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In this paper, we develop an algebraic theory for local rings of fi-
nite embedding dimension. Several extensions of (Krull) dimension
are proposed, which are then used to generalize singularity notions
from commutative algebra. Finally, variants of the homological the-
orems are shown to hold in equal characteristic.
This theory is then applied to Noetherian local rings in order to
get: (i) over a Cohen–Macaulay local ring, uniform bounds on the
Betti numbers of a Cohen–Macaulay module in terms of dimen-
sion and multiplicity, and similar bounds for the Bass numbers
of a finitely generated module; (ii) a characterization for being
respectively analytically unramified, analytically irreducible, un-
mixed, quasi-unmixed, normal, Cohen–Macaulay, pseudo-rational,
or weakly F-regular in terms of certain uniform arithmetic behav-
ior; (iii) in mixed characteristic, the Improved New Intersection
Theorem when the residual characteristic or ramification index is
large with respect to dimension (and some other numerical invari-
ants).
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1. Introduction

This paper is devoted to the study of local rings of finite embedding dimension, where by a local
ring,2 we mean a not necessarily Noetherian, commutative ring R with a unique maximal ideal m, and
where the embedding dimension of R , denoted embdim(R), is the minimal number of elements gener-
ating m. We will see that there are various ways of extending the dimension and singularity theory
of Noetherian local rings to this larger class. The motivation for this study comes from the subclass of
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ultra-Noetherian local rings: these are the ultraproducts of Noetherian local rings of fixed embedding
dimension. I had used these ultra-Noetherian rings in my previous work on transfer from positive to
zero characteristic [41,44] and on non-standard tight closure [4,48,43,46,51,52], but the actual study
of their properties was only prompted by the papers [42,50], where it was essential to have a gener-
alized dimension and singularity theory to get asymptotic versions of various homological theorems
in mixed characteristic. It was this realization that led me to develop a systematic ‘local algebra’ for
these rings. Consequently, we will be able to derive from this study some improved asymptotic ver-
sions in the final section. For some other recent papers studying ultraproducts of Noetherian rings,
see [34–36].

Closely related to a local ring of finite embedding dimension are two local rings which are always
Noetherian: its graded ring and its completion. Especially through the latter the study of local rings of
finite embedding dimension is greatly facilitated. Accordingly, I will use the modifier cata- to indicate
that a property is inherited by completion. In contrast, for ultra-Noetherian local rings, the prefix
ultra- is used to refer to properties that are inherited by the ultraproduct. The main goal is now to
find conditions under which both versions agree, which often requires the introduction of a third,
intrinsic (pseudo-)variant. To study these variants, we introduce the notion of a cataproduct, defined
as the completion of the ultraproduct. In fact, the cataproduct is obtained from the ultraproduct by
factoring out the ideal of infinitesimals, that is to say, the ideal of elements lying in each power of
the maximal ideal. In [53], both the ultraproduct and the cataproduct are called chromatic products,
inspired by our musical notation R� and R� respectively (a third chromatic product, not discussed in
this paper, is called the proto-product and denoted R�).

What follows is a brief outline of the present paper. To illustrate the methods and concepts, I will
here only treat the special case that (R�,m�) is an ultra-Noetherian local ring, realized as the ultra-
product of Noetherian local rings (Rn,mn) of the same embedding dimension. Section 2 contains
general facts of local rings of finite embedding dimension—many going back to the work of Co-
hen [11]—, by far the most important of which is the already mentioned result that its completion
is Noetherian (Theorem 2.2). In particular, the cataproduct R� is Noetherian.3 Our first task is now to
develop a good dimension theory, which is done in Sections 3–5. Krull dimension in this context is
of minor use, as it is always infinite for example for ultra-Noetherian local rings, except when almost
all Rn are Artinian of a fixed length l, in which case R� is also zero-dimensional and has length l.
A first variant, called geometric dimension, is inspired by the geometric intuition that dimension is the
least number of hypersurfaces cutting out a finitely supported subscheme. Specifically, the geometric
dimension, gdim(R�), of R� is the least number d of non-units x1, . . . , xd such that R�/(x1, . . . , xd)R�

is Artinian. Other variants are obtained by the general principle discussed above: the ultra-dimension,
udim(R�), of R� is the common dimension of almost all Rn; and its cata-dimension is the dimension
of its completion, that is to say, of R� . It turns out that the cata-dimension is equal to the geometric
dimension (Theorem 3.4). These dimensions also have a combinatorial nature: whereas Krull dimen-
sion is the combinatorial dimension of the full spectrum Spec(R�), the ultra-dimension of R� is equal
to the combinatorial dimension of the subset of all (strongly Bourbaki) associated prime ideals of
finitely generated ideals; the cata-dimension is equal to the combinatorial dimension of the subset of
all m�-adically closed prime ideals (Theorem 5.19; see also [36] for some related results). The ultra-
dimension of R� is at most its cata-dimension, with equality precisely when almost all Rn have the
same parameter degree (Theorem 5.23).

Our next step is to develop a singularity theory for local rings of finite embedding dimen-
sion. Three options present themselves to us: cata-singularities via completions (Section 6); ultra-
singularities via ultraproducts (Section 8); and pseudo-singularities via homological algebra (Sec-
tion 7). For instance, R� is called cata-regular if R� is regular; ultra-regular if almost all Rn are regular;
and pseudo-regular if its depth equals its embedding dimension. Requiring any one of the first three
quantities

depth(R) � udim(R�) � gdim(R�) � embdim(R�) (1)

3 Special cases of this result were already observed and used by various authors [4,6,35].



H. Schoutens / Journal of Algebra 386 (2013) 1–60 3
in this chain of inequalities to be equal to the last turns out to determine these regularity conditions,
in decreasing order of strength: pseudo-regularity, ultra-regularity, and cata-regularity respectively
(note that we do not observe such a distinction in the Noetherian case). In fact, the two first con-
ditions are equal (Theorem 8.1). Moreover, Serre’s criterion for regularity extends to this larger class
(Theorem 7.11). In particular, for coherent local rings of finite embedding dimension, regular in the
sense of Bertin [7,19] implies pseudo-regular, and the converse holds for uniformly coherent local
rings of finite embedding dimension (Theorem 7.18). Next, variants of the Cohen–Macaulay property
are analyzed—for instance, by equating the first quantity in (1) with respectively the second and
third, we get the notions of ultra-Cohen–Macaulay and pseudo-Cohen–Macaulay local rings. Unfor-
tunately, these variants behave less well. For instance, although the class of local Cohen–Macaulay
rings of fixed dimension and multiplicity is closed under cataproducts (Corollary 8.8), the converse
need not be true, that is to say, R� can be Cohen–Macaulay without the Rn being Cohen–Macaulay.
At the source of these discrepancies lies the fact that a sequence can be quasi-regular without be-
ing regular in non-Noetherian rings. In Example 5.20, we present an example showing that all of the
four quantities in (1) can be different. Although R� is rarely coherent, under an additional pseudo-
Cohen–Macaulay assumption, it behaves much like one: any m�-primary ideal, and more generally,
any finitely generated ultra-Cohen–Macaulay module is finitely presented. Another generalization of
the Cohen–Macaulay condition for local rings of finite embedding dimension, motivated by model-
theoretic considerations, was introduced in [40]; we show that up to a Nagata extension of the ring
(which can be taken to be trivial in the ultra-Noetherian case), this condition is equivalent with be-
ing pseudo-Cohen–Macaulay (Theorem 7.26). Some further characterizations of the various types of
Cohen–Macaulay singularities are given in Section 9 by means of an analogue of Noether normaliza-
tion for the class of local rings of finite embedding dimension.

Once we have developed a sufficiently well-behaved singularity theory, we analyze the homological
theory of the class of local rings of finite embedding dimension; this is the contents of Section 10.
We show that most homological theorems, properly restated, hold in an arbitrary equicharacteristic
local ring of finite embedding dimension. The main tool is the existence of an analogue of big Cohen–
Macaulay algebras for this class of rings. In fact, it suffices to assume that only the completion is
equicharacteristic, which is a strictly weaker condition, as I will explain below. As an application, we
provide the following partial answer to a question raised by Glaz [20] about the extent to which split
subrings of coherent regular local rings are Cohen–Macaulay (compare with [21, Corollary 4.5]).

1.1. Corollary. If (R,m) is a local ring of finite embedding dimension containing a field, and if S a coherent
regular local ring locally of finite type over R, such that R → S is cyclically pure (e.g., split), then there exists a
(Noetherian) regular local subring (A,p) of R such that each A-regular sequence is a quasi-regular sequence
in R, and each R/pn R is a finite, free A/pn-module.

In the final three sections, we apply the theory to ultra-Noetherian rings to obtain new results
about Noetherian local rings. In Section 11, we derive uniform bounds on Betti and Bass numbers. In
the literature, one often studies the asymptotic growth of the Betti numbers βn(M) = dimk(TorR

n (M,k)),
as n goes to infinity, for M a finitely generated module over a Noetherian local ring R with residue
field k. In contrast, varying the module and fixing n, we show in Theorem 11.1 that over a local
Cohen–Macaulay ring R , the n-th Betti number of a module M of finite length is bounded by a
function which only depends on the dimension and multiplicity of R and the length of M . In par-
ticular, if P R(t) := ∑

n βn(k)tn denotes the Poincaré series of R , then an application of Theorem 11.1
yields

1.2. Corollary. For each d, e � 0, there exists a power series Pd,e(t) ∈ Z[[t]] such that the Poincaré series P R(t)
of any d-dimensional local Cohen–Macaulay ring R of multiplicity e is dominated by Pd,e(t), meaning that
Pd,e(t) − P R(t) has non-negative coefficients.

Recall that a Cohen–Macaulay local ring R is called of bounded multiplicity type if there is a bound
ε(R) on the multiplicity of all of its indecomposable maximal Cohen–Macaulay modules. According to
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the Brauer–Thrall conjectures such a ring is expected to be of finite representation type, meaning that
there exist only finitely many indecomposable maximal Cohen–Macaulay modules. The conjecture is
known to hold for certain reduced, excellent Henselian isolated singularities by the work of [12,37,58].
In support of this, we prove in Section 11 the following three results:

1.3. Theorem (Brauer–Thrall for isolated singularities). Let R be an equicharacteristic, unramified local isolated
singularity with an uncountable algebraically closed residue field. If R has bounded multiplicity type, then it
has finite representation type.

Proof. Immediate from Theorem 11.6 below and [37, Theorem 1.2]. �
1.4. Corollary (Effective Brauer–Thrall). Let d, e, and ε be positive integers for which the Brauer–Thrall conjec-
ture holds, in the sense that every d-dimensional Cohen–Macaulay local ring of multiplicity e and multiplicity
type at most ε , has finite presentation type. Then there is a bound on the number of indecomposable maximal
Cohen–Macaulay modules which only depends on d, e and ε .

1.5. Corollary. Suppose R is a local Cohen–Macaulay ring of bounded multiplicity type. There exists an
R-algebra Z , and a complex of finite free Z -modules F• , such that for every indecomposable maximal Cohen–
Macaulay module M, there exists a section Z → R, such that F• ⊗Z R is a free resolution of M.

The theory also gives applications to preservation of properties under infinitesimal deformations,
of which the next result is but an example (recall that an invertible ideal in a local ring is a principal
ideal generated by a non-zero-divisor):

1.6. Corollary. Let R be a local Cohen–Macaulay ring and let I ⊆ R be an invertible ideal. There exists a positive
integer a := a(I) with the property that if J ⊆ R such that R/ J is Cohen–Macaulay of multiplicity at most the
multiplicity of R/I , and such that I +ma = J +ma, then J is invertible.

It is not clear yet whether similar bounds exist if we drop the Cohen–Macaulay assumption in
these results. In Section 12, we characterize ring-theoretic properties in terms of uniform arithmetic
in the ring. For instance, in Theorem 12.1, we reprove, as an illustration of our methods, that multi-
plication is bounded in R if and only if R is analytically irreducible. Whereas the ultraproduct method
only gives the existence of a uniform bound, we know in this particular case, by the work of Hübl
and Swanson [29,57], that these bounds can be taken to be linear. Nonetheless, our method is far
more versatile, allowing us to derive in Section 12.8 many more characterizations of ring-theoretic
properties in terms of certain uniform asymptotic behavior of (m-adic) order and (parameter) degree.
For instance, one can characterize the Cohen–Macaulay property as follows:

Theorem (12.14). For each quadruple (d, e,a,b) there exists a bound δ(d, e,a,b) with the following property.
A d-dimensional Noetherian local ring (R,m) of multiplicity e is Cohen–Macaulay if and only if for each ideal I
generated by d − 1 elements, and for any two elements x, y ∈ R, if R/(I + xR) has length at most a and y does
not belong to I +mb, then xy does not belong to I +mδ(d,e,a,b) .

As already mentioned, our methods only prove the existence of uniform bounds (and possibly
their dependence on other invariants), but say nothing about the nature of these bounds. It would be
interesting to see whether for instance these new bounds also have a linear character.

However, the main application of this paper is discussed in the final section. Here we derive some
asymptotic versions of the homological theorems in mixed characteristic. Whereas the papers [42,50]
relied on a deep result from model theory, the so-called Ax–Kochen–Ershov theorem, to carry out
transfer from mixed to equal characteristic,4 the present paper departs from the following simple ob-

4 In fact, although not mentioned explicitly in these papers (but see [53, §14] or [52, §6]), these methods make heavily use
of proto-products, one of the chromatic products not studied in this paper.
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servation: if the (Rn,mn) have mixed characteristic pn , then their cataproduct R� is equicharacteristic
in the following two cases: (i) the pn grow unboundedly (in which case the ultraproduct R� is already
equicharacteristic), or (ii), almost all pn are equal to a fixed prime number p, but the ramification in-
dex, that is to say, the mn-adic order of p, grows unboundedly (in which case, however, R� still has
mixed characteristic p). Thus we prove:

Theorem (13.6, Asymptotic Improved New Intersection Theorem). For each triple of positive integers (m, r, l)
there exists a bound κ(m, r, l) with the following property. Let (R,m) be a mixed characteristic Noetherian
local ring of embedding dimension m and let F• be a finite complex of finitely generated free R-modules of
rank at most r. If each Hi(F•), for i > 0, has length at most l and H0(F•) has a non-zero minimal generator
generating a submodule of length at most l, then the length of F• is at least the dimension of R, provided either
the residual characteristic or the ramification index of R is at least κ(m, r, l).

It should be noted that some homological conjectures, such as the Direct Summand Conjecture and
the Hochster–Roberts theorem on the Cohen–Macaulayness of pure subrings of regular local rings, at
present elude our methods, and so no asymptotic versions in the style of this paper are known (but
see [50, §9 and §10] for different asymptotic versions).

I conclude the paper with a sketch of an argument that derives the full version from its asymp-
totic counterpart, provided the bounding function does not grow too fast. For example, if for some
prime p, the bound κ(m, r, l) on the ramification in the above theorem can be taken to be of the
form c(m, r)lα(m,r) , for some real valued functions c(m, r) and α(m, r) with α(m, r) < 1, for all m
and r, then the Improved New Intersection Theorem holds in mixed characteristic p.

2. Finite embedding dimension

Although we will mainly be interested in the maximal adic topology of a local ring, we start our
exposition in a more general setup.

2.1. Filtrations

Recall that a filtration I = (In)n on a ring A is a descending chain of ideals A = I0 ⊇ I1 ⊇ · · · ⊇
In ⊇ · · · . An important instance of a filtration is obtained by taking the powers of a fixed ideal I ⊆ A,
that is to say, In := In; we call this the I-adic filtration on A. A filtration I defines a topology on A,
called the I-adic topology of A, by taking for basic open subsets all cosets of all In . If B is an A-algebra,
then IB is the extended filtration on B given by the ideals In B , and hence the natural homomorphism
A → B is continuous with respect to the respective adic topologies. The intersection of all In will be
denoted by I∞ . Hence the I-adic topology is Hausdorff (separated) if and only if I∞ = (0). Accord-
ingly, the quotient A/I∞ is called the I-adic separated quotient of A. The I-adic completion of A is
defined as the inverse limit of the A/In and is denoted ÂI . There is a natural map A → ÂI whose
kernel is equal to I∞ . In fact, A and its I-adic separated quotient have the same I-adic completion.
In general, ÂI, although complete in the inverse limit topology, need not be complete in the I ÂI-adic
topology.

Given a filtration I = (In)n we define its associated graded module, where we view A with its trivial
grading, as the direct sum

grI(A) :=
∞⊕

n=0

In/In+1.

The initial form inI(a) ∈ grI(A) and the I-adic order ordI(a) of an element a ∈ A are defined as
follows. If a ∈ In \ In+1 for some n, then we set ordI(a) := n and we let inI(a) be the image of a in
In/In+1; otherwise a ∈ I∞ , in which case we set ordI(a) := ∞ and inI(a) := 0. For J an ideal in A,
we let inI( J ) be the ideal in grI(A) generated by all inI(a) with a ∈ J . If J = (a1, . . . ,an)A, then
inI( J ) is in general larger than the ideal generated by the inI(ai) (even if A is Noetherian!).
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Alternatively, we may think of a filtration as given by a function f : A → N̄ := N ∪ {∞} such that
f (a + b) and f (ab) are greater than or equal to respectively the minimum and the maximum of
f (a) and f (b); we express this by calling f filtering. Given a filtering function f , the ideals In of
all elements a ∈ A for which f (a) � n form a filtration. Conversely, given a filtration I, the function
ordI(·) is filtering. Suppose f is filtering. If f (ab) � f (a) + f (b), then we call f multiplicative (this
then corresponds to the property that In Im ⊆ In+m); and if 0 is the only element of infinite f -value
(so that the corresponding filtration is separated) and f (ab) = f (a)+ f (b), then f is called a valuation.
If I is multiplicative, then grI(A) admits the structure of a ring and as such is graded. This applies in
particular to any ideal adic filtration.

We now specify these notions to the case of interest, where I is the m-adic filtration of a local ring
(R,m). The topology on R is always assumed to be the m-adic topology, so that when we say that
R is separated or complete, we are always referring to this topology. With this in mind, the ideal of
infinitesimals of R is the intersection of all mn , and will be denoted IR . The m-adic order of an element
x ∈ R is denoted ordR(x) or just ord(x). The (m-adic) separated quotient R/IR is denoted Rsep; the
graded ring associated to m is denoted gr(R); and the completion of R is denoted R̂ . By construction,
R̂ is a complete local ring whose maximal ideal is equal to the inverse limit of the m/mn . However,
this maximal ideal may be strictly larger than mR̂ , so that R̂ need not be complete in the mR̂-adic
topology.

Let (S,n) be a second local ring and let R → S be a ring homomorphism. We call this homomor-
phism local, or we say that S is a local R-algebra, if mS ⊆ n; if we have equality, then we call the
homomorphism unramified. A local homomorphism induces local homomorphisms Rsep → Ssep and
R̂ → Ŝ . The natural map R → R̂ is local. It is flat if R is Noetherian, but no so in general.

Finite embedding dimension

Suppose from now on that R has moreover finite embedding dimension, that is to say, that m is
finitely generated. Since gr(R) is generated by m/m2 as an algebra over the field R/m, it is itself a
Noetherian local ring. For each n, let m̂n be the kernel of the natural map R̂ → R/mn . It follows that
mn/mn+1 ∼= m̂n/m̂n+1, so that gr(R) is equal to the graded ring grM(R̂) associated to the filtration
M := (m̂n)n on R̂ . By [13, Proposition 7.12], an ideal I ⊆ R̂ is generated by elements a1, . . . ,an if its
initial form inM(I) in grM(R̂) is generated by the initial forms inM(a1), . . . , inM(an). Therefore, since
grM(R̂) ∼= gr(R) is Noetherian, so is R̂ . Moreover, since mn R̂ has the same initial form as m̂n , both
ideals are equal. In particular, for each n, we have an isomorphism R/mn ∼= R̂/mn R̂ . In conclusion, we
have proven:

2.2. Theorem. If (R,m) is a local ring of finite embedding dimension, then its completion R̂ is a complete
Noetherian local ring with maximal ideal mR̂ .

2.3. Corollary. If a local ring (R,m) has finite embedding dimension, then each m-primary ideal is finitely
generated.

Proof. Immediate from the fact that R/mn is Artinian and mn is finitely generated, for every n. �
An ideal I in a local ring (R,m) is called closed if it is closed in the m-adic topology, that is to say,

if I is equal to the intersection of all I +mn with n ∈ N.

2.4. Lemma. Let (R,m) be a local ring of finite embedding dimension and let I be an arbitrary ideal in R. The
completion of R/I is R̂/I R̂ . In particular, I R̂ ∩ R = I if and only if I is closed.

Proof. Let R̄ := R/I and let S := R̂/I R̂ = R̂ ⊗R R̄ . The isomorphism R/mn ∼= R̂/mn R̂ induces by base
change an isomorphism R̄/mn R̄ ∼= S/mn S . Hence R̄ and S have the same completion. However, since
R̂ is complete, so is S , showing that it is the completion of R̄ .

Applied with I an m-primary ideal, we get an isomorphism R/I ∼= R̂/I R̂ showing that I R̂ ∩ R = I ,
that is to say, that I is contracted from R̂ . Since this property is preserved under arbitrary intersections,
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every closed ideal I is contracted from R̂ , as it is the intersection of the m-primary ideals I + mn .
Conversely, if I R̂ ∩ R = I , then R/I embeds in R̂/I R̂ , and by the first assertion, this is its completion.
In particular, R/I is separated, that is to say, I is closed. �

The above proof shows that the closure of an ideal I is equal to I R̂ ∩ R . In particular, any closed
ideal is the closure of a finitely generated ideal, since R̂ is Noetherian by Theorem 2.2. Moreover, the
ascending chain condition holds for closed ideals in R: if I1 ⊆ I2 ⊆ · · · is an increasing chain of closed
ideals in R , then, since R̂ is Noetherian, their extension to R̂ must become stationary, say In R̂ = In+k R̂
for all k, and hence contracting back to R gives In = In+k for all k. This immediately yields:

2.5. Corollary. A local ring is Noetherian if and only if it has finite embedding dimension and every ideal is
closed.

2.6. Corollary. A closed ideal in a local ring R of finite embedding dimension has finitely many minimal primes
and each of them is closed.

Proof. Let I be a closed ideal and let Q1, . . . ,Qs be the minimal prime ideals of I R̂ . Let qi := Qi ∩ R
and let J be their product. Hence Jn ⊆ I R̂ for some n. By Lemma 2.4, we have Jn ⊆ I R̂ ∩ R = I . Hence
any prime ideal p of R containing I contains one of the qi . This shows that all minimal prime ideals
of I must be among the qi . �
2.7. Corollary. If (R,m) is a local ring of finite embedding dimension, then the image of the map Spec(R̂) →
Spec(R) consists precisely of the closed prime ideals of R.

Proof. By Lemma 2.4, the image of the map consists of closed prime ideals. To prove the converse,
let p be an arbitrary closed prime ideal of R . By Lemma 2.4, we have p = pR̂ ∩ R . Let N be maximal
in R̂ with the property that p = N ∩ R . I claim that N is a prime ideal, showing that p lies in the
image of Spec(R̂) → Spec(R). To prove the claim, suppose f g ∈N, but f , g /∈ N. By maximality, there
exist a,b ∈ R \ p such that a ∈ N + f R̂ and b ∈ N + g R̂ . Hence ab ∈ N + f g R̂ = N and since ab ∈ R ,
we get ab ∈ N∩ R = p, contradicting that p is prime. �
2.8. Lemma. If the completion of a local ring (R,m) of finite embedding dimension is Artinian, then so is R.

Proof. By assumption, mn R̂ = 0, for some n. Since R/mn+1 ∼= R̂/mn+1 R̂ = R̂ , we get mn/mn+1 = 0.
Since m is finitely generated, we may apply Nakayama’s Lemma and conclude that mn = 0, which
implies that R is Artinian. �
2.9. Remark. I am grateful to the referee for setting the record straight on the history of the previous
results: Theorem 2.2 and Lemma 2.4 appear already in Cohen’s seminal paper [11], whereas Corol-
lary 2.5 can be found in [33, 31.8]. Cohen calls a separated local ring of finite embedding dimension
a generalized local ring. They have recently been studied by Heinzer and Roitman in [22].

2.10. Infinite ramification

We conclude this section with a note on ramification in mixed characteristic, which we will use
occasionally. Let (R,m) be a local ring with residue field k. We say that R is equicharacteristic (or has
equal characteristic) if R and k have the same characteristic; in the remaining case, that is to say, if
R has characteristic 0 and k characteristic p, we say that R has mixed characteristic p. A local ring is
equicharacteristic if and only if it contains a field.

For the next definition, assume that the residue field of R has characteristic p. We call ord(p) the
ramification index of R . We say R is unramified if its ramification index is one; and infinitely ramified,
if its ramification index is infinite, that is to say, if p ∈ IR . If R is infinitely ramified and Noetherian
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(or just separated), then in fact it has equal characteristic p (in the literature this is also deemed as
an instance of an ‘unramified’ local ring, but for us, it will be more useful to make the distinction).
However, in the general case, a local ring can have characteristic zero and be infinitely ramified (see
Lemma 13.5 below). It follows that the separated quotient and the completion of an infinitely ramified
local ring are both equicharacteristic.

3. Geometric dimension

The dimension dim(A) of a ring A will always mean its Krull dimension, that is to say, the maximal
length (possible infinite) of a chain of prime ideals in A. The dimension of an ideal I ⊆ A is the
dimension of its residue ring A/I . If R is local and Noetherian, then its dimension is always finite,
but without the Noetherian assumption, it is generally infinite. In this section, we propose a first
substitute for Krull dimension for an arbitrary local ring (R,m); other alternatives will be discussed
in Section 4.

3.1. Definition. We define the geometric dimension of R recursively as follows. We say that R has
geometric dimension zero, and we write gdim(R) = 0, if and only if R is Artinian. For arbitrary d,
we say that gdim(R) � d, if there exists x ∈ m such that gdim(R/xR) � d − 1. Finally, we say that R
has geometric dimension equal to d if gdim(R) � d, but not gdim(R) � d − 1, and we simply write
gdim(R) := d. If there is no d such that gdim(R) � d, then we set gdim(R) := ∞.

It follows that gdim(R) � embdim(R). In fact, R has finite geometric dimension if and only if it
has finite embedding dimension. If R has finite embedding dimension then gdim(R) = 0 if and only
if m is nilpotent. The following fact is immediate from the definition.

3.2. Lemma. If (R,m) is a local ring and a ∈ m, then

gdim(R) − 1 � gdim(R/aR) � gdim(R).

The geometric dimension can be formulated, as in the Noetherian case, in terms of the minimal
number of generators of an m-primary ideal (showing that geometric dimension and Krull dimension
agree for Noetherian local rings):

3.3. Lemma. The geometric dimension of a local ring (R,m) of finite embedding dimension is the least possible
number of elements generating an m-primary ideal.

