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In this article, we generalize the concept of torsion pair and study
its structure. As a trial of obtaining all torsion pairs, we decompose
torsion pairs by projective modules and injective modules. Then
we calculate torsion pairs on the algebra K An and tube categories.
At last we study the structure of torsion pairs on the module
categories of finite-dimensional hereditary algebras.
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1. Introduction

The concept of torsion pair on abelian category was introduced by Dickson in 1966 [8]. From
that time on, torsion pair has become a useful tool to study the structure of module categories.
However, it seems there is no useful way to find all torsion pairs of a given algebra, although there
are indeed some ways to construct torsion pairs among which the most well known is the tilting
theory. As a trial, we try to find a way to obtain all torsion pairs of hereditary algebras. This topic is
also discussed by Assem and Kerner in [1] where they classify and characterize the torsion pairs of
hereditary algebras by partial tilting modules.

In Section 2, we study the general theory where we introduce torsion n + 1-tuple as a general-
ization of torsion pair and study its structure which would be used in the later sections frequently.
The main skill in this section is from [12] and [6] where they study HN-filtration for some categories.
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It is helpful to study this finer structure of module categories. For example perpendicular category [9]
can be viewed to be obtained by a torsion 3-tuple.

In [1], Assem and Kerner show a relation between some particular partial tilting modules and
torsion pairs. In Section 3, we adopt their ways by restricting to projective modules and injective
modules to try to decompose all torsion pairs. We give a method for how to decompose a classic
torsion pair to torsion n + 1-tuple and find their correspondence.

In Section 4, we apply the theory in Section 3 to path algebras. As examples, we obtain all the
torsion pairs on path algebra K An and tube categories. This topic also has been studied in [3] and [5].
But we think our results would be clearer in some aspects.

Section 5 is devoted to obtain all torsion pairs of hereditary algebras. We define an operation
called the translation of torsion pairs. Combining this with the operation developed in Sections 3
and 4, the issue comes down to find all torsion pairs on regular component. For tame hereditary
algebras, this problem is equivalent to calculate all torsion pairs on the tube categories in Sec-
tion 4.

If there is no special instruction, all modules are assumed to be finitely generated left modules.
For an artin algebra Λ, we denote by Λ-mod the category of all finitely generated left Λ-modules, by
P(Λ) the full subcategory of all projective Λ-modules, by I(Λ) the full subcategory of all injective
Λ-modules. If D is a full subcategory of Λ-mod, then we denote by ⊥D the full subcategory of
Λ-mod{M ∈ Λ-mod | Hom(M, N) = 0, ∀N ∈ D}, by D⊥ the full subcategory of Λ-mod{N ∈ Λ-mod |
Hom(M, N) = 0, ∀M ∈D}, and by IndD the set of nonzero pairwise non-isomorphic indecomposable
modules in D. Subcategories are always assumed to be closed under isomorphism.

2. Torsion n + 1-tuple

In this section, we assume that Λ is an artin algebra and C is an extension-closed full subcategory
of Λ-mod. If C1,C2, . . . ,Cn are full subcategories of Λ-mod, then we denote the minimal extension-
closed full subcategory containing C1,C2, . . . ,Cn by 〈C1,C2, . . . ,Cn〉. The following definition is well
known but slightly different from that in [2].

Definition 2.1. A pair (T ,F) of full subcategories of C is called a torsion pair on C if the following
conditions are satisfied.

(1) Hom(X, Y ) = 0 for all X ∈ T , Y ∈F .
(2) ∀X ∈ C , there exists a short exact sequence on Λ-mod

0 → XT → X → XF → 0

such that XT ∈ T and XF ∈F .

Remark 2.2.

(1) Let (T ,F) be a torsion pair on C . Then T = ⊥F ∩ C; F = T ⊥ ∩ C; T and F are closed under
extensions.

(2) It is well known that the exact sequence is unique up to isomorphism. So we call it a canonical
short exact sequence of X induced by (T ,F).

Definition 2.3. Let n � 1. An n + 1-tuple (C1,C2, . . . ,Cn+1) of full subcategories of C is called a torsion
n + 1-tuple on C if the following conditions are satisfied.

(1) C1 = C ∩ ⊥〈C2, . . . ,Cn+1〉, Ci = C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,Cn+1〉 for i = 2, . . . ,n, Cn+1 = C ∩
〈C1, . . . ,Cn〉⊥ .

(2) (〈C1, . . . ,Ci〉, 〈Ci+1, . . . ,Cn+1〉) is a torsion pair on C for i = 1,2, . . . ,n.

Moreover, if (1) is not satisfied, we call it a defect torsion n + 1-tuple on C .
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Remark 2.4.

(1) The torsion pair is a torsion 2-tuple.
(2) We abbreviate the condition (1) as that Ci = C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,Cn+1〉 for i =

1, . . . ,n + 1. The similar way would be used in the rest of the section.

