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1. Introduction

In 1979 Kazhdan and Lusztig [20] associated to a given Coxeter group W a family of polynomials
{P y,w(q)} indexed by pairs of elements in W . In the case W was a Weyl group, then P y,w(q) was
related to the local intersection cohomology of the corresponding Schubert variety in a partial flag
variety (cf. Appendix A of [20] and [21]). Some years later, Deodhar in [7] introduced the parabolic
analogue of Kazhdan–Lusztig polynomials. Namely, if (W,S) is a Coxeter system, J ⊆ S , and W J is
the set of minimal coset representatives of W/〈 J 〉, he defined two families of polynomials {P J ,−1

y,w (q)}
and {P J ,q

y,w(q)}, where y, w ∈ W J . The {P J ,−1
y,w (q)} are a generalization of the polynomials defined by

Kazhdan and Lusztig and for J = ∅ they coincide. As in the regular case, if W is a Weyl group, then
these polynomials have a geometrical meaning, and, in particular, they are related to the intersection
cohomology of the corresponding Schubert variety in a partial flag variety.

Kazhdan and Lusztig [20], resp. Lusztig [25], conjectured that the Kazhdan–Lusztig polynomials
played a very important role in the representation theory of complex Lie algebras, resp. of semisimple,
simply connected, reductive algebraic groups over a field of positive characteristic. The characteris-
tic zero setting is now well understood (cf. [21,2,6]), while the positive characteristic analogue is
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not. Actually Lusztig’s conjecture was almost proved in the 90s via the joint work of Kazhdan and
Lusztig [22], Kashiwara and Tanisaki [23] and Andersen, Jantzen and Soergel [1]. Here almost means
that it was possible to prove the conjecture only if the characteristic of the base field is big enough,
since it was obtained as a limit of the characteristic zero case. A new approach to Lusztig’s conjecture
is due to Fiebig [9,13] and it is based on the theory of sheaves on moment graphs.

Moment graphs were introduced by Goresky, Kottwitz and MacPherson [16], in order to study the
equivariant cohomology of a complex algebraic variety equipped with a torus action and having some
nice properties. In 2001 Braden and MacPherson in [3] were able to describe the equivariant inter-
section cohomology of such a variety via sheaves on the moment graph. In particular, if W is a Weyl
group with S , the set of simple reflections, and J ⊆ S , Braden and MacPherson associated to w ∈W J

a sheaf B J
w : the canonical—or BMP—sheaf. This object describes the local intersection cohomology of

the corresponding Schubert variety in a partial flag variety. Braden–MacPherson’s construction was
performed in characteristic zero, but it is possible to develop this theory in any characteristic. Fiebig
and Williamson proved in [15] that, with certain technical assumptions, in positive characteristic B J

w
computes the stalks of indecomposable parity sheaves (introduced in [18]). It is now natural to ask
whether it is possible to connect the canonical sheaf to Kazhdan–Lusztig polynomials.

Question 4.1. (Cf. [11], Conjecture 4.4.) Under which assumptions on the characteristic of the base
field, do we have rk(B J

w)y = P J ,−1
y,w for y � w and y, w varying in some relevant subset of W J ?

This equality is true in characteristic zero for any pair y, w and in this case it is equivalent to
Kazhdan–Lusztig’s conjecture (cf. [9]). In characteristic p, if W is affine and if we only consider w
restricted (cf. [13]), it is proved for p bigger than a huge (but explicit) bound (cf. [14]), and, for p
bigger than the Coxeter number, it implies Lusztig’s conjecture (cf. [11,13]). From a recent result of
Polo (private communication, 7 May 2012), it follows that if W = S4p the stalks of the BMP-sheaf are
definitively not given by these polynomials (see Section 4.1 for more details). Anyway, this question
motivates our work, since it now makes sense to interpret some equalities concerning (parabolic)
Kazhdan–Lusztig polynomials in terms of stalks of the canonical sheaves. In order to lift properties of
KL-polynomials to the level of canonical sheaves, we will use two different techniques: the pullback
of canonical sheaves (see Section 5) and an action of the Weyl group on the set of global sections of
the BMP-sheaf (see Section 6).

Let k be a local ring with 2 ∈ k× . We define the notion of k-homomorphism between two moment
graphs and of pullback of sheaves. These will provide a useful tool, namely, under some assumptions
on k,

Lemma 5.1. Let G and G′ be two moment graphs, both with a unique maximal vertex, w resp. w ′ , and let f be
a k-isomorphism between them. If Bw and B′

w ′ are the corresponding canonical sheaves, then Bw ∼= f ∗B′
w ′

as k-sheaves on G .

Thanks to this result, in some good situations it will be enough to study the combinatorics of the
underlying moment graphs that in our case are just labeled, oriented Bruhat graphs (see Section 2.2).
This is the case in the following theorem:

Theorem 5.1. Let y, w ∈W be such that y � w, then

(i) B y
w

∼= B y−1

w−1 .

Let s ∈ S be such that ws < w, then

(ii) if y � ws, B y
w

∼= B ys
ws,

where we write Bw instead of B∅
w .
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The last part of the paper is devoted to the study of an action of a certain subgroup of the Weyl
group W on the space of global sections of the canonical sheaf and, in particular, to the proof that
the data we need to build the canonical sheaf is contained in the invariants with respect to this
action. This result, together with some combinatorics of the corresponding Bruhat graph, gives us the
categorical analogue of a result due to Kazhdan and Lusztig (cf. [21]):

Theorem 6.1. Under some assumptions on k, if y, w ∈ W and s ∈ S are such that y � w and ws < w, then
B y

w
∼= B ys

w .

Inspired by a theorem of Deodhar [7] we prove a relation between the canonical sheaf on a regular
Bruhat graph G and the ones on the corresponding parabolic Bruhat graphs G J , for J such that the
subgroup 〈 J 〉 is finite. Let w J be the longest element of 〈 J 〉 then, under some assumptions on k, we
have

Theorem 6.2. If y, w ∈W J , then (B J
w)y ∼= (B∅

w w J
)yw J .

In order to prove this result we consider again the space of invariants with respect to the above
action. The claim follows from the connection between this space and the parabolic canonical sheaf.

Structure of the paper. Sections 2 and 3 are about moment graphs and sheaves on them. In Section 4
we introduce Braden–MacPherson sheaves and recall some of their properties. We develop and apply
the technique of pullbacks in Section 5, while the one of invariants is used in the last section.

2. Moment graphs

In this section we recall the definition of moment graphs on a lattice and we define the notion of
k-homomorphism between two moment graphs.

Let k be from now on a local ring inside which 2 is an invertible element. Let Y ∼= Zr be a lattice
of finite rank and denote by Yk := Y ⊗Z k.