Proof. Let d := gdim(R). By Lemma 3.2, there exists no sequence y of length less than d such that
R/yR has geometric dimension zero. It follows that any m-primary ideal is generated by at least d
elements. So remains to show that there exists a tuple of length d generating an m-primary ideal. We
induct on d, where the case d = 0 is clear, since then (0) is m-primary. By definition, we can choose
x1 ∈ m such that gdim(R/x1 R) = d − 1. By induction, there exist elements x2, . . . , xd whose image in
R/x1 R generates an m(R/x1 R)-primary ideal. Hence (x1, . . . , xd)R is m-primary. �
3.4. Theorem. Let (R,m) be a local ring of finite embedding dimension. The following numbers are all equal:

• the geometric dimension d of R;
• the least possible number of elements d′ generating an m-primary ideal;
• the dimension d̂ of the completion R̂ of R;
• the dimension d of the graded ring gr(R) associated to R;
• the degree d of the Hilbert–Samuel polynomial HSR , where HSR is the unique polynomial with rational

coefficients for which HSR(n) equals the length of R/mn for all large n;
• the geometric dimension dsep of the separated quotient Rsep .
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Proof. The equality of d and d′ is given by Lemma 3.3. We already observed that gr(R) and R̂ are
Noetherian and that we have isomorphisms

mn/mn+1 ∼= mn R̂/mn+1 R̂

for all n. Hence HSR = HSR̂ and gr(R) ∼= gr(R̂). It follows that d = d̂, by the Hilbert–Samuel theory
and that d = d̂ by [32, Theorem 13.9]. This shows already that d = d̂ = d.

Let (y1, . . . , yd) be a tuple generating an m-primary ideal. Since (y1, . . . , yd)R̂ is then mR̂-primary,
d̂ � d. Finally, let (ξ1, . . . , ξd) be a homogeneous system of parameters of gr(R) and choose xi ∈ R such
that ξi = in(xi). Let I := (x1, . . . , xd)R . By [13, Exercise 5.3], we have an isomorphism

gr(R)/ in(I) ∼= gr(R/I).

Since (ξ1, . . . , ξd)gr(R) ⊆ in(I), we see that gr(R)/ in(I) is Artinian, whence so is gr(R/I). This in turn

means that R/I has a nilpotent maximal ideal, so that d � d by definition of geometric dimension.
This proves that the first five numbers in the statement are equal. That they are also equal to the
last, dsep, follows by applying the result to Rsep together with the fact that R and Rsep have the same
completion. �
3.5. Remark. If the leading coefficient of the Hilbert–Samuel polynomial is written as e/d!, with d :=
gdim(R), then we call e the multiplicity of R and we denote it mult(R). It follows that R has the same
multiplicity as its completion and as its separated quotient.

3.6. Corollary. If R is a local ring of geometric dimension one, then there exists N ∈ N such that every closed
ideal is the closure of an N-generated ideal.

Proof. By Theorem 3.4, the completion R̂ is a one-dimensional Noetherian local ring, and hence by
the Akizuki–Cohen theorem [1,10], there is some N such that every ideal in R̂ is generated by at most
N elements. Let I ⊆ R be an arbitrary ideal. Since I R̂ is generated by at most N elements, we may
choose by Nakayama’s Lemma a1, . . . ,aN ∈ I such that I R̂ = (a1, . . . ,aN )R̂ . Contracting this equality
back to R shows, by Lemma 2.4, that I is the closure of (a1, . . . ,aN )R . �

It is well known that one may take N to be equal to the multiplicity of R , in case the latter is
Cohen–Macaulay. In view of Remark 3.5 and our definition in Section 6 below, the same holds true
under the assumption that R is cata-Cohen–Macaulay.

3.7. Generic sequences

A tuple x is called generic, if it generates an m-primary ideal and its length is equal to the ge-
ometric dimension of R; it is called part of a generic sequence, if it can be extended to a generic
sequence. If x is a single element which is part of a generic sequence, then we simply call x a generic
element.

3.8. Lemma. Let (R,m) be a local ring of geometric dimension d. A tuple (x1, . . . , xe) is part of a generic
sequence if and only if R/(x1, . . . , xe)R has geometric dimension d − e.

In particular, x is generic if and only if gdim(R/xR) = gdim(R) − 1.

Proof. Suppose (x1, . . . , xe) is part of a generic sequence and enlarge it to a generic sequence
(x1, . . . , xd). One checks that (the image of) (xe+1, . . . , xd) is a generic sequence in R/(x1, . . . , xe)R .
This shows that gdim(R/(x1, . . . , xe)R) = d − e. Conversely, assume gdim(R/(x1, . . . , xe)R) = d − e.
Choose a tuple (xe+1, . . . , xd) in R so that its image in R/(x1, . . . , xe)R is a generic sequence. Since
(x1, . . . , xd) generates an m-primary ideal and has length d, it is generic. �



10 H. Schoutens / Journal of Algebra 386 (2013) 1–60
3.9. Proposition. Let (R,m) be a local ring of finite embedding dimension. A sequence in R is generic if and
only if its image in R̂ is a system of parameters.

Proof. One direction has already been noted, so let x be a tuple in R whose image in R̂ is a system
of parameters. By Theorem 3.4, the geometric dimension of R is equal to the length of this tuple. Let
J := xR . By Lemma 2.4, the completion of R/ J is R̂/ J R̂ . As the latter is Artinian, so must the former
be by Lemma 2.8, showing that x is generic. �

It follows that (x1, . . . , xd) is generic if and only if so is (xn1
1 , . . . , xnd

d ). However, this does in general
not imply that (in(x1), . . . , in(xd)) is a system of parameters in gr(R) (this even fails in the Noethe-
rian case as the example {ξ2, ξζ + ζ 3} in k[[ξ, ζ ]] shows). Immediately from Proposition 3.9 and [32,
Theorem 14.5] we get:

3.10. Corollary. Any generic sequence x in R is analytically independent in the sense that if F (ξ) is a homo-
geneous form over R such that F (x) = 0, then all coefficients of F (ξ) lie in the maximal ideal of R.

3.11. Threshold primes

By Proposition 3.9, an element x is generic if and only if the image of x in R̂ is part of a sys-
tem of parameters. More concretely, let d be the geometric dimension of R and let p1, . . . ,ps be the
d-dimensional prime ideals of R̂ . Note that R̂ itself has dimension d by Theorem 3.4, so that all its
d-dimensional primes are minimal (but there may be other minimal prime ideals, of lower dimen-
sion). We call the qi := pi ∩ R the threshold primes of R . By Corollary 2.7, every threshold prime q is
closed and contains no proper closed prime ideals. Moreover, R/q has the same geometric dimension
as R by Theorem 3.4, since R̂/qR̂ has the same dimension as R̂ . By a threshold prime of an ideal I ,
we mean a threshold prime of its residue ring R/I . Proposition 3.9 yields the following criterion for
genericity.

3.12. Corollary. An element x ∈ R is generic if and only if it is not contained in any threshold prime of R. In
particular, the product of any two generic elements is again generic.

3.13. Corollary. Any m-primary ideal contains a generic sequence. More precisely, if Z is a ring, R is a
Z -algebra, and I ⊆ Z an ideal such that I R is m-primary, then there exists a tuple x over Z with entries
in I such that its image in R is a generic sequence.

Proof. We prove the last assertion by induction on the geometric dimension d of R . Since there is
nothing to show if d = 0, we may assume d > 0. Let q1, . . . ,qs be the threshold primes of R . Towards
a contradiction, suppose I is contained in the union of the qi ∩ Z . By prime avoidance, there is some i
such that I ⊆ qi ∩ Z . But then I R ⊆ qi , forcing qi = m, thus contradicting by Corollary 3.12 that d > 0.
Hence there exists x ∈ I so that its image in R lies outside every threshold prime of R , and therefore
is generic by Corollary 3.12. By Lemma 3.8, the geometric dimension of R/xR is d − 1. Therefore, by
induction, we can find a tuple y of length d − 1 with entries in I so that its image in R/xR is generic.
The desired sequence is now given by adding x to this tuple y. �

In [21], the authors introduce the notion of a strong parameter sequence. It should be noted that
this is different from our present notion of generic sequence. For example, if V is an ultra-discrete
valuation ring (see Example 6.3 for more details), and x a non-zero infinitesimal in V , then x is
V -regular, whence a strong parameter by [21, Proposition 3.3(f)], but x is clearly not generic (in fact,
the unique threshold prime of V is the ideal of infinitesimals IV ).

3.14. Geometric codimension

Given an ideal I in a local ring (R,m) of finite embedding dimension, we call its geometric codimen-
sion the maximal length of a tuple in I that is part of a generic sequence and we denote it gcodim(I).
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In particular, an ideal is m-primary if and only if its geometric codimension equals the geometric
dimension of R . Our terminology is justified by the next result.

3.15. Proposition. Let (R,m) be a local ring of finite embedding dimension. For every ideal I ⊆ R, we have an
equality gcodim(I) = gdim(R) − gdim(R/I).

Proof. Let d be the geometric dimension of R and let h be the geometric codimension of I . Choose
a tuple y in I of length h which is part of a generic sequence of R . Put S := R/yR , so that
gdim(S) = d − h by Lemma 3.8. Since I S contains no generic element, it must be contained in some
threshold prime q of S by Corollary 3.12. From the inclusions I S ⊆ q we get gdim(S) � gdim(S/I S) �
gdim(S/q) = gdim(S), and hence all these geometric dimensions are equal to d −h. Since S/I S = R/I ,
we are done. �
3.16. Parameter degree and degree

We conclude this section with another genericity criterion, in terms of an invariant which was
introduced for Noetherian rings in [49,50] and which will play a crucial role in what follows. The
parameter degree of a local ring R of finite embedding dimension is by definition the minimal length of
a residue ring R/xR , where x runs over all possible generic sequences of R . We denote the parameter
degree of R by pardeg(R). We will show in Lemma 6.11 below that the multiplicity of R is bounded
by its parameter degree and indicate when they are equal.

Closely related to this is an invariant, which for want of a better name, we call degree and which is
defined as follows. Let R be a local ring of geometric dimension d � 1. We define the degree degR(x)
of an element x to be the least possible length of a residue ring R/(xR + yR), where y runs over
all tuples of length d − 1 inside the maximal ideal. Hence, if x is a unit, its degree is zero; if x is
generic, its degree is the parameter degree of R/xR; and in the remaining case, its degree is infinite.
In particular, we showed:

3.17. Corollary. A non-unit in a non-Artinian local ring R of finite embedding dimension is generic if and only
if its degree is finite. Moreover, the parameter degree of R is the minimum of the degrees of all non-units in R.

4. Extended dimensions

In this section, we introduce several other dimension notions for a local ring (R,m). With an ex-
tended dimension, we mean an invariant on the class of local rings taking values in N̄ := N ∪ {∞}
which agrees with Krull dimension on the subclass of all Noetherian local rings. Clearly, Krull dimen-
sion itself is an extended dimension, and so is geometric dimension by the results from the previous
section. Note, however, that embedding dimension is not an extended dimension.

Recall that a partially ordered set Γ has combinatorial dimension (or, height) d if any proper (as-
cending) chain in Γ has length at most d (meaning that it contains at most d + 1 elements). Hence,
the dimension of a ring A is the combinatorial dimension of Spec(A) (the set of all prime ideals or-
dered by inclusion). Given ideals J ⊆ p in A with p prime, we say that p is an associated prime of J
if p is of the form ( J : a); a minimal prime of J if no prime ideal is properly contained between J
and p; and a minimal associated prime of J if it is associated and no associated prime of J is properly
contained between J and p.

4.1. Remark. There are several competing notions for ‘associated prime’ in a non-Noetherian situation
(see, for instance [31]), but the one used here, in the literature often referred to as a strong Bourbaki
associated prime, seems to be the most useful.

4.2. Cl-dimension

Let CL-Spec(R) be the subset of Spec(R) consisting of all closed prime ideals of R . Note that
the maximal ideal as well as the threshold primes (see Section 3.11) belong to CL-Spec(R). In fact,
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we showed in Corollary 2.7 that CL-Spec(R) is the image of the canonical map Spec(R̂) → Spec(R).
We call the combinatorial dimension of CL-Spec(R) the cl-dimension of R and denote it cldim(R).
It is clear that cldim(R) = dim(R) when R is Noetherian, showing that cl-dimension is an extended
dimension.

4.3. Fr-dimension

We say that an ideal I ⊆ R is n-generated, if there exists a tuple x of length n such that xR = I .
We say that an ideal a ⊆ R is n-related if there exist a ∈ R and an n-generated ideal I ⊆ R such
that a = (I : a). An ideal a is called finitely related if it is n-related for some n < ∞. Let FR-Spec(R)

be the subset of Spec(R) consisting of all finitely related prime ideals, that is to say, all associated
prime ideals of finitely generated ideals of R . We call the combinatorial dimension of FR-Spec(R) the
fr-dimension of R and denote it frdim(R). When R is Noetherian, every ideal is finitely related whence
frdim(R) = dim(R), showing that fr-dimension is an extended dimension. Let us call a prime ideal p
strongly finitely related if it is of the form (I : a) with I finitely generated and a /∈ p. A priori, not every
finitely related prime ideal is strong, but see Corollaries 5.3 and 5.27.

4.4. Pi-dimension

We say that R has pi-dimension at most d, if m is a minimal associated prime of a d-generated
ideal. The pi-dimension, pidim(R), of R is then the least d such that R has pi-dimension at most d.
That pi-dimension is an extended dimension follows from Krull’s Principal Ideal Theorem (from which
it borrows its name; see for instance [32, Theorem 8.10]).

4.5. Theorem. For an arbitrary local ring (R,m), we have the following inequalities between extended dimen-
sions:

4.5.1. frdim(R), cldim(R) � dim(R);
4.5.2. pidim(R) � gdim(R);
4.5.3. cldim(R) � gdim(R), with equality if gdim(R) is finite.

Moreover, each of these inequalities can be strict.

Proof. Inequalities (4.5.1) are immediate from the definition. In order to show inequality (4.5.2), we
may assume that gdim(R) = d < ∞. By definition, R/I is an Artinian local ring for some d-generated
ideal I . It follows that m is a minimal associated prime of I , whence the pi-dimension of R is at
most d.

So remains to prove (4.5.3). There is nothing to show if R has infinite geometric dimension, so
assume R has finite geometric dimension, say, d (whence also finite embedding dimension). By Corol-
lary 2.7, there is a surjective map Spec(R̂) → CL-Spec(R). In particular, the combinatorial dimension
of CL-Spec(R) is at most the dimension of R̂ , that is to say, in view of Theorem 3.4, at most d. So
remains to prove the other inequality by induction on d. There is nothing to show if d = 0, so we may
assume d > 0. By Corollary 2.7, the minimal elements in CL-Spec(R) are the contractions of the mini-
mal primes of R̂ . Hence there are only finitely many of them, all different from the maximal ideal m.
By prime avoidance, we may choose x ∈ m outside all these finitely many prime ideals. In particular,
since the threshold primes are among these, x is generic and hence R/xR has geometric dimension
d − 1. By induction, the combinatorial dimension of CL-Spec(R/xR) is d − 1. By Lemma 2.4, the com-
pletion of R/xR is R̂/xR̂ . The homomorphism R̂ → R̂/xR̂ induces an injection Spec(R̂/xR̂) ↪→ Spec(R̂),
whose image is the subset of all prime ideals of R̂ containing x. It follows that the canonical injec-
tion Spec(R/xR) ↪→ Spec R maps CL-Spec(R/xR) into the subset of CL-Spec(R) consisting of all closed
prime ideals containing x. Using this and the fact that the combinatorial dimension of CL-Spec(R/xR)

is d − 1, we can find a proper chain of closed primes ideals q1 � q2 � · · · � qd = m in R with x ∈ q1.
Let q0 be a minimal element of CL-Spec(R) lying inside q1. Since by construction x /∈ q0, the qi form
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a proper chain of length d, showing that the combinatorial dimension of CL-Spec(R) is at least d. This
proves (4.5.3).

Finally, the local ring in Example 4.6 (respectively, in Example 4.7) shows that in general, the
inequalities (4.5.1) and (4.5.2) (respectively, inequality (4.5.3)) are strict. �
4.6. Example. Let R� be the ultraproduct (see Section 5 for more details) of the A/pn for n = 1,2, . . . ,
where (A,p) is a d-dimensional Noetherian local ring, for d > 0. Its pi-dimension and fr-dimension
are equal to zero, its geometric dimension and cl-dimension are equal to d, and its Krull dimension is
infinite.

4.7. Example. Let (R�,m�) be the ultraproduct of the An/m2
n for n = 1,2, . . . , where (An,mn) is

the power series ring over a field k in n indeterminates. Since m2
� = 0 in R� , the local ring R� has

cl-dimension and Krull dimension equal to zero, but its embedding dimension, whence its geometric
dimension, is infinite.

There is a more instructive way to see (4.5.2): the geometric dimension of a local ring (R,m) of
finite embedding dimension is at most d if and only if m is a minimal prime of a d-generated ideal
(that is to say, the same definition as for pi-dimension, but omitting the term ‘associated’).

Let ‘e-dim’ be some extended dimension. We call e-dim first-order if the property e-dim(·) = d is
first-order in the sense of Section 5.5 below, for every d ∈ N. Moreover, to prove this, it suffices to
show that the property e-dim(·) � d is first-order.

4.8. Lemma. Fr-dimension and pi-dimension are first-order; geometric dimension, cl-dimension and Krull
dimension are not.

Proof. The assertion is obvious for pi-dimension, since we can express in a first-order way that the
maximal ideal m of a local ring is of the form (I : a) for some d-generated ideal I such that no prime
ideal of the form (I : b) is properly contained in m (note that m admits a first-order definition as the
collection of all non-units). As for fr-dimension, for each n, let τn,d be the statement expressing that
there does not exist a proper chain of length d + 1 consisting of n-related prime ideals. Hence a local
ring has fr-dimension at most d if and only if τn,d holds in it, for all n.

The local ring in Example 4.6 shows that Krull dimension, cl-dimension and geometric dimension
are not first-order. �
5. Ultra-Noetherian rings

Before we further develop the ‘local algebra’ of local rings of finite embedding dimension, we
introduce an important subclass, arising as ultraproducts of Noetherian local rings. Fix an infinite
index set W and a non-principal ultrafilter on W . We will moreover assume that the ultrafilter is
countably incomplete. This is equivalent with the existence of a function f : W → N such that for
each k, the set of all w ∈ W for which f (w) � k belongs to the ultrafilter. If W is countable, then
any non-principal ultrafilter is countably incomplete, and this is the situation we will find ourselves
in all applications.5 For each w ∈ W , let R w be a local ring and let R� be the ultraproduct of the R w .
We briefly recall its definition for rings (but note that ultraproducts are more generally defined for
any sequence of objects; for a quick review, see [43, §1]; for more details see for instance, [15,28,
38,53]): in the Cartesian product R∞ := ∏

w R w we define the ideal of almost zero sequences I∞;
it consists of all (aw) such that aw = 0 for almost all w . Here we say that a property about objects
indexed by w ∈ W holds for almost all w , if there is a set D ⊆ W belonging to the ultrafilter, such that
the property holds for all objects with index w in D . The ultraproduct of the R w is now defined as

5 In fact, it is consistent with ZF to assume that every non-principal ultrafilter on any infinite set is countably incomplete.
Moreover, for most of what we say, we will not need to assume that the ultrafilter is countably incomplete; it is only used
explicitly in Lemma 5.6 below.
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R� := R∞/I∞ . For an arbitrary sequence (aw) ∈ R∞ we denote its image in R� simply by a� and call
it the ultraproduct of the aw , and a similar convention for ideals. In case all R w are equal to a single
local ring R , we refer to R� as the ultrapower of R .

A fundamental, model-theoretic, result about ultraproducts is Łos’ Theorem, which states that if a
property is first-order (see Section 5.5 below for more details), then it holds for almost all R w if and
only if it holds for R� . When we refer to this, we will not always make explicit the first-order nature.
Thus, we simply observe that by Łos’ Theorem, R� is a local ring with maximal ideal m� equal to the
ultraproduct of the maximal ideals mw . Indeed, this follows since being local is a first-order property,
namely, the property that the sum of two non-units is again a non-unit. However, the reader not
comfortable with model-theoretic arguments, can as easily prove directly that R� is local.

It is important to note that the R w are not uniquely defined by R� (not even almost all; see the
example in Section 5.5). If for some m, almost all R w have embedding dimension at most m, then we
say that the R w have bounded embedding dimension; a similar usage will be applied to other numer-
ical invariants. Hence if the R w have bounded embedding dimension, then R� has finite embedding
dimension, whence finite geometric dimension.

Although Łos’ Theorem is an extremely useful tool for transferring properties between almost all
R w and R� , it only applies to first-order properties. In view of this, we introduce the following more
general setup for discussing transfer through ultraproducts. Let P be a property of local rings of finite
embedding dimension and let R be a local ring. We call R cata-P if it has finite embedding dimension
and its completion has property P. In particular, by Theorem 2.2, any such ring is, in our newly
devised terminology, cata-Noetherian. We call a local ring ultra-P if it is equal to an ultraproduct R� of
local rings R w of bounded embedding dimension almost all of which satisfy property P. In particular,
R� has finite embedding dimension too. In fact, according to this terminology, an ultra-ring is any
ultraproduct of local rings of bounded embedding dimension; and an ultra-Noetherian ring is any
ring isomorphic to an ultraproduct of Noetherian local rings of bounded embedding dimension. It is
important to notice that the well-known duality between rings and affine schemes is not preserved
under ultraproducts:

5.1. Proposition. Let R w be Noetherian local rings of bounded embedding dimension and let R� be their ultra-
product. Then the ultraproduct of the Spec(R w) is equal to FR-Spec(R�).

Proof. Recall that FR-Spec(R�) consists of all finitely related prime ideals of R� (see Section 4.3). If
I� is a finitely generated ideal in R� , say of the form (x1�, . . . , xn�)R� , and if xi w ∈ R w are such that
their ultraproduct is equal to xi� , then the ultraproduct of the ideals I w := (x1 w , . . . , xn w)R w is equal
to I� . Moreover, if y� ∈ R� is the ultraproduct of elements yw ∈ R w , then (I� : y�) is equal to the
ultraproduct of the (I w : yw). If (I� : y�) is prime, then so are almost all (I w : yw) by Łos’ Theorem (as
mentioned above, this follows from the fact that being prime is first-order expressible, but one can
as well check this ‘by hand’). Hence any finitely related prime ideal in R� belongs to the ultraproduct
of the Spec(R w).

Conversely, for each w , let pw be a prime ideal in R w , and let p� be their ultraproduct. By Łos’
Theorem, p� is prime. Since the R w have bounded embedding dimension, they also have bounded
dimension. Therefore, there is a d such that almost each R w has dimension d (in the terminology of
Section 5.18 below, d is the ultra-dimension of R�). By Krull’s Principal Ideal Theorem, almost each pw
is d-related, whence so is p� by Łos’ Theorem. �

In particular, the ultraproduct of the Spec(R w) does not depend on the choice of the R w having
as ultraproduct R� . The local algebra of rings of finite embedding dimension is hampered by the fact
that very few localizations have finite embedding dimension. For instance, by Proposition 5.4 below,
the localization at a finitely related prime has finite embedding dimension if and only if it is strong.
We first prove a bound for Noetherian rings.6 For a Noetherian ring A, let γ (A) ∈ N ∪ {∞} be the
supremum of all embdim(Ap), where p runs through all prime ideals of A.

6 In Sections 11 and 12, we adopt the reverse strategy, by developing bounds from our local algebra results.
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5.2. Proposition. If A is a d-dimensional, excellent ring, then γ (A) < ∞. In fact, if A is equicharacteristic and
local, then γ (A) � d + ρ , where ρ is the parameter degree of A.

Proof. We prove the first statement by induction on d. Let p1, . . . ,ps be the minimal prime ideals
of A, and let N be a bound on their number of generators. Since any prime ideal p contains one of
the pi , we see that γ (A) is bounded by the maximum of all γ (A/pi) + N . Hence we may assume
without loss of generality that A is an excellent domain. Therefore, its regular locus is non-empty and
open. Let U = Spec A f be a non-empty affine open contained in the regular locus of A. By regular-
ity, embdim(Ap) � d, for any p ∈ U , and so we only need to show a bound for those prime ideals
containing f . Put Ā := A/ f A. Note that Ā has Krull dimension d − 1 and is again excellent, so that
by induction γ ( Ā) < ∞. Therefore, for any prime ideal p of A containing f , we have an estimate
embdim(Ap) � γ ( Ā) + 1, finishing the proof of the first assertion.

Assume next that A is moreover equicharacteristic and local, with parameter degree ρ . I claim that
γ (A) � γ ( Â), where Â is the completion of A. Assuming the claim, we may take A to be complete,
since parameter degree does not change under completion. By Cohen’s structure theorem, A contains
a d-dimensional regular local subring R over which it is finite. Moreover, by [49, Proposition 3.5], we
may choose R so that A is generated by ρ elements as an R-module. Let p be a prime ideal in A
and put g := p ∩ R . By base change, the fiber ring Ag/gAg has dimension ρ over the residue field
of g. Moreover, Ap/gAp is a direct summand of Ag/gAg by the structure theorem of Artinian local
rings [13, Corollary 2.16], whence has length at most ρ . In particular, embdim(Ap/gAp) � ρ . Since R
is regular, gRg is generated by at most d elements, whence so is gAp. It follows that embdim(Ap) �
ρ + d, as we wanted to show.

To prove the claim, let q be a minimal prime ideal of p Â. Since A/p is excellent, its completion
Â/p Â is reduced. Therefore, the localization of Â/p Â at q is a field, showing that p Âq = q Âq, an ideal
generated by at most γ ( Â) elements. Since Ap → Âq is faithfully flat, pAp is therefore also generated

by at most γ ( Â) elements, showing that γ (A) � γ ( Â). �
5.3. Corollary. If R is an excellent local ring, then any localization of its ultrapower R� at a finitely related
prime ideal has finite embedding dimension. Moreover, every finitely related prime ideal of R� is strong.

Proof. Let p be a finitely related prime ideal of R� . By Proposition 5.1, we can find prime ideals pw
in R with ultraproduct equal to p. Let γ (R) be the bound given by Proposition 5.2 on the embedding
dimension of all Rpw . Since (R�)p is the ultraproduct of the Rpw , its embedding dimension is at
most γ (R) as well. In fact, we can find ideals I w ⊆ pw generated by at most γ (R) elements, so that
I w Rpw = pw Rpw . Hence, there exists aw /∈ pw , such that (I w : aw) = pw . Taking ultraproducts, we see
that p is strongly finitely related (see Section 4.3 for the definition). �

In fact, we have the following more general version of the second assertion (compare with Corol-
lary 8.3 below).

