , a contradiction.
Now consider the case (p, em) = (2, 6). Since m is even, we have (m, q) = (2, 8)

or (6, 2), and so T = PΩ+
4 (8) or PΩ+

12(2) respectively. In particular, |T |7 = 72 and 
|Out(T )|7 = 1 for both cases. Since Ω2m−1(q) �φ1(Guv∩M), one has |φ1(Guv∩M)|7 = 7. 
Then Lemma 4.4 leads to 74k < 73k+ k

6 , also a contradiction.
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Table 3
Triples (|T |r, |Out(T )|, |φ1(Guv ∩ M)|r) in Lemma 4.6.

l T |T |r |Out(T )| |φ1(Guv ∩ M)|r r

7 A6 32 2 3 3
8 PSL2(8) 32 3 3 3
10 PSL6(2) 34 2 32 3
13 PSU4(2) 34 2 32 3
19 Sp6(2) 34 1 32 3
20 PΩ+

8 (2) 212 6 ≤ 27 2
23 M11 32 1 3 3
24 M12 33 2 ≤ 32 3
25 M24 33 1 32 3

Row 5. Then

|T | = |PSp4(q)| = 1
(2, q − 1)q

4(q2 − 1)(q4 − 1)

and |Out(T )| = 2e, where q = pe is a prime power. Since PSp2(q2) �φ1(Guv∩M), we have 
φ1(Guv ∩M) ∩ T ≤ PSp2(q2).Z2. It follows |φ1(Guv ∩M)| divides 2|PSp2(q2)||Out(T )|
and hence divides 4eq2(q4 − 1).

If (p, e) = (2t − 1, 1), then |T |p = p4, Out(T ) = Z2 and |φ1(Guv ∩ M)|p divides p2, 
by Lemma 4.4, we have p8k < p6k+ k

p−1 , a contradiction. Similarly, if (p, e) = (2, 3), then 
|T |7 = 72, |Out(T )| = 6 and |φ1(Guv ∩M)|7 = 7, hence Lemma 4.4 implies 74k < 73k+ k

6 , 
a contradiction.

Assume now (p, e) �= (2s − 1, 1) and (2, 3). Then p2e − 1 has a primitive prime divisor 
r > 2e. Set (p2e − 1)r = rl. Then |T |r = r2l, (r, |Out(T )|) = 1 and |φ1(Guv ∩M)|r ≤ rl. 
It then follows from Lemma 4.4 that r4kl < r3kl+ k

r−1 , also a contradiction.

Row 7. Since PSL(2, 5) ∼= A5, the above discussion with c = 6 draws a contradiction.

Remaining rows. With similar discussions as in the proof of Lemma 4.5, it is routine 
to compute out that the triple (|T |r, |Out(T )|, |φ1(Guv ∩ M)|r) with r a prime lies in 
Table 3. For each row there, we always have |T |2kr > r

k
r−1 |φ1(Guv ∩M)|3kr |Out(T )|r, by 

Lemma 4.4, it is a contradiction. �
Summarize Lemmas 4.1, 4.2, 4.5 and 4.6, we have the following.

Lemma 4.7. Suppose Gv satisfies part (d) of Theorem 2.4. Then either

(i) s ≤ 2; or
(ii) Gv = (Ak

m.(Out(Am) × Sk) ∩G with m ≥ 5.

5. Wreath product subgroups

Suppose Hypothesis 3.1 holds. In this section, we assume that Gv satisfies part (b), 
(e) or part (ii) of Lemma 4.7. Then we always have
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(Am � Sk) ∩G ≤ Gv ≤ (Sm � Sk) ∩G,

where m > 1 and k > 1. Let M ∼= Sk
m be the base group of Sm � Sk, and let φi(Gv ∩

M) denote the projections of Gv ∩ M on the i-component of M with 1 ≤ i ≤ k. Set 
Gv = GvM/M , Guv = GuvM/M and Gvw = GvwM/M . Then Gv = (Gv ∩ M).Gv, 
Guv = (Guv ∩M).Guv, and Gvw = (Gvw ∩M).Gvw.

Lemma 5.1. With above assumption and suppose s ≥ 2. Then (interchange Guv and Gvw

if necessary) Guv ≤ Sk is transitive and φ1(Guv ∩ M) ∼= · · · ∼= φk(Guv ∩ M). Further, 
either

(i) Am � φi(Guv ∩M); or
(ii) Al ≤ φi(Guv ∩M) ≤ Sl × Sm−l, where m is not a prime and p ≤ l < m with p the 

largest prime less than m.