Definition 2.1. A moment graph G on Y is given by (V,E,�, l), where:

(i) (V,E) is a directed graph without directed cycles nor multiple edges,
(ii) � is a partial order on V such that if x, y ∈ V and E : x → y ∈ E then x � y,

(iii) l : E → Y \ {0} is a map called the label function.

Definition 2.2. Let G be a moment graph on the lattice Y , then

• G is a k-moment graph on Y if all labels are non-zero in Yk .
• (G,k) is a GKM-pair if all pairs of distinct edges containing a common vertex have labels k-linearly

independent in Yk .

Observe that if (G,k) is a GKM-pair, then G is a k-moment graph. These properties are very im-
portant and in the sequel they will give a restriction on the ring k.

2.1. k-Homomorphisms of moment graphs

Let G = (V,E,�, l) and G′ = (V ′,E ′,�′, l′) be two moment graphs on Y . Since a moment graph
is given by an oriented and ordered graph plus some other data coming from Y , we define a k-
homomorphism as a map of graphs plus a collection of automorphisms of the k-module Yk satisfying
certain requirements. More precisely,
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Definition 2.3. A k-homomorphism between two moment graphs on Y

f : (V,E,�, l) → (
V ′,E ′,�′, l′

)
is given by ( fV , ( fl,x)x∈V ), where

(MORPH1) fV : V → V ′ is any (order preserving) map of posets such that, if x −−− y ∈ E , then either
fV (x) −−− fV (y) ∈ E ′ , or fV (x) = fV (y).
For an edge E : x −−− y ∈ E such that fV (x) �= fV (y), we will denote fE (E) := fV (x)−−−
fV (y).

(MORPH2) For all x ∈ V , fl,x : Yk → Yk ∈ Autk(Yk) is such that, if E : x −−− y ∈ E and fV (x) �= fV (y),
the following two conditions are verified:

(MORPH2a) fl,x(l(E)) = h · l′( fE (E)), for some h ∈ k× .
(MORPH2b) π ◦ fl,x = π ◦ fl,y , where π is the canonical quotient map π : Yk → Yk/l′( fE (E))Yk .

Definition 2.4. f = ( fV , ( fl,x)x∈V ) : G → G′ is a k-isomorphism of moment graphs if f : G → G′ is a
k-homomorphism and the following two conditions hold:

(ISO1) fV is an isomorphism of posets;
(ISO2) for all u → w ∈ E ′ , there exists exactly one x → y ∈ E such that fV (x) = u and fV (y) = w .

If f is a k-isomorphism from the moment graph G to itself, we say that it is a k-automorphism
of G .

2.2. Bruhat graphs

Here we describe a class of moment graphs, that is for our purposes the most important.
We start by recalling some notation from [19]. Let g be a symmetrizable Kac–Moody algebra, that

is the Lie algebra g(A) associated to a symmetrizable generalized Cartan matrix A, and h its Cartan
subalgebra. Let Π = {αi}i=1,...,n ⊂ h∗ , resp. Π∨ = {αi

∨}i=1,...,n ⊂ h, be the set of simple roots, resp.
coroots; let �, resp. �+ , resp. �re+ be the root system, resp. the set of positive roots, resp. the set of
positive real roots; and let Q = ∑n

i=1 Zαi , resp. Q ∨ = ∑n
i=1 Zαi

∨ , be the root lattice, resp. the coroot
lattice. For any α ∈ �, we denote by sα ∈ GL(h∗) the reflection, whose action on v ∈ h∗ is given by

sα(v) = v − 〈
v,α∨〉

α. (1)

Let W =W(A) be the Weyl group associated to A, that is the subgroup of GL(h∗) generated by the set
of simple reflections S = {sα | α ∈ Π}. Recall that (W,S) is a Coxeter system (cf. [19], Section 3.10).

However, W can be seen also as subgroup of GL(h), by setting, for any λ ∈ h

sα(λ) := λ − 〈α,λ〉α∨. (2)

We will denote by T ⊂W the set of reflections, that is

T = {
sα

∣∣ α ∈ �re+
} = {

wsw−1
∣∣ w ∈ W, s ∈ S

}
. (3)

Hereafter we will write αt to denote the positive real root corresponding to the reflection t ∈ T .
Finally, denote by � :W → Z�0 the length function and by � the Bruhat order on W .

For any J ⊆ S , denote by W J := 〈 J 〉 and by W J the set of minimal representatives of the equiva-
lence classes of W/W J .
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Definition 2.5. Let W , S and J be as above. Then the Bruhat (moment) graph G J = G(W J ) =
(V,E,�, l) associated to W J is a moment graph on Q ∨ and it is given by

(i) V =W J ;
(ii) E = {x → y | x < y,∃α ∈ �re+,∃w ∈W J such that ywx−1 = sα};

(iii) l(x → sαxw−1) := α∨ .

Such a moment graph has an important geometric meaning. Indeed, there is a partial flag variety
Y corresponding to W and J as above (see [24]) and it carries an action of a torus T , whose Lie
algebra is h, and a (T -invariant) stratification with certain good properties (see [3]). The Bruhat graph
encodes the action of this torus, in particular, the vertices are the 0-dimensional orbits, while the
edges represent the 1-dimensional orbits (cf. Section 2.1 of [15]). The partial order on the set of ver-
tices is induced by the stratification coming from the decomposition Y = ⊔

w∈W J Y w , where, indeed,
Y w = ⊔

y�w
y∈W J

Y y .

3. Category of k-sheaves on a moment graph

Consider a moment graph G = (V,E,�, l) on a lattice Y . Recall that for any local ring k with
2 ∈ k× we denoted by Yk := Y ⊗Z k.

Let Sk := Sym(Yk) be the symmetric algebra of Yk . We provide Sk with a Z-grading such that
(Sk){2} = Yk . From now on every Sk-module will be finitely generated and Z-graded and every mor-
phism between Sk-modules will be of degree zero.

Definition 3.1. A k-sheaf F on G is given by ({F x}, {F E }, {ρx,E }), where:

(i) for all x ∈ V , F x is an Sk-module;
(ii) for all E ∈ E , F E is an Sk-module such that l(E) ·F E = {0};

(iii) for x ∈ V and E ∈ E such that x is in the boundary of the edge E , the map ρx,E : F x −→ F E is a
homomorphism of Sk-modules.

Definition 3.2. A homomorphism ϕ :F −→F ′ between k-sheaves on the moment graph G is given by
the following data:

(i) for all x ∈ V , ϕx :F x →F ′x is a homomorphism of Sk-modules;
(ii) for all E ∈ E , ϕE : F E → F ′E is a homomorphism of Sk-modules such that for any x ∈ V on the

border of E ∈ E the following diagram commutes

F x

ρx,E

ϕx

F ′x

ρ ′
x,E

F E

ϕE
F ′E

We denote by Shk
G the category of k-sheaves on G having as objects the k-sheaves on G and as

morphisms the homomorphisms between them.

