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1. Introduction

1.1. Background

Let Gk be a semisimple, simply-connected algebraic group over an algebraically closed field k of
positive characteristic p and let Bk ⊆ Gk be a Borel subgroup. We assume that p is a good prime
for G (cf. Definition 2.1). One of the fundamental results of the theory of Frobenius splitting [12] is
that the flag variety Gk/Bk is Frobenius split. In the papers [9] and [10], Kumar and Littelmann use
the quantum Frobenius morphism and a variant of its splitting, both due to Lusztig [11], to construct
an alternate proof of the splitting of Gk/Bk using purely representation-theoretic constructions; they
call this an algebraization of Frobenius splitting.

More precisely, Kumar and Littelmann construct morphisms between induced representations for
hyperalgebra and quantum group representations. Upon base-change, these morphisms can be iden-
tified with morphisms on the structure sheaf OC of an affine cone C over Gk/Bk . In particular, the
quantum Frobenius morphism induces the p-th power on OC and the quantum splitting morphism
induces a splitting of the p-th power morphism on OC . This implies that C is Frobenius split and
hence by a process of sheafification that Gk/Bk is Frobenius split as well.

Gros and Kaneda [7] then showed the argument of Kumar–Littelmann can be simplified; in partic-
ular, one does not have to go to the level of quantum groups. Instead, all of the constructions of [9]
and [10] can be done purely on the level of hyperalgebras. In particular, they construct a morphism ϕ
which is the hyperalgebra version of the quantum splitting morphism. In this paper, we use the con-
structions in [7] to continue the Kumar–Littelmann program of algebraic Frobenius splitting and give a
purely representation-theoretic proof that the cotangent bundle T ∗ of Gk/Bk is Frobenius split, a fact
which was first proved by geometric means in [8].

One main advantage of using algebraic Frobenius splitting techniques is that one can concretely
write down the splitting. In particular, the hope is that using the algebraic method will make it easier
to check that certain subvarieties are compatibly split.

1.2. Algebraic Frobenius splitting

Let X be a projective k-variety and let L be an ample line bundle on X . Set

RL :=
⊕
n�0

H0(X,Ln), (1.2.1)

the affine cone over X corresponding to L. The main fact in algebraic Frobenius splitting (Lem-
ma 1.1.14 in [2]) is that X is Frobenius split if and only if Spec(RL) is. In turn, Spec(RL) is Frobenius
split if and only if RL is a Frobenius split k-algebra: i.e., there exists an Fp-linear endomorphism s
of RL such that (1) s( f p g) = f · s(g) for all f , g ∈ RL (this is called Frobenius-linearity of s) and
(2) s( f p) = f for all f ∈ RL .

We now apply these ideas to the case X = P(T ∗), the projectivization of the cotangent bundle T ∗ .
Let Uk ⊆ Bk be the unipotent radical of Bk and let U−

k be the opposite unipotent radical. Let pr : T ∗ →
Gk/Bk be the projection and set Fk := pr−1(U−

k Bk) ⊆ T ∗ , the fiber over the big cell U−
k Bk ⊆ Gk/Bk .

Then Fk is an affine subvariety of T ∗ isomorphic to U−
k × Uk .

Let G be a split form of Gk over Fp . We first construct, for any weight λ of G , a polynomial ring

Rh

λ over Fp such that Rh

λ ⊗Fp k ∼= k[Fk]. This ring carries an action of the hyperalgebra of G; taking
the locally finite part gives a ring Rλ . When λ is a regular dominant weight, Rλ ⊗Fp k is isomorphic
to RL for a very ample bundle L on P(T ∗). Further, upon base-change to k the natural inclusion
Rλ ↪→ Rh

λ corresponds to the inclusion RL ↪→ k[Fk].
Now, since P(T ∗) is split if and only if T ∗ is, it suffices to construct a splitting of the k-algebra RL .

To this end, we first work over Fp and construct a splitting S̃ of Rh

λ that restricts to a splitting of the
subalgebra Rλ . Upon base-change, this induces a splitting of RL . Geometrically, this corresponds to
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a splitting of the ring k[Fk] (or, equivalently, a splitting of the affine scheme Fk) that restricts to a
splitting of the subring RL .

1.3. Details

We now give more details on the construction of the rings Rh

λ and Rλ and the splitting mor-
phism S̃ . As above let G be a split form of the group Gk over Fp and let T ⊆ G be a split maximal
torus. Let B ⊆ G be a Borel subgroup of G containing T . Let B− denote the opposite Borel subgroup.
Let U ⊆ B and U− ⊆ B− be the respective unipotent radicals. We consider the root spaces of B to
correspond to the positive roots. Let Λ denote the weight lattice of T .

Let Ū(n) denote the hyperalgebra of U . The torus-locally finite part Ū(n)∨ of the full linear dual of
Ū(n) is naturally isomorphic to Fp[U ], the coordinate ring of U . Set n := Lie(U ); then a Springer iso-
morphism U ∼−→ n induces a B-equivariant isomorphism Fp[U ] ∼−→ Fp[n] and hence a B-equivariant
isomorphism Ū(n)∨ ∼−→ Fp[n]. Since Fp[n] has a natural B-equivariant grading by polynomial degree,
we obtain a B-equivariant grading Ūn(n)∨ on Ū(n)∨ .

In Section 2.2 we construct, for each λ ∈ Λ, the Fp-algebras Rh

λ and Rλ . These rings are defined by
inducing (twists of) the B-modules Ūn(n)∨ to Ū(g)-modules. We can interpret this construction in the
following way. The rings Rh

λ are all isomorphic to polynomial rings (cf. the proof of Proposition 3.4
below). In particular they are all naturally isomorphic to the ring of functions on U − × U . Base-
changing to k, Rh

λ ⊗Fp k is isomorphic to the ring of functions on the affine space Fk defined above.
Different choices of λ ∈ Λ give rise to different Ū(g)-algebra structures on this polynomial ring, so
the rings Rh

λ give a family of Ūk(g)-module structures on k[Fk] ∼= k[U−
k ] ⊗ k[Uk], where Ūk(g) is

the hyperalgebra of Gk . Taking the Ū(g)-locally finite part of Rh

λ gives the ring Rλ . Remark that the
rings Rλ are not all isomorphic for various choices of λ ∈ Λ.

Motivated by [8], the splitting S̃ of Rh

λ is constructed via the trace methodology described as
follows. Given a polynomial ring P and a choice of algebra generators of P there is a Frobenius-linear
trace morphism Tr on P , and every Frobenius-linear endomorphism of P is of the form

f 	→ Tr( f · g) (1.3.1)

for some fixed g ∈ P . If Q ⊆ P is a subring we can look for q ∈ Q such that (1) Tr( f · q) ∈ Q for
all f ∈ Q and (2) Tr(− · q) is a Frobenius splitting of P . This will give a Frobenius splitting of the
ring Q .

In particular, since Rh

λ is a polynomial ring we have a Frobenius-linear trace map Tr on Rh

λ cor-

responding to an appropriate choice of Fp-algebra generators of Rh

λ (cf. Section 2.7). We apply the

trace methodology to the subring Rλ ⊆ Rh

λ . In these constructions we first work over Fp and then
base-change to k later.

In Section 2.4 we construct, using representation-theoretic techniques, a Frobenius-linear endomor-
phism S of Rh

λ which turns out (Section 2.7) to be the same as the trace morphism Tr. In Section 2.5
we construct an element ψ f+⊗ f− ∈ Rλ for λ = 0 and in Section 2.6 we show that the Frobenius-linear
endomorphism

S̃ : f 	→ S(ψ f+⊗ f− · f ) (1.3.2)

of Rh

λ is a Frobenius splitting that preserves Rλ . In particular, S̃ restricts to a Frobenius splitting of Rλ

as desired. (Remark that below we write M f+⊗ f− for multiplication by ψ f+⊗ f− and hence, concisely,
S̃ = S ◦ M f+⊗ f− .)

In Section 3 we base-change to k and construct the desired splitting of P(T ∗) and hence obtain
a splitting of T ∗ . We also show that this splitting is the same as one of the homogeneous splittings
of T ∗ in [8].
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2. Algebraic splitting

2.1. Setup

Throughout Section 2 we assume all algebraic groups, algebras, schemes, vector spaces, etc. are
over Fp . Recall the groups G , B , U , T , etc. from above.

2.1.1.

Definition 2.1. We say that a prime p is bad for a simple algebraic group G in the following cases. If
G is of type A� then no prime is bad; if G is of type B� , C� , or D� then p = 2 is bad; if G is of type
E6, E7, F4, or G2 then p = 2,3 are bad; and if G is of type E8 then p = 2,3,5 are bad. We say that p
is a bad prime for a semisimple algebraic group G if it is bad for any of its simple components, and
we say that p is a good prime for G if it is not bad.

