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Abstract

Let S be a subring of the ring R. We investigate the question of whether S ∩ U(R) = U(S) holds for the
units. In many situations our answer is positive. There is a special emphasis on the case when R is a full
matrix ring and S is a structural subring of R defined by a reflexive and transitive relation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout the paper a ring R means a ring with identity, and all subrings inherit the identity.
The group of units in R is denoted by U(R) and the centre of R is denoted by Z(R).

In general, if S is a subring of the ring R and x ∈ S is an invertible element in R, then x−1 need
not be in S. The aim of this paper is to investigate the question of whether S ∩ U(R) = U(S)

holds for a subring S ⊆ R. For a structural matrix subring of a full matrix ring this question
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was raised by Johan Meyer. A similar problem for the additive subgroups of a division ring was
considered in [3].

In Section 2 first we impose certain chain conditions on S or on R to derive that S ∩ U(R) =
U(S). Then we combine the chain conditions with the assumption that R is a PI-ring. Using the
prime ideals of R we formulate a reduction theorem providing S ∩ U(R) = U(S). In Section 2
we also deal with the subrings of a full matrix ring (over a Noetherian or a PI-ring).

Section 3 is devoted to the study of the structural matrix subring Mn(θ,R) of the full matrix
ring Mn(R) defined by a reflexive and transitive relation θ on the set {1,2, . . . , n}. First we
reformulate the general results of Section 2 to see that Mn(θ,R) ∩ U(Mn(R)) = U(Mn(θ,R))

holds for various base rings R. Then we get the same equality for PI-rings. Finally we prove that
Mn(θ,R) is closed with respect to taking the adjoint (note that the adjoint always exists, not as
the inverse).

In proving our statements we use some classical and one recent theorem concerning PI-rings.
Section 4 contains an example (based on a classical construction of Jacobson) indicating that

the Noetherian and the PI conditions play an adequate role in our development. Since any non-
Dedekind-finite ring can appear as a base ring in our example, we can use the results of Section 3
to derive some more or less known statements about Dedekind-finite rings. The authors are grate-
ful to Peter P. Pálfy for his help in Section 4.

2. Chain and PI conditions

It is known that a ring R is called strongly π -regular if for every x ∈ R the DCC holds for the
left ideals Rxi , i � 1.

Proposition 2.1. Let R be an arbitrary ring and let S be a strongly π -regular subring of R. If
x ∈ S is invertible in R, then x−1 ∈ S.

Proof. The DCC for the left ideals Sxi , i � 1, of S gives that Sxk = Sxk+1 for some k � 1. Thus

xk = sxk+1

for some s ∈ S, whence we obtain that x−1 = s is in S. �
Proposition 2.2. Let R be a ring integral over a central subring C ⊆ Z(R) and let C ⊆ S ⊆ R

be a subring. If x ∈ S is invertible in R, then x−1 ∈ S.

Proof. The integrality gives that

x−k + ck−1x
−(k−1) + · · · + c1x

−1 + c0 = 0

holds for x−1 ∈ R, where k � 1 and ck−1, . . . , c1, c0 ∈ C. Thus

x−1 = −(
ck−1 + ck−2x + · · · + c1x

k−2 + c0x
k−1)

is in S. �
Proposition 2.3. Let S be a subring of the ring R such that R is Noetherian as a left S-module.
If x ∈ S is invertible in R, then x−1 ∈ S.
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Proof. The ACC for the S-submodules

Hk =
k∑

i=1

Sx−i , k � 1,

of the left S-module SR gives that

k∑
i=1

Sx−i =
k+1∑
i=1

Sx−i

for some k � 1. Thus

x−(k+1) = s1x
−1 + s2x

−2 + · · · + skx
−k

with s1, s2, . . . , sk ∈ S, whence right multiplication by xk gives that

x−1 = s1x
k−1 + s2x

k−2 + · · · + sk−1x + sk

is in S. �
Theorem 2.4. Let R be a prime PI-ring such that Z(R) is Noetherian. If Z(R) ⊆ S ⊆ R is a
subring, then S ∩ U(R) = U(S).