5.4. Proposition. A finitely related prime ideal p in an ultra-Noetherian local ring R� is strongly finitely related
if and only if (R�)p has finite geometric dimension.

Proof. Note that a local ring has finite geometric dimension if and only if it has finite embedding
dimension. One direction is true in any ring A: if p is strongly finitely related, say, of the form (I : s)
with I ⊆ A finitely generated and s /∈ p, then pAp = I Ap, showing that Ap has finite embedding
dimension.

Conversely, suppose (R�)p has finite geometric dimension, whence finite embedding dimension. In
particular, there exists a finitely generated ideal I ⊆ p such that I(R�)p = p(R�)p. By Proposition 5.1,
we can find ideals I w ⊆ pw so that their respective ultraproducts are I and p. In particular, by Łos’
Theorem, almost all pw are prime and I w(R w)pw = pw(R w)pw , for almost all w . Hence, we can find
sw /∈ pw such that pw = (I w : sw). Letting s� be the ultraproduct of the sw , we get p = (I : s�) and
s� /∈ p, showing that p is strong. �
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5.5. First-order properties

A property P of rings is called first-order if there exists a first-order theory T , in the language
of rings, such that R is a model of T if and only if R satisfies P. Łos’ Theorem states that if
P is first-order, then ultra-P implies P. Although we will not use this here, the converse is also
true, due to a theorem of Keisler–Shelah (see for instance [28, Theorem 9.5.7]). It follows that if P
is not first-order, then there exists an ultra-ring S� which is at the same time ultra-P and ultra-
non-P. Indeed, by what we just said, there exist R w of bounded embedding dimension satisfying P
so that their ultraproduct R� does not satisfy P. Let S� be any ultrapower of R� . Since S� is then
also an ultraproduct of the R w , but for a larger underlying index set, S� is both ultra-P and ultra-
non-P.

For an ultra-Noetherian example, consider the property C0: ‘being a Noetherian local ring of char-
acteristic zero’. The ultraproduct V � of all the rings of p-adic integers Zp (with respect to some
non-principal ultrafilter on the set of prime numbers) is ultra-C0, but by the Ax–Kochen–Ershov theo-
rem, this ring can also be realized as the ultraproduct of non-C0 local rings, to wit, the Fp[[t]], where
t is a single indeterminate and Fp is the p-element field (see also Example 9.7 below).

Cataproducts

Let R w be Noetherian local rings of bounded embedding dimension and let R� be their ultraprod-
uct. The separated quotient of R� , that is to say, the factor ring R� := R�/IR�

, is called the cataproduct
of the R w . If all R w are equal to a single ring R , then we call R� the catapower of R . This terminology
is justified by:

5.6. Lemma. The cataproduct of local rings of bounded embedding dimension is equal to the completion of
their ultraproduct, whence in particular is Noetherian.

Proof. Let (R�,m�) be the ultraproduct of Noetherian local rings (R w ,mw) of embedding dimension
at most e, and let R� be their cataproduct, that is to say, R�/IR�

. We start with showing that any
Cauchy sequence a� :N → R� has a limit. After taking a subsequence if necessary, we may assume
that a�(n) ≡ a�(n + 1) mod mn

� , for all n. For each n, choose aw(n) ∈ R w such that their ultraproduct
is equal to a�(n). By Łos’ Theorem, we have for a fixed n that

aw(n) ≡ aw(n + 1) mod mn
w (2)

for almost all w , say, for all w in Dn . I claim that we can modify the aw(n) in such way that (2) holds
for all n and all w . More precisely, for each n there exist ãw(n) with ultraproduct equal to a�(n), such
that

ãw(n) ≡ ãw(n + 1) mod mn
w (3)

for all n and w . We will construct the ãw(n) recursively from the aw(n). When n = 0, no modification
is required (since by assumption m0

w = R w ), and hence we set ãw(0) := aw(0) and ãw(1) := aw(1). So
assume we have defined already the ãw( j) for j � n such that (3) holds for all w . Now, for those w for
which (2) fails for some j � n, that is to say, for w /∈ (D0 ∪ · · · ∪ Dn), let ãw(n + 1) be equal to ãw(n);
for the remaining w , that is to say, for almost all w , we make no changes: ãw(n + 1) := aw(n + 1).
It is now easily seen that (3) holds for all w . Since, for every n, almost each ãw(n) is equal to aw(n),
their ultraproduct is a�(n), thus establishing our claim.

So we may assume (2) holds for all n and w . Let f : W → N be a function on the index set W such
that for each n, almost all f (w) � n (this is where we use that the ultrafilter is countably incomplete;
if W =N, we can of course simply take the identity map). Let b� be the ultraproduct of the aw( f (w)).
Since aw( f (w)) ≡ aw(n) mod mn

w for almost all w by (3), Łos’ Theorem yields b� ≡ a�(n) mod mn
� ,

for each n, showing that b� is a limit of a� . Although this limit might not be unique, it will be in
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the separated quotient R� , showing that the latter is a complete local ring, equal therefore to R̂� .
Noetherianity now follows from Theorem 2.2. �
5.7. Corollary. The closure of an ideal I in an ultra-Noetherian ring R� is equal to I +IR�

. In particular, if R� is
the cataproduct of the R w , and I� the ultraproduct of ideals I w ⊆ R w , then R�/I�R� is the cataproduct of the
R w/I w .

Proof. Since R� := R�/IR�
is Noetherian by Lemma 5.6, the ideal I R� is closed by Krull’s Intersection

Theorem. All assertions now follow from Lemma 2.4. �
5.8. Corollary. The cataproduct R� of Noetherian local rings R w of bounded embedding dimension is equal to
the cataproduct S� of their completions.

Proof. Let (R�,m�) and (S�,n�) be the ultraproduct of respectively the R w and the R̂ w . By Łos’
Theorem, m� S� = n� and R� is dense in S� . Hence both rings have the same completion, which by
Lemma 5.6 is respectively the cataproduct of the R w and of the R̂ w . �

However, this is not the only case in which different rings can have the same cataproduct. Let
(R,m) be a local ring of finite embedding dimension. A filtration I = (In)n on R is called analytic if
its extension IR̂ induces a Hausdorff topology on R̂ , or, equivalently, if the intersection of all In R̂ is
zero. In particular, the m-adic filtration is analytic by Theorem 2.2. Given two filtrations I = (In)n and
J = ( Jn)n , we say that I is bounded by J, if the I-adic topology is stronger than or equal to the J-adic
topology, that is to say, for each fixed N , we have In ⊆ J N for all sufficiently big n.

5.9. Lemma (Chevalley). A filtration on a Noetherian local ring (R,m) is analytic if and only if it is bounded
by the m-adic filtration.

Proof. If I = (In)n is analytic, then the intersection of all In R̂ is zero. By Chevalley’s Theorem (see
for instance [32, Exercise 8.7]) we have for fixed N an inclusion In R̂ ⊆ mN R̂ for n sufficiently big. By
faithful flatness, In ⊆ mN for n 
 0. The converse is immediate from Krull’s Intersection Theorem (see
for instance [32, Theorem 8.10]). �
5.10. Corollary. If (In)n is an analytic filtration on a Noetherian local ring R, then the catapower R� of R is
isomorphic to the cataproduct S� of the R/In.

Proof. Without loss of generality, we may assume R is complete. The natural surjections R → R/In
induce a map R� → S� , which is again surjective by Łos’ Theorem. Let x� be an element in the ultra-
power R� of R so that its image in R� is in the kernel of R� → S� . Choose xn ∈ R with ultraproduct
equal to x� and fix N . Since x� ∈ IS�

, almost each xn ∈mN (R/In). By Lemma 5.9, almost each In ⊆ mN

and hence almost each xn ∈mN . By Łos’ Theorem, x� ∈mN R� . Since N was arbitrary, x� lies in IR�
and

hence its image is zero in R� , showing that R� → S� is also injective. �
It should be noted that the corresponding ultraproducts R� and S� , however, are far from equal, as,

for instance, FR-Spec(S�) is always a singleton by Proposition 5.1. If R has finite embedding dimen-
sion, then the natural map R → R̂ is flat if and only if R is Noetherian (since R̂ is Noetherian and this
property descends under faithful flatness). We nevertheless expect some vestige of (faithful) flatness
to hold in the non-Noetherian case. One example of this is given by Lemma 2.4, namely I = I R̂ ∩ R
for any closed ideal I . It is well known (see for instance [47, Theorem 2.2]) that the latter property al-
ready follows from the vanishing of TorR

1 (R̂,k), where k is the residue field of R . For ultra-Noetherian
local rings, where completion and separated quotient coincide by Lemma 5.6, this latter property does
indeed hold:

5.11. Proposition. For every ultra-Noetherian local ring R� with residue field k� , we have Tor
R�

1 (R�,k�) = 0.
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Proof. From the exact sequence

0 → IR�
→ R� → R� → 0

we get after tensoring over k� an exact sequence

0 → Tor
R�

1 (R�,k�) → IR�
/m�IR�

→ k� → k� → 0,

where m� is the maximal ideal of R� . In particular, the first Betti number of R� vanishes if and only if
m�IR�

= IR�
. To prove the latter equality, let (R w ,mw) be Noetherian local rings with ultraproduct R� .

Let a� be a non-zero element in IR�
and choose non-zero aw ∈ R w so that their ultraproduct is

equal to a� . Let m� be generated by x1�, . . . , xe� and, for each i, choose xi w ∈ R w whose ultraproduct
equals xi� . By Łos’ Theorem, mw = (x1 w , . . . , xe w)R w . If aw has order nw , then we can find bi w ∈ R w

of order nw − 1 such that aw = x1 wb1 w + · · · + xe wbe w . Let bi� be the ultraproduct of the bi w . Fix
some N . Since a� ∈ IR�

, its order is strictly bigger than N and hence so is almost each nw . Therefore,
almost each bi w has order at least N and hence bi� ∈ mN

� . Since this holds for all N , we get bi� ∈ IR�
.

Since a� = x1�b1� + · · · + xe�be� by Łos’ Theorem, we are done. �
5.12. Corollary. Let (R�,m�) be an ultra-Noetherian local ring and I an ideal in R� . If I is closed, then so is Imn

�

for every n.

Proof. By Corollary 5.7, we have IR�
⊆ I . Since IR�

= mn
�IR�

by the proof of Proposition 5.11, we get
IR�

⊆ Imn
� , showing that Imn

� is closed by another application of Corollary 5.7. �
We may extend the notion of cataproduct to modules as well: for each w , let M w be an

R w -module, and let M� be their ultraproduct. It follows that M� is an R�-module. We define the
cataproduct of the M w as the R�-module M� := M� ⊗R�

R� = M�/IR�
M� given by base change. If

N w ⊆ M w are submodules, then N� ⊆ M� . However, the induced homomorphism N� → M� may fail
to be injective. The following result is an exercise on Łos’ Theorem (see for instance [39]), and the
proof is left to the reader.

5.13. Proposition. Let M� and M� be the respective ultraproduct and cataproduct of the M w . Almost each M w

is minimally generated by s elements (respectively, has length s), if and only if M� is minimally generated by s
elements (respectively, has length s), if and only if so does M� .

Flatness of catapowers

A key result about catapowers, one which will be used frequently in our characterizations through
uniform behavior in Section 12, is the following theorem and its corollary:

5.14. Theorem. Let R be a Noetherian local ring and R� its catapower. There is a canonical homomorphism
R → R� which is faithfully flat and unramified. In particular, R and R� have the same dimension.

Proof. Let R� be the ultrapower of R and R → R� the diagonal embedding. Composed with the
canonical surjection R� → R� = R�/IR�

, we get the map R → R� . By Corollary 5.8 and the fact that
completion is faithfully flat, we may already assume that R is complete. Since mR� is the maximal
ideal of R� , the map R → R� is unramified. So remains to show that this map is flat. Let us first prove
this under the additional assumption that R is regular. We induct on its dimension. Let x be a regular
parameter of R , that is to say, an element of order one. I claim that x is R�-regular. This follows
for instance from the results in Section 8 (proving among other things that R� is then regular), but
we can give a direct argument here. Indeed, suppose s� ∈ R� is such that xs� ∈ IR�

. If sw ∈ R have
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ultraproduct equal to s� , then for a fixed N , almost each xsw ∈ mN . Since R is regular and x has order
one, sw ∈ mN−1 and hence by Łos’ Theorem, s� ∈ mN−1 R� . Since this holds for all N , we get s� ∈ IR�

,
showing that x is R�-regular. It is not hard to see that R�/xR� is the catapower of the regular local
ring R/xR , so that by induction, R/xR → R�/xR� is faithfully flat. Since any R/xR-regular sequence is
then R�/xR�-regular, R� is a balanced big Cohen–Macaulay algebra over R . Since R is regular, R → R�

is therefore faithfully flat (see for instance [45, Theorem IV.1] or [27, Lemma 2.1(d)]).
For the general case, we may write R as a homomorphic image S/I of a complete regular local

ring S by Cohen’s theorem. By what we just proved, S → S� is faithfully flat, where S� is the cata-
power of S . Hence the base change R = S/I → R� = S�/I S� is also flat. The equality of dimension is
now a well-known consequence of the first assertion. �
5.15. Corollary. Let R be an excellent local ring (e.g., a complete Noetherian local ring) with catapower R� . The
natural map R → R� is regular. In particular, R is regular (respectively, normal, reduced, Cohen–Macaulay or
Gorenstein), if and only if, so is R� .

Proof. The second assertion is a well-known consequence of the first (see for instance [32, Theo-
rem 32.2]). As for the first, let us first show this in the special case that R = k is a field. Note that
in this case, the catapower is equal to the ultrapower k� of k. Hence, we need to show that k → k�

is separable, and so we may assume that k has positive characteristic p. We will establish separate-
ness by verifying MacLane’s criterion (see for instance [32, Theorem 26.4]). Let b1, . . . ,bn be elements
in k1/p which are linearly independent over k. Suppose x1�b1 + · · · + xn�bn = 0 for some xi� ∈ k� .
Choose xi w ∈ k with ultraproduct equal to xi� ∈ k� . Taking p-th powers, using Łos’ Theorem and then
taking p-th roots, we get x1 wb1 + · · · + xn wbn = 0 for almost all w . Since the bi are linearly indepen-
dent over k, almost all xi w are zero. By Łos’ Theorem, each xi� is zero, showing that the bi , viewed as

elements in k1/p
� , remain linearly independent over k� , as we wanted to show.

For R arbitrary, Theorem 5.14 yields that R → R� is faithfully flat and unramified. By what we just
proved, the induced residue field extension is separable. Therefore R → R� is formally smooth by [32,
Theorem 28.10]. Regularity then follows from a result by André in [2] (see also [32, p. 260]). �
5.16. Corollary. If (R,m) is an equicharacteristic complete Noetherian local ring with residue field k, then its
catapower R� is isomorphic to the m-adic completion of R ⊗k k� , where k� is the ultrapower of k.

Proof. By Cohen’s structure theorem, R is a homomorphic image of a power series ring k[[x]], with x
an n-tuple of indeterminates. Since catapowers commute with homomorphic images by Corollary 5.7,
we may assume R = k[[x]]. So remains to show that R�

∼= k�[[x]]. However, this is clear by Cohen’s
structure theorem, since R� is regular by Corollary 5.15, with residue field k� , and dimension n, by
Theorem 5.14. �
5.17. Proposition. Let R ⊆ S be an injective, local homomorphism between Noetherian local rings and let
R� → S� be the induced map of catapowers.

5.17.1. If R ⊆ S is finite, then R� → S� is finite and injective.
5.17.2. If R ⊆ S is cata-injective, that is to say, if R̂ → Ŝ is injective, then R� → S� is injective too.

Proof. Let m and n be the maximal ideals of respectively R and S . Assume R ⊆ S is finite, so that
na ⊆ mS for some a. By the Artin–Rees Lemma, mn S ∩ R ⊆ mn−c for some c and all n � c. Hence
nna ∩ R ⊆ mn−c for all n � c and hence by Łos’ Theorem, the same inclusions hold in the extension
R� ⊆ S� of ultrapowers. Using this, it is not hard to show that IS�

∩ R� = IR�
, showing that R� ⊆ S� is

injective (and clearly also finite).
If R ⊆ S is cata-injective, then the filtration nk ∩ R , for k = 0,1, . . . , is easily seen to be an-

alytic, whence bounded by the m-adic filtration by Lemma 5.9. Again one derives from this that
IS�

∩ R� = IR�
, whence that R� ⊆ S� is injective. �
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5.18. Extended dimensions in ultra-Noetherian local rings

We extend the nomenclature introduced in the beginning of this section to include invariants.
In particular, we define the cata-dimension of R , denoted cdim(R), as the (Krull) dimension of its
completion R̂ . For an ultra-Noetherian local ring R� given as the ultraproduct of Noetherian local
rings R w of embedding dimension at most m, we define its ultra-dimension, denoted udim(R�), as
the dimension of almost all R w . Since almost all R w have dimension at most m, the ultra-dimension
of R� is finite.

5.19. Theorem. For an ultra-Noetherian local ring R� , we have inequalities

depth(R�) � pidim(R�) = frdim(R�) = udim(R�)

� cldim(R�) = gdim(R�) = cdim(R�) � embdim(R�). (4)

Proof. By Theorems 3.4 and 4.5, the cata-dimension of R� is equal to its geometric dimension and
to its cl-dimension. Łos’ Theorem and Lemma 4.8 yield that the ultra-dimension of R� coincides with
its pi-dimension and its fr-dimension. Depth is also first-order, as it is cast in terms of the vanishing
of the Koszul homology of a generating set of m (see Section 7.1 below for more details). Since in a
Noetherian local ring depth never exceeds dimension, the first inequality is then also clear. �

There are no further constraints on the above invariants of an ultra-Noetherian ring, as the fol-
lowing examples show (in the discussion of these examples, we will also use some terminology from
later sections).7

5.20. Example. Let e � h � d � m. We will construct an ultra-Noetherian local ring R� with depth e,
ultra-dimension h, cata-dimension d, and embedding dimension m. First we introduce some notation.
Let R� be the ultraproduct of the R w and let n� be a non-standard positive integer, that is to say,
an ultraproduct of an unbounded sequence of positive integers nw . For an element a� ∈ R� , realized

as an ultraproduct of elements aw ∈ R w , we write a
n�

� to denote the ultraproduct of the elements anw
w ;

one verifies that this is independent of the choice of aw or nw . Let S� be the ultrapower of S := k[[ξ ]],
for some indeterminates ξ := (ξ1, . . . , ξm) and some field k, let

I := (
ξ

n�

e+1ξm, . . . , ξ
n�

h ξm, ξ
n�

h+1, . . . , ξ
n�

d , ξ2
d+1, . . . , ξ

2
m

)
S�

and put R� := S�/I . By Łos’ Theorem, (ξ1, . . . , ξe) is R�-regular and since the maximal ideal of

R�/(ξ1, . . . , ξe)R� is annihilated by the element ξ
n�−1
e+1 · · · ξn�−1

d · ξd+1 · · · ξm , we see that R� has depth e.
Since ξd+1, . . . , ξm are nilpotent, we get from Proposition 5.22 below that the ultra-dimension of R�

is the same as the ultra-dimension of

R�/(ξd+1, . . . , ξm)R� = S�/
(
ξ

n�

h+1, . . . , ξ
n�

d , ξd+1, . . . , ξm
)

S�,

that is to say, equal to h. On the other hand, I S� = (ξ2
d+1, . . . , ξ

2
m)S� , where S� is the catapower of S

(note that S�
∼= k�[[ξ ]], where k� is the ultrapower of k; see for instance [4, Proposition 3.1]). Hence

the catapower R� of R has dimension d. By Lemma 5.6, the cata-dimension of R� is therefore d.
Finally, it follows from Łos’ Theorem that R� has embedding dimension m. Note that since R� is
Cohen–Macaulay, R� is cata-Cohen–Macaulay (see Section 6.8).

7 One should note that for Noetherian rings, other than the obvious restriction that pi-dimension and dimension agree, we
also have the remarkable fact that when dimension and embedding dimension agree, that is to say, when the ring is regular,
then this common value must also be equal to its depth.
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More generally, let q be any number between e and d and let R ′
� := S�/I ′ , where I ′ is the sum

of the ideal I above and the ideal (ξq+1ξm, . . . , ξdξm)S� . Then R ′
� has still the same depth, ultra-

dimension, cata-dimension and embedding dimension as R� , but now the depth of R� , that is to say,
the cata-depth of R� , is q, since (ξ1, . . . , ξq) is a regular sequence.

5.21. Example. The previous example might lead one to think that the depth of R is always at most
its cata-depth. However, this is not the case as the following example shows. Let S� be as in the

previous example with m = 3, and let R� := S�/(ξ
2
1 , ξ1ξ2, ξ1ξ3 − ξ

n�

2 )S� , with n� an ultraproduct in
N� \ N (a so-called non-standard integer). Since ξ3 is R�-regular and since R� has ultra-dimension
one, the depth of R� is one by Theorem 5.19. On the other hand, R� is equal to S�/(ξ

2
1 , ξ1ξ2, ξ1ξ3)S� ,

whence has depth zero. Note that R� has dimension two, so that R� itself has cata-dimension two.
Hence R� is ultra-Cohen–Macaulay (see Section 8.5), but not cata-Cohen–Macaulay.

Isodimensionality

We call a local ring R of finite embedding dimension isodimensional if (4.5.2) is an equality, that
is to say, if the geometric dimension of R is equal to its pi-dimension. In view of Theorem 5.19, an
ultra-Noetherian local ring is isodimensional if and only if its ultra-dimension is equal to its cata-
dimension.

5.22. Proposition. Let R� be an ultra-Noetherian local ring. If a is a finitely related ideal contained in nil(R�),
then R� and R�/a have the same ultra-dimension. In particular, R� is isodimensional if and only if R�/a is.

Proof. Let h be the ultra-dimension of R� , and write it as the ultraproduct of h-dimensional Noethe-
rian local rings R w of bounded embedding dimension. Since a is finitely related, it can be realized as
the ultraproduct of finitely related ideals aw by the argument in the proof of Proposition 5.1. By Łos’
Theorem, almost each aw is nilpotent, and therefore R w/aw has again dimension h. Hence R�/a has
ultra-dimension h as well.

The final assertion follows from the fact that R� and R�/a have the same geometric dimension
(this is true in general, since a is contained in every threshold prime of R�). �

For ultra-Noetherian local rings, we have the following important criterion for isodimensionality:

5.23. Theorem. Let R� and R� be the respective ultraproduct and cataproduct of Noetherian local rings R w of
bounded embedding dimension. The following are equivalent:

5.23.1. R� is isodimensional;
5.23.2. almost all R w have dimension equal to gdim(R�);
5.23.3. almost all R w have the same dimension as R�;
5.23.4. almost all R w have the same parameter degree (which is then also the parameter degree of R� and

of R�).

Proof. The equivalence of (5.23.2) and (5.23.3) follows from Lemma 5.6 and Theorem 3.4. Let d � m
be the respective geometric dimension and embedding dimension of R� . By Theorem 5.19, the cata-
dimension of R� is d. Since dim(R w) � m, almost all R w have a common dimension h � m, which
is then the ultra-dimension of R� by definition, from which we get the equivalence of (5.23.1)
and (5.23.2).

Remains to show the equivalence of (5.23.2) and (5.23.4). Suppose pardeg(R w) = e for almost
all w . In each R w , choose an h-tuple xw so that almost all R w/xw R w have length e. Let x� be the
ultraproduct of the xw . By Proposition 5.13, the length of R�/x�R� , being the ultraproduct of the
R w/xw R w , is also e. It follows that R� has geometric dimension at most h. We already argued that
its geometric dimension is at least h, so that we get h = d. In particular, the parameter degree of R is
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at most e, and by reversing this argument, one can also show that it cannot be less than e, whence
must be equal to e.

Conversely, assume h = d. Let x� be a generic sequence in R� and choose d-tuples xw whose
ultraproduct is x� . By Łos’ Theorem, almost each xw generates an mw -primary ideal, and therefore
must be a system of parameters in R w , since almost each R w has dimension h = d. Let l be the length
of R�/x�R� . By Proposition 5.13, almost each R w/xw R w has length l, showing that pardeg(R w) � l, for
almost w . �
5.24. Example. We cannot replace parameter degree with multiplicity in the previous result as the
following example shows. Fix some e > 0 and put

R w := S/
(
ξ w , ξ eζ w−e)S

for each w � e, where S := k[[ξ, ζ ]] and k is a field. Let R� be the ultraproduct of the R w , let k� be
the ultrapower of k and let S�

∼= k�[[ξ, ζ ]] be the catapower of S . Since the ultraproduct of the ξ w

and the ξ eζ w−e are infinitesimals, the cataproduct of the R w is R� = S� , showing that R� is not
isodimensional (since the R w are one-dimensional and R� is two-dimensional). Therefore, by the
theorem, the parameter degree of the R w is unbounded (in fact, equal to w). On the other hand,
ζ is a parameter in each R w so that we can calculate the multiplicity of R w by Lech’s lemma [32,
Theorem 14.12] as the limit of ewn/n as n tends to infinity, where ewn is the length of R w/ζn R w .
One calculates that ewn = w(w − 1) + e(n − w + 2) and hence mult(R w) = e. This shows, in view of
Remark 3.5, that multiplicity is in general not first-order.

5.25. Remark. In view of Theorem 5.23, we will often require that a collection of Noetherian local
rings R w have (almost all) the same embedding dimension and the same parameter degree, to en-
sure that their cataproduct is again Noetherian of the same dimension. In fact, we can replace this
requirement with the more natural requirement that (almost all) R w have the same dimension and
parameter degree. Indeed, if a Noetherian local ring R has dimension d and parameter degree e, then
its embedding dimension is at most d + e − 1.

Note that by Lemma 6.11 below, if almost all R w are Cohen–Macaulay we may further simplify
this to the requirement that almost all R w have the same dimension and multiplicity. The previous
example shows that this is no longer true without the Cohen–Macaulay assumption.

5.26. Corollary. If R� is an isodimensional ultra-Noetherian local ring and x� the ultraproduct of elements xw ,
then x� is generic if and only if deg(xw) is bounded.

Proof. Let R w be Noetherian local rings with ultraproduct R� . By Theorem 5.23, almost each R w

has dimension d := gdim(R�). Suppose x� is generic. Hence, R�/x�R� has geometric dimension d − 1,
whence ultra-dimension at most d − 1. In particular, almost each R w/xw R w must have dimension
d − 1. Hence xw is generic in R w and R�/x�R� is again isodimensional. By Theorem 5.23, this means
that the R w/xw R w must have bounded parameter degree, proving the direct implication.