From here on we assume that p is a good prime for G .
For an algebraic group H over Fp let I ⊆ Fp[H] denote the ideal of the identity element. The sub-

space of the linear dual of Fp[H] consisting of elements that vanish on some power of I is called the
hyperalgebra of H ; it has a natural Hopf algebra structure obtained from the Hopf algebra structure
on Fp[H]. Let Ū(g), Ū(b), Ū(b−), Ū(n), Ū(n−), and Ū0 denote the hyperalgebras of G , B , B− , U , U− ,
and T , respectively.

The Frobenius morphism Fp[G] → Fp[G], f 	→ f p induces a morphism Fr : Ū(g) → Ū(g) of
Fp-algebras. We will denote the restriction of Fr to Ū(b), Ū(n), etc. by Fr as well. Let � denote the rank

of G . Ū(g) is generated by elements E(n)
i ∈ Ū(n), F (n)

i ∈ Ū(n−), and
(Hi

n

) ∈ Ū0 for n � 0 and 1 � i � �.
On these generators, we have

Fr
(

E(n)
i

) =
{

E(n/p)

i if p | n,

0 if p � n,
(2.1.1a)

Fr
(

F (n)
i

) =
{

F (n/p)

i if p | n,

0 if p � n
(2.1.1b)

and

Fr

(
Hi

n

)
=

{( Hi
n/p

)
if p | n,

0 if p � n.
(2.1.1c)

2.1.2. By [9] and [11] we have Fp-algebra morphisms Fr′ : Ū(n) → Ū(n), Fr′− : Ū(n−) → Ū(n−), and
Fr′0 : Ū0 → Ū0 given by

Fr′
(

E(n)
i

) = E(pn)

i , (2.1.2a)

Fr′−
(

F (n)
i

) = F (pn)

i , (2.1.2b)

and

Fr′0
(

Hi

n

)
=

(
Hi

pn

)
(2.1.2c)

for all 1 � i � � and n � 0.
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Set

μ0 :=
�∏

i=1

(
Hi − 1

p − 1

)
=

�∏
i=1

(
1 − H p−1

i

)
, (2.1.3)

an idempotent in Ū0. By [7, Theorem 1.4], there is a multiplicative morphism

ϕ : Ū(g) → Ū(g) (2.1.4a)

given by

ϕ(Y H X) = Fr′− Y · Fr′0 H · Fr′ X · μ0 (2.1.4b)

for all Y ∈ Ū(n−), H ∈ Ū0, and X ∈ Ū(n). Further, μ0 commutes with all elements in the image of ϕ ,
so if we consider imϕ as an Fp-algebra with unit μ0, then ϕ is an Fp-algebra morphism.

Note that

Fr(Hi) = Fr

(
Hi

1

)
= 0.

Hence Fr(H p−1
i ) = 0 which implies Fr(μ0) = 1, and we have the following important fact:

Fr ◦ ϕ = IdŪ(g). (2.1.5)

Let Λ denote the weight lattice of G . For λ ∈ Λ let cλ : Ū0 → Fp be the character associated to λ.
We have the following result from [7].

Lemma 2.2. (See Lemme 2.1 in [7].) For all λ ∈ Λ we have

cλ ◦ ϕ|Ū0 =
{

cλ/p if λ ∈ pΛ,

0 if λ /∈ pλ.
(2.1.6a)

In particular,

cλ(μ0) =
{

1 if λ ∈ pΛ,

0 if λ /∈ pλ.
(2.1.6b)

2.2. Algebraic constructions and preliminaries

2.2.1. For a Hopf algebra with comultiplication � we use the Sweedler notation

�X =
∑

X(1) ⊗ X(2),(
(� ⊗ Id) ◦ �

)
(X) =

∑
X(1) ⊗ X(2) ⊗ X(3),

etc. Let ε and σ denote the augmentation and coinverse of Ū(g), respectively. By a slight abuse
of notation we will also use the same notation for the various sub-Hopf algebras Ū(n), Ū(n−), etc.
of Ū(g).

For any Ū0-module V (resp. Ū(g)-module W ) let FhV (resp. FgW ) denote the Ū0 (resp. Ū(g))
locally finite part of V (resp. W ). Also set V ∨ := FhV ∗ . If V is a module for Ū(g), Ū(b), or Ū(b−)

then so is V ∨ .
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Recall that for a Hopf algebra H and algebra A, we say that A is an H-module algebra if A is an
H-module and

h.(ab) =
∑

(h(1).a) · (h(2).b) (2.2.1)

for all h ∈ H and a,b ∈ A.
We have the conjugation (or adjoint) Ū(b)-action on Ū(n) given by

X ∗ Y =
∑

X(1)Yσ(X(2)), (2.2.2)

where σ is the coinverse. This action induces a dual action of Ū(b) on Ū(n)∨ , also denoted by ∗.
Under the adjoint action, Ū(n) and Ū(n)∨ become Ū(b)-module algebras. From here on, we consider
Ū(n) as a Ū(b)-module under the ∗-action.

There is a duality pairing between Fp[U ] and Ū(n) which defines the Hopf algebra structure
on Ū(n) (cf. Section I.7 in [6]). There is a natural Hopf algebra structure on Ū(n)∨ obtained from
duality with Ū(n) and hence a Hopf algebra isomorphism Fp[U ] ∼= Ū(n)∨ . This is also an isomorphism
of Ū(b)-module algebras, where we take the Ū(b)-action on Fp[U ] induced by the conjugation action
of B on U .

2.2.2. Recall that we are assuming that p is a good prime for G . By [14, Proposition 3.5], there is
a B-equivariant Springer isomorphism U ∼= n which intertwines the conjugation B-action on U with
the standard B-action on n. (There are in fact infinitely many Springer isomorphisms, so let us fix any
one of them.) Thus we obtain isomorphisms of Ū(b)-module algebras

Ū(n)∨ ∼= Fp[U ] ∼= Fp[n] ∼= S
(
n∗). (2.2.3)

As S(n∗) has a natural Ū(b)-equivariant algebra grading, this induces a Ū(b)-equivariant multi-
plicative grading Ūn(n)∨ on Ū(n)∨ . Dually, we obtain a Ū(b)-equivariant grading Ūn(n) on Ū(n) such
that the comultiplication � : Ū(n) → Ū(n) ⊗ Ū(n) is gradation-preserving under the induced grading
on Ū(n) ⊗ Ū(n).

Remark 2.3. For all of the proofs below, we only use the fact that there is a Ū(b)-module algebra
isomorphism Ū(n)∨ ∼= S(n∗); hence we could use any such isomorphism. In particular, instead of a
Springer isomorphism, we could use the isomorphism constructed in [4]. Different choices of isomor-
phisms may, however, result in different splittings.

2.2.3. Induction functors and duality
Let M be a B-module. Then HomŪ(b)(Ū(g), M) has a Ū(g)-module structure given by

(Y . f )(X) = f (XY ) for all X, Y ∈ Ū(g) and f ∈ HomŪ(b)

(
Ū(g), M

)
. (2.2.4)

For any B-module M set

H0( X̄, M) := Fg HomŪ(b)

(
Ū(g), M

)
(2.2.5a)

and

H0
h( X̄, M) := Fh HomŪ(b)

(
Ū(g), M

)
. (2.2.5b)

Note that we have inclusions of Ū(g)-modules

H0( X̄, M) ⊆ H0
h( X̄, M) ⊆ HomŪ(b)

(
Ū(g), M

)
.
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We will frequently use the following fact. For any Ū0-locally finite Ū(b)-module M we have
Ū0-module isomorphisms

H0
h( X̄, M) ∼= Fh HomFp

(
Ū
(
n−)

, M
) ∼= Ū

(
n−)∨ ⊗ M. (2.2.6)

2.2.4. Consider the group algebra Fp[Λ] of the lattice Λ; then Fp[Λ] is naturally a Ū0-module
algebra. We make it into a Ū(b)-module algebra by giving it a trivial Ū(n)-action. For each λ ∈ Λ let
vλ ∈ Fp[Λ] denote the element corresponding to λ. Then, in particular, we have

vλ · vμ = vλ+μ (2.2.7)

for all λ,μ ∈ Λ. We also identify Fp .v0 with Fp via the basis element v0. This induces a bilinear
pairing

Fp .vλ ⊗ Fp .v−λ → Fp .v0 → Fp (2.2.8)

for all λ ∈ Λ.
For λ ∈ Λ let χλ denote the 1-dimensional Ū(b)-module corresponding to the character λ of Ū0

and set

H0(λ) := H0( X̄,χ−λ), (2.2.9)

the induced G-module with lowest weight −λ. In the sequel we will freely identify χλ with Fp .vλ ⊆
Fp[Λ].

Lemma 2.4. Choose λ ∈ Λ. There is a natural Ū(g)-equivariant inclusion

H0
h

(
X̄, Ū(n)∨ ⊗ χ−λ

)
↪→ (

Ū(g) ⊗ Ū(n) ⊗ χλ

)∗
, (2.2.10)

where the Ū(g)-action on (Ū(g) ⊗ Ū(n) ⊗ χλ)
∗ is given by

(Z . f )(X ⊗ Y ⊗ vλ) = f (X Z ⊗ Y ⊗ vλ) (2.2.11)

for all X, Z ∈ Ū(g) and Y ∈ Ū(n).
Further, the image of the inclusion (2.2.10) consists of the Ū0-locally finite f ∈ (Ū(g) ⊗ Ū(n) ⊗ χλ)

∗ such
that

f (A X ⊗ Y ⊗ vλ) = f
(

X ⊗ σ A ∗ (Y ⊗ vλ)
)

(2.2.12)

for all A ∈ Ū(b).