Proof. A theorem of Formanek (see p. 109 in vol. II of [4]) ensures that R is a Noetherian
Z(R)-module. The condition Z(R) ⊆ S ensures that an S-submodule of the left S-module SR

is a Z(R)-submodule of R, whence we obtain that R is Noetherian as a left S-module. Thus
Proposition 2.3 can be applied to the pair of rings S ⊆ R. �
Theorem 2.5. Let R be a prime PI-ring such that Z(R) is Noetherian. If S is a subring of Mn(R)

such that {rI | r ∈ Z(R)} ⊆ S, then S ∩ U(Mn(R)) = U(S).

Proof. Since Mn(R) is also a prime PI-ring (see p. 110 in vol. II of [4]) with Noetherian centre

Z
(
Mn(R)

) = {
rI

∣∣ r ∈ Z(R)
} ∼= Z(R),

the application of Theorem 2.4 gives the desired equality. �
Theorem 2.6. Let R be a left Noetherian ring. If S is a subring of Mn(R) such that {rI | r ∈
R} ⊆ S, then S ∩ U(Mn(R)) = U(S).

Proof. Since Mn(R) is a free left R-module (of rank n2), Mn(R) is Noetherian as a left
R-module. The condition {rI | r ∈ R} ⊆ S ensures that an S-submodule of SMn(R) is an
R-submodule of RMn(R), whence we obtain that Mn(R) is Noetherian as a left S-module. Thus
Proposition 2.3 can be applied to the pair of rings S ⊆ Mn(R). �
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Theorem 2.7. Let Pi � R, 1 � i � t , be a finite collection of ideals of the ring R such that
the intersection P1 ∩ P2 ∩ · · · ∩ Pt is a nil ideal. For a subring S ⊆ R consider the subring
S/Pi = {s +Pi | s ∈ S} ⊆ R/Pi of the factor ring R/Pi . If (S/Pi)∩U(R/Pi) = U(S/Pi) for all
i ∈ {1,2, . . . , t}, then S ∩ U(R) = U(S).

Proof. Take an element x ∈ S ∩ U(R). Since x + Pi ∈ S/Pi , our assumption gives that the
inverse (x + Pi)

−1 = x−1 + Pi is in S/Pi . Thus x−1 + Pi = si + Pi for some si ∈ S. In view of

1 − xsi = x
(
x−1 − si

) ∈ Pi,

we obtain that

(1 − xs1)(1 − xs2) · · · (1 − xst ) ∈ P1P2 · · ·Pt ⊆ P1 ∩ P2 ∩ · · · ∩ Pt

is nilpotent. Clearly,

(1 − xs1)(1 − xs2) · · · (1 − xst ) = 1 − xs

for some s ∈ S, whence

0 = (1 − xs)k = 1 +
(

k

1

)
(−xs) + · · · +

(
k

k

)
(−xs)k

follows for some integer k � 1. Consequently

x−1 =
(

k

1

)
s −

(
k

2

)
s(xs) + · · · + (−1)k+1

(
k

k

)
s(xs)k−1 ∈ S. �

Theorem 2.8. Let R be a ring with ACC on ideals and S ⊆ R be a subring such that (S/P ) ∩
U(R/P ) = U(S/P ) for all prime ideals P � R. Then S ∩ U(R) = U(S).

Proof. The ACC ensures that the prime radical of R is a finite intersection of prime ideals (see
p. 364 in vol. I of [4]):

rad(R) = P1 ∩ P2 ∩ · · · ∩ Pt .

Since rad(R) is nil, we can apply Theorem 2.7 to get the desired equality. �
In the rest of this section we shall make use of a Lie nilpotent R of index m as the underlying

ring in Mn(R), in other words a ring R satisfying the identity

[[[
. . .

[[x1, x2], x3
]
, . . .