Conversely, suppose the deg(xw) are bounded, that is to say, almost all xw are generic and the
parameter degrees of the R w/xw R w are bounded. By Theorem 5.23 once more, R�/x�R� has geometric
dimension d − 1, showing that x� is generic. �

Without the isodimensional assumption, the result is false: for instance if R� has ultra-dimension
zero (e.g., the ultraproduct of the R/mn), then no element in R� is realized as an ultraproduct of
elements of finite degree. We can now give the following improvement of Corollary 5.3.

5.27. Corollary. Let R� be an ultra-Noetherian local ring, realized as the ultraproduct of equicharacteristic
excellent local rings R w . If R� is isodimensional, then any localization at a finitely related prime ideal has finite
embedding dimension, and any finitely related prime ideal is strong.
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Proof. Let p ∈ FR-Spec(R�). By Proposition 5.1, there exist prime ideals pw ⊆ R w with ultraproduct
equal to p. By Theorem 5.23, there is some ρ , such that almost each R w has parameter degree ρ .
Hence, by Proposition 5.2, almost each (R w)pw has embedding dimension at most d + ρ , where d
is the common dimension of almost all R w (that is to say, the ultra-dimension, whence geometric
dimension, of R�). Since (R�)p is the ultraproduct of the (R w)pw , its embedding dimension is at most
d + ρ . Proposition 5.4 then implies that p is strong. �

We actually showed that the stalk of Spec(R�) at a point in FR-Spec(R�) has embedding dimension
at most d + ρ , where d is the geometric dimension of R� and ρ its parameter degree. Inspecting the
proof of Proposition 5.2, we see that almost each (R w)pw has parameter degree at most ρ , showing
that each stalk is also isodimensional, of ultra-dimension, whence geometric dimension, at most d.

6. Cata-singularities

According to the definitions in Section 5, a local ring of finite embedding dimension is cata-regular
if its completion is a regular (Noetherian) local ring.

6.1. Theorem. Let (R,m) be a local ring of geometric dimension d and let k be its residue field. The following
are equivalent:

6.1.1. R is cata-regular;
6.1.2. Rsep is cata-regular;
6.1.3. gdim(R) = embdim(R);
6.1.4. m is generated by a generic sequence;
6.1.5. m is generated by a quasi-regular sequence;
6.1.6. gr(R) is isomorphic to k[ξ ], with ξ a d-tuple of indeterminates.

Proof. The equivalence of (6.1.1) and (6.1.2) is clear since Rsep has the same completion as R , and their
equivalence with (6.1.6) follows from [32, Theorem 14.4], since we have an isomorphism of graded
rings gr(R) ∼= gr(R̂). The equivalence of (6.1.3) and (6.1.4) is clear from the definition of geometric
dimension. Suppose (6.1.4) holds, so that m is generated by a generic sequence (x1, . . . , xd). There is a
natural surjective homomorphism k[ξ ] → gr(R) which maps ξi to in(xi), where ξ = (ξ1, . . . , ξd). Since
both rings have the same dimension by Theorem 3.4, the kernel must be zero, proving (6.1.6). Con-
versely, assume gr(R) ∼= k[ξ ]. Hence m/m2 is generated by d elements, and therefore, by Nakayama’s
Lemma m is generated by d elements, showing that (6.1.4) holds.

Remains to show the equivalence of the other conditions with (6.1.5). Recall that x is quasi-regular
if F (x) = 0, for a homogeneous polynomial F ∈ R[ξ ], implies that F has all its coefficients in I := xR .
This is equivalent with the natural epimorphism (R/I)[ξ1, . . . , ξd] → grI (R) being injective, whence
an isomorphism (see for instance [32, §16]). Hence taking I = m, we see that (6.1.5) is equivalent
with (6.1.6). �
6.2. Remark. In the above proof, we actually showed that if R is cata-regular of geometric dimen-
sion d, then any d-tuple generating m is quasi-regular. We will shortly show (Theorem 6.9 below)
that, in fact, every generic sequence is quasi-regular. The ring R in the next example shows that a
generic sequence generating the maximal ideal in a cata-regular local ring is not necessarily a regular
sequence.

6.3. Example. A local ring of geometric dimension zero is cata-regular if and only if it is a field. A local
ring of geometric dimension one is cata-regular if and only if its maximal ideal is generated by a non-
nilpotent element. For instance, let V � be an ultraproduct of discrete valuation rings (an ultra-DVR for
short), or more generally, a valuation ring of finite embedding dimension (which is then automatically
one). If x is an element in the ideal of infinitesimals IV �

of V � , then R := V �/xV � is cata-regular of
geometric dimension one. If x �= 0, then R is not a domain. In fact, R has then depth zero (and so is
not pseudo-regular in the sense of Section 7.6 below).
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The following fact, however, is noteworthy: if R is moreover separated, then any quasi-regular
element is regular; see for instance [32, Theorem 16.3]. In fact, we have the following result:

6.4. Corollary. If a cata-regular local ring is separated, then it is a domain. More generally, the separated
quotient of a cata-regular local ring is a domain.

Proof. Immediate from the fact that Rsep embeds in R̂ and the fact that Noetherian regular local rings
are always domains. �
6.5. Corollary. If R is cata-regular, then so is any homomorphic image R/I , for I ⊆ IR .

Proof. Since R and R/I have the same separated quotient, the result follows from Theorem 6.1. �
6.6. Corollary. For each d, the class of cata-regular local rings of geometric dimension d is first-order definable.

Proof. Observe that a ring is local if and only if any sum of two non-units is again a non-unit. In
fact, an element lies in the maximal ideal of a local ring if and only if it is not a unit. Therefore,
the maximal ideal of a local ring is definable, as is expressing that some element lies in the maximal
ideal. In particular, the formula λd,n(x,a) is first-order, where λd,n(x,a) is the formula in the variables
x := (x1, . . . , xd) and a := (aν)ν , for ν running over all d-tuples in Nd whose sum |ν| is equal to n,
expressing that

if x generates the maximal ideal and if
∑
|ν|=n

aνxν = 0,

then some aν lies in the maximal ideal. (5)

Let Td be the theory consisting of all sentences (∀x,∀a)λd,n(x,a), for n = 1,2, . . . , together with
the sentence σd expressing that the maximal ideal is generated by some d-tuple. I claim that Td
axiomatizes the class of cata-regular local rings of geometric dimension d. Indeed, suppose that (R,m)

satisfies Td . By σd , there is a d-tuple x such that m = xR . Since λd,n(x,a) holds for all tuples a in R ,
we see that x is quasi-regular. Hence R is cata-regular by Theorem 6.1. Conversely, if R is cata-regular
of geometric dimension d, then it satisfies Td by Remark 6.2. �

This immediately gives a large class of cata-regular local rings. Namely, any ultraproduct of regular
local rings of dimension d is cata-regular, of geometric dimension d. We will address this situation
further in Section 8 below.

6.7. Corollary. A local ring R of geometric dimension one is cata-regular if and only if Rsep is a discrete valua-
tion ring.

Proof. Assume R is cata-regular so that R̂ is a discrete valuation ring with valuation ordR̂(·). Since
ordRsep (a) = ordR̂(a) for all a ∈ Rsep, also ordRsep (·) is a valuation, showing that Rsep is a discrete val-
uation ring. Conversely, if Rsep is a discrete valuation ring, then R is cata-regular by Theorem 6.1. �
6.8. Cata-Cohen–Macaulay local rings

We now turn to the study of cata-Cohen–Macaulay local rings of finite embedding dimension,
that is to say, local rings whose completion is Cohen–Macaulay. Clearly, any cata-regular local ring is
cata-Cohen–Macaulay.

6.9. Theorem. A local ring of finite embedding dimension is cata-Cohen–Macaulay if and only if its separated
quotient is cata-Cohen–Macaulay if and only if some (equivalently, every) generic sequence is quasi-regular.
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Proof. Let (R,m) be a local ring of geometric dimension d and let x be a generic sequence. Since
grxR(R) ∼= grxR̂(R̂), the sequence x is quasi-regular in R if and only if it is so in R̂ . Since R and Rsep
have the same completion, we only need to show the equivalence of the first and last condition.
Assume the last condition, and choose a generic tuple x. By our previous observation, x is R̂-quasi-
regular, and therefore R̂-regular by [32, Theorem 16.3] and the fact that R̂ is Noetherian. Since R̂ has
dimension d by Theorem 3.4, it is Cohen–Macaulay, showing that R is cata-Cohen–Macaulay.

Conversely, suppose R̂ is Cohen–Macaulay, and let x be any generic tuple. Since x is a system of
parameters in R̂ by Proposition 3.9, it is R̂-regular, whence R̂-quasi-regular. By the above, x is then
quasi-regular in R . �
6.10. Corollary. A local ring of finite embedding dimension is cata-regular if and only if it is cata-Cohen–
Macaulay and has multiplicity one.

Proof. If a local ring R is cata-regular, its completion R̂ is regular, whence has multiplicity one. Since
R and its completion R̂ have the same multiplicity by Remark 3.5, the direct implication is clear. Con-
versely, if R is cata-Cohen–Macaulay of multiplicity one, then R̂ is Cohen–Macaulay with mult(R̂) = 1
by Remark 3.5. Since R̂ is unmixed, it is regular by [33, Theorem 40.6], showing that R is cata-
regular. �
6.11. Lemma. The multiplicity of R is at most its parameter degree. If R has infinite residue field then we have
equality if and only if R is cata-Cohen–Macaulay.

Proof. Let x be a generic sequence of R . By Proposition 3.9, it is a system of parameters in R̂ and
R/xR ∼= R̂/xR̂ by Lemma 2.4. The common length of the latter two quotients is at least the multiplic-
ity of the ideal xR̂ by [32, Theorem 14.10] which in turn is at most mult(R̂) by [32, Formula 14.4]. The
desired inequality now follows from this, since R and R̂ have the same multiplicity by Remark 3.5.

The last assertion holds if R is Noetherian by [49, Lemma 3.3]. The general case follows from this
since R and R̂ have the same multiplicity and the same parameter degree. �
6.12. Theorem. A local ring of finite embedding dimension is cata-Gorenstein (respectively, a cata-‘complete
intersection’) if and only if so is its separated quotient, if and only if it admits a quasi-regular, generic sequence x
such that R/xR is Gorenstein (respectively, a complete intersection).

Proof. Let (R,m) be a local ring of geometric dimension d. Since R and Rsep have the same com-
pletion, we only need to show the equivalence of the first and last condition. Suppose x is a
quasi-regular, generic sequence. In particular, R is cata-Cohen–Macaulay by Theorem 6.9, whence R̂ is
Cohen–Macaulay and x is R̂-regular. Moreover, R/xR ∼= R̂/xR̂ by Lemma 2.4. Therefore the former is
Gorenstein (respectively, a complete intersection) if and only if the latter is, if and only if R̂ is (see [9,
Theorem 2.3.4 and Proposition 3.1.19]). �
6.13. Proposition. A local ring of finite embedding dimension is cata-Gorenstein if and only if there exists a
quasi-regular, generic sequence generating an irreducible ideal. When this is the case, every generic sequence
is quasi-regular and generates an irreducible ideal.

Proof. Let x be a quasi-regular, generic sequence. The result is now immediate from the fact that xR
is irreducible if and only if R/xR is Gorenstein. �
7. Pseudo-singularities

The cata-singularities from the previous section do not always correspond to their ‘ultra’ versions
(which will be treated in the next section). To this end we will define some stronger versions of these
cata-singularities, defined intrinsically, that is to say, without reference to the completion. Throughout
this section, (R,m) is a local ring of finite embedding dimension.
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7.1. Grade and depth

Let A be an arbitrary ring and I a finitely generated ideal in A. Choose a tuple of generators
x = (x1, . . . , xn) of I . The grade of I , denoted grade(I), is by definition equal to n − h, where h is the
largest value i for which the i-th Koszul homology Hi(x; A) is non-zero. One shows that the grade
of I does not depend on the choice of generators x. For a local ring R of finite embedding dimension,
we define its depth as the grade of its maximal ideal; it is non-zero if and only if its maximal ideal is
not an associated prime.

Grade, and hence depth, deforms well, in the sense that the

grade
(

I(A/xA)
) = grade(I) − |x| (6)

for every A-regular sequence x contained in I . If R has geometric dimension d, then its depth is
at most d. Indeed, by definition, the grade of a finitely generated ideal never exceeds its minimal
number of generators, and by [9, Proposition 9.1.3], the depth of R is equal to the grade of any of its
m-primary ideals, and the assertion now follows from Theorem 3.4.

The relationship between depth and the length of a regular sequence (sometimes called the naive
depth of R) is less straightforward in the non-Noetherian case and requires an additional definition.
For a local ring (R,m) and a finite tuple of indeterminates ξ := (ξ1, . . . , ξn), we will denote the local-
ization of R[ξ ] at the ideal mR[ξ ] by R(ξ) (this is sometimes called the n-fold Nagata extension of R).
It follows that R → R(ξ) is faithfully flat and unramified, with closed fiber equal to the residue field
extension k ⊆ k(ξ), where k is the residue field of R and k(ξ) the field of fractions of k[ξ ].

7.2. Lemma. Let (R,m) be a local ring of finite embedding dimension and let ξ be a tuple of indeterminates.
Then R and R(ξ) have the same geometric dimension and the same depth.

Proof. Let d be the geometric dimension of R and e its depth. We will induct on d to show
that gdim(R(ξ)) = d. It is easy to see that R is Artinian if and only if R(ξ) is, thus proving the
case d = 0. In the general case, we may choose x ∈ m so that gdim(R/xR) = d − 1. By induction,
(R/xR)(ξ) ∼= R(ξ)/xR(ξ) has geometric dimension d − 1, showing that gdim(R(ξ)) � d. On the other
hand, induction also shows that gdim(R(ξ)) > d − 1, so that we get gdim(R(ξ)) = d, as required.

As for depth, this follows from [9, Proposition 9.1.2] since R → R(ξ) is faithfully flat. �
We can now characterize depth in terms of regular sequences:

7.3. Lemma. For a local ring R of finite embedding dimension, its depth is equal to the maximal length of an
R(ξ)-regular sequence, where ξ runs over all finite tuples of indeterminates. More precisely, if R has depth e,
then we can find a regular sequence (y1, . . . , ye) in R(ξ1, . . . , ξe) which is part of a generic sequence.

Proof. In view of Lemma 7.2, it suffices to prove the second assertion. To this end, we need to con-
struct, by Lemma 3.8, an R(ξ)-regular sequence (y1, . . . , ye) such that the geometric dimension of
R(ξ)/(y1, . . . , ye)R(ξ) is d − e, where ξ := (ξ1, . . . , ξe). We induct on the depth e of R , where there is
nothing to show if e = 0. Let (x1, . . . , xd) be a generic sequence and let n be the ideal generated by
this sequence. Since n is then m-primary, its grade is e. By [9, Proposition 9.1.3], the element

y1 := x1 + x2ξ1 + · · · + xdξ
d−1
1

is an R[ξ1]-regular element. Since R[ξ1] → R(ξ1) is flat, y1 is R(ξ1)-regular. Let S := R(ξ1)/y1 R(ξ1).
Since S/(x2, . . . , xd)S ∼= (R/n)(ξ1), it is Artinian. Therefore, the geometric dimension of S is at most
d − 1. By Lemma 7.2, the geometric dimension of S cannot be less, and hence it is equal to d − 1. In
particular, we are done in case e = 1.

Assume therefore e > 1. It follows from Lemma 7.2 and (6) that S has depth e − 1. By induction,
there exists an S(ξ2, . . . , ξe)-regular sequence (y2, . . . , ye) such that S(ξ2, . . . , ξe)/(y2, . . . , ye)S(ξ2,
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. . . , ξe) has geometric dimension d − e. Hence with ξ := (ξ1, . . . , ξe), the sequence (y1, . . . , ye) is
R(ξ)-regular and part of a generic sequence. �
7.4. Remark. The argument even shows that, for a given generic sequence (x1, . . . , xd), we may choose
an R(ξ)-regular sequence (y1, . . . , ye) so that

(y1, . . . , ye, xe+1, . . . , xd)R(ξ) = (x1, . . . , xd)R(ξ).

In particular, if R is moreover cata-regular, then we may take (y1, . . . , ye) equal to a generating set
of the maximal ideal of R(ξ).

For ultra-Noetherian rings, no such extension is necessary, since depth is first-order definable:

7.5. Proposition. The depth of an ultra-Noetherian local ring R is equal to the maximal length of an R-regular
sequence.

7.6. Pseudo-singularities

We now introduce some singularity variants that are based on depth. Let R be a local ring of finite
embedding dimension. If the depth of R is equal to its embedding dimension, then we call R pseudo-
regular, and if it is equal to its geometric dimension, we call R pseudo-Cohen–Macaulay. Immediate
from the definitions we get:

7.7. Proposition. A local ring of finite embedding dimension is pseudo-regular if and only if it is cata-regular
and pseudo-Cohen–Macaulay.

In order to derive a homological characterization of pseudo-regularity analogous to Serre’s charac-
terization for regularity, we need some additional definitions.

7.8. Finite presentation type

The material in this section is well known for Noetherian rings, and probably also for the more
general case, but for lack of proper reference, I include a more detailed discussion. We say that an
R-module M admits a finite free resolution (of length n), if there exists an exact sequence

0 → Fn → Fn−1 → ·· · → F1 → F0 → M → 0 (7)

with each Fi a finitely generated free R-module. The alternating sum of the ranks of the Fi is called
the Euler number Eul(M) of M . It follows from Schanuel’s Lemma that Eul(M) does not depend on the
choice of finite free resolution, and by [32, Theorem 19.7], it is always non-negative. Also, if

0 → H → Gm → Gm−1 → ·· · → G1 → G0 → M → 0

is an arbitrary exact sequence with all Gi finitely generated free R-modules, then H is also finitely
generated, and Eul(M) is the alternating sum of the ranks of the Gi and of Eul(H) (see [32, §19] for
more details).

In general, very few modules admit a finite free resolution, and hence we introduce the following
weaker version: we say that an R-module is finitely n-presented, if it admits finitely generated i-th
syzygies for i = 0, . . . ,n, or equivalently, if there exists an exact sequence as in (7), but without the
initial zero, with all Fi finitely generated free R-modules. Hence M is finitely 0-presented if and only
if it is finitely generated, and M is finitely 1-presented if and only if it is finitely presented. We will
say that an R-module has finite presentation type, if it is finitely n-presented, for all n. Although these
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definitions do not require R to be local, the next one does: we call an R-module complex (G•,d•)
minimal if the kernel of each morphism di lies inside mGi .

7.9. Lemma. Let (R,m) be a local ring with residue field k. An R-module M is finitely n-presented if and only
if there exists a minimal exact sequence

Fn → Fn−1 → ·· · → F1 → F0 → M → 0 (F•)

with each Fi a finitely generated free R-module. Moreover, if this is the case then the i-th Betti number βR
i (M)

of M, that is to say, the vector space dimension of TorR
i (M,k), is equal to the rank of Fi , for all i � n, showing

that F• is unique up to isomorphism.

Proof. One direction is immediate and the other can by induction be reduced to the case that M
is finitely 0-presented, that is to say, finitely generated. This case is then simply a reformulation
of Nakayama’s Lemma. To prove the last assertion, augment F• by adding on the left a free mod-
ule Fn+1, possibly of infinite rank, which maps onto the kernel of Fn → Fn−1. Tensoring this exact
sequence with k gives a complex in which all morphisms are zero and hence its i-th homology is
Fi ⊗ k, for i = 0, . . . ,n. Since this homology is also equal to TorR

i (M,k), we proved the second asser-
tion. �

Since a projective module over a local ring is always free [32, Theorem 2.5], a necessary and suffi-
cient condition for an R-module M to have a finite free resolution is that M has projective dimension
n < ∞ and is finitely n-presented. By the previous result, such a module then admits a unique mini-
mal finite free resolution.

7.10. Lemma. Any direct summand of an R-module with a finite free resolution has itself a finite free resolution.
Similarly, any direct summand of a finitely n-presented module is again finitely n-presented.

Proof. We prove both results simultaneously. Suppose M ⊕ N has a finite free resolution of length n
as in (7) (respectively, of the form F•). We will show by induction on n that M has a finite free
resolution (respectively, is finitely n-presented). If n = 0, that is to say, if M ⊕ N is free, then M is
projective whence free (respectively, if n = 0, that is to say, M ⊕ N is finitely generated, then so is M).
Hence assume n > 0 and choose an exact sequence

0 → K → Rm → M ⊕ N → 0 (8)

such that K admits a finite free resolution of length n − 1 (respectively is finitely n − 1-presented).
Clearly, M and N must also be finitely generated, so that we can choose exact sequences

0 → G → Ra → M → 0,

0 → H → Rb → N → 0.

Taking the direct sum of these last two exact sequences and comparing it with (8), we get from
Schanuel’s Lemma an isomorphism K ⊕ Ra ⊕ Rb ∼= G ⊕ H ⊕ Rn . Since the module at the left hand
side has a finite free resolution of length n − 1 (respectively, is finitely n − 1-presented), our induction
hypothesis yields that G has a finite free resolution (respectively, is finitely n − 1-presented), whence
so does M (respectively, whence M is finitely n-presented). �
7.11. Theorem. A local ring of finite embedding dimension is pseudo-regular if and only if its residue field
admits a finite free resolution.
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Proof. Suppose first that (R,m) is pseudo-regular of geometric dimension d. Let x be a generic se-
quence generating m. Since R has depth d, all Hi(x; R) vanish, showing that the Koszul complex K•(x)

of x is exact, yielding the desired finite free resolution of the residue field k.
Conversely, assume that k has a finite free resolution

0 → Ran → Ran−1 → ·· · → Ra1 → R → k → 0.

Let m be the embedding dimension of R (so that we may choose a1 = m). Observe that both hy-
pothesis and conclusion are invariant under taking a Nagata extension of the form R ⊆ R(ξ) (by
faithful flatness), so that at any time we may make such an extension if needed. There is nothing to
show if m = 0, so we induct on m > 0. By [32, Theorem 19.6], the depth of R must be positive. By
Lemma 7.3, we may assume after making a Nagata extension, that some minimal generator x of m

is R-regular. Put S := R/xR , so that its embedding dimension is m − 1. For each i > 1, we have an
isomorphism

TorR
i (S,k) ∼= TorR

i−1(S,m) ∼= TorS
i−1(S,m/xm) = 0

since x is R-regular, whence also m-regular. This implies that the complex

0 → San → San−1 → ·· · → Sa1

is acyclic, that is to say, is a finite free resolution of m⊗ S = m/xm. I claim that k is a direct summand
of m/xm. Assuming the claim, Lemma 7.10 then yields that k admits a finite free resolution as an
S-module. Therefore, by our induction hypothesis, S is pseudo-regular, whence has depth m − 1. It
follows from (6) that R has depth m, showing that it is pseudo-regular.

To prove the claim, choose x2, . . . , xm ∈ m so that (x, x2, . . . , xm)R = m. Let H be the R-submodule
of m/xm generated by the image of x. Hence H ∼= k and we want to show that H is a direct summand
of m/xm. Let N be the submodule generated by the images of the x2, . . . , xm in m/xm, so that m/xm =
H + N . Let a ∈ m and suppose its image in m/xm lies in H ∩ N . It follows that we can write a in two
different ways, namely as a = a1x = a2x2 + · · · + amxm + rx with ai ∈ R and r ∈ m. By Nakayama’s
Lemma, we therefore must have a1 ≡ r ≡ 0 mod m, that is to say, a ∈ xm. In other words, we showed
that H ∩ N = 0 and hence that m/xm ∼= H ⊕ N , as required. �
7.12. Remark. Under the assumptions of the theorem, k has projective dimension equal to the geo-
metric dimension of R and Eul(k) = 0 (use the Koszul complex to calculate both numbers). The Koszul
complex is minimal and therefore TorR

i (k,k) has dimension equal to
(n

i

)
for all i.

7.13. Remark. Using a similar argument, one can show that R is pseudo-Cohen–Macaulay if and only
if there exists a generic sequence x such that R/xR has a finite free resolution (which then can be
chosen to be the Koszul complex K•(x) of x). For a related result, see Proposition 8.11 below.

To not confuse with our present terminology we deviate from [7] or [19, §5] by calling a ring
Bertin–Serre regular, if every finitely generated ideal has finite projective dimension. If R is moreover
coherent, then it is known that any finitely generated ideal admits a finite free resolution. Applied to
the maximal ideal, we get immediately from Theorem 7.11:

7.14. Corollary. A coherent Bertin–Serre regular local ring of finite embedding dimension is pseudo-regular.

For the converse, we have the following:

7.15. Corollary. Let (R,m) be a pseudo-regular local ring of geometric dimension d, and let M be an R-module.
If M is finitely d + 1-presented, then M has finite projective dimension (at most d).
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Proof. By Lemma 7.9, there exists a minimal exact sequence F• with n = d + 1, and the i-th Betti
number of M is the rank of Fi . However, k has projective dimension d by Remark 7.12, and hence
βd+1(M) = 0, showing that Fd+1 = 0. �
7.16. Corollary. Let R be a pseudo-regular local ring of geometric dimension one. If R is coherent, then it is
Bertin–Serre regular.

Proof. Let I be a finitely generated ideal. Since R is coherent, it is finitely presented. Hence R/I is
finitely 2-presented, and therefore has finite projective dimension by Corollary 7.15. �

I do not know whether we need the coherence assumption here. On the other hand, we cannot
expect for the above result to hold if the geometric dimension d is strictly bigger than one, since
a coherent Bertin–Serre regular ring is Cohen–Macaulay in the sense of [21] and therefore admits a
regular sequence of length d (that is to say, in such a ring, naive depth always equals depth). To
obtain a converse, we require a stronger coherence condition:

7.17. Theorem. A local ring of finite embedding dimension is coherent and Bertin–Serre regular if and only if it
is pseudo-regular and every finitely generated ideal has finite presentation type.

Proof. If R is coherent and Bertin–Serre regular, then any finitely generated ideal has a finite free
resolution by [18], whence has in particular finite presentation type. Moreover, R is pseudo-regular
by Corollary 7.14. To prove the converse, let I be a finitely generated ideal. By assumption, I , whence
also R/I , is finitely n-presented, and therefore has finite projective dimension by Corollary 7.15 applied
with n sufficiently large. �

In [56], Soublin calls a ring R uniformly coherent8 if there exists a function α :N→N such that any
morphism Rn → R has a kernel generated by at most α(n) elements.

7.18. Theorem. Let R be a uniformly coherent local ring of finite embedding dimension. Then every finitely
generated ideal of R has finite presentation type. In particular, R is pseudo-regular if and only if it is Bertin–
Serre regular.

Proof. By [56] or [3, Corollary 2.3], the countable direct product RN is coherent. Since a finitely
generated submodule of a finitely generated free R-module embeds in RN , it is finitely presented.
Applied to the syzygies of a finitely generated ideal I , we see that I has finite presentation type. The
second assertion then follows from Theorem 7.17. �
Pseudo-Cohen–Macaulay local rings

Recall that we called R pseudo-Cohen–Macaulay, if its depth equals its geometric dimension.