3.1. Pullback sheaves

Let G = (V,E,�, l) end G′ = (V ′,E ′,�′, l′) be two moment graphs on Y and fix f : G −→ G′ a
k-homomorphism of moment graphs on Y (cf. Section 2.1).
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Definition 3.3. Let F ∈ Ob(Shk
G′), then f ∗F ∈ Ob(Shk

G) is defined as follows:

(PULL1) for all x ∈ V , ( f ∗F)x :=F fV (x) and s ∈ Sk acts on it via fl,x(s);
(PULL2) for all E : x −−− y ∈ E

(
f ∗F

)E =
{
F fV (x)/l(E)F fV (x) if fV (x) = fV (y)

F fE (E) otherwise

and of s ∈ Sk acts on ( f ∗F)E via fl,x(s);
(PULL3) for all x ∈ V and E ∈ E ′ , such that E : x −−− y,

(
f ∗ρ

)
x,E =

{
canonical quotient map if fV (x) = fV (y)

ρ fV (x), fE (E) otherwise.

Remark 3.1. For all E ∈ E , the action of Sk on ( f ∗F)E in (PULL2) is well-defined thanks to conditions
(MORPH2a) and (MORPH2b).

We say that f ∗F is the pullback of F . In what follows, the notion of pullback sheaf will allow us
to compare k-sheaves on different moment graphs.

3.2. Sections of sheaves

For each I ⊂ V we can consider the set of local sections of a k-sheaf F ∈ Ob(Shk
G) over I:

Γ (I,F) :=
{
(mx) ∈

∏
x∈I

F x
∣∣∣ ρx,E(mx) = ρy,E(my)

∀E : x −−− y ∈ E, x, y ∈ I

}
.

We denote by Γ (F) = Γ (V,F) the set of global sections of the k-sheaf F .
We call k-structure algebra of the moment graph G the set

Zk = Zk(G) :=
{
(zx) ∈

∏
x∈V

Sk

∣∣∣ zx − zy ∈ l(E)Sk
∀E : x −−− y ∈ E

}
.

It is easy to check that for any F ∈ Ob(Shk
G) the k-structure algebra Zk acts on Γ (F) via componen-

twise multiplication.

3.3. Flabby sheaves

We use the order on the set of vertices of a moment graph G to define a topology on it: the
Alexandrov topology. We say that I is open if for any x ∈ I and any y ∈ V such that x � y then y ∈ I
as well.

A classical question in sheaf theory is to ask whether a sheaf is flabby or not, that is whether any
local section over an open set extends to a global one or not.

Let F ∈ Ob(Shk
G). We fix a vertex x ∈ V and we denote

Eδx := {E ∈ E | E : x → y},
Vδx := {y ∈ V | ∃E ∈ Eδx such that E : x → y}.

Now we define F δx as the image of Γ ({�x},F) := Γ ({y ∈ V | y � x},F) under the composition of
the following functions:
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ux : Γ ({�x},F) ⊕
y�xF y ⊕

y∈Vδx
F y

⊕ρy,E ⊕
E∈Eδx

F E .

Denote

dx = ⊕
E∈Eδx

ρx,E : F x ⊕
E∈Eδx

F E .

Observe that m ∈ Γ ({�x},F) can be extended, via mx , to a section m̃ = (m,mx) ∈ Γ ({� x},F)

if and only if dx(mx) = ux(m). This fact motivates the following result, due to Fiebig, that gives a
characterization of the flabby objects in Shk

G .

Proposition 3.1. (See [9].) Let F ∈ Ob(Shk
G). Then the following are equivalent:

(i) F is flabby with respect to the Alexandrov topology, i.e. for any open I ⊆ V the restriction map Γ (F) →
Γ (I,F) is surjective.

(ii) For any vertex x ∈ V the restriction map Γ ({� x},F) → Γ ({�x},F) is surjective.
(iii) For any vertex x ∈ V the map dx :F x → ⊕

E∈Eδx
F E contains F δx in its image.

4. Braden–MacPherson sheaves

In this section we introduce the most important object of our paper, namely the canonical sheaf. It
was first defined by Braden and MacPherson—only in characteristic zero—in order to compute certain
intersection cohomology complexes. Despite this, their algorithm makes sense in any characteris-
tic and Fiebig and Williamson proved in [15] that it computes the multiplicities of parity sheaves
(see [18]) in positive characteristic if (G,k) is a GKM-pair. The following theorem allows us to con-
sider this sheaf.

Theorem 4.1. (See [3], char k = 0; [9].) Let G be a finite k-moment graph over Y with highest vertex w. There
exists exactly one (up to isomorphism) indecomposable k-sheaf Bw on G with the following properties:

(i) Bw
w

∼= Sk;
(ii) If x, y ∈ V , E : x → y ∈ E , then the map ρy,E : B y

w → BE
w is surjective with kernel l(E)B y

w ;
(iii) If x, y ∈ V , E : x → y ∈ E, then ρδx := ⊕

E∈Eδx
ρx,E : Bx

w → Bδx
w is a projective cover in the category of

graded Sk-modules.

We call Bw the Braden–MacPherson sheaf or the canonical sheaf. We will also refer to it as the
BMP-sheaf.

Remark 4.1. By Theorem 4.1 and Proposition 3.1, the canonical sheaf is flabby for the Alexandrov
topology. This property will be crucial in what follows.

4.1. Graded rank of the stalks of a BMP-sheaf

For j ∈ Z and M a graded S-module we denote by M{ j} the graded S-module obtained from
M by shifting the grading by j, i.e. M{ j}{i} = M{ j+i} . If M = ⊕n

i=1 Sk{ ji}, then its graded rank is

rk M = ∑n
i=1 q− ji

2 ∈ Z�0[q 1
2 ,q− 1

2 ].
Let G J be the Bruhat graph we defined in Section 2.2. Thus for any w ∈ W J we can consider the

subgraph G J
w := G J

|{�w} . It is a finite k-moment graph (for any k) with highest vertex w , hence we

may build the corresponding Braden–MacPherson sheaf B J
w ∈ Ob(Shk

J ) and we have:

Gw
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Question 4.1. Under which assumptions on the characteristic of the base field, do we have rk(B J
w)y =

P J ,−1
y,w for y � w and y, w varying in some relevant subset of W J ?

P J ,−1
y,w stand for the parabolic Kazhdan–Lusztig polynomials (corresponding to the parameter

u = −1) introduced by Deodhar in [7].
If k = Q, then rk(B J

w)y = P J ,−1
y,w for any pair y, w ∈ W J , with y � w , from [20,21,3]. Moreover,

Fiebig proved that in this case the equality is equivalent to a character formula conjectured by Kazh-
dan and Lusztig in [20] (see [9]). Hence for a fixed pair of elements, from the characteristic zero case
we get that the equality holds for p large enough. Observe that the bound depends on the pair and
there is no global bound in the infinite case.