Proof. Since s ≥ 2, Gv = GuvGvw, so Gv = GuvGvw. Since Gv
∼= Ak or Sk, by [12, 

Lemma 2.3], one of Guv and Gvw, say Guv, is a transitive subgroup of Sk, it then follows 
from Lemma 2.7 that φ1(Guv ∩M) ∼= · · · ∼= φk(Guv ∩M), and π(Am) ⊆ π(φi(Guv ∩M))
for i = 1, 2, . . . , k.

If m ≥ 5, by Proposition 2.3, φi(Guv ∩ M) satisfies part (i) or (ii). If 2 ≤ m ≤ 4, 
since π(Am) ⊆ π(φi(Guv ∩M)) and φi(Guv ∩M) ≤ Sm, we have φi(Guv ∩M) = Am for 
m = 2 and 3, and φi(Guv ∩ M) � A4 or equals to S3 for m = 4, namely φi(Guv ∩ M)
also satisfies part (i) or (ii). �

If Δ1, . . . , Δk are subsets of Ω with equal size m, such that Ω is the disjoint union of 
them, then we call (Δ1, . . . , Δk) is a m-homogeneous partition of Ω. We first treat part 
(i) of Lemma 5.1.

Lemma 5.2. Suppose Am � φi(Guv ∩M). Then s ≤ 2.

Proof. Suppose for a contradiction that s ≥ 3. If m ≥ 5, then the same arguments (view 
Am as T there) as in the proof of Lemma 4.2 imply that soc(Gv) ∼= Ak

m is normal in G, 
hence G acts unfaithfully on V Γ , a contradiction.

Thus assume m ≤ 5. Then Gv satisfies part (b) with n = mk, and the action of G
on V Γ is permutation equivalent to the action of G on the set of all m-homogeneous 
partitions of Ω, hence we may set v = (Δ1, . . . , Δk), a m-homogeneous partition of Ω. 
Since u = vg

−1 = (Δg−1

1 , . . . , Δg−1

k ) �= v, without loss of generality, we may suppose 

Δ1 �= Δg−1

1 , so q := |Δ1 ∩Δg−1

1 | < m. Since π1(Guv ∩M) ≤ Sm fixes both Δg−1

1 and Δ1, 
we have π1(Guv ∩M) ≤ Sq × Sm−q, which contradicts Am � π1(Guv ∩M). �

The following two lemmas are regarding part (ii) of Lemma 5.1.

Lemma 5.3. Suppose that Gv satisfies part (ii) of Lemma 5.1 with m ≤ 7. Then s ≤ 2.
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Proof. Set G = An.o with o ≤ Z2. Since m ≤ 7 is not a prime, we have m = 4 or 6.
Assume m = 4. Then l = 3 and A3 � φi(Guv ∩M) ≤ S3, hence |Gv|2 = 23k−1(k!)2|o|, 

and |Guv|2 ≤ |φi(Guv∩M)|k2 |Ak|2|o| = 2k−1(k!)2|o|. It follows |val(Γ )|2 ≥ |Gv|2/|Guv|2 ≥
22k. If s ≥ 3, by Lemma 2.9, we have 26k divides |Gv|2 = 23k−1(k!)2|o|. Consequently, 
23k | (k!)2, contradicting Lemma 2.1.

Assume m = 6. Then l = 5 and A5 � φi(Guv ∩M) ≤ S5, thus |Gv|3 = 32k(k!)3, and 
|Guv|3 ≤ |φi(Guv ∩M |k3 |Ak|3 = 3k(k!)3. Consequently, |val(Γ )|3 ≥ |Gv|3/|Guv|3 ≥ 3k. If 
s ≥ 3, Lemma 2.9 implies that 33k divides |Gv|3 = 32k(k!)3, or equivalently 3k | (k!)3, 
also contradicting Lemma 2.1. �
Lemma 5.4. Suppose that Gv satisfies part (ii) of Lemma 5.1 with m ≥ 8. Assume that 
Guv = (Guv ∩M).Guv and Gvw = (Gvw ∩M).Gvw are split extension. Then s = 1.