]
, xm

]
, xm+1

] = 0,

with [x, y] = xy − yx. The following theorem can easily be obtained from Proposition 4.1 and
Theorem 4.2 in [5]:
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Theorem 2.T. If R is a ring satisfying the identity

[[[
. . .

[[x1, x2], x3
]
, . . .

]
, xm

]
, xm+1

] = 0

and A ∈ Mn(R), then a left Cayley–Hamilton identity

λdAd + λd−1A
d−1 + · · · + λ1A + λ0I = 0

holds for A, with d = nm, λd ∈ Z � {0} and λi ∈ R, 0 � i � d .

Theorem 2.9. Let R be a ring such that Z � {0} ⊆ U(R) and R satisfies the identity

[[[
. . .

[[x1, x2], x3
]
, . . .

]
, xm

]
, xm+1

] = 0.

If S is a subring of Mn(R) such that {rI | r ∈ R} ⊆ S, then S ∩ U(Mn(R)) = U(S).

Proof. If A ∈ S ∩ U(Mn(R)), then Theorem 2.T provides a left Cayley–Hamilton identity for
A−1 of the form

γdA−d + γd−1A
−(d−1) + · · · + γ1A

−1 + γ0I = 0.

Since γd ∈ Z � {0} is in U(R), right multiplication by Ad−1 and then left multiplication by γ −1
d

gives that

A−1 = −γ −1
d

(
γd−1I + γd−2A + · · · + γ1A

d−2 + γ0A
d−1)

is in S. �
Corollary 2.10. Let R be a commutative ring. If S is a subring of Mn(R) such that {rI | r ∈
R} ⊆ S, then S ∩ U(Mn(R)) = U(S).

Proof. We have d = n and γn = 1 in the classical Cayley–Hamilton identity. �
3. Structural matrix rings

The class of structural matrix rings has been studied extensively, see for example, [1] and
[2]. For a reflexive and transitive binary relation θ on the set {1,2, . . . , n}, the structural matrix
subring Mn(θ,R) of the full matrix ring Mn(R) is defined as follows:

Mn(θ,R) = {[ai,j ] ∈ Mn(R)
∣∣ ai,j = 0 if (i, j) /∈ θ

}
.

Henceforth θ is a reflexive and transitive binary relation on {1,2, . . . , n}. In the next three theo-
rems we collect the consequences of Theorems 2.6, 2.9 and Corollary 2.10.

Theorem 3.1. If R is a left Noetherian ring and A ∈ Mn(θ,R) is invertible in Mn(R), then
A−1 ∈ Mn(θ,R).
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Theorem 3.2. Let R be a Lie nilpotent ring such that Z � {0} ⊆ U(R). If A ∈ Mn(θ,R) is
invertible in Mn(R), then A−1 ∈ Mn(θ,R).

Theorem 3.3. If R is a commutative ring and A ∈ Mn(θ,R) is invertible in Mn(R), then A−1 ∈
Mn(θ,R).

For arbitrary rings R and T , let μ :R −→ T be a ring homomorphism with μ(1) = 1 and
consider the induced ring homomorphism

μn :Mn(R) −→ Mn(T ).

Then the containment μn(Mn(θ,R)) ⊆ Mn(θ,T ) is obvious. In addition, if μ is injective and
μn(A) ∈ Mn(θ,T ), then A ∈ Mn(θ,R).

Let θ ′ and θ ′′ be reflexive and transitive binary relations on the sets {1,2, . . . , n} and
{1,2, . . . ,m} respectively. Then it is evident that

Mn

(
θ ′,Mm(θ ′′,R)

) ∼= Mnm(θ,R)

for every ring R, where θ is the reflexive and transitive binary relation on the set {1,2, . . . , nm}
defined by

θ = {
(i, j)

∣∣ (	i/m
, 	j/m
) ∈ θ ′ and (i(m), j(m)) ∈ θ ′′},
where 	·
 denotes the ceiling and

i(m) ≡ i (mod m) and 1 � i(m) � m,

j(m) ≡ j (mod m) and 1 � j(m) � m.