Now let W be an affine Weyl group, h be its Coxeter number, k be a field of characteristic p � h
and y, w be restricted elements (cf. [13]). A positive answer to Question 4.1 would imply a conjecture
by Lusztig (cf. [11,13]). Fiebig was able to prove that the stalks (B J

w)y have the expected graded rank
for p bigger than an explicit—but huge!—bound depending on W (cf. [14]). Motivated by the fact
that in the affine case the GKM-condition (see Definition 2.2(ii)) for the Bruhat graph of restricted
elements is precisely p � h (see [12], Lemma 4.3), Fiebig suggested the answer to Question 4.1 to be
yes as soon as the GKM-condition were satisfied (cf. [11], Conjecture 4.4).

Actually, very recently this conjecture has been proven to be false for W = S4p . Indeed, Polo (pri-
vate communication, 7 May 2012) produced a family of elements wn in S4n (for each integer n � 2)
such that there is n-torsion in some costalk of the intersection cohomology of the Schubert variety
corresponding to wn . The fact that this provides us with a family of counterexamples to Fiebig’s con-
jecture is not immediate at all. We have to notice first that the Bruhat graph for slr and k constitute a
GKM-pair for any r and any field k of characteristic p > 2 and then to translate Question 4.1 in terms
of intersection cohomology complexes and parity sheaves (cf. [15], Theorem 9.2).

Finally, let us consider an affine Weyl group W , whose Coxeter number is h and a field k of char-
acteristic p > h, but let us make y, w vary in the finite Weyl group W f < W . In this case a positive
answer to Question 4.1 would imply the Lusztig’s conjecture around the Steinberg weight, which was
presented by Soergel in the 90s as “toy model” for the original Lusztig’s conjecture (cf. [26]).

In view of Polo’s result, the bound p � h seems to be the right one for expecting Question 4.1 to
have a positive answer for y, w restricted, resp. for any pair y, w , if W is affine, resp. finite. Moreover
in this case, this problem would still be related to Lusztig’s conjecture, resp. Lusztig’s conjecture on
the Steinberg weight, as discussed above.

Anyway, Question 4.1 proposes us an explicit formula connecting canonical sheaves and parabolic
Kazhdan–Lusztig polynomials and motivates our work. We will indeed interpret in terms of stalks of
BMP-sheaves some well-known identities concerning these polynomials.

5. Pullback of BMP-sheaves

The following lemma tells us that the pullback functor f ∗ preserves canonical sheaves if f is a
k-isomorphism.

Lemma 5.1. Let G and G′ be two k-moment graphs on Y , both with a unique maximal vertex, w resp. w ′ ,
and let f : G −→ G′ be a k-isomorphism. If Bw and B′

w ′ are the corresponding canonical sheaves, then
Bw ∼= f ∗B′

w ′ as k-sheaves on G .

Proof. Let G = (V,E,�, l), G′ = (V ′,E ′,�′, l′) and f = ( fV , ( fl,x)).
Notice that I ⊆ V is an open subset if and only if I ′ := fV (I) ⊆ V ′ is an open subset. We prove

that Bw |I ∼= f ∗B′
w ′ |I′ by induction on |I| = |I ′|, for I open.

If |I| = |I ′| = 1, we have I = {w} and I ′ = {w ′}. In this case Bw
w = Sk , B′w ′

w ′ = Sk and the isomor-

phism ϕw : Bw
w → B′w ′

w ′ is just given by the twisting of the Sk-action, coming from the automorphism
of Sk induced by the automorphism fl,w of Yk .

Now let |I| = |I ′| = n > 1 and y ∈ I be a minimal element. Obviously, y′ := fV (y) is also a
minimal element for I ′ . Moreover, for any E ∈ E we set E ′ := fE (E).
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First of all, observe that z ∈ Vδy if and only if z′ := fV (z) ∈ V ′
δy′ . By the inductive hypothesis, for

all x � y there exists an isomorphism ϕx : Bx
w

∼→ B′ x′
w ′ such that ϕx(s · m) = fl,x(s) · ϕx(m), for s ∈ Sk

and m ∈ Bx
w . Moreover, if E /∈ Eδy and x is on the border of E with x � y, by the inductive hypothesis

we have an isomorphism ϕE : BE
w

∼→ B′ E ′
w ′ such that ϕE (s · n) = fl,x(s) · ϕE(n), for s ∈ Sk and n ∈ BE

w
and such that the following diagram commutes

Bx
w

ϕx

ρx,E

B′ x′
w ′

ρ ′
x′,E′

BE
w

ϕE
B′E ′

w ′

Now, if E : y −→ x and E ′ : y′ −→ x′ , then

BE
w

∼= Bx
w/l(E)Bx

w and B′E ′
w ′ ∼= B′ x′

w ′ /l′
(

E ′)B′ x′
w ′ .

By assumption, fl,x(l(E)) = h · l′(E ′) for some invertible element h ∈ k× and ϕx(l(E)Bx
w) =

fl,x(l(E))B′ x′
w ′ = l′(E ′)B′ x′

w ′ . Thus the quotients are also isomorphic and so there exists ϕE : BE
w

∼→ B′ E ′
w ′

such that the following diagram commutes:

Bx
w

ϕx

ρx,E

B′ x′
w ′

ρ ′
x′,E′

BE
w

ϕE

∼
B′E ′

w ′

Now we have to construct Bδy
w and B′ δy′

w ′ . Observe that (ϕx)x�y induces an isomorphism of
Sk-modules between the sets of sections Γ ({�y},Bw) ∼= Γ ({�′ y′},B′

w ′ ) and, from what we have
observed above, the following diagram commutes:

Γ
({�y},Bw

)
⊕x�yϕ

x

u y

⊕
x�y Bx

w

⊕x�yϕ
x

⊕
x∈Vδy

Bx
w

⊕ρx,E

⊕x∈Vδy
ϕx

⊕
E∈Eδy

BE
w

⊕E∈Eδy
ϕE

Γ
({�′ y′},B′

w ′
)

u′
y′

⊕
x′�′ y′ Bx′

w ′
⊕

x′∈Vδy′ B′ x′
w ′ ⊕ρ ′

x′,E′

⊕
E∈Eδy′ B′E ′

w ′

It follows that there exists an isomorphism of Sk-modules Bδy
w

∼= B′ δy′
w ′ and by the unicity of the

projective cover we obtain B y
w

∼= B′ y′
w ′ . This proves the lemma. �
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Remark 5.1. Let y, x, z, w ∈W be such that y � w and x � z. If one could show that any isomorphism
of posets [y, w] ∼= [x, z] induces a k-isomorphism of moment graphs f : G|[y,w] → G|[x,z] (at least for
k = Q), then, by Lemma 5.1, the Lusztig–Dyer Combinatorial Invariance Conjecture (stated in [8]) would
follow. See [5] for partial results on this conjecture.