7.19. Theorem. A pseudo-Cohen–Macaulay local ring is cata-Cohen–Macaulay.

Proof. Let R be a pseudo-Cohen–Macaulay local ring of geometric dimension d and let x be a generic
sequence. Since R has depth d, the grade of n := xR is d, implying that all Hi(x; R) vanish, for i > 0.
For i = 1, this yields that x is quasi-regular by [8, Ch. X, §9, Théorème 1]. Hence R is cata-Cohen–
Macaulay by Theorem 6.9. �

The converse is in general false: R can be cata-Cohen–Macaulay without being pseudo-Cohen–
Macaulay; an example is provided by the depth zero cata-regular ring in Example 6.3. On the other

8 This is quite a strong hypothesis, even for Noetherian rings, for which it forces, among other things, that the dimension is
at most two.
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hand, neither is it the case that in a pseudo-Cohen–Macaulay local ring R every R-regular element
is R̂-regular. For instance, R could be a non-separated domain, in which case any non-zero element
in the ideal of infinitesimals is R-regular, but zero in R̂ . This also gives an example of an R-regular
element which is not part of a generic subset. From the proof of [32, Theorem 16.3], it follows that
if R is separated and cata-Cohen–Macaulay, then every generic element is R-regular. In particular, we
showed that if R has geometric dimension one, then R is cata-Cohen–Macaulay if and only if Rsep is
pseudo-Cohen–Macaulay.

7.20. Example. Let R w := A/(ξ2, ξζ w)A where A := k[[ξ, ζ ]]. It follows that all R w have depth zero and
dimension one. Hence their ultraproduct R� has depth zero and ultra-dimension one. The cataprod-
uct R� is isomorphic to k�[[ξ, ζ ]]/ξ2k�[[ξ, ζ ]], where k� is the ultrapower of k. This is a one-dimensional
Cohen–Macaulay local ring. Hence R� is cata-Cohen–Macaulay and has geometric dimension one. In
conclusion, R� is isodimensional and cata-Cohen–Macaulay, but not pseudo-Cohen–Macaulay.

7.21. Corollary. A local ring of finite embedding dimension is pseudo-regular if and only if it is pseudo-Cohen–
Macaulay and has multiplicity one.

Proof. The direct implication follows from Proposition 7.7 and Corollary 6.10. Conversely, if R has
multiplicity one and is pseudo-Cohen–Macaulay, then it is cata-Cohen–Macaulay by Theorem 7.19,
whence cata-regular by Corollary 6.10, and the result now follows from Proposition 7.7. �
7.22. Corollary. Let R be a pseudo-Cohen–Macaulay local ring R of geometric dimension two. If R is either a
domain or separated, then any generic sequence is R-regular.

Proof. Let (x, y) be a generic sequence in R . If R is a domain, then x is R-regular. Let us show that
the same holds if R is separated. Since R has depth two by assumption, H2(x, y; R) = 0. This means
that whenever ax + by = 0 for some a,b ∈ R then (a,b) = r(y,−x) for some r ∈ R . In particular, if a ∈
AnnR(x), then (a,0) = r(y,−x) for some r ∈ R , showing that a ∈ y AnnR(x). In other words, AnnR(x) =
y AnnR(x) so that by induction AnnR(x) = yn AnnR(x) whence AnnR(x) ⊆ IR = 0. This concludes the
proof that x is R-regular. Using once more the above characterization of H2 = 0, we see that in either
case, y is R/xR-regular, whence (x, y) is R-regular. �

We can generalize Proposition 5.11 substantially under an additional Cohen–Macaulay assump-
tion.

7.23. Proposition. Let R be a local ring of finite embedding dimension and let M be an R-module of finite
length. If R is pseudo-Cohen–Macaulay, then TorR

i (R̂, M) vanishes for all i > 0.

Proof. Since M has finite length, its annihilator is m-primary, and hence contains a generic sequence
by Corollary 3.13. Since R → R(ξ) is faithfully flat, the vanishing of the Tor’s is unaffected by such
an extension. Hence, after some Nagata extension, we may assume, using Remark 7.4, that R admits
an R-regular, generic sequence x contained in the annihilator of M . Since R̂ is Cohen–Macaulay by
Theorem 7.19, the sequence x is also R̂-regular. By a well-known deformation property of Tor modules,
we get

TorR
i (R̂, M) ∼= TorR/xR

i (R̂/xR̂, M)

for all i > 0. Vanishing now follows since R/xR ∼= R̂/xR̂ by Lemma 2.8. �
Given a module M over a local ring R of finite embedding dimension, we define its geometric di-

mension to be the geometric dimension of R/AnnR(M), and we denote it gdim(M). Since the notions
of grade and depth also extend to modules, we may call a finitely generated R-module M pseudo-
Cohen–Macaulay, if its geometric dimension equals its depth.
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7.24. Corollary. Let R be a local ring of finite embedding dimension and let M be a finitely generated R-module.
If both R and M are pseudo-Cohen–Macaulay, then TorR

i (R̂, M) = 0, for all i > 0, and M ⊗ R̂ is a Cohen–
Macaulay module.

Proof. We induct on the geometric dimension e of M . If e = 0, then M is a finitely generated mod-
ule over the Artinian local ring R/AnnR(M), whence has finite length, and the result follows from
Proposition 7.23. So assume e > 0. As far as proving the vanishing is concerned, we may always, by
faithfully flat descent, take a Nagata extension of R . Hence, by the module analogue of Lemma 7.3
(the proof of which is left to the reader), we may assume, after possibly taking a Nagata extension,
that we can find an M-regular element x ∈ R . From the exact sequence

0 → M x−→ M −→ M/xM → 0

we get, by tensoring with R̂ , part of a long exact sequence

0 = TorR
i+1(R̂, M/xM) → TorR

i (R̂, M)
x−→ TorR

i (R̂, M) → TorR
i+1(R̂, M/xM) = 0

where the two outer modules are zero by induction. Fix i and put T := TorR
i (R̂, M). Since T = xT , we

have T = IR T . As R̂ is Noetherian, IR R̂ vanishes, whence so does IR T , since T is the homology of a
complex of modules over R̂ . This shows T = 0, completing our proof of the first assertion.

To prove that M̂ := M ⊗ R̂ is Cohen–Macaulay, we induct once more on the geometric dimension e
of M , where the case e = 0 is trivial since then M = M̂ . Once more, faithfully flat descent allows us to
take a Nagata extension if necessary, and so we may assume that there exists an element x ∈ R which
is R-regular and M-regular. Since M/xM is again pseudo-Cohen–Macaulay (as its geometric dimension
and depth have both decreased by one), TorR

1 (R̂, M/xM) = 0 by the first part. Hence tensoring the
exact sequence

0 → M x−→ M −→ M/xM → 0

yields an exact sequence

0 → M̂ x−→ M̂ −→ M̂/xM̂ → 0.

By induction, M̂/xM̂ is Cohen–Macaulay, and whence so is M̂ by the latter exact sequence. �
7.25. Example. In [40], a class of local rings was introduced which extends the class of Cohen–
Macaulay local rings. More precisely, for each d, e � 0, let CMd,e be the class of all local rings R
such that there exists an R-regular sequence of length d and such that the minimal length of a ho-
momorphic image R/xR is e, where x is an arbitrary tuple in R of length d. The latter condition
implies that R has geometric dimension at most d, and the former that its depth is at least d. It
follows that R is pseudo-Cohen–Macaulay of geometric dimension d. Let x be an arbitrary tuple of
length d. Suppose R/xR is Artinian of length l (by assumption l � e). Hence R/xR ∼= R̂/xR̂ and x is
generic in R . Moreover, x is R̂-regular, since R̂ is Cohen–Macaulay. It follows that the ideal xR̂ has
multiplicity l. If the residue field is infinite (which we can always achieve by means of a Nagata ex-
tension), then for a general choice of system of parameters y in R̂ , the ideal yR̂ is a reduction of mR̂
[32, Theorem 14.14], so that the multiplicity of yR̂ is equal to mult(R̂). By assumption, the minimal
value of the multiplicity of an ideal generated by a d-tuple from R is e. Since these form a general
subset of all d-tuples in R̂ , we showed that R̂ has multiplicity e, whence so does R by Remark 3.5. In
fact, we have the following characterization of these classes:

7.26. Theorem. A local ring R is pseudo-Cohen–Macaulay of geometric dimension d and multiplicity e if and
only if R(ξ) belongs to the class CMd,e for some (d-)tuple of indeterminates ξ .
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Proof. Since R and R(ξ) are easily seen to have the same multiplicity (by comparing their comple-
tions), one direction follows from the previous discussion. In particular, we may assume R has infinite
residue field. Suppose now that R is pseudo-Cohen–Macaulay of geometric dimension d and multi-
plicity e. By the same argument as above, we may choose a generic sequence x in R such that xR̂ is a
reduction of mR̂ , whence has multiplicity e. It follows from Lemma 2.8 that R/xR has length e and by
a similar argument that this is the least possible length. In order to construct an R-regular sequence,
we have to go to an extension R(ξ) by Lemma 7.3 and this extension is then in the class CMd,e . �

In particular, by Corollary 7.21, a local ring R is pseudo-regular if and only if R(ξ) belongs to CMd,1
for some d and some d-tuple of indeterminates ξ . Moreover, by Proposition 7.5, an ultra-Noetherian
local ring belongs to CMd,e if and only if it is pseudo-Cohen–Macaulay of geometric dimension d and
multiplicity e.

Let R be a local ring of finite embedding dimension. We say that R is pseudo-Gorenstein, if it is
pseudo-Cohen–Macaulay and there exists a generic sequence x such that R/xR is an Artinian Goren-
stein ring.

7.27. Proposition. A pseudo-Cohen–Macaulay local ring is pseudo-Gorenstein if and only if it is cata-
Gorenstein.

In fact, let (R,m) be a pseudo-Cohen–Macaulay local ring of geometric dimension d and let k be its residue
field. If R is pseudo-Gorenstein, then Exti

R(k, R) = 0, for all i �= d and Extd
R(k, R) ∼= k. Conversely, if Exti

R(k, R)

vanishes for some i > d or if Extd
R(k, R) ∼= k, then R is pseudo-Gorenstein.

Proof. Let x be a generic sequence in R . By Lemma 7.2, the extension R(ξ) is again pseudo-Cohen–
Macaulay and x is generic in R(ξ). Since

R/xR → (R/xR)(ξ) ∼= R(ξ)/xR(ξ)

is faithfully flat and unramified, the former is Gorenstein if and only if the latter is. Since the Ext-
functors commute with faithfully flat base change, we may replace R by R(ξ) everywhere and assume
by Lemma 7.3 that x is a regular sequence.

In particular, R is pseudo-Gorenstein if and only if R/xR ∼= R̂/xR̂ is Gorenstein if and only if R̂ is
Gorenstein, since x is R̂-regular. This already proves the first assertion. Since x is R-regular, we have

Exti
R(k, R) ∼= Exti−d

R/xR(k, R/xR) (9)

where we let Ext j
R(·,·) be the zero functor for negative j (see for instance [9, Lemma 3.1.16] and the

proof of (3) ⇔ (1) of [32, Theorem 16.6]). The final assertion now follows from [32, Theorem 18.1]
applied to the Artinian local ring R/xR . �

It follows that if R is pseudo-Gorenstein, then R/xR is Gorenstein for every generic sequence x.

8. Ultra-singularities

We now compare the ‘cata’ and ‘pseudo’ versions from the previous two sections with their ‘ultra’
counterparts. Throughout this section, unless mentioned explicitly, R� is an ultra-Noetherian local
ring with maximal ideal m� and residue field k� , realized as the ultraproduct of Noetherian local
rings (R w ,mw) of bounded embedding dimension and residue field kw . Recall (Lemma 5.6) that the
cataproduct R� of the R w is the separated quotient as well as the completion of R� , and it is in
particular Noetherian.

8.1. Theorem. For an ultra-Noetherian local ring R� , the following are equivalent:

8.1.1. R� is pseudo-regular;
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8.1.2. R� is ultra-regular;
8.1.3. R� is cata-regular and isodimensional.

Proof. Let R� be the ultraproduct of Noetherian local rings R w of bounded embedding dimension.
If R� is pseudo-regular, then it is isodimensional by Theorem 4.5 and therefore cata-regular by The-
orem 5.19. Moreover, by Łos’ Theorem, almost all R w are regular since embedding dimension and
depth are first-order definable. This shows that R� is ultra-regular, and the converse follows along
the same lines. Finally, if R� is cata-regular and isodimensional, then it is pseudo-regular, again by
Theorem 4.5. �

The same proof also shows that R� is ultra-regular if and only if it is not ultra-singular. In view of
Lemma 5.6, we may rephrase the theorem as follows:

8.2. Corollary. Let R w be Noetherian local rings of the same dimension and parameter degree and let R� be
their cataproduct. Then almost all R w are regular if and only if R� is.

8.3. Corollary. Any localization of an ultra-regular local ring at a finitely related prime ideal is ultra-regular.

Proof. Let R� be an ultra-regular local ring, given as the ultraproduct of d-dimensional regular local
rings R w , and let p ∈ FR-Spec(R�). By Proposition 5.1, there exist prime ideals pw ⊆ R w whose ultra-
product is equal to p. Since almost each (R w)pw is regular of dimension at most d, their ultraproduct
(R�)p is ultra-regular (of geometric dimension at most d). �

We conclude our discussion of ultra-regular rings with an ultraproduct version of Corollary 5.15.

8.4. Corollary. The canonical embedding R → R� of an excellent local ring in its ultrapower has ultra-regular
fibers at finitely related prime ideals: for every p ∈ FR-Spec(R�), the fiber ring (R�/gR�)p is ultra-regular,
where g = p∩ R.

Proof. To show that (R�/gR�)p is ultra-regular, we may replace R by R/g, since R�/gR� is the ul-
trapower of R/g, and assume without loss of generality that R is a domain and p ∩ R = (0). By
Corollary 5.3, the localization (R�)p has finite embedding dimension, and p is the ultraproduct of
prime ideals pw ∈ Spec(R). Since R is an excellent domain, its singular locus is a proper, closed sub-
set, say, defined by a non-zero ideal I ⊆ R . If almost all pw would belong to this singular locus, then
they would almost all contain I , whence so would p, contradicting that p∩ R = (0). Hence almost all
pw are in the regular locus, and the result now follows from the proof of Corollary 8.3. �
8.5. Ultra-Cohen–Macaulay local rings

Recall that R� is called ultra-Cohen–Macaulay if almost all R w are Cohen–Macaulay. We can char-
acterize this property in terms of the fundamental inequalities (1).

8.6. Theorem. For an ultra-Noetherian local ring R� , the following are equivalent:

8.6.1. R� is ultra-Cohen–Macaulay;
8.6.2. the depth of R� equals its ultra-dimension.

In particular, R� is pseudo-Cohen–Macaulay if and only if it is ultra-Cohen–Macaulay and isodimensional.

Proof. The first assertion follows immediately from the fact that depth is first-order. The second asser-
tion is now also clear, since a pseudo-Cohen–Macaulay must be isodimensional by Theorem 5.19. �
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8.7. Remark. Note that unlike in the regular case, isodimensionality together with being cata-Cohen–
Macaulay is not sufficient for being pseudo-Cohen–Macaulay, as Example 7.20 shows.

Also note that ultra-Cohen–Macaulay does not imply pseudo-Cohen–Macaulay nor even cata-
Cohen–Macaulay. Namely, let (R,m) be a non-Cohen–Macaulay local ring and let R� and R� be
the respective ultraproduct and cataproduct of the R/mn . Corollaries 5.10 and 5.15 together im-
ply that R� is not Cohen–Macaulay. Hence R� is not cata-Cohen–Macaulay, although it is clearly
ultra-Cohen–Macaulay (there is no contradiction with the above theorem, since R� is not isodimen-
sional).

8.8. Corollary. The cataproduct of Cohen–Macaulay local rings having the same dimension and the same
multiplicity, is again Cohen–Macaulay.

Proof. Let R� and R� be the respective ultraproduct and cataproduct of Noetherian local rings R w
of the same multiplicity and the same dimension. If almost all R w are Cohen–Macaulay, then R� is
isodimensional by Remark 5.25. Therefore, R� is pseudo-Cohen–Macaulay by Theorem 8.6, and hence
R� is Cohen–Macaulay by Theorem 7.19. �

Let us call an ultra-module M� , that is to say, an ultraproduct of R w -modules M w , ultra-Cohen–
Macaulay, if almost all M w are Cohen–Macaulay. Although such a module need not be finitely gener-
ated, we have:

8.9. Lemma. For each w, let M w be a finitely generated module over R w , and let M� be their ultraproduct. If
almost all R w are Cohen–Macaulay, of the same dimension and multiplicity, then M� is finitely generated and
pseudo-Cohen–Macaulay if and only if almost all M w are Cohen–Macaulay of the same multiplicity.

Proof. If almost all M w are Cohen–Macaulay of multiplicity l, then there exists, by [9, Theo-
rem 4.6.10], an R w -regular and M w -regular sequence xw such that M w/xw M w has length l. Since
each sequence can have length at most d, almost all have the same length s � d. The ultraproduct
M�/x�M� , too, has length l by Proposition 5.13, where x� is the ultraproduct of the xw . In particular,
M� is finitely generated. Moreover, x� is M�-regular, showing that M� has depth at least s. On the
other hand, since M�/x�M� has finite length, the geometric dimension of M� is at most s. This proves
that M� is pseudo-Cohen–Macaulay.

Conversely, assume M� is pseudo-Cohen–Macaulay and finitely generated. As depth is first-order,
by the (module version of) Proposition 7.5, there exists an M�-regular sequence x� such that M�/x�M�

has geometric dimension zero. As M� is finitely generated, M�/x�M� has finite length, say, l. Let-
ting xw be tuples in R w having as ultraproduct x� , the ultraproduct of the M w/xw M w is equal
to M�/x�M� , and hence almost all M w/xw M w have length l by Proposition 5.13. Moreover, almost
each xw is M w -regular, showing that M w is Cohen–Macaulay, of multiplicity at most l, by another
application of [9, Theorem 4.6.10]. �

Let us call the multiplicity type ε(R) of a Cohen–Macaulay local ring R the supremum of the multi-
plicities of its indecomposable, maximal Cohen–Macaulay modules. Hence, R has bounded multiplicity
type if and only if ε(R) < ∞.

8.10. Corollary. For some d, e ∈ N and for each w, let R w be a d-dimensional Cohen–Macaulay local ring of
multiplicity e, and let R� be their cataproduct. If, for some ε , almost all R w have multiplicity type at most ε ,
then so does R� .

Proof. Let M be an indecomposable, maximal, whence d-dimensional, Cohen–Macaulay R�-module.
Since M is finitely generated, say by m elements, there exist m-generated R w -modules M w whose
cataproduct is equal to M . Since M = M�/IR M� is Cohen–Macaulay, M� is pseudo-Cohen–Macaulay.
Since the ultraproduct M� of the M w is then also finitely generated, almost all M w are maximal
Cohen–Macaulay modules of the same multiplicity as M , by Lemma 8.9. Since ultraproducts preserve
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direct sums, almost all M w must be indecomposable, since M , whence M� , is. By assumption, there-
fore, almost all M w , whence also M , have multiplicity at most ε . �

The next result, which is some type of coherence property for ultra-Cohen–Macaulay local rings,
will be used in Section 11 to deduce some uniform bounds on Betti numbers. Recall that the i-th Betti
number βi(M) of a module over a local ring R with residue field k is the (possibly infinite) dimension
of TorR

i (M,k); for the notion of finite presentation type, see Section 7.8.

8.11. Proposition. If R� is an isodimensional, ultra-Cohen–Macaulay local ring, then every finitely generated
pseudo-Cohen–Macaulay R�-module (e.g., every R�-module of finite length) has finite presentation type. More
precisely, if for some e, almost each M w is a Cohen–Macaulay R w -module of multiplicity e, then, for each n,
almost all M w have the same n-th Betti number as their ultraproduct M� and cataproduct M� .

Proof. In view of Lemma 8.9, it suffices to prove the second assertion. We will show, by induction
on n, that

βn(M�) = βn(M�) = βn(M w)

for almost all w . The case n = 0 follows from Proposition 5.13, since M� is finitely generated by
Lemma 8.9. So assume n � 1.

Let

Fn,w → Fn−1,w → ·· · → F1,w → M w → 0

be a minimal finite free resolution of M w , with each Fi,w a finite free R w -module of rank ri,w :=
βi(M w) (see Section 7.8). Since taking ultraproducts is exact, we get a minimal resolution

Fn,� → Fn−1,� → ·· · → F1,� → M� → 0. (10)

By induction and Lemma 7.9, we get Fi,� ∼= Rri
� , for i < n, where ri is the common value of almost

all βi(M w). Theorem 8.6 implies that R� is pseudo-Cohen–Macaulay, and hence by Corollary 7.24, all

Tor
R�

i (R�, M�) vanish for i > 0. Therefore, if we tensor (10) with R� , we get again a minimal resolu-
tion

Fn,� → R
rn−1
� → ·· · → Rr1

� → M� → 0.

Since R� is Noetherian and the resolution is minimal, ri = βi(M�) for i < n, and the last module in this
resolution, Fn,� , is generated by rn := βn(M�) elements. Tensoring with the common residue field k�

of R� and R� , we get

krn
�

∼= Fn,�/m� Fn,�
∼= Fn,�/m� Fn,�.

Since the latter module is the ultraproduct of the Fn,w/mw Fn,w ∼= k
rn, w
w , where kw is the residue field

of R w , we get rn,w = rn for almost all w , as we wanted to show. �
8.12. Theorem. A pseudo-Cohen–Macaulay ultra-Noetherian local ring R� is cata-Gorenstein if and only if it
is ultra-Gorenstein; and it is a cata-‘complete intersection’ if and only if it is an ultra-‘complete intersection’.

In particular, if R w are Cohen–Macaulay local rings having the same dimension and multiplicity, then their
cataproduct R� is respectively Gorenstein or a complete intersection if and only if so are almost all R w .
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Proof. The second assertion follows from the first in view of Theorem 5.23 and Theorem 8.6. We
already observed that R� is isodimensional, so that R� and almost all R w have the same dimension, d,
say. Hence if x� is a generic sequence in R� , realized as an ultraproduct of tuples xw in R w , then
almost each xw is a system of parameters in R w , whence R w -regular. Therefore, almost all R w are
Gorenstein if and only if so are almost all R w/xw R w . This in turn is equivalent with R�/x�R� being
Gorenstein by Łos’ Theorem (using that these are Artinian local rings; see [39] for more details). Since
R�/x�R�

∼= R�/x�R� , the latter is then equivalent with R� being Gorenstein.
By Proposition 8.11, we have a minimal free resolution of R�-modules

Rr
� → Rm

� → R� → k� → 0

where r = β2(k�) = β2(kw) and m = β1(k�) = β1(kw), for almost all w . Moreover, R� has the same
dimension d as almost all R w by Theorem 8.6. By [9, Theorem 2.3.3], therefore, R� is a complete
intersection if and only if r = m(m + 2)/2 − d, if and only if almost all R w are complete intersec-
tions. �
Lefschetz hulls

In [4], we showed that every Noetherian local ring R of equal characteristic zero (that is to say,
containing the rationals) admits an ultra-Noetherian faithfully flat extension D(R) which is Lefschetz,
meaning that D(R) is the ultraproduct of Noetherian local rings R w of prime characteristic. In fact, the
R w may be chosen to be complete with algebraically closed residue field. We call D(R) a Lefschetz hull
of R . Although the construction can be made more functorial, it still depends on a choice of a cardinal
number larger than the cardinality of R . However, in case R is of finite type over an uncountable9

algebraically closed field of characteristic zero, there is a canonical choice for D(R), called the non-
standard hull of R and denoted R∞; see [43,52] for details. In view of our characterizations of pseudo-
singularities in this section, the following result is immediate from [4, Theorem 5.2]:

8.13. Theorem. A Noetherian local ring R of equal characteristic zero with Lefschetz hull D(R) is Cohen–
Macaulay (respectively, Gorenstein or regular) if and only if D(R) is pseudo-Cohen–Macaulay (respectively,
pseudo-Gorenstein or pseudo-regular).

9. Cata-normalizations

An extremely useful fact in commutative algebra is the existence of Noether normalizations: any
finitely generated algebra over a field or any complete Noetherian local domain admits a regular
subring over which it is module-finite. This result is not hard to show in equal characteristic, so that
we will adopt this additional assumption in this section to formulate an analogue for local rings of
finite embedding dimension. In the sequel, let (R,m) be an equicharacteristic local ring with residue
field k and let π : R → k denote the induced surjection.

Weak coefficient fields

A subfield κ of R is called a weak coefficient field of R if the restriction of π to κ induces an
algebraic extension π(κ) ⊆ k. If this extension is an isomorphism, then we call κ a coefficient field of R
(in the literature one also encounters the notion of a quasi-coefficient defined as a weak coefficient
field κ for which the induced extension π(κ) ⊆ k is also separable). The next result is well known,
but its proof is included for convenience.

9.1. Lemma. Let (R,m) be an equicharacteristic local ring. For any subfield κ0 of R, we can find a weak
coefficient field κ of R containing κ0 .

If, moreover, R has characteristic zero and is Henselian, then we can choose κ to be a coefficient field.

9 Strictly speaking, of cardinality equal to 2λ , for some infinite cardinal λ.



38 H. Schoutens / Journal of Algebra 386 (2013) 1–60
Proof. Let κ be maximal among all subfields of R containing κ0 (such a field exists by Zorn’s Lemma).
We need to show that the extension π(κ) ⊆ k is algebraic, where k is the residue field of R and
π : R → k the residue map. To this end, take an arbitrary element u ∈ k \ π(κ). Let a ∈ R be such that
π(a) = u. It follows that a /∈ κ . By maximality, the subring κ[a] of R generated by a must contain a
non-zero non-invertible element (lest κ(a) be a larger subfield of R). This means that P (a) ∈ m, for
some non-zero P ∈ κ[ξ ]. Hence Pπ (u) = 0 in k, where Pπ is the polynomial obtained from P by
applying π to each of its coefficients. Since Pπ is not identically zero, u is algebraic over π(κ).

To prove the last assertion, assume by way of contradiction that R has characteristic zero and is
Henselian, but that π(κ) is strictly contained in k. Take u ∈ k \ π(κ). Let p be a minimal equation
of u over π(κ) and let P ∈ κ[ξ ] be such that its image Pπ is equal to p. Since u is a single root of p,
Hensel’s Lemma yields the existence of a root a ∈ R of P with π(a) = u. However, this implies that
the field κ[ξ ]/Pκ[ξ ] embeds in R via the assignment ξ �→ a, contradicting the maximality of κ . �

A local homomorphism A → R is called cata-integral (respectively, cata-finite, cata-injective, cata-
surjective, cata-flat) if its completion Â → R̂ is integral (respectively, finite, injective, surjective, flat).
Let (R,m) be a local ring of finite embedding dimension.