We are now in a position to state the following result.

Theorem 3.4. Let C be a Noetherian subring of Z(R) such that R is a PI-algebra over C. If
A ∈ Mn(θ,R) and A is invertible in Mn(R), then A−1 is in Mn(θ,R).

Proof. Let A = [ai,j ], A−1 = [bi,j ] and consider the C-subalgebra

D = C〈ai,j , bi,j | 1 � i, j � n〉
of R. Since R is PI over C, the same holds for D. The theorem of Razmyslov–Kemer–Braun
(see p. 151 in vol. II of [4]) ensures that the upper nilradical N = Nil(D) of the affine (finitely
generated) C-algebra D is nilpotent: Nk = {0} for some integer k � 1. We know that D/N can
be embedded in a full matrix ring Mm(E) over a commutative ring E (see p. 98 in vol. II of [4]).
Thus ϕ = μ ◦ ε induces a ring homomorphism

ϕn :Mn(D) −→ Mn

(
Mm(E)

)
,

where ε :D −→ D/N is the natural surjection and μ :D/N −→ Mm(E) is our embedding. Since
A is invertible in Mn(D), ϕn(A) is invertible in Mn(Mm(E)). The argument above gives that
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Mn(θ,Mm(E)) ∼= Mnm(θ,E). By assumption A ∈ Mn(θ,D), and so ϕn(A) ∈ Mn(θ,Mm(E))

can be viewed as a matrix in Mnm(θ,E) having an inverse in Mnm(E). Theorem 3.3 shows that
the inverse (ϕn(A))−1, viewed as an nm × nm matrix over E, is in Mnm(θ,E). As

μn

(
εn

(
A−1)) = ϕn

(
A−1) = (

ϕn(A)
)−1

,

we conclude that εn(A
−1) ∈ Mn(θ,D/N) (see the above observations preceding Theorem 3.4).

Thus ε(bi,j ) = bi,j + N = 0 holds in D/N for all (i, j) /∈ θ . Define an n × n matrix W = [wi,j ]
over N as follows:

wi,j =
{

bi,j if (i, j) /∈ θ,

0 if (i, j) ∈ θ.

Now A−1 − W ∈ Mn(θ,D) and

I − AW = A
(
A−1 − W

) ∈ Mn(θ,D),

whence AW ∈ Mn(θ,D) follows. Clearly, W ∈ Mn(N) implies that AW ∈ Mn(N) and hence
(AW)k = 0. In view of A−1 − W = A−1(I − AW), we obtain that

A−1 = (
A−1 − W

)
(I − AW)−1 = (

A−1 − W
)(

I + (AW) + · · · + (AW)k−1)

is in Mn(θ,D) ⊆ Mn(θ,R). �
We note that the final calculations in the above proof can be omitted by applying Theorem 2.7

to Mn(θ,D) ⊆ Mn(D) and P1 = Mn(N) � Mn(D).

Corollary 3.5. Let R be a PI-ring (a PI-algebra over Z ⊆ Z(R)). If A ∈ Mn(θ,R) and A is
invertible in Mn(R), then A−1 is in Mn(θ,R).

Recall that in case R is commutative, then a matrix A = [ai,j ] ∈ Mn(R) is invertible if and
only if det(A) ∈ U(R), in which case

A−1 = (
det(A)

)−1 adj(A).

For the classical adjoint matrix adj(A) = [br,s] we have

br,s =
∑

ρ∈Sn,ρ(s)=r

sgn(ρ)a1,ρ(1) · · ·as−1,ρ(s−1)as+1,ρ(s+1) · · ·an,ρ(n),

where the sum is taken over all permutations ρ of the set {1,2, . . . , n} with ρ(s) = r .
If R is an arbitrary ring (not necessarily commutative), then the preadjoint A∗ = [a∗

r,s] ∈
Mn(R) of A = [ai,j ] ∈ Mn(R) was defined as follows in [5]:

a∗
r,s =

∑
sgn(ρ)aτ(1),ρ(τ(1)) · · ·aτ(s−1),ρ(τ(s−1))aτ(s+1),ρ(τ(s+1)) · · ·aτ(n),ρ(τ(n)),
τ,ρ
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where the sum is taken over all permutations τ of the set {1, . . . , s − 1, s + 1, . . . , n} and all
permutations ρ of the set {1,2, . . . , n} with ρ(s) = r . If R is commutative, then A∗ = (n −
1)! adj(A).