5.1. Two KL-properties of the canonical sheaf

Here we apply Lemma 5.1 in order to lift some equalities concerning KL-polynomials to the mo-
ment graph setting.

From now on we denote by G = (V,E, l,�) the Bruhat graph corresponding to a Weyl group W
and J = ∅. As in Section 2.2 we denote by S and T the set of simple reflections and all reflections,
respectively, of W . Recall that G is a moment graph on the coroot lattice Q ∨ and that there is a
linear W-action Q ∨ .

5.1.1. Inverses
Kazhdan and Lusztig gave an inductive formula to calculate the KL-polynomials ((2.2.c) of [20]).

From such a formula it follows easily by induction (cf. Example 12, Chapter 5 of [4]) that for any pair
y, w ∈W such that y � w one has

P y,w = P y−1,w−1 . (4)

We translate this equality to a k-isomorphism of stalks of canonical sheaves.

Lemma 5.2. Let W be a Weyl group. The anti-involution on W defined by the mapping x �→ x−1 induces a
k-automorphism of the Bruhat graph G for any k.

Proof. The map fV : V → V defined by x �→ x−1 is obviously a bijection. Moreover, for each x, y ∈W ,
x � y if and only if x−1 � y−1. So fV : V → V is an isomorphism of posets.

Observe that there exists a reflection t ∈ T such that y = tx if and only if y−1 = rx−1, where
r = x−1tx ∈ T . So x −−− y ∈ E if and only if x−1 −−− y−1 ∈ E .

Thus, for every x ∈W and any v ∈ Yk , we set fl,x(v) := x−1(v) and observe that if E : x −−− y = tx,
we have

(a) fl,x(l(x −−− tx)) = x−1(αt
∨) = x−1(αt)

∨ = ±l(x−1 −−− y−1), where ±x−1(αt) ∈ �re+ , because
x−1(αt) = ±αx−1tx .

(b) fl,y(v) = y−1(v) = x−1(tv) = x−1(v) − 〈αt , v〉x−1(αt
∨) ≡ x−1(v) = fl,x(v) (mod x−1(αt

∨)).

This proves that we have a k-automorphism of the moment graph G for any k. �
From this we obtain the following corollary.

Corollary 5.1. Let w ∈W . Then there exists an isomorphism g : Gw → Gw−1 of k-moment graphs on Q ∨ and
Bw ∼= g∗Bw−1 as k-sheaves on Gw for any k.

Proof. By Lemma 5.2, fV : x �→ x−1 induces a k-isomorphism between the two complete subgraphs
Gw and Gw−1 . We may then set g := f |Gw

and apply Lemma 5.1; the statement follows. �
5.1.2. Multiplying by a simple reflection. Part I

Let y, w ∈ W and s ∈ S such that y � w , ws < w and y � ws. Under those hypotheses Kazhdan
and Lusztig observed (proof of Theorem 4.2 of [20]) that

P y,w = P ys,ws. (5)
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In order to interpret (5) in our moment graph setting we need a standard combinatorial result (that
actually holds for any Coxeter group):

Lemma 5.3. (See [17], Lemma 7.4.) Let s ∈ S and v, u ∈W be such that vs < v and u < v.

(i) If us < u, then us < vs.
(ii) If us > u, then us � v and u � vs.

Thus, in both cases, us � v.

We are now able to define for any k a k-isomorphism of Bruhat (sub)graphs:

Lemma 5.4. Let y, w ∈ W and s ∈ S such that y � w, ws < w and y � ws, then for any k there is a k-

isomorphism of moment graphs G|[y,w]
∼→ G|[ys,ws] .

Proof. We show that fV : [y, w] → [ys, ws], x �→ xs is a bijection of posets inducing the identity map
on the labels.

We verify that if x ∈ [y, w] then xs ∈ [ys, ws]. We see that xs < x; indeed, if it were not the case,
then by Lemma 5.3(ii) we would have x � ws, but this would imply y � ws. In particular, this holds
for y, that is ys < y. Now, by Lemma 5.3(i),

xs < x, ws < w ⇒ xs � ws,

ys < y, xs < x ⇒ ys � xs.

We now show that if z ∈ [ys, ws] then zs ∈ [y, w]. Observe that zs > z; indeed, ys < z, y = (ys)s >

ys and if zs < z, then by Lemma 5.3(ii), with u = ys and v = z, we would get y = (ys)s � z � ws.
Moreover, z � ws < w and, by Lemma 5.3(ii),

zs > z, ws < w ⇒ zs � w,

y = (ys)s > ys, z = (zs)s < zs ⇒ y � zs.

This completes the proof that fV maps [y, w] to [ys, ws].
Let x, z ∈ [y, w], then x � z if and only if xs � zs. Indeed, we have already proved that xs < x and

zs < z so, by Lemma 5.3(i), with u = x and v = z, we have xs � zs. On the other hand, x = (xs)s > xs
and it follows from Lemma 5.3(ii) with u = xs and v = z that x = (xs)s � z.

Finally from what we proved above, for each t ∈ T we have that x, tx ∈ [y, w] if and only if

xs, txs ∈ [ys, ws]. This means that we have a bijection between sets of edges such that fE (x
γ→ tx) =

xs
γ→ txs.
Therefore f = ( fV , (IdY )x∈V ) is a k-isomorphism of moment graphs on Q ∨ for any k. �
So we have:

Corollary 5.2. Consider y, w ∈ W such that y � w and ws < w, y � ws for some s ∈ S . Let f be as in
Lemma 5.4, then Bw ∼= f ∗Bws as k-sheaves on G|[y,w] for any k.

Proof. The statement follows by combining Lemma 5.4 and Lemma 5.1. �
We recollect the results of this section:

Theorem 5.1. Let y, w ∈W be such that y � w, then
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(i) B y
w

∼= B y−1

w−1 .

Let s ∈ S be such that ws < w, then

(ii) if y � ws, B y
w

∼= B ys
ws.

All isomorphisms are isomorphisms of Sk-modules, for any k.

Proof. (i) This follows from Corollary 5.1, since two k-sheaves are isomorphic only if their stalks are
pairwise isomorphic.

(ii) As before, the isomorphism descends from the k-isomorphism of k-sheaves we obtained in
Corollary 5.2. �
6. Invariants

Clearly not all equalities concerning Kazhdan–Lusztig polynomials come from k-isomorphisms of
the underlying Bruhat graphs. In this section we develop another technique and, as in the previous
section, we apply it in order to categorify two well-known properties of these polynomials.