Cata-normalization

A cata-normalization of R is a cata-integral local homomorphism θ : (A,p) → (R,m) such that A is
a (Noetherian) regular local ring and pR is m-primary. We say that a cata-normalization θ is Cohen, if
pR = m, and Noether if θ is injective.

9.2. Theorem. An equicharacteristic local ring of finite embedding dimension admits a cata-normalization,
which can be chosen to be either Cohen or Noether.

Proof. Let (R,m) be an equicharacteristic local ring of finite embedding dimension. By Lemma 9.1,
there exists a weak coefficient field κ of R . Choose a tuple x := (x1, . . . , xn) generating some
m-primary ideal. Let A be the localization of the polynomial ring κ[ξ ] at the ideal generated by
the indeterminates ξ = (ξ1, . . . , ξn). Let θ : A → R be the (unique) κ-algebra homomorphism which
sends ξi to xi , for each i. To show that θ is a cata-normalization, we only need to show that its
completion is integral, since the other conditions are immediate. Therefore, without loss of general-
ity, we may already assume that A and R are complete, so that both rings are now Noetherian. Let
π : R → k be the residue map and let l be a finite extension of π(κ) contained in k. Put Bl := π−1(l).
Since κ + m ⊆ Bl , one checks easily that Bl is a local ring with maximal ideal m. The local homo-
morphism A → Bl induces a finite extension of residue fields. Therefore, since A is complete and Bl
is separated, Bl is finitely generated as an A-module by [32, Theorem 8.4]. Since k is the union of
all its finite extensions l containing π(κ), so is R the union of all the Bl , showing that R is integral
over A.

It is clear that if we choose x so that it generates m, then θ is Cohen. Assume next that x is
a generic sequence. In particular, R̂ has dimension n by Theorem 3.4. Since Â is an n-dimensional
domain and Â → R̂ is integral, this map must be injective. But then so must A → R be, that is to say,
θ is Noether. �
9.3. Remark. If I is a finitely generated ideal of R , then we can always choose a cata-normalization
A → R with the additional property that there is some ideal J ⊆ A with J R = I . Simply choose x so
that it contains a set of generators of I .

9.4. Remark. From the above proof it is also clear that if R admits a coefficient field, then we can
choose the cata-normalization A → R to be cata-finite.

9.5. Theorem. An equicharacteristic local ring R of finite embedding dimension is cata-Cohen–Macaulay if
and only if there exists a cata-flat, cata-normalization A → R.
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Proof. If Â → R̂ is flat with A regular, then R̂ is Cohen–Macaulay by [32, Corollary to Theorem 23.3],
since the closed fiber has dimension zero. This proves one direction. To prove the converse implica-
tion, assume that R̂ is Cohen–Macaulay. Let A → R be any Noether cata-normalization. Since Â → R̂
is a local homomorphism of Noetherian local rings of the same dimension, with closed fiber having
dimension zero, it is flat by [32, Theorem 23.1], because Â is regular and R̂ is Cohen–Macaulay. �

From the proof it follows that any Noether cata-normalization of a cata-Cohen–Macaulay local ring
is cata-flat. We conclude this section with an instance of true Noether normalization:

9.6. Theorem. If R� is an ultraproduct of equicharacteristic complete d-dimensional Noetherian local rings,
then R� is isodimensional if and only if there exists an ultra-regular local subring S� ⊆ R� such that R� is
module-finite over it.

Proof. Let us show that the if-direction holds for any ultra-Noetherian local ring of finite embedding
dimension. Let S� ⊆ R� be a finite extension with S� ultra-regular, realized as the ultraproduct of
regular local rings S w ⊆ R w . By Proposition 5.13, if R� is generated by at most N elements over S� ,
then almost each R w is generated by at most N elements over S w . If yw is a regular system of
parameters in S w , then its image is a system of parameters in R w . Since R w/yw R w has vector space
dimension at most N over the residue field of S w , its length is at most N , showing that the R w have
bounded parameter degree. Hence, R� is isodimensional by Theorem 5.23.

Conversely, assume R� is as in the statement, so that in particular its geometric dimension is d.
By Theorem 5.23, almost all R w have parameter degree ρ , for some ρ < ∞. By [49, Corollary 3.8],
almost each R w is a module-finite extension of a regular subring S w , generated as an S w -module by
at most ρ elements. Let S� be the ultra-regular local ring given as the ultraproduct of the S w . Another
application of Proposition 5.13 yields that R� is generated by at most ρ elements over S� . �
9.7. Example. The equicharacteristic condition is necessary as the following example shows. Fix a
prime number p and an indeterminate ξ , and let Zp denote the ring of p-adic integers. Put R w :=
Zp[ξ ]/(ξ2w+1 − p2)Zp[ξ ] and let R� be the ultraproduct of the R w . Each R w is a one-dimensional
complete local Cohen–Macaulay domain with multiplicity (= parameter degree) two. Hence R� is
isodimensional (indeed, the cataproduct R�

∼= (Zp�/p2Zp�)[[ξ ]] is also one-dimensional, where Zp� is
the catapower of Zp).

Suppose there is an ultra-regular subring S� ⊆ R� such that R� is generated as an S�-module by
N elements. Hence by Łos’ Theorem, there is a regular subring S w ⊆ R w , such that R w is generated
as an S w -module by N elements, for almost all w . This, however, contradicts [49, Proposition 3.5 and
Example 3.2], where it is shown that the least number of generators for any regular subring of R w
must be equal to the length of R w/pR w (the so-called equi-parameter degree of R w ), that is to say,
must be at least 2w + 1.

By varying the prime p as well (say, by letting pw be an enumeration of all prime numbers and
replacing p by pw in the definition of R w ), we can construct a similar counterexample R� which
itself is equicharacteristic zero. This latter ring also shows the extent to which the Ax–Kochen–
Ershov theorem [5,16,17] holds. Namely, let V � be the ultraproduct of the Zpw , so that V � is in
particular ultra-regular. By Ax–Kochen–Ershov, V � is also the ultraproduct of the Fpw [[t]] where Fpw

is the pw -element field and t a single indeterminate (see the discussion in [50, Remark 2.4]). Put
R ′

w := Fpw [[t, ξ ]]/(ξ2w+1 − t2)Fpw [[t, ξ ]] and let R ′
� be their ultraproduct (so that R ′

� and R ′
w are the

equicharacteristic analogues of R� and R w ). Both R� and R ′
� contain V � as a subring in a natural way,

but neither extension is finite. However, there is a second embedding of V � into R ′
� making the latter

a finite extension. Namely, V � is also isomorphic with the subring given as the ultraproduct of the
Fpw [[ξ ]]. Under this identification, R ′

� is isomorphic to V �[t]/(t2 −α)V �[t], where α is the ultraproduct

of the ξ2w+1. In conclusion, R� and R ′
� cannot be isomorphic (note, however, that their cataproducts

are isomorphic, to F �[[t, ξ ]]/t2 F �[[t, ξ ]], where F � is the ultraproduct of the Fpw ).

9.8. Remark. Using [49, Proposition 3.5], we can use the same argument to show that if R� is an
ultraproduct of complete d-dimensional Noetherian local rings of mixed characteristic and of bounded
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equi-parameter degree, then R� admits an ultra-regular local subring S� over which it is module-finite.
Recall that the equi-parameter degree of a Noetherian local ring A of mixed characteristic p is the least
possible length of a homomorphic image A/I modulo a parameter ideal I ⊆ A containing p.

9.9. Corollary. If S� ⊆ R� is a local module-finite extension of ultra-Noetherian local rings with S� ultra-
regular, then R� is pseudo-Cohen–Macaulay if and only if it is flat over S� .

Proof. Let (S w ,nw) and R w be Noetherian local rings with ultraproduct equal to (S�,n�) and R�

respectively. By Łos’ Theorem, almost all S w ⊆ R w are finite extensions with S w regular. Suppose first
that R� is pseudo-Cohen–Macaulay, whence ultra-Cohen–Macaulay by Theorem 8.6. Hence almost
all R w are Cohen–Macaulay, whence flat over S w . To show that R� is flat over S� , it suffices by [32,

Theorem 7.8(3)] to show that Tor
S�

1 (R�, S�/I�) vanishes for all finitely generated ideals I� of S� . Choose

I w ⊆ S w whose ultraproduct equals I� . Since ultraproducts commute with homology, Tor
S�

1 (R�, S�/I�)

is the ultraproduct of the TorS w
1 (R w , S w/I w). Since the latter are zero by flatness, so is the former.

Conversely, suppose S� ⊆ R� is flat. In particular, R� isodimensional by (the proof of) Theo-

rem 9.6. By the same argument as above, the vanishing of Tor
S�

1 (R�, S�/n�) implies the vanishing

of almost all TorS w
1 (R w , S w/nw). By the local flatness criterion, this implies that almost all R w are

flat over S w , whence are Cohen–Macaulay. Hence R� is ultra-Cohen–Macaulay, and therefore pseudo-
Cohen–Macaulay by Theorem 8.6. �
10. Homological theorems

In this section, we prove for local rings of finite embedding dimension the counterparts of the ho-
mological theorems from commutative algebra, under the assumption that the completion is equichar-
acteristic. We start with an immediate corollary of the definitions:

10.1. Corollary (Monomial Theorem). Let R be a local ring of geometric dimension d and let x be a generic
sequence in R. Suppose R has either equal characteristic or otherwise is infinitely ramified (see Section 2.10). If
ν0, . . . , νs ∈Nd are multi-indices such that ν0 does not belong to the semigroup generated by ν1, . . . , νs , then
xν0 does not lie in the ideal in R generated by xν1 , . . . ,xνs .

Proof. If the contrary were true, then the same ideal membership holds in the completion R̂ . How-
ever, by Proposition 3.9, the image of x in R̂ is a system of parameters, thus violating the usual
Monomial Theorem (see for instance [23]), since R̂ is equicharacteristic. �

A special instance of the assertion (which is often already referred to as the Monomial Theorem)
is the fact that for any generic sequence (x1, . . . , xd) in R , we have

(x1 · · · xd)
t /∈ (

xt+1
1 , . . . , xt+1

d

)
R (11)

for all t . In the Noetherian setup, the latter result suffices to show the so-called Direct Summand
Theorem (see for instance [9, Lemma 9.2.2]). However, it is not clear how to derive this in the present
setup (presently, I can only get a weaker version, which I omit here).

Next we have a look at the Hochster–Roberts theorem. Although one can formulate a more general
version, we will only give the result for local homomorphisms R → S which are locally of finite type,
meaning that S is a localization of some finitely generated R-algebra. Note that the class of local rings
of finite embedding dimension is closed under such algebras: if (R,m) → (S,n) is locally of finite
type, then so is R/m → S/mS . In particular, S/mS is Noetherian, and n(S/mS) is finitely generated.
Hence if m is finitely generated, then so is n.

10.2. Theorem (Hochster–Roberts). Let R → S be a local homomorphism between local rings of finite embed-
ding dimension. Suppose R has equal characteristic or is infinitely ramified. If R → S is cyclically pure and
locally of finite type, and if S is cata-regular, then R is cata-Cohen–Macaulay.
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Proof. It suffices to show that R̂ → Ŝ is cyclically pure, for then the classical Hochster–Roberts theo-
rem shows that R̂ is Cohen–Macaulay by [27, Theorem 2.3], since Ŝ is regular and equicharacteristic.
To prove cyclical purity, we need to show that I = I Ŝ ∩ R̂ for each ideal I in R̂ . Since any ideal is
an intersection of mR̂-primary ideals, it suffices to show this for I an mR̂-primary ideal, where m is
the maximal ideal of R . By Lemma 2.8, any such ideal is extended from R , that is to say of the form
I = aR̂ with a an m-primary ideal of R . Since S/aS is locally of finite type over the Artinian local
ring R/a, it is Noetherian. Therefore, aS is closed, so that I Ŝ ∩ S = âS ∩ S = aS by Lemma 2.4. Hence,
in the composition

R̂/I ∼= R/a → S/aS → Ŝ/I Ŝ

all maps are injective, as the first is an isomorphism by Lemma 2.4 and the second is injective by
assumption. This proves that I Ŝ ∩ R̂ = I , as required. �
10.3. Remark. Combining this result with Theorems 6.9, 8.1 and 9.5, and Corollary 7.14 yields Corol-
lary 1.1 from the introduction. In the theorem, less than cyclical purity is required; it suffices that
R → S is pure-closed, in the sense that I S ∩ R = I for every closed (equivalently, every m-primary)
ideal I ⊆ R . Furthermore, we may weaken the condition that R → S is locally of finite type to requir-
ing that its closed fiber S/mS is Noetherian. In order to apply the techniques from Section 13 and
deduce an asymptotic version of the Hochster–Roberts theorem in mixed characteristic, we would
like to prove a stronger result: namely, under an additional isodimensionality assumption, may we
conclude that R is pseudo-Cohen–Macaulay?

To obtain other homological properties, we follow Hochster’s treatment [23], by generalizing the
notion of big Cohen–Macaulay modules. In fact, as in the Noetherian case, we can even put a ring
structure on the latter.

Big Cohen–Macaulay algebras

We call an R-algebra B a big Cohen–Macaulay algebra if some generic sequence of R is B-regular;
we call B a balanced big Cohen–Macaulay algebra if every generic sequence is B-regular.

10.4. Theorem. Let R be a local ring of finite embedding dimension. If R has equal characteristic or is infinitely
unramified, then it admits a balanced big Cohen–Macaulay algebra.

Proof. By the work of Hochster and Huneke [25,27] or the more canonical construction of [4, §7]
(note that the algebras in the latter paper are local), any equicharacteristic Noetherian local ring
admits a balanced big Cohen–Macaulay algebra. This applies in particular to the completion R̂ as it
is always equicharacteristic by the discussion in Section 2.10. So remains to show that any balanced
big Cohen–Macaulay R̂-algebra B is a balanced big Cohen–Macaulay R-algebra. However, this is clear
for if x is a generic sequence, then it is a system of parameters in R̂ by Proposition 3.9, whence
B-regular. �
10.5. Remark. We may drop the requirement on the characteristic when R has geometric dimension
at most three, since in that case, regardless of characteristic, R̂ admits a balanced big Cohen–Macaulay
algebra by [24]. In particular, all the homological theorems below also hold under this assumption.

10.6. Remark. In fact, we may choose balanced big Cohen–Macaulay algebras in a weakly functorial
way in the following sense. We will call a local homomorphism R → S cata-permissible, if R̂ → Ŝ is
permissible in the sense of [30, §9] or [4, §7.9]. In that case, we may choose a balanced big Cohen–
Macaulay R̂-algebra B (whence a balanced big Cohen–Macaulay R-algebra), a balanced big Cohen–
Macaulay Ŝ-algebra B ′ (whence a balanced big Cohen–Macaulay S-algebra) and a homomorphism
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B → B ′ extending R̂ → Ŝ , whence also extending R → S . Recall from the cited sources that any local
algebra is permissible over an equidimensional and universally catenary Noetherian local ring (e.g.,
a complete local domain).

10.7. Proposition. If R is pseudo-regular with residue field k and if B is a balanced big Cohen–Macaulay
R-algebra, then all TorR

i (B,k) vanish for i > 0, and I B ∩ R is equal to the closure of I for each ideal I ⊆ R.

Proof. It is not hard to verify that B ⊗R S is a balanced big Cohen–Macaulay S-algebra, for S := R(ξ)

and ξ a tuple of indeterminates. Since R → S is faithfully flat, we may pass from R to S and therefore
assume in view of Remark 7.4 that the maximal ideal of R is generated by a regular sequence x. Since
x is also B-regular and k = R/xR ,

TorR
i (B,k) ∼= TorR/xR

i (B/xB,k) = 0

for all i > 0. Therefore, for any m-primary ideal n, we get TorR/n

1 (B/nB,k) = 0 by [47, Lemma 2.1].
Since R/n is Artinian, B/nB is faithfully flat by the local flatness criterion, and hence in particular
n = nB ∩ R . The last assertion then follows since any closed ideal is the intersection of all m-primary
ideals containing it. �

Using an argument similar to the one in the proof of Corollary 7.24, one can show that under the
above assumptions, each TorR

i (B, M) vanishes, for i > 0 and M a finitely generated pseudo-Cohen–
Macaulay module: for the Artinian case, induct on the length of M , and for the general case, on the
depth of M , using that IR B = 0 by construction; details are left for the reader. Before stating the next
result, we need to introduce some terminology. We will follow the treatment in [9, §9.4] and refer to
this source for more details. Let F• be a complex

0 → Fs
ϕs−→ Fs−1

ϕs−1−−−→ · · · ϕ2−→ F1
ϕ1−→ F0 → 0

with each Fi a finitely generated free R-module. We call s the length of F• and we call the cokernel
of ϕ1 the cokernel of the complex. For each 1 � n � s, we will define the n-th Fitting ideal In(F•) of F•
as follows. Fix 1 � n � s and put

r :=
s∑

i=n

(−1)i−n rank Fi .

Let Γ be a matrix representing the morphism ϕn (by choosing bases for Fn and Fn−1) and let In(F•)
be the ideal in R generated by all r × r-minors of Γ . One shows that this is independent from the
choices made.

We say that F• is acyclic if all Hi(F•) vanish, for i > 0; if also H0(F•) vanishes (that is to say, if
the cokernel of F• is zero), then we say that F• is exact. In particular, if F• is acyclic, then it is a
finite free resolution of its cokernel. Given a finitely generated module M over a local ring (R,m) of
finite embedding dimension, we call μ ∈ M a minimal generator if it is part of a minimal system of
generators of M . By Nakayama’s Lemma, this is equivalent with μ /∈ mM .

10.8. Theorem. Let (R,m) be an equicharacteristic or an infinitely ramified local ring of finite embedding
dimension. Let F• be a finite complex of finitely generated free R-modules of length s and let M be its cokernel.
If the geometric codimension of In(F•) is at least n for each n = 1, . . . , s, then the geometric codimension of
AnnR(μ) is at most s, for any minimal generator μ of M.

Proof. Let d and e be the geometric dimension of R and R/AnnR(μ) respectively. In view of Propo-
sition 3.15, we need to show that d − e � s, and we do this by induction on e. Assume first that
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e = 0, so that AnnR(μ) is m-primary. By Theorem 10.4, there exists a balanced big Cohen–Macaulay
R-algebra B . By Proposition 3.15, we can find part of a generic sequence of length n in In(F•), which
is therefore B-regular. Hence each In(F•)B has grade at least n, and the Buchsbaum–Eisenbud Acyclic-
ity Criterion [9, Theorem 9.1.6] then yields that the complex F• ⊗R B is acyclic. Since B , whence each
module in F• ⊗R B , has depth d, and since M ⊗R B is the cokernel of F• ⊗R B , the depth of M ⊗R B is
at least d− s by [9, Proposition 9.1.2(e)]. By Nakayama’s Lemma, the image of μ in M/mM is non-zero,
which implies that μ ⊗ 1 is non-zero in M ⊗R B . Since the annihilator of μ ⊗ 1 contains AnnR(μ), it
is m-primary. It follows that M ⊗R B has depth zero, and hence that d − s � 0.

Assume now that e > 0. The threshold primes of R and AnnR(μ) are all different from m, and so
are the threshold primes of those In(F•) that are not m-primary. By prime avoidance, we may there-
fore choose x ∈m outside all these finitely many threshold primes. Put Rn := R/In(F•) and S := R/xR .
We want to apply the induction hypothesis to the complex F• ⊗R S and the image of μ in M ⊗R S .
By Corollary 3.12, the geometric dimension of S and R0 ⊗R S are d − 1 and e − 1 respectively, and the
geometric dimension of S/In(F• ⊗R S) ∼= Rn ⊗R S is at most d − n − 1 (this is trivially true if In(F•) is
m-primary and follows from Lemma 3.8 in the remaining case). Since S/AnnS (μ) is a residue ring of
R0 ⊗R S , its geometric dimension is at most e − 1, so that our induction hypothesis applies, yielding
d − 1 − (e − 1) � gcodim(AnnS(μ)) � s. �

We can now generalize the new intersection theorems due to Evans–Griffith and Peskine–Szpiro–
Roberts.

10.9. Corollary. Let (R,m) be an equicharacteristic or an infinitely ramified local ring of finite embedding
dimension. Let F• be a finite complex of finitely generated free R-modules of length s and let M be its cokernel.

10.9.1. If F• is acyclic when localized at any closed prime ideal of R different from m and there exists a non-zero
minimal generator of M whose annihilator is m-primary, then gdim(R) � s.

10.9.2. If F• is exact when localized at any closed prime ideal of R different from m and s < gdim(R), then F•
is exact.

Proof. To prove (10.9.1), assume s < d := gdim(R). We reach the desired contradiction from Theo-
rem 10.8, if we can show that R/In(F•) has geometric dimension at most d − n, for all n = 1, . . . , s.
Fix n and let I := In(F•). There is nothing to show if I is m-primary, so that we may exclude this case.
By Remark 9.3, we can choose a cata-normalization A0 → R and an ideal J ⊆ A0 such that J R = I
(note that I is finitely generated by construction). Let A be the image of A0 in R , so that A ⊆ R is
also cata-integral and cata-injective (although Noetherian, A will, in general, no longer be regular).
Since Â → R̂ is integral and injective, Â, whence also A, has dimension d. Suppose J A has height h
and let q be a minimal prime of J A of height h. By [32, Theorem 9.3], we can find a prime ideal P
in R̂ lying above q. Let p := P∩ R (which is therefore closed by Corollary 2.7). Note that since I is not
m-primary, h < d, and therefore p �= m. By assumption, (F•)p is acyclic, so that the grade of I Rp is at
least n by the Buchsbaum–Eisenbud Acyclicity Criterion [9, Theorem 9.1.6]. By [9, Proposition 9.1.2(g)],
the grade of J Aq is therefore also at least n. In particular, Aq has depth at least n, showing that
n � h. This in turn implies that A/ J A has dimension at most d − n. Since Â/ J Â → R̂/I R̂ is integral,
the dimension of the first ring is at least that of the second ring. Hence we showed that R̂/I R̂ has
dimension at most d − n. By Lemma 2.4 and Theorem 3.4, this in turn implies that R/I has geometric
dimension at most d − n, as required.

The second assertion follows from the first by a standard argument (see for instance the proof
of [9, Corollary 9.4.3]). Namely, it implies that the cokernel M of F• has finite length. The only way
that this does not contradict (10.9.1) is that M = 0 (by Nakayama’s Lemma). This in turn implies that
we can split off the last term in F• and then an inductive argument on s finishes the proof. �

We can translate these results to more familiar versions of the homological theorems.

10.10. Theorem (Superheight). Let R → S be a local homomorphism of equicharacteristic or infinitely ramified
local rings of finite embedding dimension and let M be an R-module admitting a finite free resolution F• of
length s. If M ⊗R S has finite length, then S has geometric dimension at most s.
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Proof. Let m and n be the respective maximal ideals of R and S . Let q be an ideal in S different
from n and put p := q∩ R . Since the localization of M ⊗R S at q is zero, we get

Mp/pMp ⊗k(p) Sq/pSq = 0,

where k(p) is the residue field of p. Since Sq/pSq is non-zero, Mp/pMp must be zero, and therefore
Mp = 0, by Nakayama’s Lemma. Hence (F•)p is exact whence split exact. Therefore, this remains so
after tensoring with Sq. In other words, the conditions of (10.9.2) are met for the complex F• ⊗R S
over the ring S , showing that S must have geometric dimension at most s. �
10.11. Theorem (Intersection Theorem). Let R be an equicharacteristic or an infinitely ramified local ring of
finite embedding dimension and let M, N be R-modules. If M has a finite free resolution of length s, then
gdim(N) � s + gdim(M ⊗R N).

Proof. Assume first that M ⊗R N has finite length and let S := R/AnnR(N). It follows that M ⊗R S
has finite length, so that the geometric dimension of S is at most s by Theorem 10.10. For the general
case, we induct on the geometric dimension of M ⊗ N . Using Proposition 3.9, one can find x ∈ R
such that it is part of a generic subset of both R/AnnR(N) and R/AnnR(M ⊗ N). It follows that the
geometric dimensions of N/xN and M ⊗ N/xN both have dropped by one, so that we are done by
induction. �
10.12. Theorem (Canonical Element Theorem). Let (R,m) be an equicharacteristic or an infinitely ramified
local ring of finite embedding dimension. Let F• be a free resolution of the residue field k of R and let x be a
generic sequence in R. If γ is a complex morphism from the Koszul complex K•(x) to F• , extending the nat-
ural map γ0 : K0(x) = R/xR → k, then the morphism γd : Kd(x) → Fd is non-zero, where d is the geometric
dimension of R.

Proof. Suppose γd is zero. Let B be a local balanced big Cohen–Macaulay algebra for R and let y ∈ B
be such that its image in B/xB is a non-zero socle element. Define ψ0 : R → B by sending 1 to y.
Since x is B-regular, the Koszul complex K•(x; B) := K•(x) ⊗ B is acyclic. It follows that ψ0 extends
to a morphism of complexes ψ : F• → K•(x; B). Let α := ψ ◦ γ be the composition K•(x) → K•(x; B).
In particular α0(1) = y and αd = 0. On the other hand, α0 induces by tensoring a morphism of
complexes β := 1 ⊗ α0 : K•(x) → K•(x) ⊗ B = K•(x; B). Since K•(x; B) is acyclic, α and β differ by a
homotopy σ . In particular, βd = βd − αd = σd−1 ◦ δd , where δd : Kd(x) = R → Kd−1(x) = Rd is the left
most map in the Koszul complex. Since the image of δd lies in xRd , we get y = βd(1) = σd−1 ◦ δd(1) ∈
xB , contradicting our choice of y. �

To formulate the next result, which extends a result of Eisenbud and Evans in [14], recall that
for an R-module M and an element z ∈ M , the order ideal of z is the ideal OM(z) consisting of all
images α(z) for α ∈ HomR(M, R). Moreover, if R is a domain with field of fractions K , then the rank
of M is defined as the dimension of the vector space M ⊗R K .

10.13. Theorem (Generalized Principal Ideal Theorem). Let (R,m) be an equicharacteristic or an infinitely
ramified local domain of finite embedding dimension, and let M be a finitely generated R-module. If z ∈ mM,
then the geometric codimension of OM(z) is at most the rank of M.