Proof. From (2.2.8) we can naturally identify χ−λ with χ∗
λ . Hence for f ∈ H0

h
( X̄, Ū(n)∨ ⊗ χ−λ) and

X ∈ Ū(g) we can consider f (X) as an element of (Ū(n) ⊗ χλ)
∗ . We define the inclusion (2.2.10),

denoted by θ , as follows: for f ∈ H0
h
( X̄, Ū(n)∨ ⊗ χ−λ), X ∈ Ū(g), and Y ∈ Ū(n) set

θ( f )(X ⊗ Y ⊗ vλ) = f (X)(Y ⊗ vλ). (2.2.13)

The rest of the statements in the lemma are now straightforward to verify. �
In the sequel, for ease of computation we will frequently use this lemma to identify H0

h
( X̄, Ū(n)∨ ⊗

χ−λ) with its image under the inclusion (2.2.10). Remark that (2.2.12) is just the statement that f is
Ū(b)-linear.
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2.2.5. The algebras Rh

λ and Rλ

For any μ,λ ∈ Λ we have (using the identification (2.2.10) above) a Ū(g)-equivariant multiplication
map

H0
h

(
X̄, Ū(n)∨ ⊗ χ−μ

) ⊗ H0
h

(
X̄, Ū(n)∨ ⊗ χ−λ

) → H0
h

(
X̄, Ū(n)∨ ⊗ χ−μ−λ

)
(2.2.14a)

given by

( f · g)(X ⊗ Y ⊗ vμ+λ) =
∑

f (X(1) ⊗ Y(1) ⊗ vμ) · g(X(2) ⊗ Y(2) ⊗ vλ). (2.2.14b)

Since comultiplication in Ū(n) preserves the gradation, the multiplication map (2.2.14a) restricts to a
degree-preserving map

H0
h

(
X̄, Ūn(n)

∨ ⊗ χμ

) ⊗ H0
h

(
X̄, Ūm(n)∨ ⊗ χλ

) → H0
h

(
X̄, Ūn+m(n)∨ ⊗ χμ+λ

)
(2.2.14c)

for all n,m � 0.
For λ ∈ Λ set

Rh

λ :=
⊕
n�0

H0
h

(
X̄, Ūn(n)

∨ ⊗ χ−nλ

)
. (2.2.15a)

By the above, Rh

λ is a Ū(g)-module algebra. Also set

Rλ := FgRh

λ =
⊕
n�0

H0( X̄, Ūn(n)
∨ ⊗ χ−nλ

)
. (2.2.15b)

Since multiplication is Ū(g)-equivariant, Rλ is a Ū(g)-module subalgebra of Rh

λ .

Remark 2.5. Note that by (2.2.6) we have a natural Fp-algebra inclusion

Rh

λ ↪→ Ū
(
n−)∨ ⊗ Ū(n)∨ ⊗ Fp[Λ] (2.2.16)

for all λ ∈ Λ.

2.3. The p-th power morphism F̃r
∗

2.3.1. Recall the morphism Fr from Section 2.1.1. Let Fr∗ (resp. Fr∗−) be the endomorphism of Ū(n)∨
(resp. Ū(n−)∨) dual to the endomorphism Fr of Ū(n) (resp. Ū(n−)). Note that since Fr is a Hopf algebra
morphism, so are Fr∗ and Fr∗− .

Lemma 2.6. Fr∗ (resp. Fr∗−) is the p-th power morphism on Ū(n)∨ (resp. Ū(n−)∨).

Proof. By definition, Fr is dual to the p-th power morphism on Fp[U ]. Since Ū(n)∨ ∼= Fp[U ] as
Fp-algebras (cf. (2.2.3) above), we have that Fr∗ is the p-th power map on Ū(n)∨ . The statement
about Fr∗− is proved similarly. �

2.3.2. Choose λ ∈ Λ. Since Fr∗ is the p-th power morphism on Ū(n)∨ it sends Ūn(n)∨ to Ūpn(n)∨

and we have an endomorphism F̃r
∗

of Rh

λ given by the direct sum of the morphisms
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H0
h

(
X̄, Ūn(n)

∨ ⊗ χ−nλ

) → H0
h

(
X̄, Ūpn(n)∨ ⊗ χ−pnλ

)
,(

F̃r
∗

f
)
(X ⊗ Y ⊗ v pnλ) = f (Fr X ⊗ Fr Y ⊗ vnλ) (2.3.1)

for all X ∈ Ū(g) and Y ∈ Ū(n).

Proposition 2.7. F̃r
∗

is the p-th power morphism on Rh

λ (and hence restricts to the p-th power morphism
on Rλ).

Proof. There are natural algebra isomorphisms

Rh

λ
∼=

⊕
n�0

Ū(g)∨ ⊗Ū(b)

(
Ūn(n)

∨ ⊗ χ−nλ

) ∼=
⊕
n�0

Ū
(
n−)∨ ⊗ Ūn(n)

∨ ⊗ χ−nλ. (2.3.2)

The algebra structure on the ring on the right-hand side of (2.3.2) is induced from the algebra struc-
ture on Ū(n−)∨ ⊗ Ū(n)∨ , so it suffices to verify that the endomorphism Fr∗− ⊗ Fr∗ of Ū(n−)∨ ⊗ Ū(n)∨
is the p-th power morphism. But this is clear by Lemma 2.6. �
2.4. The morphism S

2.4.1. The small hyperalgebras
Set E0 := ∏

β∈�+ E(p−1)
β and F0 := ∏

β∈�+ F (p−1)
β . By [5, Proposition 6.7], E0 and F0 are indepen-

dent of the ordering of the roots. Let ρ denote the half-sum of the positive roots; then E0 (resp. F0)
has weight 2(p − 1)ρ (resp. −2(p − 1)ρ).

Let ū(n) denote the “small” hyperalgebra associated to U , i.e. the sub-Hopf algebra of Ū(n) gener-

ated by
∏

β∈�+ E
(mβ )

β for 0 � mβ < p (where we take any fixed ordering of �+). Similarly, we have

the sub-Hopf algebra ū(n−) of Ū(n−).
Also let ū0 denote the sub-Hopf algebra of Ū0 generated by the elements

∏�
i=1

(Hi
ni

)
for 0 � ni < p.

The equality (
pn

m

)
= 0 for all n ∈ Z and 0 � m < p (2.4.1a)

in Fp implies

cpλ+μ(z) = cμ(z) for all μ,λ ∈ Λ and z ∈ ū0. (2.4.1b)

For any Hopf algebra H let H+ denote the augmentation ideal. We have the following useful result.

Lemma 2.8. (See [5, Lemmas 6.5 and 6.6 and Proposition 6.7].) E0 (resp. F0) is central in Ū(n) (resp. Ū(n−)).
In particular, E ∗ E0 = 0 and F ∗ F0 = 0 for all E ∈ Ū(n)+ and F ∈ Ū(n−)+ . Further, E0 · ū(n)+ = 0 and
F0 · ū(n−)+ = 0.

We also need the following technical lemma.

Lemma 2.9.

(1) E0 · Fr′(Z ∗ Y ) = E0 · (Fr′ Z ∗ Fr′ Y ) for all Y , Z ∈ Ū(n).
(2) E0 · (N ∗ X) = 0 for all N ∈ ū(n)+ and X ∈ Ū(n).
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Proof. (1) Since Fr′ is an Fp-algebra morphism and since

E0 · (A ∗ B) = A ∗ (E0 B) (2.4.2)

for all A, B ∈ Ū(n) (by the centrality of E0), it suffices to verify the statement in the case that Z = E(m)
i

for some 1 � i � � and m > 0. We have

E0 · ((Fr′ E(m)
i

) ∗ Fr′ Y
) = E0 · (E(pm)

i ∗ Fr′ Y
)

=
pm∑
j=0

(−1)pm− j E0 E( j)
i Fr′(Y )E(pm− j)

i

=
m∑

j=0

(−1)pm−pj E0 E(pj)
i Fr′(Y )E(pm−pj)

i (by Lemma 2.8)

=
m∑

j=0

(−1)m− j E0 Fr′
(

E( j)
i Y E(m− j)

i

)
= E0 · Fr′

(
E(m)

i ∗ Y
)
.