6.1. Multiplying by a simple reflection. Part II

Another property that Kazhdan and Lusztig in [20] (2.3.g) proved is that if y, w ∈W and s ∈ S are
such that y � w and ws < w , then

P y,w = P ys,w . (6)

It is clear that in this case there is no hope of finding any k-isomorphism of moment graphs, since
the two Bruhat intervals [y, w] and [ys, w] obviously have different cardinality.

The goal of this section is to prove the following theorem.

Theorem 6.1. For any pair y, w ∈W and for any s ∈ S such that ws < w and ys, y � w, there exist

• an isomorphism of Sk-modules ϕ y : B y
w → B ys

w ,
• a family of isomorphisms of Sk-modules ϕE : BE

w → BEs
w , where E : y −−− x ∈ E and Es : ys −−− xs ∈ E

such that the following diagram commutes

B
y
w

ϕ y

ρy,E

B
ys
w

ρys,Es

BE
w

ϕE

BEs
w

(7)

and such that ϕ ys = (ϕ y)−1 .

6.2. Two preliminary lemmata

In order to prove our claim, we need two combinatorial lemmata.
Recall that

T = {
sα

∣∣ α ∈ �re+
} = {

wsw−1
∣∣ w ∈ W, s ∈ S

}
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and, for all x, y ∈W , denote

G L(x, y) := {
t ∈ T

∣∣ tx ∈ (x, y]}.
Lemma 6.1. Let w, y ∈W and s ∈ S be such that y � w, ws < w and ys < y, then

G L(ys, w) = G L(y, w) ∪ {
ysy−1}.

Proof. We show that for all t ∈ G L(y, w) we have ys < tys � w as well, i.e. t ∈ G L(ys, w). Indeed, if
tys > ty, then ys < y < ty < tys and, by Lemma 5.3(ii) with u = ty and v = w , tys � w . Otherwise,
tys < ty � w , y < ty, ys < y and, by Lemma 5.3(i) with u = y and v = ty, we obtain ys < tys.

Clearly, ysy−1 ∈ G L(ys, w) and this completes the proof that the set on the right-hand side is a
subset of the one on the left.

Now we verify that if t ∈ T , tys ∈ [ys, w] and ty /∈ [y, w], then t = ysy−1. Indeed, by Lemma 5.3
with u = tys and v = w , tys � w and, if ty /∈ [y, w], then ty < y. Moreover, ys < y and so, by
Lemma 5.3(ii) with u = ty and v = y, tys � y. So ys < tys � y and we know that [ys, y] = {ys, y}.
Thus tys = y, that is, t = ysy−1. �
Lemma 6.2. Let w, y ∈W and s ∈ S be such that y � w, ys < y and ws < w, then the set [ys, w] \ {ys, y}
is stabilized by the mapping x �→ xs.

Proof. Notice that ys < y � w , so it makes sense to write [ys, w]. Let I := [ys, w] \ {ys, y} and let
x ∈ I . If xs > x, then obviously ys < xs and, by Lemma 5.3(ii) with u = x and v = w , xs � w . On the
other hand, if xs < x, then xs < w and, by applying Lemma 5.3(ii) with u = ys and v = x, ys � xs.
Then, in both cases xs ∈ [ys, w] and, since xs �= y and xs �= ys, we get x ∈ I .

Finally, if x ∈ I , then xs �= y. Indeed xs = y if and only if x = ys /∈ I . �
6.3. Proof of the main theorem

Let � : W → Z�0 denote the length function on W . We will prove Theorem 6.1 by induction on
n = �(w) − �(y).

If n = 0, then y = w and there is nothing to prove. If n > 0 and ys > y, then �(w) − �(ys) = n − 1
and by induction we get the desired isomorphisms.

Now, we may suppose n > 0 and ys < y. Let I = [ys, w] \ {y, ys}. From the inductive hypothesis,
for any x ∈ I we get

• an isomorphism of Sk-modules ϕx : Bx
w → Bxs

w ,
• a family of isomorphisms of Sk-modules ϕ F : BF

w → BF s
w , where F : x → z ∈ Eδy and Es : xs →

zs ∈ Eδys

such that the following diagram commutes

Bx
w

ϕx

ρx,F

Bxs
w

ρxs,F s

BF
w

ϕ F

BF s
w

(8)

and such that ϕxs = (ϕx)−1.
Observe that our claim will follow, once we prove that there is an isomorphism of Sk-modules

ϕ y : B y
w → B ys

w compatible with the restriction maps. Indeed, for E : y → x ∈ Eδy there exists exactly



M. Lanini / Journal of Algebra 370 (2012) 152–170 165
one Es : ys → xs ∈ Eδys , and ϕE would already have been given. If E : ys → y, then we could set
ϕE = Id. Finally, for x �= ys, there exists an edge E : x → y ∈ E if and only if there is Es : xs → ys ∈ E
(cf. Lemma 6.1) and in this case BE

w
∼= B y

w/l(E)B y
w

∼= B ys
w /l(Es)B ys

w , since E = Es.

We will get ϕ y by defining a surjective map from B y
w to Bδys

w . Since B ys
w is the projective cover

of the Sk-module Bδys
w , and, since rkSk B

y
w � rkSk B

ys
w (cf. Lemma 3.12. of [10]), Theorem 6.1 will

follow from the unicity of the projective cover.

6.3.1. Invariants
By Lemma 6.2, I is invariant with respect to the right multiplication by s and we may define an

automorphism σs of the set of global sections of the Braden–MacPherson sheaf as follows. Let m =
(mx) ∈ Γ (I,Bw), then we set σs(m) = (m′

x), where m′
x := ϕxs(mxs). Since the ϕx ’s are, by definition,

compatible with the restriction maps (see diagram (8)), σs(m) ∈ Γ (I,Bw). Moreover, for any x ∈ I ,
ϕxs = (ϕx)−1 and so σs is an involution.

Let us denote by Γ s the submodule of σs-invariant elements of Γ (I,Bw), and by Γ −s the ele-
ments m ∈ Γ (I,Bw) such that σs(m) = −m.

Let us consider cs := (cs,x) ∈ ⊕
x∈W Sk , where cs,x := x(αs

∨); then cs ∈ Zk and so it acts on
Γ (I,Bw) via componentwise multiplication.

Lemma 6.3. Let (G|I ,k) be a GKM-pair, then we have Γ (I,Bw) = Γ s ⊕ cs · Γ s .

Proof. (We follow [13], Lemma 2.3.)
By definition, σs is an involution and 2 is an invertible element in k, so we get Γ (I,Bw) =

Γ s ⊕ Γ −s .
Let m ∈ Γ s , then σs(cs · m) = −(cs · m), i.e. cs · Γ s ⊆ Γ −s . Indeed, s(αs

∨) = −αs
∨ and so for any

x ∈ I we have

(
σs(cs · m)

)
x = ϕxs(xs

(
αs

∨) · mxs
) = −x

(
αs

∨) · mx = −cs,x · mx = −(cs · m)x.