Proof. Let h be the geometric codimension of OM(z), let r be the rank of M , and let d be the geo-
metric dimension of R . By definition, there exists a generic sequence (x1, . . . , xd) with xi ∈OM(z), for
i = 1, . . . ,h. Replacing M by M ⊕ Rd−h and z by the element (z, xh+1, . . . , xd), so that both the rank
of M and the geometric codimension of OM(z) increase by d−h, we may assume that OM(z) contains
a generic sequence x. Let y be a finite tuple generating m. As explained in the proof of [9, Theo-
rem 9.3.2], the canonical homomorphism R/xR → R/yR induces a morphism of Koszul complexes
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α : K•(x) → K•(y). Let F• be a free resolution of the residue field R/yR of R and β : K•(y) → F• be
an induced morphism of complexes. By Theorem 10.12, applied to the composition β ◦ α, we get in
degree d a non-zero morphism βd ◦ αd , showing in particular that αd is non-zero as well. Since αd
is just the d-th exterior power of α1, the rank of α1 is at least d. On the other hand, α1 factors by
construction through HomR(M, R), whence has rank at most r, yielding the desired inequality d � r
(see [9, Theorem 9.3.2] for more details). �
11. Uniform bounds on Betti numbers

In the next two sections, we apply the previous theory to derive uniformity results for Noethe-
rian local rings. In this section, we study Betti numbers. Recall that given a module M over a local
ring R with residue field k, its n-th Betti number βn(M) is defined as the vector space dimension of
TorR

n (M,k) ∼= Extn
R(M,k). It is equal to the rank of the n-th module in a minimal free resolution of M

(provided such a resolution exists), and by Nakayama’s Lemma, it is then also equal to the least num-
ber of generators of an n-th syzygy of M . One usually studies the behavior of these Betti numbers for
a fixed module as n goes to infinity. In contrast, we will study their behavior for fixed n as we vary
the module.

11.1. Theorem. For each quadruple (d, e, l,n) of non-negative integers, there exists a bound �(d, e, l,n) with
the following property. If R is a d-dimensional local Cohen–Macaulay ring of multiplicity e, and M is a Cohen–
Macaulay R-module of multiplicity at most l, then

βn(M) � �(d, e, l,n).

Proof. Suppose not, so that for some quadruple (d, e, l,n), we cannot define such an upper bound.
This means that for every w , we can find a d-dimensional Cohen–Macaulay local ring R w of multi-
plicity e, and a Cohen–Macaulay R w -module M w of multiplicity at most l, such that βn(M w) � w .
By Theorem 5.23, the ultraproduct R� is isodimensional, and by Lemma 8.9, the ultraproduct M� is
finitely generated and pseudo-Cohen–Macaulay. Since the cataproduct M� is therefore finitely gener-
ated over the (Noetherian) cataproduct R� , its n-th Betti number βn(M�) is finite, and by Proposi-
tion 8.11, equal to almost all βn(M w), a contradiction. �

Theorem 11.1 applied to the residue field of R yields Corollary 1.2 from the introduction. We can
also reformulate the previous theorem in terms of universal resolutions:

11.2. Corollary. For each triple (d, e, l), there exists a countably generated Z-algebra Z and a complex F•
of finite free Z -modules, with the following property. If R is a d-dimensional local Cohen–Macaulay ring of
multiplicity e, and M a finitely generated Cohen–Macaulay module of multiplicity at most l, then there exists
a homomorphism Z → R, such that for any n and any R-module N, we have

TorR
n (M, N) ∼= Hn(F• ⊗Z N) and Extn

R(M, N) ∼= Hn(HomZ (F•, N)
)
.

If we impose furthermore that R is regular (whence e = 1) or, more generally, that M has finite projective
dimension, then we may take Z to be a finitely generated Z-algebra and F• a complex of length d.

Proof. For each n, let δn := �(d, e, l,n) be the bound given by Theorem 11.1, and let Ξn be a tuple of
indeterminates viewed as a δn−1 × δn-matrix. Let Z be the polynomial ring over Z generated by all
indeterminates Ξn modulo the relations Ξn ·Ξn+1 = 0, expressing that the product of two consecutive
matrices is zero. We then define the complex F• by letting its n-th term be Z δn , and its n-th differ-
ential the matrix Ξn . By construction, F• is a free complex. Now, given R and M as in the statement,
Theorem 11.1 implies that we may assign to each entry in Ξn , a value in R so that under the induced
map Z → R , the complex F• ⊗Z R becomes a free resolution of M . The statement now follows from
the definition of Tor and Ext. �



46 H. Schoutens / Journal of Algebra 386 (2013) 1–60
The n-th Bass number μn(M) of a finitely generated R-module M is the vector space dimension of
Extn

R(k, M), where k is the residue field of R . The q-th Bass number, with q equal to the depth of M ,
is also called the type of M .

11.3. Corollary. The type (respectively, for each n, the n-th Bass number) of a finitely generated module M over
a local Cohen–Macaulay ring R is bounded above by a function (in n) depending only on the dimension and
multiplicity of R, and on the minimal number of generators of M.

Proof. Since the depth of M is at most the dimension of R , it suffices to prove the claim for a
fixed n. By Corollary 11.2, there is a resolution F• of k by finite free R-modules Fn whose ranks βn(k)

are bounded by the dimension and multiplicity of R . Since Extn
R(k, M) is the n-th cohomology of

HomR(F•, M), its length μn(M) is at most the number of generators of HomR(Fn, M) ∼= Mβn(k) , and
the claim follows. �

Let us extend some definitions from [54]. We will call a homomorphism R → S of Noetherian
local rings formally étale (or a scalar extension), if it is faithfully flat and unramified (= the maximal
ideal of R extends to the maximal ideal of S). Let (R,m) and (S,n) be Noetherian local rings, and let
M be a finitely generated R-module and N a finitely generated S-module. We define the jet distance
between M and N as the real number

d(M, N) := e−α

where α is the (possibly infinite) supremum of all j such that there exists an Artinian local ring T ,
together with formally étale extensions R/m j → T and S/n j → T , yielding M ⊗R T ∼= N ⊗S T . As
shown in [54] (where the distance is only defined between rings), the jet distance is a (quasi-)metric,
and, roughly speaking, up to a formally étale base change, limits in this metric space can be calculated
by means of cataproducts.

11.4. Theorem. For each quadruple of positive integers (d, e, l,n), there exists a bound ε := ε(d, e, l,n) > 0
such that if R and S are d-dimensional local Cohen–Macaulay rings of multiplicity e, and M and N are finitely
generated Cohen–Macaulay modules of multiplicity at most l over R and S respectively, with d(M, N) � ε,
then βn(N) = βn(M).

Proof. Suppose no such bound exists for the pair (d, e, l,n), resulting in a counterexample for each w ,
given by d-dimensional Cohen–Macaulay local rings (R w ,mw) and (S w ,nw) of multiplicity e, and
finitely generated Cohen–Macaulay modules M w and N w of multiplicity at most e over R w and S w

respectively, such that d(M w , N w) � e−w , but βn(M w) �= βn(N w). Since Betti numbers are preserved
under formally étale extensions, the techniques in [54] allow us to reduce to the case that the distance
condition means that

R w/mw
w

∼= S w/nw
w and M w/mw

w M w ∼= N w/nw
w N w . (12)

Let M� and N� be the respective ultraproducts of the R w , S w , M w , and N w . By Corollary 8.8, the re-
spective ultraproducts R� and S� are pseudo-Cohen–Macaulay local rings, and by Lemma 8.9, the
respective ultraproducts M� and N� are finitely generated pseudo-Cohen–Macaulay modules over
R� and S� respectively. Moreover, by taking ultraproducts and modding out infinitesimals, we get
from (12) that the respective cataproducts R� and S� are isomorphic, as are the respective cataprod-
ucts M� and N� . By Proposition 8.11, we therefore get for almost all w , the following contradictory
equalities

βn(M w) = βn(M�) = βn(N�) = βn(N w). �
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11.5. Corollary. Given a local Cohen–Macaulay ring R, there exists, for each n ∈ N, a bound δ := δ(n) > 0
such that if M and N are maximal Cohen–Macaulay modules with d(M, N) � δ, then βn(N) = βn(M).

Proof. If d(M, N) < 1, then M and N have the same minimal number of generators m. In view of
Theorem 11.4, it suffices to show that the multiplicity of M and N is uniformly bounded in terms
of m. Let ẽ and q̃ be respectively the maximum multiplicity of R/p and the maximal length of Rp,
where p runs over the finitely many d-dimensional prime ideals of R . Since we have a surjective map
Rm → M , tensoring with one of these d-dimensional prime ideals p shows that the length of Mp is
at most mq̃. The bound on the multiplicity now follows from [9, Corollary 4.6.8]. �
11.6. Theorem. If an equicharacteristic Cohen–Macaulay local ring with uncountable algebraically closed
residue field has bounded multiplicity type (respectively, finite representation type), then so does its comple-
tion.

In particular, to establish the Brauer–Thrall conjecture for an equicharacteristic Cohen–Macaulay local ring
with uncountable algebraically closed residue field, it suffices to prove it for its completion.

Proof. Let k be the residue field of R , and let R̂ and R� be the respective completion and catapower
(with respect to a countable index set) of R . By Corollary 8.10, in either case does R� have bounded
multiplicity type. By Corollary 5.16, the cataproduct R� is obtained by taking the completion of the
base change R̂ ⊗k k� , where k� is the ultrapower of k. Since k is algebraically closed and uncount-
able, k�

∼= k: indeed, since we take an ultraproduct over a countable index set, k� has the same
cardinality as k, and the isomorphism now follows from Steinitz’s Theorem (see, for instance, [53,
Theorem 2.4.7]). In particular, the base change M ⊗R̂ R� of any indecomposable maximal Cohen–
Macaulay R̂-module M remains an indecomposable maximal Cohen–Macaulay R�-module. Since the
multiplicity of M ⊗R̂ R� is at most ε(R�), so is the multiplicity of M by faithfully flat descent, proving
already that R̂ has bounded multiplicity type. Assume that R has in fact finite representation type. As
in the proof of Corollary 8.10, we can find indecomposable maximal Cohen–Macaulay R-modules M w
with cataproduct equal to M ⊗R̂ R� . Since by assumption there are only finitely many indecomposable
maximal Cohen–Macaulay R-modules, almost all M w are equal to one of these, say N , and M ⊗R̂ R�

is just the catapower of N , that is to say, equal to N ⊗R R� . By faithfully flat descent, M = N ⊗R R̂ .
Note that we in fact proved that for a Cohen–Macaulay local ring of finite presentation type, any inde-
composable maximal Cohen–Macaulay R̂-module is obtained by base change from an indecomposable
maximal Cohen–Macaulay R-module.

To prove the last assertion, assume that R has finite multiplicity type ε(R). By what we just
proved, R̂ too has finite multiplicity type. If the Brauer–Thrall conjecture holds for R̂ , then it has finite
representation type. Let N1, . . . , Ns be all its indecomposable maximal Cohen–Macaulay modules. Let
M be an indecomposable maximal Cohen–Macaulay R-module. Since M̂ = M ⊗ R̂ is then a maximal
Cohen–Macaulay R̂-module, as are all of its direct summands, it is of the form

M̂ ∼= Ne1
1 ⊕ · · · ⊕ Nes

s . (13)

Since M , whence also M̂ , has multiplicity at most ε(R), each ei is at most ε(R). Hence there are
only finitely many possible decompositions (13), proving that there are then also only finitely many
possibilities for M . �
Proofs of Corollaries 1.4, 1.5 and 1.6

Assume that no such bound as claimed in Corollary 1.4 exists, so that we can find d-dimensional
Cohen–Macaulay local rings R w of multiplicity e, all of whose indecomposable maximal Cohen–
Macaulay modules have multiplicity at most ε , but there are at least w many. Let R� be their
cataproduct, which therefore is a d-dimensional Cohen–Macaulay local ring of multiplicity e and mul-
tiplicity type at most ε . By assumption, it has only finitely many indecomposable, maximal Cohen–
Macaulay modules. However, by choosing for each w some indecomposable maximal Cohen–Macaulay
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R w -module, and taking their cataproduct, we get an indecomposable maximal Cohen–Macaulay mod-
ule by Corollary 7.24, and we get infinitely many non-isomorphic ones in this fashion, a contradiction.

The second corollary follows immediately from the definitions and Theorem 11.1. To prove the
third, let e be the multiplicity of R/I . Since I = xR for some regular element x ∈ R , the residue
ring R/I is Cohen–Macaulay and has projective dimension one. Hence β1(R/I) = 1 and β2(R/I) = 0.
Choose some ε > 0 as given by Theorem 11.4 such that d(R/I, M) � ε implies that R/I and M have
the same zero-th, first and second Betti number, for M a Cohen–Macaulay module of multiplicity
at most e. Note that from β0(M) = β0(R/I) = 1 it follows that M is of the form R/ J , so that in
the statement, we did not even need to assume that M was cyclic. Choose a such that e−a � ε. In
particular, d(R/I, R/ J ) � ε, and therefore β1(R/ J ) = 1, yielding that J is cyclic, and β2(R/ J ) = 0,
yielding that it is invertible. �

In terms of the Poincaré series of a module M , defined as

P R(M; t) :=
∑

n

βn(M)tn,

our results yield:

11.7. Corollary. Over a fixed local Cohen–Macaulay ring, the Poincaré series is a continuous map from the
metric space of Cohen–Macaulay modules of multiplicity at most e (respectively, from the space of all maximal
Cohen–Macaulay modules), to Z[[t]] with its t-adic topology.

Proof. For each n, we can choose by Theorem 11.4 (respectively, by Corollary 11.5), an ε > 0 such that
d(M, N) � ε implies that the first n Betti numbers of M and N are the same, for M and N Cohen–
Macaulay modules of multiplicity at most e (respectively, maximal Cohen–Macaulay modules). Hence
P R(M; t) ≡ P R(N; t) mod tnZ[[t]]. �

Although we did not formulate it here, we may even extend this result by also varying the base
ring over all local Cohen–Macaulay rings of a fixed dimension and multiplicity; see [54, §8]. Applied
to a regular local ring, we immediately get:

11.8. Corollary. Let R be a regular local ring. For each e, there exists δ := δ(e) > 0 such that if M and N are
Cohen–Macaulay modules of multiplicity at most e and d(M, N) � δ, then P R(M; t) = P R(N; t).

12. Uniform arithmetic

In this section, we prove several uniform bounds, and show that the existence of such bounds is
often equivalent with a certain ring-theoretic property. We start with examining the domain property.
It is not true in general that the catapower of a domain is again a domain: let R be the local ring
at the origin of the plane curve over a field k given by f := ξ2 − ζ 2 − ζ 3. The catapower of R is
k�[[ξ, ζ ]]/ f k�[[ξ, ζ ]], where k� is the ultrapower of k, and this is not a domain (since 1 + ζ has a
square root in k�[[ξ, ζ ]]). Clearly, the problem is that R is not analytically irreducible, that is to say, not
a cata-domain.

Before we give a necessary and sufficient condition for a catapower to be a domain, let us
introduce some terminology which makes for a smoother presentation of our results. Put N̄ :=
N ∪ {∞}. By an n-ary numerical function, we mean a map from f : N̄n → N̄, with the property that
f (s1, . . . , sn) = ∞ if and only if one of the entries si is equal to ∞. Moreover, we will always as-
sume that a numerical function f is non-decreasing in any of its arguments, that is to say, if si � ti
for i = 1, . . . ,n, then f (s1, . . . , sn) � f (t1, . . . , tn). To indicate that a numerical function depends on a
ring R , we will write the ring as a subscript.

Recall that R has bounded multiplication if there exists a binary numerical function μR (called a
uniformity function) such that
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ord(xy) � μR
(
ord(x),ord(y)

)

for all x, y ∈ R (see Section 2.1 for the definition of order). In view of our definition of numerical
function, the ideal of infinitesimals in a local ring with bounded multiplication is a prime ideal, and
hence the separated quotient is a domain.

12.1. Theorem. Let (R,m) be a Noetherian local ring. The following are equivalent:

12.1.1. R is analytically irreducible;
12.1.2. R has bounded multiplication;
12.1.3. some (equivalently, any) catapower R� of R is a domain.

Proof. The implication (12.1.2) ⇒ (12.1.1) is clear from the above discussion, since having bounded
multiplication is easily seen to be preserved under completions. In order to prove (12.1.1) ⇒ (12.1.3),
assume R is analytically irreducible and let R� be its catapower. Since R̂ has the same catapower
by Corollary 5.8, we may moreover assume that R is a complete Noetherian local ring. If R is nor-
mal, then so is R� by Corollary 5.15, and hence again a domain. For the general case, let S be the
normalization of R , so that R ⊆ S is a finite extension. Since R is complete, S is again local. By Propo-
sition 5.17, we get an extension R� ⊆ S� . Since we argued that S� is a domain, the same therefore is
true for R� .

Remains to show (12.1.3) ⇒ (12.1.2). By way of contradiction, suppose no bound exists for the
pair (a,b). In other words, we can find xn, yn ∈ R such that ord(xn) = a, ord(yn) = b and xn yn ∈ mn .
Letting x� and y� be their respective ultraproducts, we get ord(x�) = a, ord(y�) = b and x� y� ∈ IR�

.
Since IR�

is by assumption prime, x� or y� lies in IR�
, neither of which is possible. �

12.2. Remark. The equivalence of (12.1.1) and (12.1.2) is well known and is usually proven by a val-
uation argument. By [57, Theorem 3.4] and [29, Proposition 2.2] these conditions are also equivalent
with the existence of a linear uniformity function: μR(a,b) := kR max{a,b}, for some k := kR ∈ N, in
which case we say that R has k-bounded multiplication. For a further result along these lines, see [35,
Proposition 5.6].

By the same argument proving implication (12.1.3) ⇒ (12.1.2), we get:

12.3. Corollary. Let Rn be Noetherian local rings of bounded embedding dimension. If (almost) all Rn have
bounded multiplication with respect to the same uniformity function μ = μRn , then so do their ultraproduct R�

and cataproduct R� . In particular, R� is a domain.

Note that the converse is not true. For instance, if R is a complete Noetherian local domain, then
the cataproduct of the R/mn is a domain by Corollaries 5.10 and 12.3. If instead of order, we use
degree (see Section 3.16 for the definition), we get the following analogue of bounded multiplica-
tion, this time in terms of a bound whose dependence on the ring is only through its embedding
dimension.

12.4. Theorem. There exists a ternary numerical function ω with the following property. For every Noetherian
local ring R and any two elements x, y ∈ R, we have an inequality

deg(xy) � ω
(
embdim(R),deg(x),deg(y)

)
.

Proof. Towards a contradiction, suppose such a function cannot be defined on the triple (m,a,b).
This means that for each n, we can find a Noetherian local ring Rn of embedding dimension m and
elements xn, yn ∈ Rn such that deg(xn) = a, deg(yn) = b and deg(xn yn) � n. Let R� , x� and y� be the
respective ultraproduct of the Rn , the xn and the yn . Let d be the ultra-dimension of R� , so that



50 H. Schoutens / Journal of Algebra 386 (2013) 1–60
almost all Rn have dimension d. By Corollary 3.17, almost each Rn has parameter degree at most a
and hence R� is isodimensional by Theorem 5.23. Hence x� and y� are both generic by Corollary 5.26,
and hence so is their product x� y� by Corollary 3.12. However, this contradicts Corollary 5.26 as the
xn yn have unbounded degree. �

If R has dimension one, a much simpler bound, independent from the embedding dimension,
already exists:

deg(xy) � deg(x) + deg(y) (14)

for all x, y ∈ R . Indeed, this is immediate from the exact sequence

R/xR
y−→ R/xyR → R/yR → 0

where the first map is induced by multiplication by y. In fact, if R is Cohen–Macaulay, then the first
map is injective and we even have equality in (14). I do not know whether (14) is also true in higher
dimensions.

12.5. Order versus degree

We next investigate the relationship between order and degree. If R is Cohen–Macaulay and x is
R-regular, then the degree of R is just the multiplicity of R/xR . By [32, Theorem 14.9], we get
ord(x) � deg(x)/mult(R). In particular, ord(x) � deg(x), and this latter inequality could very well
always be true (see also Section 12.19 below). At any rate, we have:

12.6. Corollary. There exists a binary numerical function π with the following property. For every Noetherian
local ring R and every element x ∈ R, we have an inequality

ord(x) � π
(
embdim(R),deg(x)

)
.

Proof. Suppose for some pair (m,a), we have for each n, a counterexample xn ∈mn
n of degree a in the

Noetherian local ring (Rn,mn) of embedding dimension m. Let x� ∈ R� be the ultraproduct so that by
Theorem 5.23, the degree of x� is a, yet x� ∈ IR�

, contradicting Corollary 3.17. �
Applying Corollary 12.6 to a product and then using Theorem 12.4, we get the existence of a

ternary numerical function η such that for any Noetherian local ring R and elements x, y ∈ R , we
have

ord(xy) � η
(
embdim(R),deg(x),deg(y)

)
. (15)

For Noetherian local rings that are analytically irreducible, order and degree are mutually bounded,
and in fact, we have the following more precise result:

12.7. Theorem. There exists a quaternary numerical function ζ with the following property. For every
d-dimensional Noetherian local domain (R,m) of parameter degree at most e and k-bounded multiplication,
and for every x ∈ R, we have an inequality

deg(x) � ζ
(
d, e,k,ord(x)

)
.
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Proof. It suffices to show that there exists a function β such that if ord(x) < a for some x ∈ R and
some a ∈ N, then deg(x) < β(d, e,k,a). Suppose no such bound exists for the quadruple (d, e,k,a).
Hence, for each n, we can find a d-dimensional Noetherian local domain (Rn,mn) of parameter de-
gree at most e and k-bounded multiplication, and an element xn /∈ ma

n whose degree is at least n.
Let (R�,m�) and x� be the respective ultraproduct of the (Rn,mn) and the xn . By Theorem 5.23, the
geometric dimension of R� is d. Since the R w/xw R w have dimension d − 1, but unbounded parameter
degree, the same theorem shows that the geometric dimension of R�/x�R� is strictly bigger than its
ultra-dimension d − 1, whence is also equal to d. In particular, x� is not generic. Since the cataprod-
uct R� is a domain by Corollary 12.3, we get x� ∈ IR�

by Corollary 3.12. However, by Łos’ Theorem,
x� /∈ ma

� , a contradiction. �
Whereas order is a filtering function (see Section 2), inducing the m-adic filtration on R , this is no

longer true for degree. For instance, let R be the local ring at the origin of the curve with equation
ξζ + ξ3 + ζ 3 = 0. Then both ξ and ζ have degree three, but their sum ξ + ζ has degree two. As
we will see below in Section 12.19, on regular local rings, degree is filtering. Can one characterize
in general rings for which degree is filtering? Is, for every n, the set of elements having degree at
least n always a finite union of ideals? In other words, as far as its properties are concerned, degree
is still a mysterious function. However, its main use in this paper is to characterize properties via its
asymptotic behavior, as we will now discuss.

12.8. Characterizations through uniform behavior

Recall that a Noetherian local ring is analytically unramified if its completion is reduced. Any re-
duced excellent local ring is analytically unramified [32, Theorem 32.2].

12.9. Corollary. A Noetherian local ring R is analytically unramified if and only if there exists a numerical
function νR , such that for every x ∈ R, we have an inequality

ord
(
x2) � νR

(
ord(x)

)
.

Proof. Since order remains unaffected by completion, we may assume that R is moreover complete.
Suppose R is reduced. It suffices to show that there exists a function νR such that x2 ∈mνR (b) implies
x ∈ mb . By way of contradiction, suppose this is false for b. Hence, we can find xn ∈ R such that
x2

n ∈ mn , but xn /∈ mb . Let R� be the ultrapower of R and let x� be the ultraproduct of the xn . By Łos’
Theorem, x2

� ∈ IR�
and x� /∈ mb R� . However, IR�

is radical by Corollary 5.15. Hence x2
� ∈ IR�

implies
x� ∈ IR�

, a contradiction.
Conversely, let the function νR be as asserted. If x2 is zero, then its order is infinite. The only way

that this can be bounded by νR(ord(x)), is for x to have infinite order too, meaning that x = 0. This
shows that R is reduced. �

By a similar argument, one easily shows that if all Rn have bounded squares (in the sense of
the corollary) with respect to the same function ν = νRn , then their cataproduct is reduced. If R is
analytically irreducible, then the results of Hübl and Swanson (see Remark 12.2) imply that we may
take νR(b) of the form kRb for some kR and all b. I do not know whether this is still true in general.
Similarly, for the bounds we are about to prove, is their still some vestige of linearity?

12.10. Corollary. A Noetherian local ring R is analytically irreducible if and only if there exists a numerical
function ξR such that for every x ∈ R, we have an inequality

deg(x) � ξR
(
ord(x)

)
.

Proof. In view of Remark 12.2, the direct implication follows from an application of Theorem 12.7. As
for the converse, suppose degree is bounded in terms of order. Since both order and degree remain
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the same after passing to the completion, we may moreover assume R is complete. Since a non-zero
element has finite order, it has finite degree whence is generic. This shows that there are no non-zero
prime ideals of maximal dimension, which in turn forces the zero ideal to be a prime ideal. �

Tweaking (15) slightly (for a fixed ring R), we can characterize the following property. Recall that
a Noetherian local ring R is called unmixed, if each associated prime p of its completion R̂ has the
same dimension as R; if the above is only true for minimal primes of R̂ , then we say that R is
quasi-unmixed (also called formally equidimensional).

12.11. Lemma. If a Noetherian local ring is (quasi-)unmixed, then so is its catapower.

Proof. By Corollary 5.8, we may assume R is a complete (quasi-)unmixed Noetherian local ring. Let us
first show that the catapower R� is quasi-unmixed. In any case, R and R� have the same dimension,
say d. Since R� is complete by Lemma 5.6, we need to show that every minimal prime q ⊆ R� has
dimension d. Since R is complete, it is of the form S/I for some complete regular local ring S and
some ideal I ⊆ S . By Corollary 5.15, the catapower S� of S is regular, whence a domain. Let p := q∩ R
and P := p∩ S . By flatness, p is a minimal prime of R by [32, Theorem 15.1], whence has dimension d,
as R is equidimensional.

Since S → S� is flat, S�/PS� is equidimensional by [32, Theorem 31.5]. Since S�/I S�
∼= R� , we get

S�/PS�
∼= R�/pR� . Since q is necessarily a minimal prime of pR� , equidimensionality yields that R�/q

and R�/pR� have the same dimension. Since R�/pR� is the catapower of R/p, this dimension is just d,
showing that q is a d-dimensional prime.

Assume next that R is unmixed. Since R has no embedded primes, it satisfies Serre’s condi-
tion (S1), whence so does R� by Corollary 5.15 and [32, Theorem 23.9]. Since we already know that
R� is quasi-unmixed, it is in fact unmixed. �
12.12. Theorem. A Noetherian local ring R is unmixed if and only if there is a binary numerical function χR
such that for every x, y ∈ R, we have an inequality

ord(xy) � χR
(
deg(x),ord(y)

)
. (16)

Proof. Assume first that R is unmixed. Since degree and order remain the same when we pass to
the completion, we may assume R is complete. By Lemma 12.11, the catapower R� is then also un-
mixed. By way of contradiction, assume that for some pair (a,b), we can find elements xn, yn ∈ R
with deg(xn) � a and ord(yn) � b, such that xn yn ∈ mn . Hence, in the ultrapower R� of R , the ultra-
product x� of the xn has degree at most a and the ultraproduct y� of the yn has order at most b,
but x� y� ∈ IR�

. Since x� has finite degree, it is generic and hence its image in R� lies outside any
prime of maximal dimension. Since R� is unmixed, x� is therefore R�-regular and hence y� = 0 in R� ,
contradicting that its order is at most b.