(2) Since ū(n)+ is generated by E(m)
i for 1 � i � � and 0 < m < p it suffices to check that

E0 · (E(m)
i ∗ X

) = 0 (2.4.3)

for all X ∈ Ū(n), 1 � i � �, and 0 < m < p. We have (using Lemma 2.8)

E0 · (E(m)
i ∗ X

) = E0 ·
(

m∑
j=0

(−1)m− j E( j)
i X E(m− j)

i

)

= X E0 E(m)
i +

m∑
j=1

(−1)m− j E0 E( j)
i X E(m− j)

i

(
since E0 is central in Ū(n)

)
= 0

(
since E0 · ū(n) = 0

)
. �

2.4.2. The morphism S
Set N := |�+|. For n � 0 and λ ∈ Λ define a morphism

S : H0
h

(
X̄, Ū(p−1)N+pn(n)

∨ ⊗ χ−pnλ

) → H0
h

(
X̄, Ūn(n)∨ ⊗ χ−nλ

)
(2.4.4a)

by

(S f )(X ⊗ Y ⊗ vnλ) = f
(

F0 · ϕX ⊗ E0 · Fr′ Y ⊗ v pnλ

)
(2.4.4b)

for all X ∈ Ū(g), Y ∈ Ūn(n), and f ∈ H0
h
( X̄, Ū(p−1)N+pn(n)∨ ⊗ χ−pnλ). (Here we are considering f as

an element of H0
h
( X̄, Ū(n)∨ ⊗ χ−pnλ) under the natural inclusion.) Note that S is not a morphism of

Ū(g)-modules.
It is not clear that S is well-defined, so we must prove that. We first have the following technical

lemma.
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Lemma 2.10. For all μ ∈ Λ, m � 0, 1 � i � �, X ∈ Ū(g), Y ∈ Ū(n), and f ∈ H0
h
( X̄, Ū(n)∨ ⊗ χ−pμ), we have

f
(

F0 E(pm)

i X ⊗ E0 Fr′ Y ⊗ v pμ

) = f
(

E(pm)

i F0 X ⊗ E0 Fr′ Y ⊗ v pμ

)
.

Proof. Applying the Cartan involution to Lemme 3.7 in [7] (cf. also the proof of Lemma 4.5 in [10])
we have

F0 E(pm)

i ∈ E(pm)

i F0 + ū(n)+ · Ū(g) +
m−1∑
s=0

E(sp)

i zs · Ū(g), (2.4.5)

where zs ∈ ū0 are elements such that χ−2(p−1)ρ(zs) = 0.
Since

(X . f )
(

X ′ ⊗ Y ′ ⊗ v pμ

) = f
(

X ′ X ⊗ Y ′ ⊗ v pμ

)
for all X, X ′ ∈ Ū(g) and Y ′ ∈ Ū(n), it suffices to show that

f
(

F0 E(pm)

i ⊗ E0 Fr′ Y ⊗ v pμ

) = f
(

E(pm)

i F0 ⊗ E0 Fr′ Y ⊗ v pμ

)
. (2.4.6)

By (2.4.5) we have

F0 E(pm)

i ⊗ E0 Fr′ Y ⊗ v pμ =
(

E(pm)

i F0 +
∑

N j A j +
m−1∑
s=0

E(sp)

i zs Bs

)
⊗ E0 Fr′ Y ⊗ v pμ (2.4.7)

for some A j, Bs ∈ Ū(g), N j ∈ ū(n)+ , and zs ∈ ū0 such that χ−2(p−1)ρ(zs) = 0. Now,∑
f
(
N j A j ⊗ E0 Fr′ Y ⊗ v pμ

) =
∑

f
(

A j ⊗ (
σ(N j) ∗ (

E0 Fr′ Y ⊗ v pμ

)))
=

∑
f
(

A j ⊗ E0 · (σ(N j) ∗ Fr′ Y
) ⊗ v pμ

)
(
since σ(N j) ∗ E0 = 0 by Lemma 2.8 and σ(N j).v pμ = 0

)
= 0

(
by Lemma 2.9 (2)

)
.

Also,

m−1∑
s=0

f
(

E(sp)

i zs Bi ⊗ E0 Fr′ Y ⊗ v pμ

) =
m−1∑
s=0

f
(

Bi ⊗ σ
(

E(sp)

i zs
) ∗ (

E0 Fr′ Y ⊗ v pμ

))
=

m−1∑
s=0

f
(
(−1)s Bi ⊗ σ(zs) ∗ ((

E(sp)

i ∗ E0 Fr′ Y
) ⊗ v pμ

))
=

m−1∑
s=0

f
(
(−1)s Bi ⊗ (

c−2(p−1)ρ(zs)
)
.
(

E(sp)

i ∗ E0 Fr′ Y
) ⊗ v pμ

)
(
by (2.4.1b), since

(
E(sp)

i ∗ E0 Fr′ Y
) ⊗ v pμ has weight

2(p − 1)ρ mod pΛ
)

= 0
(
since c−2(p−1)ρ(zs) = 0

)
.

Thus (2.4.6) holds by (2.4.7). �
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Proposition 2.11. The morphism S is well-defined and divides weights by p (i.e., if f is a weight vector
of weight μ then S( f ) is a weight vector of weight μ/p if μ ∈ pΛ and S( f ) = 0 otherwise). Further-
more,

S(ϕ Z . f ) = Z .(S f ) for all Z ∈ Ū(g) and f ∈ H0
h

(
X̄, Ū(p−1)N+pn(n)

∨ ⊗ χ−pnλ

)
. (2.4.8)

In particular, S preserves Ū(g)-locally finite vectors, so that S restricts to a morphism

H0( X̄, Ū(p−1)N+pn(n)
∨ ⊗ χ−pnλ

) → H0( X̄, Ūn(n)
∨ ⊗ χ−nλ

)
. (2.4.9)

Proof. To see that S is well-defined, we need to check (cf. (2.2.12)) that for λ ∈ Λ, X ∈ Ū(g),
Y ∈ Ūn(n), Z ∈ Ū(b), and f ∈ H0

h
( X̄, Ū(p−1)N+pn(n)∨ ⊗ χ−pnλ),

(S f )(Z X ⊗ Y ⊗ vnλ) = (S f )
(

X ⊗ σ(Z) ∗ (Y ⊗ vnλ)
)
. (2.4.10)

(That is, we need to check that S preserves Ū(b)-linearity.) It suffices to check this for the two cases
where Z = (Hi

m

)
or Z = E(m)

i for some 1 � i � � and m � 0.

For the first case, set Z = (Hi
m

)
. For 1 � i � �, m � 0, and n ∈ Z define

(
Hi;n

m

)
:= (Hi + n)(Hi + n − 1) · · · (Hi + n − m + 1)

m! ∈ Ū0. (2.4.11)

We may assume in (2.4.10) that Y is a weight vector of weight μ. Then we have

(S f )

((
Hi

m

)
X ⊗ Y ⊗ vnλ

)
= f

(
F0 · ϕ

((
Hi

m

)
X

)
⊗ E0 · Fr′ Y ⊗ v pnλ

)
= f

(
F0 ·

(
Hi

pm

)
· ϕ(X) ⊗ E0 · Fr′ Y ⊗ v pnλ

)
= f

((
Hi;2(p − 1)

pm

)
· F0 · ϕ(X) ⊗ E0 · Fr′ Y ⊗ v pnλ

) (
by [11, 6.5(a6)]

)
= f

(
F0 · ϕ(X) ⊗ σ

(
Hi;2(p − 1)

pm

)
∗ (

E0 · Fr′ Y ⊗ v pnλ

))
= f

(
F0 · ϕ(X) ⊗

(−Hi;2(p − 1)

pm

)
∗ (

E0 · Fr′ Y ⊗ v pnλ

))
= f

(
F0 · ϕ(X) ⊗

(−(2(p − 1)ρ + pμ + pnλ)(α∨
i ) + 2(p − 1)

pm

)
· (E0 · Fr′ Y ⊗ v pnλ

))
(
since E0 · Fr′ Y ⊗ v pnλ has weight 2(p − 1)ρ + pμ + pnλ

)
= f

(
F0 · ϕ(X) ⊗

(−(pμ + pnλ)(α∨
i )

pm

)
· (E0 · Fr′ Y ⊗ v pnλ

))
= f

(
F0 · ϕ(X) ⊗

(−(μ + nλ)(α∨
i )

m

)
· (E0 · Fr′ Y ⊗ v pnλ

))
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= (S f )

(
X ⊗

(−(μ + nλ)(α∨
i )

m

)
· Y ⊗ vnλ

)
= (S f )

(
X ⊗ σ

(
Hi

m

)
∗ (Y ⊗ vnλ)

)
(since Y ⊗ vnλ has weight μ + nλ).

For the second case, set Z = E(m)
i . Then

(S f )
(

E(m)
i X ⊗ Y ⊗ vnλ

) = f
(

F0 · ϕ(
E(m)

i X
) ⊗ E0 Fr′ Y ⊗ v pnλ

)
= f

(
F0 E(pm)

i ϕ(X) ⊗ E0 Fr′ Y ⊗ v pnλ

)
= f

(
E(pm)

i F0ϕ(X) ⊗ E0 Fr′ Y ⊗ v pnλ

)
(by Lemma 2.10)

= f
(

F0ϕ(X) ⊗ σ
(

E(pm)

i

) ∗ (
E0 Fr′ Y ⊗ v pnλ

))
= f

(
(−1)m F0ϕ(X) ⊗ E0 · (E(pm)

i ∗ Fr′ Y
) ⊗ v pnλ

)
(by Lemma 2.8)

= f
(
(−1)m F0ϕ(X) ⊗ E0 · Fr′

(
E(m)

i ∗ Y
) ⊗ v pnλ

) (
by Lemma 2.9 (1)

)
= (S f )

(
X ⊗ (

σ
(

E(m)
i

) ∗ Y
) ⊗ vnλ

)
= (S f )

(
X ⊗ σ

(
E(m)

i

) ∗ (Y ⊗ vnλ)
)
.