Proof. Suppose for a contradiction that s ≥ 2.
As m ≥ 8, we have l ≥ 7, and as l is equal or greater than the largest prime p less 

than m, by a well known theorem of Chebyshev, we have m < 2l and so m − l < l. By 
Lemma 5.1, Guv ≤ Sk is transitive, so Guv∩M has a insoluble composition factor Al with 
multiplicity (say s) dividing k. If s ≤ k/2, then with quite similar arguments (view s, p as 
l, r there) as in the proof of Lemma 4.2, we have pk/2 = |T |k/2p < p

k
p−1 , a contradiction. 

Thus s = k and Ak
l is a minimal normal subgroup of Guv, hence Gvw has a minimal 

normal subgroup N ∼= Ak
l as Guv

∼= Gvw. If N�Gvw ∩M , then N ≤ Gvw ≤ Sk, which 

leads to pk = |N |p ≤ (k!)p < p
k

p−1 , contradicting Lemma 2.1. Consequently, N�Gvw∩M
and φi(Gvw ∩M) has a normal subgroup isomorphic to Al.

Since Gv = GvwGuv, Guv = (Guv ∩ M).Guv and Gvw = (Gvw ∩ M).Gvw are split 
extension, for each (x1, . . . , xk) ∈ Gv ∩M , we have

(x1, . . . , xk) = (a1, . . . , ak)σ(b1, . . . , bk)τ,

where (a1, . . . , ak) ∈ Gvw ∩ M , (b1, . . . , bk) ∈ Guv ∩M , and σ, τ ∈ Gv ≤ Sk. It follows 
that (x1, . . . , xk) = (a1b1σ , . . . , akbkσ )στ . Hence στ = 1, and xi = aibiσ ∈ φi(Guv ∩
M)φi(Gvw ∩ M) as Guv ≤ Sk is transitive. Consequently, we obtain φi(Gv ∩ M) =
φi(Guv ∩ M)φi(Gvw ∩ M). Now by [15, P. 9, Theorem D and Remark 2], we further 
conclude that 1 ≤ m − l ≤ 5 and φi(Gvw ∩M) is (m − l)-homogeneous on m points.

If m − l = 1, then φi(Guv ∩M) and φi(Gvw ∩M) are almost simple with socle Am−1. 
Notice that π(Am) = π(Am−1), by [1, Theorem 1.1], we have m = 6, a contradiction.

Thus assume m − l ≥ 2 in the following. Since a 2-homogeneous group is either 
almost simple or an affine group, and Al � φi(Gvw ∩M), we obtain that φi(Gvw ∩M)
is almost simple with socle Al. Notice that almost simple m-homogeneous groups that 
are not m-transitive with m ≥ 2 are with socle PSL(2, 8), PSL(2, 32) or PSL(2, q) with 
q ≡ 3(mod 4), see [9, Ch. 7], we further conclude that φi(Gvw ∩ M) is 2-transitive. 
However, by [5, Theorem 5.3(S)], an almost simple group with socle Al and l ≥ 7
has no 2-transitive permutation representation on m points with l < m < 2l, also a 
contradiction. �
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6. Proof of Theorem 1.1

Since the full automorphism groups of the directed cycles are soluble, val(Γ ) �= 1. 
If val(Γ ) = 2, by [18, Theorem 5], AutΓ is a dihedral group, a contradiction. Thus 
val(Γ ) ≥ 3. Since soc(G) = An with n ≥ 5, either G = An or Sn, or n = 6 and 
G = A6.22, A6.23 or A6.22 as in Atlas [8].

Suppose G = An or Sn. Then Γ and G satisfy Hypothesis 3.1, and Gv satisfies one of 
parts (a)-(f) of Theorem 2.4. If Gv satisfies parts (a) and (c), by Lemmas 3.2 and 3.3, 
we have s = 1. If Gv satisfies parts (b), (d) and (e), by Lemmas 4.7 and 5.1–5.4, either 
s ≤ 2 or part (2) of Theorem 1.1 holds. If Gv satisfies part (f), by [12, Corollary 3.4], we 
have s ≤ 2.

Suppose now G �= An or Sn. Then n = 6, G = A6.22, A6.23 or A6.22, and Gv is listed 
in Atlas [8], and direct computation in [3] shows that no digraph Γ exists in these cases. 
This completes the proof of Theorem 1.1. �
Acknowledgments

The authors are very grateful to the referee for the valuable comments, and thank 
Professor Cai Heng Li for some helpful discussion.