Theorem 3.6. If R is an arbitrary ring and A ∈ Mn(θ,R), then A∗ ∈ Mn(θ,R).

Proof. Let 1 � r, s � n, with (r, s) /∈ θ . We prove that a∗
r,s = 0. Take a permutation τ of the set

{1, . . . , s − 1, s + 1, . . . , n} and a permutation ρ of the set {1,2, . . . , n} with ρ(s) = r .
We claim that (τ (i), ρ(τ (i))) /∈ θ for some i ∈ {1, . . . , s − 1, s + 1, . . . , n}. Suppose the con-

trary, that is (j, ρ(j)) ∈ θ for all j ∈ {1, . . . , s − 1, s + 1, . . . , n}. Consider the cycle

(
r, ρ(r), . . . , ρt (r)

)

of the permutation ρ (of length t + 1 say). Since ρ(s) = r , it follows that ρt (r) = s. The reflex-
ivity of θ ensures that r �= s, and so

(
r, ρ(r)

)
,
(
ρ(r), ρ2(r)

)
, . . . ,

(
ρt−1(r), s

) ∈ θ.

The transitivity of θ implies that (r, s) ∈ θ ; a contradiction. Thus aτ(i),ρ(τ(i)) = 0 for some i ∈
{1, . . . , s − 1, s + 1, . . . , n}. Consequently, each product

aτ(1),ρ(τ(1)) · · ·aτ(s−1),ρ(τ(s−1))aτ(s+1),ρ(τ(s+1)) · · ·aτ(n),ρ(τ(n))

in the summation for a∗
r,s is zero, whence we obtain that a∗

r,s = 0. �
Corollary 3.7. If R is a commutative ring and A ∈ Mn(θ,R), then adj(A) ∈ Mn(θ,R).

Proof. Comparing the definitions of adj(A) and A∗ and ignoring τ in the proof of Theorem 3.6
shows that adj(A) ∈ Mn(θ,R). �
4. Dedekind-finite rings

A ring R is called Dedekind-finite if xy = 1 implies yx = 1 for all x, y ∈ R. The ring of linear
transformations HomK(V,V ) of a vector space V (over a field K) with a countably infinite basis
{b1, b2, . . . , bn, . . .} ⊆ V is not Dedekind-finite. Define the linear transformations α,β :V −→ V

on the elements of the given basis as α(bi) = bi−1 for i � 2, α(b1) = 0 and β(bi) = bi+1 for
i � 1, then αβ = 1 and βα �= 1. Note that the ring HomK(V,V ) is not left (right) Noetherian and
not PI.

The following example shows that we cannot drop the left (or right) Noetherian condition in
Theorem 3.1 and the PI condition in Theorem 3.4.

Example 4.1. Let R be an arbitrary non-Dedekind-finite ring with elements x, y ∈ R such that
xy = 1 and yx �= 1. The inverse of the upper triangular 2 × 2 matrix

A =
[

y 1 − yx

0 x

]
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over R is the lower triangular 2 × 2 matrix

A−1 =
[

x 0
1 − yx y

]
.

Thus A ∈ M2(θ,R) and A−1 /∈ M2(θ,R), where θ = {(1,1), (1,2), (2,2)}.

In view of Theorems 3.1 and 3.4 the following corollaries can easily be obtained.

Corollary 4.2. If R is a left Noetherian ring, then R is Dedekind-finite.

Corollary 4.3. If C is a Noetherian subring of Z(R) such that R is a PI-algebra over C, then R

is Dedekind-finite.
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