Hence S∨ is well-defined.
Note that the morphism

X ⊗ Y ⊗ vnλ 	→ F0 · ϕX ⊗ E0 · Fr′ Y ⊗ v pnλ

is the morphism dual to S . Since this morphism clearly multiplies weights by p, S divides weights
by p. Finally, (2.4.8) follows from (2.2.11) and an easy computation. �
2.4.3. Frobenius-linearity of S

Note that by the formulas in Section 2.1.1 we have

Fr(X) = ε(X) for all X ∈ ū(g). (2.4.12)

Lemma 2.12. The following diagrams commute:

Ū(g) ⊗ Ū(g) Ū(g) ⊗ Ū(g)
Id⊗ϕ

Ū(g)

�

ϕ

Ū(g) ⊗ Ū(g)

Fr⊗Id

Ū(g)μ0
�

(2.4.13a)

and
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Ū(n) ⊗ Ū(n) Ū(n) ⊗ Ū(n)
Id⊗Fr′

Ū(n)

�

Fr′

Ū(n) ⊗ Ū(n)

Fr⊗Id

Ū(n)
�

(2.4.13b)

Proof. This is implicit in [7] and [10], but we verify it directly for completeness. We first ver-
ify (2.4.13a). Since all morphisms in the diagram are multiplicative, it suffices to verify that the
diagram commutes for the algebra generators {E(m)

i }m�0, {F (m)
i }m�0, and {(Hi

m

)}m�0 of Ū(g). We verify

this for E(m)
i :

(
(Fr ⊗ Id) ◦ � ◦ ϕ

)(
E(m)

i

) = (
(Fr ⊗ Id) ◦ �

)(
E(pm)

i μ0
)

= (Fr ⊗ Id)

[ pm∑
j=0

(
E( j)

i ⊗ E(pm− j)
i

) ·
∑

(μ0)(1) ⊗ (μ0)(2)

]

=
m∑

j=0

E( j)
i ⊗ E(pm−pj)

i ·
∑

Fr
(
(μ0)(1)

) ⊗ (μ0)(2)

(
by (2.4.12)

)

=
(

m∑
j=0

E( j)
i ⊗ E(pm−pj)

i

)
· (1 ⊗ μ0)

=
m∑

j=0

E( j)
i ⊗ ϕ

(
E(m− j)

i

)
= (

(Id ⊗ ϕ) ◦ �
)(

E(m)
i

)
.

The computations for F (m)
i and

(Hi
m

)
are similar, as is the computation for (2.4.13b). �

Proposition 2.13. S( f p g) = f · S(g) for all n,m � 0, f ∈ H0( X̄, Ūn(n)∨ ⊗ χ−nλ), and g ∈ H0( X̄,

Ū(p−1)N+pm(n)∨ ⊗ χ−pmλ).

Proof. Choose X ∈ Ū(g) and Y ∈ Ūn+m(n). Then

S
(

f p g
)
(X ⊗ Y ⊗ v(n+m)λ) = (

f p g
)(

F0 · ϕX ⊗ E0 · Fr′ Y ⊗ v p(n+m)λ

)
= (

F̃r
∗

f · g
)(

F0 · ϕX ⊗ E0 · Fr′ Y ⊗ v p(n+m)λ

)
(by Proposition 2.7)

=
∑

f
[
Fr

(
(F0)(1)(ϕX)(1)

) ⊗ Fr
(
(E0)(1)

(
Fr′ Y

)
(1)

) ⊗ vnλ

]
· g

[
(F0)(2)(ϕX)(2) ⊗ (E0)(2)

(
Fr′ Y

)
(2)

⊗ v pmλ

] (
by (2.2.14b)

)
=

∑
f
[
Fr

(
(ϕX)(1)

) ⊗ Fr
((

Fr′ Y
)
(1)

) ⊗ vnλ

]
· g

[
F0 · (ϕX)(2) ⊗ E0 · (Fr′ Y

) ⊗ v pmλ

] (
by (2.4.12)

)

(2)
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=
∑

f (X(1) ⊗ Y(1) ⊗ vnλ) · g
(

F0 · ϕX ⊗ E0 · Fr′ Y ⊗ v pmλ

)
(by Lemma 2.12)

= (
f · S(g)

)
(X ⊗ Y ⊗ v(n+m)λ). �

2.5. The section ψ f+⊗ f− and the multiplication M f+⊗ f−

In this section we construct a particular section ψ f+⊗ f− ∈ H0( X̄, Ū(n)∨) and define the multiplica-
tion morphism M f+⊗ f− : f 	→ ψ f+⊗ f− · f .

2.5.1. The morphism ψ̄

Set δ := (p − 1)ρ . Recall that the Steinberg module for G , denoted St, is the irreducible module of
highest weight δ. It is also a Weyl module for G and is self-dual. Let

η : St ⊗ St → Fp (2.5.1)

be the G-equivariant pairing.
Recall that we are taking the conjugation action ∗ of Ū(b) on Ū(n)∨ . Following [8], define a mor-

phism

ψ̄ : St ⊗ St → Ū(n)∨, v ⊗ w 	→ ψ̄v⊗w (2.5.2a)

by

ψ̄v⊗w(X) = η(v ⊗ X .w) (2.5.2b)

for v ⊗ w ∈ St ⊗ St and X ∈ Ū(n). Since

η(Y .v ⊗ w) = η(v ⊗ σ Y .w) for all v, w ∈ St and Y ∈ Ū(g)

it is easy to check that ψ̄ is a Ū(b)-equivariant morphism.
Let

q(p−1)N : H0( X̄, Ū(n)∨
)
� H0( X̄, Ū(p−1)N(n)∨

)
be the Ū(g)-equivariant projection. We now define a Ū(g)-equivariant morphism

ψ : St ⊗ St → H0( X̄, Ū(p−1)N(n)∨
)
, v ⊗ w 	→ ψv⊗w (2.5.3)

by the following composition:

St ⊗ St
H0(ψ̄)−−−−→ H0( X̄, Ū(n)∨

) q(p−1)N
� H0( X̄, Ū(p−1)N(n)∨

)
. (2.5.4)

Let π(p−1)N : Ū(n) � Ū(p−1)N (n) be the Ū(b)-equivariant projection. Then, considering H0( X̄,

Ū(p−1)N (n)∨) as a subspace of H0( X̄, Ū(n)∨), ψ is given explicitly by

ψv⊗w(X ⊗ Y ) =
∑

η
(

X(1).v ⊗ π(p−1)N(Y ).X(2).w
)

(2.5.5)

for X ∈ Ū(g) and Y ∈ Ū(n). (Remark that the projections q(p−1)N and π(p−1)N are necessary here
because in general H0(ψ̄)(v ⊗ w) will not be a homogeneous element of H0( X̄, Ū(n)∨).)
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Lemma 2.14. E0 ∈ Ū(p−1)N (n).

Proof. Let {yβ}β∈�+ ⊆ Ū1(n)
∨ be a set of weight elements of Ū(n)∨ that generate Ū(n)∨ as an Fp-

algebra such that the weight of yβ is −β . The ideal I(p) := 〈yp
β〉β∈�+ is Ū(b)-stable and the quotient

algebra Ū(n)∨/I(p) ∼= ū(n)∨ is a Ū(b)-module algebra isomorphic to the coordinate algebra of the first
Frobenius kernel of U .

Set

y0 :=
∏

β∈�+
yp−1

β ∈ Ū(p−1)N(n)∨ (2.5.6)

and let

r : Ū(n)∨ � ū(n)∨ � χ−2δ (2.5.7a)

be the Ū(b)-equivariant projection dual to the morphism

χ2δ ↪→ ū(n) ↪→ Ū(n), v2δ 	→ E0. (2.5.7b)

Since r(y0) �= 0 we have y0(E0) �= 0. Hence π(p−1)N (E0) �= 0 since y0 ∈ Ū(p−1)N (n)∨ .
Choose nonnegative integers {mβ}β∈�+ such that not all mβ are equal to p − 1 and set y :=∏

β∈�+ y
mβ

β . To show that E0 ∈ Ū(p−1)N (n) it suffices to show that y(E0) = 0, since this would im-

ply that E0 is dual to the element y0 with respect to a basis of Ū(n)∨ consisting of homogeneous
elements.