References

[1] R.W. Baddeley, C.E. Praeger, On classifying all full factorisations and multiplefactorisations of the 
finite almost simple groups, J. Algebra 204 (1998) 129–187.

[2] N. Blackburn, B. Huppert, Finite Groups II, Springer-Verlag, New York, 1982.
[3] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic 

Comput. 24 (1997) 235–265.
[4] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite 

Classical Groups, Cambridge University Press, 2013.
[5] P.J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc. 13 (1981) 

1–22.
[6] P.J. Cameron, C.E. Praefer, N.C. Wormald, Infinite highly arc-transitive digraphs and universal 

covering digraphs, Combinatorica 13 (4) (1993) 377–396.
[7] M. Conder, P. Lorimer, C.E. Praeger, Constructions for arc-transitive digraphs, J. Aust. Math. Soc. 

A 59 (1) (1995) 61–80.
[8] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon 

Press, Oxford, 1985.
[9] J.D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1997.

[10] D.M. Evans, An infinite highly arc-transitive digraphs, European J. Combin. 18 (3) (1997) 281–286.
[11] M. Giudici, C.H. Li, B.Z. Xia, An infinite family of vertex-primitive 2-arc-transitive digraphs, J. 

Combin. Theory Ser. B 17 (2017) 1–13.
[12] M. Giudici, C.H. Li, B.Z. Xia, Vertex-primitive s-arc-transitive digraphs of linear groups, arXiv :

1710 .09518v1.
[13] M. Giudici, B. Xia, Vertex-quasiprimitive 2-arc-transitive digraphs, Ars Math. Contemp. 14 (1) 

(2018) 67–82.
[14] M.W. Liebeck, C.E. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alter-

nating and symmetric groups, J. Algebra 111 (1987) 365–383.
[15] M.W. Liebeck, C.E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and 

their automorphism groups, Mem. Amer. Math. Soc. 86 (432) (1990).

http://refhub.elsevier.com/S0021-8693(19)30559-9/bib42503938s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib42503938s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib42423832s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D61676D61s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D61676D61s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib424852s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib424852s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib43616D65726F6Es1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib43616D65726F6Es1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4350573933s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4350573933s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib434C503935s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib434C503935s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib41746C6173s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib41746C6173s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib444Ds1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4576616E733937s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib474C583138s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib474C583138s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib474C583137s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib474C583137s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D583138s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D583138s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C50533837s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C50533837s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C50533930s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C50533930s1


J. Pan et al. / Journal of Algebra 544 (2020) 75–91 91
[16] M.W. Liebeck, C.E. Praeger, J. Saxl, Transitive subgroups of primitive permutation groups, J. 
Algebra 234 (2000) 291–361.

[17] A. Malnič, D. Marušič, N. Seifter, B. Zgrablić, Highly arc-transitive digraphs with no homomorphism 
onto Z, Combinatorica 22 (2002) 435–443.

[18] P.M. Neumann, Finite permutation groups, edge-coloured graphs and matrices, in: Topics in Group 
Theroy and Computation, Proc. Summer School, University College, Galway, 1973, Academic Press, 
London, 1977, pp. 82–118.

[19] C.E. Praeger, Highly arc-transitive digraphs, European J. Combin. 10 (3) (1989) 281–292.
[20] C.E. Praeger, Finite primitive permutation groups: a survey, in: Groups-Canberra 1989, in: Lecture 

Notes in Math., vol. 1456, Springer, Berlin, 1990, pp. 63–84.
[21] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (3) (1981) 309–311.

http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C505332303030s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4C505332303030s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D4D535A3032s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4D4D535A3032s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4E65756D616E6Es1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4E65756D616E6Es1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib4E65756D616E6Es1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib507261656765723839s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib507261656765723930s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib507261656765723930s1
http://refhub.elsevier.com/S0021-8693(19)30559-9/bib5765697373s1

	Vertex-primitive s-arc-transitive digraphs of alternating and symmetric groups
	1 Introduction
	2 Background results
	3 Subgroups (a) and (c)
	4 Subgroups (d)
	5 Wreath product subgroups
	6 Proof of Theorem 1.1
	Acknowledgments
	References