Conversely, assume a function χ with the proscribed properties exists and let x be a generic
element, say, of degree a. We have to show that x is R-regular. If not, then xy = 0 for some non-
zero y, say, of order b. However, the order of xy is bounded by χ(a,b), a contradiction. �

By the same argument, one easily proves that the cataproduct of Noetherian local rings Rn of
bounded embedding dimension is unmixed, provided almost each Rn satisfies the hypothesis of the
statement with respect to the same uniformity function χ = χRn . In order to characterize quasi-
unmixedness, we have to introduce one more invariant. Given a Noetherian local ring R , we define its
nilpotency degree to be the least t such that nt = 0, where n is the nilradical of R . Hence R is reduced
if and only if its nilpotency degree is one.

12.13. Proposition. A Noetherian local ring R of nilpotency degree at most t is quasi-unmixed if and only if
there exists a binary numerical function θR such that for every x, y ∈ R, we have an inequality

ord
(
(xy)t) � θR

(
deg(x),ord

(
yt)).
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Proof. Again, we may pass to the completion of R , since all invariants remain unchanged under com-
pletion, and assume from the start that R is complete. Suppose that θR has the above property. To
show that R is quasi-unmixed, which in the complete case is just being equidimensional, we need to
show that any generic element x lies outside any minimal prime of R . A moment’s reflection shows
that this is equivalent with showing that x is Rred-regular. Hence, towards a contradiction, assume
y ∈ R is a non-nilpotent element in R such that xy is nilpotent. By definition of t , this means yt �= 0,
but (xy)t = 0. However, the order of (xy)t is bounded by the finite number θR(deg(x),ord(yt)), a con-
tradiction.

Conversely, assume R is equidimensional, but no function θR can be defined for some pair (a,b).
Hence we can find counterexamples xn ∈ R of degree a and yn ∈ R such that yt

n /∈ mb+1, but
(xn yn)t ∈ mn . Let x� , y� and R� be the respective ultraproducts, so that x� is generic by Corollary 5.26,
and yt

� /∈ mb+1 R� , but (x� y�)
t ∈ IR�

by Łos’ Theorem. However, by Lemma 12.11, the cataproduct R�

is again equidimensional (note that R� is complete), and therefore, x� , being generic in R� , is (R�)red-
regular. Hence (x� y�)

t = 0 in R� yields that y� is nilpotent in R� . Let n be the nilradical of R . Since
R�/nR� is the catapower of Rred = R/n by Corollary 5.7, it is reduced by Corollary 5.15. This proves
that the nilradical of R� is just nR� and hence in particular, R� has nilpotency degree t too. Therefore,
yt

� = 0, contradicting that yt
� /∈ mb+1 R� . �

12.14. Theorem. A d-dimensional Noetherian local ring R is Cohen–Macaulay if and only if there exists a
binary numerical function δR such that for all d-tuples x := (x1, . . . , xd) and (y1, . . . , yd) with x a system of
parameters, we have an inequality

ordR(x1 y1 + · · · + xd yd) � δR
(
�(R/xR),ordR/(x1,...,xd−1)R(yd)

)
. (17)

Moreover, the function δR only depends on the dimension and the multiplicity of R.

Proof. Assume first a function δR with the asserted properties exists. In order to prove that R is
Cohen–Macaulay, we take a system of parameters (z1, . . . , zd) and show that it is R-regular. Fix some i
and suppose a1z1 + · · · + ai zi = 0. We need to show that ai ∈ I := (z1, . . . , zi−1)R . Fix some k and
define x j and y j as follows. If j = 1, . . . ,d − i, then x j := zk

i+ j and y j := 0; if j = d − i + 1, . . . ,d, then
x j := zi+ j−d and y j := ai+ j−d . In other words, we have

x := (x1, . . . , xd) = (
zk

i+1, . . . , zk
d, z1, . . . , zi

)
,

y := (y1, . . . , yd) = (0, . . . ,0,a1, . . . ,ai),

x1 y1 + · · · + xd yd = a1z1 + · · · + ai zi = 0. (18)

Apply (17) to these two tuples x and y. Since x is again a system of parameters, �(R/xR) is finite.
Hence, by the last equation in (18), the order of yd = ai in R/(x1, . . . , xd−1)R must be infinite, that is
to say,

ai ∈ (x1, . . . , xd−1)R = I + (
zk

i+1, . . . , zk
d

)
R.

Since this holds for all k, Krull’s Intersection Theorem yields ai ∈ I .
To prove the converse, suppose R is Cohen–Macaulay, but δR(a,b) is undefined for some pair (a,b).

This means that there exists for each n, a system of parameters xn := (x1n, . . . , xdn) such that R/xn R
has length a, and a d-tuple yn := (y1n, . . . , ydn), such that

ordR/(x1n,...,xd−1,n)R(ydn) = b
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and x1n y1n + · · · + xdn ydn has order at least n. Let x� := (x1�, . . . , xd�) and yi� be the respective
ultraproducts of the xn and yin inside the ultrapower R� of R . By Łos’ Theorem, the order of yd� in
R�/(x1�, . . . , xd−1�)R� is b, the length of R�/x�R� is a, and the sum x1� y1� +· · ·+ xd� yd� is an infinites-
imal. In particular, the image of x� in the catapower R� is a system of parameters, whence R�-regular,
since R� is Cohen–Macaulay by Corollary 5.15. Since x1� y1� + · · · + xd� yd� = 0 in R� , regularity
forces yd� to be in the ideal (x1�, . . . , xd−1�)R� , contradicting that its order in R�/(x1�, . . . , xd−1�)R� is
finite.

To prove the final statement, observe that for fixed dimension d and multiplicity e, we may modify
the above proof by taking each counterexample xn and yn in some d-dimensional local Cohen–
Macaulay ring Rn of multiplicity e. Indeed, by Corollary 8.8, the cataproduct R� of the Rn is again
Cohen–Macaulay so that we can copy the above argument. �

One can view the previous result as a quantitative version of the unmixedness theorem. Namely,
we can rewrite condition (17) as follows: for any d − 1-tuple z and any x, y ∈ R , if z is part of a
system of parameters, then

ordR/zR(xy) � δR
(
degR/zR(x),ordR/zR(y)

)
. (19)

Comparing this with (16), we can now rephrase Theorem 12.14 using the following terminology: by
a curve, we mean a one-dimensional subscheme C of X := Spec(R); we call a curve C a minimal
intersection in X if it is of the form Spec(R/I) with I an ideal generated by the least possible number
of generators, to wit, dim R − 1 many; we call C unmixed, if its coordinate ring is (note that this is
equivalent with C being Cohen–Macaulay).

12.15. Corollary. A Noetherian local ring R is Cohen–Macaulay if and only if every minimal intersection
curve C in Spec(R) is unmixed with respect to a uniformity function χ = χR (as given by Theorem 12.12)
independent from C.

We can depart from other criteria for Cohen–Macaulayness to get some more uniformity char-
acterizations. For instance, we could use the criterion proven in [53, Corollary 5.2.11] that R is
Cohen–Macaulay if and only if every system of parameters x := (x1, . . . , xd) is independent, in the
sense that a relation x1 y1 + · · · + xd yd = 0 implies that all yi lie in xR . Thus, we get the following
modified form of (17): a d-dimensional Noetherian local ring R is Cohen–Macaulay if and only if there exists
a binary numerical function δ′

R such that for every two d-tuples x := (x1, . . . , xd) and (y1, . . . , yd), we have
an inequality

ordR(x1 y1 + · · · + xd yd) � δ′
R

(
�(R/xR),ordR/xR(yd)

)
.

Next, we characterize normality:

12.16. Theorem. A Noetherian local ring R is normal if and only if there exists a binary numerical function εR

such that for all x, y, z ∈ R, we have an inequality

min
k

{
ordR/zk R

(
xyk)} � εR

(
ord(x),ordR/zR(y)

)
. (20)

Proof. Suppose R is normal, but εR cannot be defined for a pair (a,b). Hence, for each n, there
exist elements xn, yn, zn ∈ R such that xn has order a and yn has order b modulo zn R , but
ordR/zk

n R(xn yk
n) � n for all k. Let x�, y�, z� ∈ R� be the respective ultraproducts of xn, yn, zn ∈ R . In

particular, x� is non-zero in the catapower R� and y� /∈ z�R� . On the other hand, since x� yk
� ∈ zk

� R� for
all k, a well-known criterion shows that y� lies in the integral closure of z�R� . Since R� is normal by
Corollary 5.15, any principal ideal is integrally closed, so that y� ∈ z�R� , a contradiction.
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Conversely, assume a numerical function εR exists with the proscribed properties. Taking z = 0
in (20), we see that R is a domain by Theorem 12.1. Suppose y/z is an element in the field of
fractions of R which is integral over R . We want to show that y/z ∈ R . Since y is then in the integral
closure of zR , there exists a non-zero x such that xyk ∈ zk R for all k. The left hand side in (20) is
therefore infinite, whence so must the right hand side be, forcing y ∈ zR . �

In our last two examples, we show how also tight closure conditions fit in our present program of
characterizing properties by certain uniform behavior. We will adopt the usual tight closure notation
of writing I [q] as an abbreviation for the ideal (wq

1, . . . , wq
n)R , where I := (w1, . . . , wn)R is some ideal

and q is some power of the prime characteristic p of R . An element y ∈ R lies in the tight closure I∗
of I , if there exists c ∈ R outside all minimal prime ideals, such that cyq ∈ I [q] for all powers q of p.
We say that R is F-rational if some parameter ideal is tightly closed, in which case every parameter
ideal is tightly closed (recall that a parameter ideal is an ideal generated by a system of parameters).
On the other hand, if every ideal is tightly closed, then we call R weakly F-regular.

12.17. Theorem. An excellent local ring R of characteristic p is pseudo-rational if and only if there exists a
ternary numerical function ϕR such that for all elements x, y ∈ R and every (equivalently, some) parameter
ideal I , we have an inequality

min
q

{
ordR/I [q]

(
xyq)} � ϕR

(
deg(x), �(R/I),ordR/I (y)

)
(21)

where q runs over all powers of p.

Proof. We will use Smith’s tight closure characterization [55] that R is pseudo-rational if and only if
it is F-rational. Assume first that R is pseudo-rational whence F-rational, but a numerical function ϕR
cannot be defined on the triple (a,b, c). Hence there exist for each n, elements xn, yn ∈ R and a
parameter ideal In in R such that xn has degree a and R/In is an Artinian local ring of length b in
which yn has order c, but ord

R/I [q]
n

(xyq) � n for all powers q of p. Let x� , y� , I� be the respective

ultraproducts of the xn , yn , In and let R� be the catapower of R . Let J be a parameter ideal in R .
Hence J R� is a parameter ideal in R� . Since R → R� is regular by Corollary 5.15 and since J is tightly
closed, so is J R� by [30, Theorem 131.2] or [26], showing that R� is F-rational.

Since a pseudo-rational local ring is a domain, x� is generic in R� and I�R� is a parameter ideal

in R� . Moreover, y� /∈ I�R� , but x� yq
� ∈ I [q]

� R� for all q. By definition of tight closure, y� ∈ (I�R�)
∗ . In

particular, every parameter ideal, including I�R� , is tightly closed and hence y� ∈ I�R� , a contradiction.
Conversely, assume ϕR satisfies (21) for some parameter ideal I . To verify that R is F-rational, let

y ∈ I∗ . Hence, for some x ∈ R not in any minimal prime, xyq ∈ I [q] for all q. The left hand side of (21)
is therefore infinite whence so is the right hand side. Since x is generic, whence has finite degree, the
third argument must be infinite, that is to say, y ∈ I . �
12.18. Theorem. A Noetherian local ring (R,m) of characteristic p is weakly F-regular if and only if there
exists a ternary numerical function ψR such that for all elements x, y ∈ R and all m-primary ideals I , we have
an inequality

min
q

{
ordR/I [q]

(
xyq)} � ψR

(
deg(x), �(R/I),ordR/I (y)

)
(22)

where q runs over all powers of p.

Proof. Note that for R to be weakly F-regular, it suffices that every m-primary ideal is tightly closed,
since by Krull’s Intersection Theorem, any ideal is an intersection of m-primary ideals. Moreover, if
R is weakly F-regular, then so is its catapower R� by [26, Theorem 7.3] in conjunction with Corol-
lary 5.15. In view of these facts, the proof is now almost identical to the one for Theorem 12.17;
details are left to the reader. �
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12.19. Epilogue: characterization of regularity

Let me make a few further observations, although they do no longer relate to our proof method.
If R is regular, then in fact ord(xy) = ord(x) + ord(y). However, the latter condition does not char-
acterize regularity, but only the strictly weaker condition that the associated graded ring gr(R) is
a domain. The following condition, however, does characterize regularity: a Noetherian local ring R
is regular if and only if ord(x) = deg(x) for all x ∈ R . Indeed, if R is regular and ord(x) = a, then by
judiciously choosing a regular system of parameters (x1, . . . , xd), we can ensure that x still has or-
der a in V := R/(x1, . . . , xd−1)R . Since V is a discrete valuation ring with uniformizing parameter xd ,
one checks that �(V /xV ) = a. Since deg(x) � �(R/(x, x1, . . . , xd−1)R) = a, we get deg(x) � ord(x). The
other inequality follows from our discussion in Section 12.5.

Conversely, if order and degree agree, then in particular there exists an element of degree one, and
hence a system of parameters x such that R/xR has length one, whence is a field, showing that x is
a regular system of parameters. �
13. Asymptotic homological conjectures in mixed characteristic

In [42,50], we derived asymptotic versions of the homological conjectures for local rings of mixed
characteristic p, where by asymptotic, we mean that the residual characteristic p must be large with
respect to the complexity of the data. In the above papers, complexity was primarily given in terms
of the degrees of the polynomials defining the data. In this paper, we phrase complexity in terms of
(natural) invariants of the ring and the data only.

Improved New Intersection Theorem

To not have to repeat each time the conditions from this theorem, we make the following defi-
nition: given a finite complex F• of finitely generated free R-modules, a finite free complex, for short,
we say that its rank is at most r, if all Fi have rank at most r; and we say that its INIT-degree is at
most l, if each Hi(F•), for i > 0, has length at most l, and H0(F•) has a minimal generator generating
a submodule of length at most l. Recall that the length of F• is the largest n such that Fn �= 0.

13.1. Theorem (Asymptotic Improved New Intersection Theorem). For each triple of non-negative integers
(m, r, l), there exists a bound κ(m, r, l) with the following property. Let R be a Noetherian local ring of mixed
characteristic p and of embedding dimension at most m. If F• is a finite free complex of rank at most r and
INIT-degree at most l, then its length is at least the dimension of R, provided p � κ(m, r, l).

Proof. Since the dimension of R is at most m, there is nothing to show for complexes of length m
or higher. Suppose the result is false for some triple (m, r, l). This means that for infinitely many
distinct prime numbers pw , we can find a dw -dimensional Noetherian local ring (R w ,mw) of mixed
characteristic pw and embedding dimension at most m, and we can find a finite free complex F•w
of rank at most r, of length sw � m, and of INIT-degree at most l, such that sw < dw . Choose a
non-principal ultrafilter and let (R�,m�) be the ultraproduct of the (R w ,mw). Since sw < dw � m,
their respective ultraproducts satisfy s < d � m. By Theorem 5.19, the geometric dimension of R� is
at least d. Let F•� be the ultraproduct of the complexes F•w . Since the ranks are at most r, each
module in F•� is a free R�-module of rank at most r. Since ultraproducts commute with homology,
and preserve uniformly bounded length by Proposition 5.13, the higher homology groups Hi(F•�) have
finite length (at most l). Furthermore, by assumption, we can find a minimal generator μw of H0(F•w)

generating a submodule of length at most l. Hence the ultraproduct μ� of the μw is by Łos’ Theorem
a minimal generator of H0(F•�), generating a submodule of length at most l. In conclusion, F•� has
INIT-degree at most l. In particular, F•� is acyclic when localized at a non-maximal prime ideal, and
hence (10.9.1) from Corollary 10.9 applies, yielding that s � gdim(R�) � d, a contradiction. �

We can even give an asymptotic version of Theorem 10.8, albeit in terms of some less natural
bounds.
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13.2. Theorem. For each triple of non-negative integers (m, r, l), there exists a bound σ(m, r, l) with the
following property. Let (R,m) be a Noetherian local ring of mixed characteristic p and of embedding dimension
at most m, and let F• be a finite free complex of rank at most r. Let M be the cokernel of F• , and let μ be a
non-zero minimal generator of M. Assume each R/Ik(F•) has dimension at most dim R − k and parameter
degree at most l, for k � 1, and R/AnnR(μ) has parameter degree at most l.

If p � σ(m, r, l), then the length of the complex F• is at least the codimension of AnnR(μ).

Proof. Suppose the result is false for some triple (m, r, l). This means that for infinitely many dis-
tinct prime numbers pw , we can find a dw -dimensional mixed characteristic Noetherian local ring
(R w ,mw) whose residue field has characteristic pw and whose embedding dimension is at most m,
and we can find a finite free complex F•w of length sw and of rank at most r, and a non-zero minimal
generator μw of its cokernel M w such that R w/Ik(F• w) has dimension at most dw −k and parameter
degree at most l, for all k = 1, . . . , sw , and such that R w/AnnR w (μw) has parameter degree at most l,
but dimension strictly less than dw − sw . Choose a non-principal ultrafilter and let (R�,m�) be the
ultraproduct of the (R w ,mw). Since sw � dw � m, their respective ultraproducts satisfy s � d � m. By
Theorem 5.19, the geometric dimension of R� is at least d. Let F•� and μ be the ultraproduct of the
complexes F•w and the minimal generators μw respectively. Since the ranks are at most r, each mod-
ule in F•� will be a free R�-module of rank at most r. By Theorem 5.23, the geometric dimension of
R�/Ik(F•�) is at most d − k, for all k = 1, . . . , s. Also by Łos’ Theorem, μ is a minimal generator of the
cokernel of F•� and R�/AnnR�

(μ), being the ultraproduct of the R w/AnnR w (μw), has geometric di-
mension strictly less than d − s by Theorem 5.23. However, this is in contradiction with Theorem 10.8,
which yields that R�/AnnR�

(μ) has geometric dimension at least d − s. �
Using the same techniques, we can deduce from Theorem 10.12 the following asymptotic version

(details are left to the reader).

13.3. Theorem (Asymptotic Canonical Element Theorem). For each triple of non-negative integers (m, r, l),
there exists a bound ρ(m, r, l) with the following property. Let R be a d-dimensional Noetherian local ring
of mixed characteristic p and embedding dimension at most m, and let F• be a free resolution of the residue
field k of R, of rank at most r.

If x is a system of parameters in R such that R/xR has length at most l and if the morphism of complexes
γ : K•(x) → F• extends the natural homomorphism R/xR → k, then γd �= 0, provided p � ρ(m, r, l).

13.4. Remark. Perhaps it is not entirely justified to call this theorem a ‘Canonical Element Theorem’,
since it does not necessarily produce a canonical element in local cohomology like it does in the
equicharacteristic case. This is due to the fact that we cannot apply the theorem to the various ‘pow-
ers’ of a system of parameters as in the discussion in [9, pp. 346–347] without having to raise the
bound ρ(n, r, l). In particular, the above result does not imply an asymptotic version of the Direct
Summand Conjecture.

Ramification

Instead of requiring that the residual characteristic is large in the above asymptotic results, we
can also require the ramification to be large, as we will now explain. For the proofs, we only need to
apply the corresponding versions in Section 10 for infinitely ramified local rings of finite embedding
dimension. The main observation is the following immediate corollary of Łos’ Theorem:

13.5. Lemma. Let R w be Noetherian local rings of mixed characteristic p and embedding dimension m. If for
each n, almost all R w have ramification index at least n, then their ultraproduct R� is infinitely ramified and
hence their cataproduct R� has equal characteristic p.

13.6. Theorem. For each triple of non-negative integers (m, r, l), there exists a non-negative integer κ(m, r, l)
with the following properties. Let (R,m) be a d-dimensional mixed characteristic Noetherian local ring of
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embedding dimension at most m, and let F• be a finite free complex of rank at most r. If the ramification index
of R is at least κ(m, r, l), then the following are true:

13.6.1. If F• has INIT-degree at most l, then the length of F• is at least d.
13.6.2. If each R/Ik(F•) has dimension at most d − k and parameter degree at most l, for k � 1, and if μ is

a non-zero minimal generator of the cokernel of F• such that R/AnnR(μ) has parameter degree at
most l, then the length of F• is at least the codimension of AnnR(μ).

13.6.3. If F• is a free resolution of R/m, if x is a system of parameters in R such that R/xR has length at most l
and if the morphism of complexes γ : K•(x) → F• extends the natural homomorphism R/xR → R/m,
then γd �= 0.

Proof. Suppose first that such a bound for a triple (m, r, l) cannot be found in a fixed residual char-
acteristic p. In other words, we can find mixed characteristic p Noetherian local rings R w , whose
embedding dimension is at most m, and whose ramification index is at least w , satisfying the nega-
tion of one of the above properties. By Lemma 13.5, their cataproduct is equicharacteristic and the
proof follows by the previous discussion; details are left to the reader. To make this bound indepen-
dent from p as well, we use the corresponding bounds from the previous theorems. �
Monomial Theorem

By the same process as above, we can derive an asymptotic version of the Monomial Theorem from
Corollary 10.1. Unfortunately, the bounds will also depend on the monomials involved, and hence
does not lead to an asymptotic version of the Direct Summand Conjecture. More precisely, given
ν0, . . . , νs ∈Nd with ν0 not a positive linear combination of the νi and given l, m, there is a bound N
depending on these data, such that for every mixed characteristic p Noetherian local ring R of em-
bedding dimension at most m and dimension d, and for every system of parameters x := (x1, . . . , xd)

in R such that R/xR has length at most l, if either p or the ramification index of R is at least N , then
xν0 does not belong to the ideal in R generated by the xνi .

In particular, for fixed m and l, we get a bound Nt , for each t � 1, such that (x1 · · · xd)
t /∈

(xt+1
1 , . . . , xt+1

d )R , whenever x and R satisfy the assumptions from the previous paragraph. To de-
rive from this an asymptotic version of the Direct Summand Conjecture, we need to show that the
Nt can be chosen independently from t . To derive this conclusion, we would like to establish the
following result. Let (R�,m�) be an isodimensional ultra-Noetherian local ring, say the ultraproduct
of d-dimensional Noetherian local rings (R w ,mw) of bounded embedding dimension and parameter
degree. Let Hd

� (R�) be the ultraproduct of the local cohomology groups Hd
mw

(R w). There is a natural

map Hd
m�

(R�) → Hd
� (R�).

13.7. Conjecture. The canonical map Hd
m�

(R�) → Hd
� (R�) is injective.

Without proof, I state that the conjecture is true when R� is ultra-Cohen–Macaulay. Let us show
how this conjecture implies that the Nt can be chosen to be independent from t , thus yielding a
true asymptotic version of the Monomial Theorem (whence also of the Direct Summand Theorem) in
mixed characteristic. Indeed, assume the conjecture and let (x1�, . . . , xd�) be a generic sequence in R�

and choose xiw ∈ R w so that their ultraproduct is xi� . Since the (image of the) element 1/(x1� · · · xd�)

in the top local cohomology module Hd
m�

(R�) is non-zero by Corollary 10.1—here we realize H•
m�

(R�)

as the cohomology of the C̆ech complex associated to (x1�, . . . , xd�)—its image in Hd∞(R�) is therefore
also non-zero, whence almost each 1/(x1w · · · xdw) is non-zero in Hd

mw
(R w). Hence (11) is valid for

almost each (x1w , . . . , xdw) and all t .

Towards a proof of the full Improved New Intersection Theorem

Although our methods can in principle only prove asymptotic versions, a better understanding of
the bounds can in certain cases lead to a complete solution of the conjecture. To formulate such a
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result, let us say that a numerical function f grows sub-linearly if there exists some 0 � α < 1 such
that f (n)/nα remains bounded when n goes to infinity.

13.8. Theorem. Suppose that for each pair (m, r) the numerical function fm,r(l) := κ(m, r, l) grows sub-
linearly, where κ is the numerical function given in (13.6.1), then the Improved New Intersection Theorem
holds.

Proof. Let Im,r,l be the collection of counterexamples with invariants (m, r, l), that is to say, all mixed
characteristic Noetherian local rings R of embedding dimension at most m, admitting a finite free
complex F• of rank at most r and INIT-degree at most l, such that the length of F• is strictly less than
the dimension of R . We have to show that Im,r,l is empty for all (m, r, l), so by way of contradiction,
assume it is not for the triple (m, r, l). For each n, let f (n) be the supremum of the ramification
indexes of counterexamples in Im,r,n (and equal to 0 if there is no counterexample). By Theorem 13.6,
this supremum is always finite. By assumption, f grows sub-linearly, so that for some positive real
numbers c and α < 1, we have f (n) � cnα , for all n. In particular, for n larger than the (1 − α)-th
root of clα

f (l) , we have

f (ln) < nf (l). (23)

Let (R,m) be a counterexample in Im,r,l of ramification index f (l), witnessed by the finite free
complex F• of length strictly less than the dimension of R . Since the completion of R will be
again a counterexample in Im,r,l of the same ramification index, we may assume R is complete,
whence by Cohen’s structure theorem of the form R = V [[ξ ]]/I for some discrete valuation ring V ,
some tuple of indeterminates ξ , and some ideal I ⊆ V [[ξ ]]. Let n 
 0 so that (23) holds, and let
W := V [t]/(tn − π)V [t], where π is a uniformizing parameter of V . Let S := W [[ξ ]]/I W [[ξ ]], so that
R → S is faithfully flat and S has the same dimension and embedding dimension as R . By construc-
tion, its ramification index is equal to nf (l). By faithful flatness, F• ⊗R S is a finite free complex of
length strictly less than the dimension of S , with homology equal to H•(F•) ⊗R S . I claim that if H is
an R-module of length a, then H ⊗R S has length na. Assuming this claim, it follows that S belongs
to Im,r,nl , and hence its ramification is by definition at most f (ln), contradicting (23).

The claim is easily reduced by induction to the case a = 1, that is to say, when H is equal to the
residue field R/m = V /π V = k. In that case, H ⊗R S = S/mS = W /πW , and this is isomorphic to
k[t]/tnk[t], a module of length n. �
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