If y is not of weight −2δ then y(E0) = 0 by weight considerations, so we can assume that y is
of weight −2δ. Thus we have

∑
β∈�+ mββ = 2δ. Since not all mβ are equal to p − 1, at least one of

the mβ must be � p. (Indeed, otherwise there would be an element of ū(n) of weight 2δ that is not
in the subspace spanned by E0, which is false.) Thus we can write y = yp

γ · y′ for some γ ∈ �+ and
we have

y(E0) = (
yp
γ · y′)(E0)

= (
Fr∗ yγ · y′)(E0)

=
∑

yγ

(
Fr

(
(E0)(1)

)) · y′((E0)(2)

)
= yγ (1) · y′(E0)

= 0
(
since yγ (1) = 0

)
.

Hence E0 ∈ Ū(p−1)N (n). �
In particular, we have

π(p−1)N(E0) = E0. (2.5.8)

2.5.2. The section ψ f+⊗ f− and the multiplication M f+⊗ f−
Let f+, f− ∈ St be nonzero highest and lowest weight vectors, respectively. Then F0. f+ is a

nonzero multiple of f− and E0. f− is a nonzero multiple of f+ (cf. Exercise 2.3.E(2) in [2]).
By (2.5.5), for X ∈ Ū(n−) and Y ∈ Ū(n) we have

ψ f+⊗ f−(X ⊗ Y ) = η
(

X . f+ ⊗ π(p−1)N(Y ). f−
)
. (2.5.9)
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Thus, by rescaling f+ and f− if necessary, by Lemma 2.14 we have

ψ f+⊗ f−(F0 ⊗ E0) = η
(

F0. f+ ⊗ π(p−1)N(E0). f−
) = η(F0. f+ ⊗ E0. f−) = 1. (2.5.10)

For all λ ∈ Λ and n � 0 define a morphism

M f+⊗ f− : H0( X̄, Ūn(n)
∨ ⊗ χ−nλ

) → H0( X̄, Ūn+(p−1)N(n)∨ ⊗ χ−nλ

)
(2.5.11)

given by multiplication by the section ψ f+⊗ f− . Note that M f+⊗ f− is Ū0-equivariant since f+ ⊗ f− ∈
St ⊗ St is an element of weight 0.

2.6. The splitting S̃

2.6.1. Define an endomorphism S̃ of Rh

λ as follows. Set

S̃
(

H0
h

(
X̄, Ūm(n)∨ ⊗ χ−mλ

)) = 0 if p � m (2.6.1a)

and for n � 0 let S̃ be defined on H0
h
( X̄, Ūpn(n)∨ ⊗ χ−pnλ) by the composition

H0
h

(
X̄, Ūpn(n)∨ ⊗ χ−pnλ

) M f+⊗ f−−−−−−→ H0
h

(
X̄, Ū(p−1)N+pn(n)

∨ ⊗ χ−pnλ

)
S−→ H0

h

(
X̄, Ūn(n)

∨ ⊗ χ−nλ

)
. (2.6.1b)

By Proposition 2.11, S̃ descends to a morphism Rλ → Rλ .

Definition 2.15. Let A be an Fp-algebra and s an Fp-linear endomorphism of A. We say that s is
Frobenius-linear if s(apb) = a · s(b) for all a,b ∈ A. If s is a Frobenius-linear endomorphism of A such
that s(ap) = a for all a ∈ A we say that s is a Frobenius splitting of A.

Theorem 2.16. S̃ is a Frobenius splitting of Rh

λ for all λ ∈ Λ. In particular, S̃ descends to a Frobenius splitting
of Rλ .

Proof. Since S̃ preserves Rλ it suffices to check that S̃ is a Frobenius splitting of Rh

λ . We first check
that S̃ is Frobenius-linear. Choose n � 0 and f ∈ H0

h
( X̄, Ūn(n)∨ ⊗ χ−nλ). For m with p � m and h ∈

H0
h
( X̄, Ūm(n)∨ ⊗ χ−mλ) we have

f ph ∈ H0
h

(
X̄, Ūpn+m(n)∨ ⊗ χ−(pn+m)λ

)
.

Thus, since p � pn + m, we have

S̃
(

f p · h
) = 0 = f · S̃(h). (2.6.2)

Now choose m � 0 and g ∈ H0
h
( X̄, Ūpm(n)∨ ⊗ χ−pmλ). Since M f+⊗ f− is given by section multipli-

cation we have

M f+⊗ f−
(

f p · g
) = f p · M f+⊗ f−(g).

Thus, by Proposition 2.13,

S̃
(

f p · g
) = S

(
f p · M f+⊗ f−(g)

) = f · S̃(g). (2.6.3)

Hence S̃ is Frobenius-linear.
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We next verify that S̃ is a Frobenius splitting. Since S̃ is Frobenius-linear it suffices to show that
S̃(e) = e, where e ∈ Rλ is the unit. Now, e ∈ H0

h
( X̄, Ū0(n)

∨) is the element such that

e(X ⊗ Y ) = ε(X)ε(Y ) (2.6.4)

for all X ∈ Ū(g), Y ∈ Ū(n). Since

f (Z X ⊗ Y ) = f (X ⊗ σ Z ∗ Y )

for all Z ∈ Ū(b), X ∈ Ū(g), Y ∈ Ū(n), and f ∈ H0
h
( X̄, Ū(n)∨), by the triangular decomposition of Ū(g)

we can assume in the following that X ∈ Ū(n−). We have

(̃
S(e)

)
(X ⊗ Y ) = (

(S ◦ M f+⊗ f−)(e)
)
(X ⊗ Y )

= (
M f+⊗ f−(e)

)(
F0 · ϕX ⊗ E0 · Fr′ Y

)
= (

μ0.
(
M f+⊗ f−(e)

))(
F0 · Fr′− X ⊗ E0 · Fr′ Y

)
= (

M f+⊗ f−(e)
)(

F0 · Fr′− X ⊗ E0 · Fr′ Y
) (

since M f+⊗ f−(e) has weight 0
)

=
∑

η
(
(F0)(1).

(
Fr′− X

)
(1)

. f+ ⊗ π(p−1)N
(
(E0)(1) · (Fr′ Y

)
(1)

)
. f−

)
· e

(
(F0)(2) · (Fr′− X

)
(2)

⊗ (E0)(2) · (Fr′ Y
)
(2)

) (
by (2.2.14b) and (2.5.9)

)
= η

(
F0. Fr′− X . f+ ⊗ π(p−1)N

(
E0 · Fr′ Y

)
. f−

) (
by (2.6.4)

)
= η

(
F0. f+ ⊗ π(p−1)N(E0). f−

) · ε(X) · ε(Y ) (by weight considerations)

= ε(X) · ε(Y )
(
by (2.5.10)

)
= e(X ⊗ Y ).

Hence S̃ is a Frobenius splitting of Rh

λ . �
2.7. S and the trace map

In this section we compare S to the local trace map. The results of this section are also crucial in
the proof of Proposition 3.4 below. The main result in this section is Proposition 2.20.

Definition 2.17. For any polynomial ring P := Fp[z1, . . . , zn] we have the Frobenius-linear trace map

Tr : P → P which is given on monomials as follows. Set z0 := zp−1
1 · · · zp−1

n . Then

Tr
(
z0 f p) = f (2.7.1)

for all f ∈ P , and if g is a monomial that is not of the form z0 f p for some f ∈ P we set Tr(g) = 0.
Up to a nonzero constant, Tr is independent of the choice of generators z1, . . . , zn of P .

Remark 2.18. Consider the polynomial ring P as above. For any h ∈ P we have a Frobenius-linear
endomorphism fh of P given by

fh(g) = Tr(hg) for all g ∈ P . (2.7.2)

By Example 1.3.1 in [2], every Frobenius-linear endomorphism of P is of the form fh for some h ∈ P .
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Let {xβ}β∈�+ (resp. {yβ}β∈�+ ) be eigenfunctions in degree 1 which generate Fp[n−] (resp. Fp[n])
as polynomial rings. By (2.2.3) we may also consider these as elements of Ū(n−)∨ (resp. Ū(n)∨). Set

y0 :=
∏

β∈�+
yp−1

β and x0 :=
∏

β∈�+
xp−1
β . (2.7.3)

By the proof of Lemma 2.14, after rescaling the xβ , yβ if necessary we have that

x0(F0) = y0(E0) = 1. (2.7.4)

These choices of polynomial generators now give trace maps Tr+ and Tr− on Ū(n)∨ and Ū(n−)∨
respectively as in Definition 2.17.

In the case that λ = 0 we set Rh := Rh

λ . In particular, identifying Rh with the polynomial ring
Ū(n−)∨ ⊗ Ū(n)∨ , we obtain a trace map

Tr− ⊗ Tr+ : Rh → Rh. (2.7.5)

Define an endomorphism S− of Ū(n−)∨ by

(S− f )(X) = f
(

F0 · Fr′− X
)

(2.7.6a)

for all f ∈ Ū(n−)∨ and X ∈ Ū(n−). Similarly, define an endomorphism S+ of Ū(n)∨ by

(S+g)(Y ) = g
(

E0 · Fr′ Y
)

(2.7.6b)

for all g ∈ Ū(n−) and Y ∈ Ū(n).