We have to prove the other inclusion, that is, every element m ∈ Γ −s can be divided by
(x(αs

∨))x∈I in Γ (I,Bw).
If m = (mx) ∈ Γ −s then mx = −ϕxs(mxs) and so ρxs,xs→x(mxs) = −ρx,xs→x(mx), since the following

diagram commutes:

Bxs
w

ϕxs

ρxs,xs→x

Bx
w

ρx,xs→x

Bxs→x
w

ϕxs→x
Bxs→x

w

(9)

But m is a section so ρxs,xs→x(mxs) = ρx,xs→x(mx). It follows that 2ρx,xs→x(mx) = 0, but, by defini-
tion of the canonical sheaf, kerρx,xs→x = α∨

xsx−1B
x
w , that is, α∨

xsx−1 divides mx in Bx
w .

Notice that α∨
xsx−1 = ±x(αs

∨) = ±cs,x , i.e. c−1
s · m ∈ ⊕

x∈I B
x
w . We have to verify that

ρx,x−−−tx(c−1
s,x mx) = ρtx,x−−−tx(c−1

s,txmtx) for all t ∈ T :

(cs,txcs,x)
(
ρtx,x−−−tx

(
c−1

s,txmtx
) − ρx,x−−−tx

(
c−1

s,x mx
))

= cs,x
(
ρtx,x−−−tx(mtx)

) − cs,tx
(
ρx,x−−−tx(mx)

)
= (cs,x − cs,tx)ρtx,x−−−tx(mtx) + cs,tx

(
ρtx,x−−−tx(mtx) − ρx,x−−−tx(mx)

)
.

The term on the last line is divisible by αt
∨; indeed,
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cs,x − cs,tx = x
(
αs

∨) − x
(
αs

∨) + 〈
x
(
αs

∨)
,αt

〉
αt

∨ ≡ 0 (mod αt)

and

ρtx,x−−−tx(mtx) − ρx,x−−−tx(mx) = 0.

Using the GKM-property cs,txcs,x = tx(αs
∨) · x(αs

∨) is a multiple of αt
∨ if and only if xsx−1 = t ,

that is xs = tx. Then, mx = −ϕxs(mtx), cs,tx = −cs,x and, considering that diagram (9) commutes, we
obtain

ρx,x−−−tx
(
c−1

s,t mx
) = −c−1

s,txρx,x−−−tx(mx)

= −c−1
s,tx

(−ρtx,x−−−tx(mtx)
)

= ρtx,x−−−tx
(
c−1

s,txmtx
)
.

Otherwise, xsx−1 �= t and αt
∨ divides ρtx,x−−−tx(c−1

s,txmtx)−ρx,x−−−tx(c−1
s,x mx) and so ρx,x−−−tx(c−1

s,x mx) =
ρtx,x−−−tx(c−1

s,txmtx). �
6.3.2. Building Bδys

w
Let us denote

Γ (I,Bw)

π1

⊕
x∈IBx

w
⊕

x∈Vδy
Bx

w

⊕ρx,E ⊕
E∈Eδy

BE

Recall that Bδy
w = u y(Γ ({> y},Bw)), where u y was defined as the composition of the following

maps

Γ
({> y},Bw

)
u y

⊕
x>yB

x
w

⊕
x∈Vδy

Bx
w

⊕ρx,E ⊕
E∈Eδy

BE
w

Remark 6.1. Since Bw is flabby and I and {> y} are both open sets, we get

π1
(
Γ (I,Bw)

) = u y
(
Γ

({> y},Bw
)) = B

δy
w . (10)

Now, let us denote

Γ (I,Bw)

π2

⊕
x∈IBx

w
⊕

x∈Vδy Bxs
w

⊕ρxs,Es ⊕
E∈Eδy

BEs
w

and define B̃δys
w := π2(Γ (I,Bw)).
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Lemma 6.4.

(i) Bδy
w = π1(Γ (I,Bw)) = π1(Γ

s).

(ii) B̃δys
w = π2(Γ (I,Bw)) = π2(Γ

s).

Proof. (i) Let m ∈ Γ (I,Bw). Then, by Lemma 6.3, m = m′ +cs ·m′′ , with m′,m′′ ∈ Γ s and, if m′ = (m′
x),

m′′ = (m′′
x ),

π1(m) = (
ρx,E

(
m′

x

))
x∈V:y→x∈E + (

ρx,E
(
x
(
αs

∨) · m′′
x

))
x∈V:y→x∈E .

If E : y → x ∈ Eδy , then there exists a reflection t ∈ T such that x = ty and we have

x
(
αs

∨) = ty
(
αs

∨) = y
(
αs

∨) − 〈
y
(
αs

∨)
,αt

〉
αt

∨.

But, by definition, ρx,E is a surjective map whose kernel is l(E)Bx
w = αt

∨Bx
w and

ρx,E
(
x
(
αs

∨) · m′′
x

) = ρx,E
(

y
(
αs

∨) · m′′
x

) − 〈
y
(
αs

∨)
,αt

〉
ρx,E

(
αt

∨ · m′′
x

)
= ρx,E

(
y
(
αs

∨) · m′′
x

)
.

We conclude that π1(m) = π1(m′ + y(αs
∨) · m′′), where y(αs

∨) is the element of the structure
algebra, whose components are all equal to y(αs

∨). Clearly, m′ + y(αs
∨) · m′′ ∈ Γ s and we get the

claim.
(ii) As in (i). �

Lemma 6.5. There is an isomorphism of Sk-modules τ : Bδy
w → B̃δys

w given by (mE)E∈Eδy �→ (ϕE (mE))E∈Eδy ,
that is for all m ∈ Γ s , τ ◦ π1(m) = π2(m).

Proof. The element (mE)E∈Eδy ∈ Bδy
w if and only if there exists an element m ∈ Γ ({> y},Bw) such

that u y(m) = (mE)E∈Eδy . We have already noticed that this is the case if and only if there is an
element m′ ∈ Γ (I,B) such that π1(m′) = (mE )E∈Eδy . From the previous lemma, we know that this is
equivalent to the existence of an m̃ ∈ Γ s such that π1(m̃) = (mE)E∈Eδy . But, since the squares in the
following diagram are all commutative,

Γ s

Id

π1 |Γ s

⊕
x∈Vδy

Bx
w

⊕ρx,E

⊕ϕx

⊕
E∈Eδy

BE
w

⊕ϕE

Γ s

π2 |Γ s

⊕
x∈Vδy

Bxs
w ⊕ρxs,Es

⊕
E∈Eδy

BEs
w

we get (ϕE (mE))E∈Eδy = (⊕ϕE) ◦ π1(m̃) = π2(m̃) ∈ B̃δys .