Lemma 2.19. S = S− ⊗ S+ as endomorphisms of Rh .

Proof. Choose X ∈ Ū(n−), Y ∈ Ū(n), and f ∈ Rh . We need to show that

(S f )(X ⊗ Y ) = f
(

F0 · Fr′− X ⊗ E0 · Fr′ Y
)
. (2.7.7)

Now,

(S f )(X ⊗ Y ) = f
(

F0 · ϕX ⊗ E0 · Fr′ Y
)

= (μ0. f )
(

F0 · Fr′− X ⊗ E0 · Fr′ Y
)
. (2.7.8)

Without loss of generality we may assume that f is a weight vector of weight μ ∈ Λ and that X , Y
are weight vectors of weight μX and μY . Since F0 · Fr′− X ⊗ E0 · Fr′ Y is a weight vector of weight
p(μX + μY ) ∈ pΛ we have

f
(

F0 · Fr′− X ⊗ E0 · Fr′ Y
) = 0 unless μ = −p(μX + μY ) ∈ pΛ. (2.7.9)

In particular, if μ /∈ pΛ then μ0. f = 0 and (2.7.7) follows from (2.7.8) and (2.7.9). On the other hand,
if μ ∈ pΛ then μ0. f = f and (2.7.7) follows from (2.7.8). �
Proposition 2.20. S− = Tr− and S+ = Tr+ as endomorphisms of Ū(n−)∨ and Ū(n)∨ , respectively. In partic-
ular, S = Tr− ⊗ Tr+ as Frobenius-linear endomorphisms of Rh .
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Proof. We check that S+ = Tr+; the fact that S− = Tr− follows from a similar argument. Since S+
and Tr+ are Frobenius-linear endomorphisms, they are completely determined by their values on the
monomials

∏
β∈�+ y

nβ

β for 0 � nβ < p, so it suffices to check that the values of S+ and Tr+ on those
monomials are the same.

First consider a monomial y := ∏
β∈�+ y

nβ

β where 0 � nβ < p for all β ∈ �+ and nβ < p − 1 for

some β . Then Tr+(y) = 0 by definition. On the other hand, for all X ∈ Ū(n) we have(
S+(y)

)
(X) = y

(
E0 · Fr′ X

)
.

We may assume that X is a weight vector. Then E0 · Fr′ X is a weight vector of weight � (p − 1)ρ
and y is a weight vector of weight μy with −(p − 1)ρ < μy � 0. Hence y(E0 · Fr′ X) = 0 so that
Tr+(y) = S+(y).

Next, we have Tr+(y0) = 1 by definition. On the other hand, for all X ∈ Ū(n) we have

(
S+(y0)

)
(X) = y0

(
E0 · Fr′ X

)
= y0(E0) · ε(X) (by weight considerations)

= ε(X)
(
by (2.7.4)

)
= 1(X).

Thus S+ = Tr+ . �
3. Base-change to k and main results

Recall that k = Fp . We no longer assume that all schemes are over Fp . Recall that Gk , Bk , Tk , etc.
are the groups obtained by base-changing G , B , T , etc. to k. In this section we base-change the above
constructions to k and prove that T ∗ = T ∗(Gk/Bk) is Frobenius split.

3.1. Review of Frobenius splitting facts

In this section we review the theory of Frobenius splitting. The main references are [2] and the
seminal paper [12].

Let X be a scheme over k. We define a morphism F : X → X as follows: let F be the identity map
on points and define F # : OX → F∗OX to be the p-th power map f 	→ f p . Note that although F is
a morphism of Fp-schemes, it is not a morphism of k-schemes. F is called the absolute Frobenius
morphism.

Definition 3.1. We say that X is Frobenius split if there is an OX -linear map ϕ : F∗OX → OX such
that ϕ ◦ F # is the identity map on OX .

For any invertible sheaf L on X we set

RL :=
⊕
n�0

H0(X,Ln)
. (3.1.1)

Recall the definition of a Frobenius split algebra from Definition 2.15. The following fact from [2] is
the starting point for algebraic Frobenius splitting.

Proposition 3.2. (See [2, Lemma 1.1.14].) Let L be an ample invertible sheaf on a complete k-scheme X. Then
X is Frobenius split if and only if the k-algebra RL is Frobenius split.
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3.2. Splitting of T ∗

3.2.1. Base-change
Set Ūk(g) := Ū(g) ⊗Fp k; we have similar definitions for Ūk(b), Ūk(b

−), Ūk(n), Ūk(n
−), and Ū 0

k .
Note that Ūk(g), Ūk(b), Ūk(b

−), etc. are the hyperalgebras of Gk , Bk , B−
k , etc. For any Fp-module M

set Mk := M ⊗Fp k. For n � 0 set

Ūn(n)
∨
k := Ūn(n)

∨ ⊗Fp k, (3.2.1)

the degree-n component of Ūk(n).
Note that if M is a Ū(g), Ū(b), etc. module then Mk is a Ūk(g), Ūk(b), etc. module. For λ ∈ Λ let χk

λ

denote the 1-dimensional Ūk(b)-module corresponding to the weight λ (equivalently, χk
λ = χλ ⊗Fp k).

For any Ū 0
k (resp. Ūk(g)) module V we let, by a slight abuse of notation, FhV (resp. FgV ) denote

the Ū 0
k (resp. Ūk(g)) locally finite part of V , and we set V ∨ := FhV ∗ .

For any Ūk(b)-module N set

H0
k ( X̄, N) := Fg HomŪk(b)

(
Ūk(g), N

)
. (3.2.2)

Note that for any Ū(b)-module M we have a Ūk(g)-module isomorphism

H0
k ( X̄, Mk) ∼= H0( X̄, M) ⊗Fp k. (3.2.3)

3.2.2. The splitting S̃k of T ∗
Fix a regular dominant weight λ ∈ Λ and set

Rk := Rλ ⊗Fp k =
⊕
n�0

H0
k

(
X̄, Ūn(n)

∨
k ⊗ χk−nλ

)
. (3.2.4)

For any Bk-module M let L(M) denote the Gk-equivariant bundle on Gk/Bk with fiber M . By
Proposition 3.7 in [1] we have

H0(Gk/Bk,L(M)
) ∼= H0

k ( X̄, M). (3.2.5)

Let P(T ∗) denote the projectivization of the bundle T ∗ and let L(λ) be the line bundle on Gk/Bk
corresponding to the Bk-module χk−λ . Let

Pr : P(
T ∗) → Gk/Bk (3.2.6)

be the projection and set

M := Pr∗L(λ) ⊗OP(T ∗)(1). (3.2.7)

Recall the ring

RM =
⊕
n�0

H0(P(
T ∗),Mn) (3.2.8)

as in (3.1.1). By the projection formula and (3.2.5) we have

RM ∼= Rk. (3.2.9)
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Also note that M is very ample on P(T ∗) because it is the pullback of the very ample bundle
L(λ) �OP(g)(1) under the inclusion

P
(
T ∗) = Gk ×Bk P(n) ↪→ Gk ×Bk P(g) ∼= (Gk/Bk) × P(g). (3.2.10)

By Lemma 1.1.11 in [2], if P(T ∗) is split then so is T ∗ . Thus, to see that T ∗ is split, it suffices by
Proposition 3.2 and (3.2.9) to show that Rk is a Frobenius split algebra.

Let θ : k → k be the p-th power map and let θ ′ : k → k be the p-th root map. Set

F̃r
∗
k := F̃r

∗ ⊗Fp θ : Rk → Rk (3.2.11)

and set

S̃k := S̃ ⊗Fp θ ′ : Rk → Rk. (3.2.12)

Then, since F̃r
∗

is the p-th power morphism on Rλ , F̃r
∗
k is the p-th power morphism on Rk . Also, since

S̃ is Frobenius-linear, so is S̃k . Finally, it follows from Theorem 2.16 that S̃k ◦ F̃r
∗
k = Id. We summarize

this discussion as follows.

Theorem 3.3. S̃k is a Frobenius splitting of Rk. In particular, T ∗ is Frobenius split.

3.2.3. Comparison with [8]
Set Stk := St ⊗Fp k and let ηk : Stk ⊗ Stk → k be the duality pairing. In [8] the authors construct,

for any element v ∈ Stk ⊗ Stk such that ηk(v) �= 0, a Frobenius splitting f v of T ∗ . Their construction
also requires them to fix a Springer isomorphism U ∼−→ n so let us assume that the isomorphism
used in their construction is the same one we fixed in Section 2.2.2 above. In Section 7 of [8] they
then construct, for any splitting f v , a homogeneous splitting π(p−1)N ( f v ) of T ∗ . (In this context
“homogeneous” means that the splitting divides degrees by p.)

Recall the highest and lowest weight elements f+ , f− ∈ St as in Section 2.5. Set f k+ := f+ ⊗ 1 ∈ Stk

and f k− := f− ⊗ 1 ∈ Stk .

Proposition 3.4. The splitting of T ∗ induced by the splitting S̃k of Rk is the same as the splitting
π(p−1)N ( f f k+⊗ f k− ).

Proof. Let pr : T ∗ → Gk/Bk be the projection. Set

Fk := pr−1(U−
k Bk

) ⊆ T ∗,

the fiber over the big cell. Then Fk
∼= U−

k × nk . Set T ∗
Fp

:= G ×B n and set

F := U−B × n ⊆ T ∗
Fp

.

Then T ∗ = T ∗
Fp

×Fp k and Fk = F ×Fp k. It suffices to check that the two splittings coincide on the

open set Fk ⊆ T ∗ .
Denote by Ψk the restriction of the splitting π(p−1)N ( f f k+⊗ f k− ) to Fk . We now define a splitting Ψ

of F such that Ψk is the base-change to k (along with a twist by the p-th root map θ ′) of Ψ . Using
our chosen Springer isomorphism we have

Fp[F ] ∼= Fp
[
U−] ⊗ Fp[U ]. (3.2.13)
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For each m � 0 let Fp[U ]m denote the degree-m component via the identification Fp[U ] ∼= Fp[n]. Also
recall from (2.5.2a) the definition of the morphism ψ̄ : St ⊗ St → Ū(n)∨ . Using the identification

H0( X̄, Ū(n)∨
) ∼= H0(T ∗

Fp
,OT ∗

Fp

)
,

we obtain a morphism

ψ̂ := H0(ψ̄) : St ⊗ St → H0(T ∗
Fp

,OT ∗
Fp

)
, v ⊗ w 	→ ψ̂v⊗w . (3.2.14)

Now, following [8], Ψ is defined by the direct sum of the following compositions for n � 0:

Fp
[
U−] ⊗ Fp[U ]pn

·ψ̂ f+⊗ f−−−−−−→ Fp
[
U−] ⊗ Fp[U ]

Tr−⊗Tr+−−−−−→ Fp
[
U−] ⊗ Fp[U ] qn−→ Fp

[
U−] ⊗ Fp[U ]n, (3.2.15)

where ·ψ̂ f+⊗ f− denotes multiplication by the function ψ̂ f+⊗ f− ∈ H0(T ∗
Fp

,OT ∗
Fp

), Tr− ⊗Tr+ is the trace

morphism as in (2.7.5), and qn is projection onto the n-th homogeneous component Fp[U−]⊗Fp[U ]n .
We also set

Ψ
(
Fp[U ] ⊗ Fp

[
U−]

m

) = 0 if p � m. (3.2.16)

It now suffices to verify that the splitting of Fp[F ] induced by S̃ is the same as Ψ .

Now, the splitting of Fp[F ] induced by the splitting S̃ of the ring Rh

λ comes from the Fp -algebra
isomorphism

Rh

λ
∼= Fp[F ] (3.2.17)

constructed as follows. First, recall that when λ = 0 we set Rh = Rh

λ . As in Section 2.7, we have
isomorphisms

Fp[F ] ∼= Fp
[
U−] ⊗ Fp[U ] ∼= Fp

[
n−] ⊗ Fp[n] ∼= Ū

(
n−)∨ ⊗ Ū(n)∨ ∼= Rh. (3.2.18)

Note that for each λ ∈ Λ there is a natural Fp-algebra isomorphism⊕
n�0

Ūn(n)
∨ ⊗ χ−nλ

∼= Ū(n)∨ (3.2.19a)

which is not, however, even Ū0-equivariant. Thus, via the identification (2.3.2), we get a natural
Fp-algebra isomorphism

rλ : Rh

λ =
⊕
n�0

Ū
(
n−)∨ ⊗ Ūn(n)

∨ ⊗ χ−nλ
∼−→

⊕
n�0

Ū
(
n−)∨ ⊗ Ūn(n)

∨ = Rh (3.2.19b)

given explicitly by

(rλ f )(X ⊗ Y ) = f (X ⊗ Y ⊗ vnλ) (3.2.19c)

for all n � 0, X ∈ Ū(n−), and Y ∈ Ūn(n). (As above, though, this is not Ū0-equivariant.) Combin-
ing (3.2.18) and (3.2.19b) we get the desired isomorphism (3.2.17).
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Now, it is easy to see that the following diagram commutes for all λ:

Rh

λ

rλ

S̃

Rh

S̃

Rh

λ rλ
Rh.

(3.2.20)

Also, by (3.2.18) we can consider Ψ as a splitting of Rh . Hence it suffices to check that Ψ and S̃ are
equal, considered as splittings of Rh .

First, we have that Ψ and S̃ are both zero on homogeneous elements of Rh of degree m � p. Next,
considering Tr− ⊗ Tr+ as an endomorphism of Rh as in Section 2.7, by (3.2.15) we have that Ψ is
given on the pn-th homogeneous component of Rh by the following composition:

Ū
(
n−)∨ ⊗ Ūpn(n)

∨ ·ψ̂ f+⊗ f−−−−−−→ Rh Tr−⊗Tr+−−−−−→ Rh qn−→ Ū
(
n−)∨ ⊗ Ūn(n)

∨. (3.2.21a)

Here we denote, as above, the projection onto the n-th homogeneous component of Rh by qn . Since
Tr− ⊗ Tr+ sends elements of degree pn + (p − 1)N to elements of degree n, this is the same as the
composition

Ū
(
n−)∨ ⊗ Ūpn(n)

∨ ·ψ̂ f+⊗ f−−−−−−→ Rh qpn+(p−1)N−−−−−−→ Rh Tr−⊗Tr+−−−−−→ Ū
(
n−)∨ ⊗ Ūn(n)

∨. (3.2.21b)

On the other hand, recall that S̃ is given on the pn-th homogeneous component of Rh by

Ū
(
n−)∨ ⊗ Ūpn(n)

∨ M f+⊗ f−−−−−−→ Rh S−→ Ū
(
n−)∨ ⊗ Ūn(n)

∨. (3.2.22)

Now, by the definition of ψ in (2.5.4), we have that ψ = q(p−1)N ◦ ψ̂ . Hence for all f ∈ Ū(n−)∨ ⊗
Ūpn(n)∨ we have

M f+⊗ f−( f ) = f · ψ f+⊗ f−

= f · (q(p−1)N(ψ̂ f+⊗ f−)
)

= qpn+(p−1)N( f · ψ̂ f+⊗ f−). (3.2.23)

Also, by Proposition 2.20, S = Tr− ⊗ Tr+ . Thus (3.2.21b) and (3.2.22) are the same morphism, so we
have that Ψ and S̃ give the same splitting of Rh as desired. �
Remarks 3.5.

(1) Although the rings Rλ are nonisomorphic for various choices of λ, the splitting of T ∗ induced
by S̃k does not depend on the choice of regular dominant λ ∈ Λ. Indeed, S̃k restricts to the same
splitting (3.2.22) of the open set Fk ⊆ T ∗ regardless of the choice of λ.

(2) For a parabolic subalgebra p ⊇ b let np denote its nilradical. In [13] and [15] it is shown that
in type A the splitting π(p−1)N ( f f k+⊗ f k− ) compatibly splits the subbundles Gk ×Bk (np)k for every

parabolic subalgebra p ⊇ b. A main hope of algebraic Frobenius splitting is to extend this result
to other types.
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(3) Since the splitting π(p−1)N ( f f+⊗ f− ) is B-canonical we have that the splitting S̃k is also B-canon-
ical. In the algebraic context B-canonicity is equivalent to the fact that

S̃(ϕ Z . f ) = Z .(̃S f ) for all f ∈ Rλ and Z ∈ Ū(b). (3.2.24)

However, I do not know how to show this directly.
(4) By Proposition 4.1.17 in [2], if n were B-canonically split then one would immediately obtain a

B-canonical splitting of T ∗ as well. Since T ∗ is B-canonically split, it is tempting to try to use
algebraic techniques to construct a B-canonical splitting of n. However, by the following argument
due to Kumar, it is known that n is not B-canonically split.
Indeed, if n were B-canonically split, then by Exercise 4.1.E(4) in [2] T ∗ would be split compatibly
with the divisor D := (p −1)π∗∂(Gk/Bk). Here, π : T ∗ → Gk/Bk is the projection and ∂(Gk/Bk) ⊆
Gk/Bk is the divisor

⋃�
i=1 Xw0si , where the si ∈ W are the simple reflections, w0 is the longest

element of the Weyl group, and for any element w of the Weyl group, Xw := B w B ⊆ Gk/Bk is
the associated Schubert variety. Now,

OGk/Bk (D) ∼= π∗L
(
(p − 1)ρ

)
,

so by Lemma 1.4.7 (i) of [2] we would have the following consequence: If λ ∈ Λ is such that
π∗L(pλ + (p − 1)ρ) has higher cohomology vanishing on T ∗ then so does π∗L(λ). By base-
change this would also be true in characteristic 0; but this is known to be false (cf. [3]).

(5) Replacing the ∗-action of Ū(b) on Ū(n) by the multiplication action, one can construct an alge-
braic splitting of the affine variety Gk/Tk

∼= Gk ×Bk Uk . Note that here one does not need to use a
Springer isomorphism.
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