Analogously, (mEs)E∈Eδy ∈ B̃δys
w if and only if ((ϕE )−1(mEs))E∈Eδy ∈ Bδy

w . �
Let us denote by ρ : B y

w → B y
w/αs

∨ · B y
w the canonical quotient map.
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Lemma 6.6. We have

B
δys
w = {(

τ ◦ dy(my),ρ(my)
) ∈ B̃

δys
w ⊕ (

B
y
w/αs

∨ · B y
w
)}

. (11)

Proof.

B
δys
w = u ys

(
Γ

({> ys},Bw
))

= u ys
({

(m,my) ∈ Γ (I,Bw) ⊕ B
y
w

∣∣ u y(m|{>y}) = dy(my)
})

by Remark 6.1

= u ys
({

(m,my) ∈ Γ (I,Bw) ⊕ B
y
w

∣∣ π1(m) = dy(my)
})

= {(
π2(m),ρ(my)

) ∣∣ m ∈ Γ (I,Bw), my ∈ B
y
w , π1(m) = dy(my)

}
by Lemma 6.4

= {(
π2(m),ρ(my)

) ∣∣ m ∈ Γ s, my ∈ B
y
w , π1(m) = dy(my)

}
by Lemma 6.5

= {(
τ ◦ π1(m),ρ(my)

) ∣∣ m ∈ Γ s, my ∈ B
y
w , π1(m) = dy(my)

}
= {(

τ ◦ dy(my),ρ(my)
) ∣∣ my ∈ B

y
w
}
. �

From the lemma above, it follows immediately, that there is a surjective map of Sk-modules B y
w →

Bδys
w given by my �→ (τ ◦ dy(my),ρ(my)) and this concludes the proof of Theorem 6.1.

6.4. Rational smoothness and p-smoothness of the flag variety

We have an easy corollary of Theorem 6.1:

Corollary 6.1. Let W be a finite Weyl group and w0 its longest element. Then B y
w0

∼= Sk for any y ∈ W and
any k.

Proof. We proceed by induction on n = �(w0) − �(y). If n = 0, by definition, Bw0
w0

∼= Sk . If n � 1 then
there exists a simple reflection s ∈ S such that ys > y (so, �(w0) − �(ys) = n − 1). Actually, w0s < w0
for any s ∈ S and, by Theorem 6.1 and inductive hypothesis, we have B y

w0
∼= B ys

w0
∼= Sk . �

Remark 6.2. If k = Q the result above corresponds to the (rational) smoothness of flag varieties, while
if k is a field of characteristic p it gives their p-smoothness (cf. [15]). Our proof is based only on
the definition of canonical sheaf; we do not use Fiebig’s multiplicity one results (see [12]), nor the
geometry of the corresponding flag varieties.

6.5. Parabolic setting

Let J ⊆ S be such that W J = 〈 J 〉 is finite with longest element w J . Let W J be the set of minimal

representatives of the equivalence classes W/W J . For w ∈ W J , denote by Bw w J , resp. B J
w , the

canonical sheaf on Gw w J , resp. on G J
w . It is now easy to see that:

Lemma 6.7. Let W J and w J be as above and consider x, w ∈ W J such that x � w, then Bx
w w J

∼= Bxu
w w J

for
any u ∈ W J .
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Proof. We proceed by induction on �(u). Clearly there is nothing to prove if �(u) = 0. If �(u) > 0 then
there exists an s ∈ S such that us < u and so by the inductive hypothesis, we get Bx

w w J
∼= Bxus

w w J
.

Now for any s ∈ J , w w J s < w w J and xus, xu � w w J and by Theorem 6.1 we obtain the claim. �
Theorem 6.2. Let (Gw w J ,k) be a GKM-pair and let W J and w J be as above. If y, w ∈ W J and y � w, then
there is an isomorphism of Sk-modules

(Bw w J )
yw J ∼= (

B
J
w
)y

.

Proof. We proceed by induction on n = �(w)−�(y). If n = 0 the statement is trivial. Suppose we have
a collection of isomorphisms of Sk-modules ηx : (B J

w)x → (Bw w J )
xw J for any x such that �(w) −

�(x) < n.
There is a natural injective homomorphism,

j : Γ ({> y},B J
w
) → Γ

({> yw J },Bw w J

)
,

defined by setting (mx)x∈(y,w]⊂W J �→ (m̃z)z∈(yw J ,w w J ]⊂W , where m̃z := ψ z(ηx(mx)) if z ∈ xW J and

ψ z : Bxw J
w w J → Bz

w w J
is an isomorphism (it exists by Lemma 6.7).

We will show that such a homomorphism induces an isomorphism (Bw w J )
δyw J ∼= (B J

w)δy . Then,
by the unicity of projective cover, the statement will follow.

Let z ∈ (yw J , w w J ], z = xu, for some x > y ∈ W J , u ∈ W J and u = s1 . . . sr a reduced expression
with si ∈ J for every i. Moreover, let (nv ) ∈ Γ ({> yw J },Bw w J ). We prove by induction on �(u) = r
that there exists a section (pv ) ∈ Γ ({> yw J },Bw w J ) such that pxs1...si = ψxs1...si (ηx(mx)) for some

mx ∈ (B J
w)x for any i = 0, . . . , r and such that u yw J ((pv )) = u yw J ((nv)).

For the base step we have r = 0 and there is nothing to prove.
If z = (xs1s2 . . . sr−1)sr then, by the inductive hypothesis, there exists a section (qv) ∈

Γ ({> yw J },Bw w J ) and an element mx ∈ (B J
w)x such that qxs1...si = ψxs1...si (ηx(mx)) and u y((qv )) =

u y((nv )) for i = 0, . . . , r − 1. Thus, by Lemma 6.4, the element (pv) ∈ ⊕
v>yw J

B y so that

p ys1···sr−1sr = ϕ ys1···sr−1(p ys1···sr−1)

and

pxs1···si = qxs1···si = ψ xs1···si
(
ηx(mx)

) ∀i < r

is a section on {> yw J } and verifies u yw J ((ñv )) = u yw J ((nv )).
Finally, from the proof of Lemma 6.7 it follows that

ϕ ys1···sr−1(p ys1···sr−1) = ϕ ys1···sr−1(ψ ys1···sr−1
(
ηx(mx)

) = ψ xs1···sr
(
ηx(mx)

)
. �

The theorem above is the analogue of the following theorem, due to Deodhar:

Theorem 6.3. (See [7].) Let W be a Weyl group with S , set of simple reflections, and J ⊆ S such that W J is

finite. Let w J be the longest element of W J and y, w ∈W J , then P J ,−1
y,w = P yw J ,w w J .
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