Lemma 2.5. Let C1,C2,C3 be full subcategories of Λ-mod. Then

(1) 〈C1,C2,C3〉 = 〈〈C1,C2〉,C3〉 = 〈C1, 〈C2,C3〉〉;
(2) ⊥〈C1,C2〉 = ⊥C1 ∩ ⊥C2 , 〈C1,C2〉⊥ = C1

⊥ ∩ C⊥
2 ;

(3) ⊥〈C1〉 = ⊥C1 , 〈C1〉⊥ = C1
⊥ .

Proposition 2.6. Let (C1,C2, . . . ,Cn+1) be a torsion n+1-tuple on C (n 
= 1). And for some i = 1,2, . . . ,n+1,
k 
= 1, let (C̃1, C̃2, . . . , C̃k+1) be a torsion k + 1-tuple on Ci . Then (C1, . . . ,Ci−1, C̃1, . . . , C̃k+1,Ci+1, . . . ,Cn+1)

is a torsion n + k + 1-tuple on C .

Proof. Step 1. Because Ci = 〈C̃1, C̃2, . . . , C̃k+1〉, thus if Cs ∈ {C1,C2, . . . ,Ci−1}, then

C ∩ 〈C1, . . . ,Cs−1〉⊥ ∩ ⊥〈Cs+1, . . . ,Ci−1, C̃1, . . . , C̃k+1,Ci+1, . . . ,Cn+1〉 = Cs.

Similar argument holds for Cs ∈ {Ci+1, . . . ,Cn+1}.
If C̃s ∈ {C̃1, C̃2, . . . , C̃k+1}, then

C ∩ 〈C1, . . . ,Ci−1, C̃1, . . . , C̃s−1〉⊥ ∩ ⊥〈C̃s+1, . . . , C̃k+1, . . . ,Ci+1, . . . ,Cn+1〉
= C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ 〈C̃1, . . . , C̃s−1〉⊥ ∩ ⊥〈C̃s+1, . . . , C̃k+1〉 ∩ ⊥〈Ci+1, . . . ,Cn+1〉
= Ci ∩ 〈C̃1, . . . , C̃s−1〉⊥ ∩ ⊥〈C̃s+1, . . . , C̃k+1〉 = C̃s.

Step 2. Let 1 � s � k. We claim that (〈C1, . . . , C̃s〉, 〈C̃s+1, . . . ,Cn+1〉) is a torsion pair on C .
Given X ∈ C , the torsion pair (〈C1, . . . ,Ci−1〉, 〈Ci, . . . ,Cn+1〉) on C induces a canonical short exact

sequence

0 → X1
i1−→ X

π1−→ X2 → 0.

For X2, consider the canonical short exact sequence induced by the torsion pair (〈C1, . . . ,Ci〉,
〈Ci+1, . . . ,Cn+1〉)

0 → X3
i2−→ X2

π2−→ X4 → 0.

Because X3 ∈ 〈C1, . . . ,Ci−1〉⊥ since X2 ∈ 〈C1, . . . ,Ci−1〉⊥ , so X3 ∈ C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,

Cn+1〉 = Ci .
For X3, the torsion pair (〈C̃1, . . . , C̃s〉, 〈C̃s+1, . . . , C̃k+1〉) on Ci induces a canonical short exact se-

quence

0 → X5
i3−→ X3

π3−→ X6 → 0.
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By push-out of i2 and π3, we have the following commutative diagram

0 0⏐⏐� ⏐⏐�
X5 X5

i3

⏐⏐� ⏐⏐�i4

0 −−−−→ X3
i2−−−−→ X2

π2−−−−→ X4 −−−−→ 0

π3

⏐⏐� ⏐⏐�π4

∥∥∥
0 −−−−→ X6 −−−−→ XF −−−−→ X4 −−−−→ 0⏐⏐� ⏐⏐�

0 0

Hence we have a short exact sequence

0 → X5
i4−→ X2

π4−→ XF → 0

such that XF ∈ 〈C̃s+1, . . . , C̃k+1,Ci+1, . . . ,Cn+1〉.
By pull-back of i4 and π1, we have the following commutative diagram

0 0⏐⏐� ⏐⏐�
0 −−−−→ X1 −−−−→ XT −−−−→ X5 −−−−→ 0∥∥∥ ⏐⏐� ⏐⏐�i4

0 −−−−→ X1 −−−−→
i1

X −−−−→
π1

X2 −−−−→ 0
⏐⏐� ⏐⏐�π4

XF XF⏐⏐� ⏐⏐�
0 0

Hence we have the following exact sequence

0 → XT → X → XF → 0

such that XT ∈ 〈C1, . . . , C̃s〉 and XF ∈ 〈C̃s+1, . . . ,Cn+1〉. �
Now we give the following definition which is helpful to learn the structure of torsion n + 1-tuple.

Definition 2.7. For n � 1, series {(T1,F1), (T2,F2), . . . , (Tn,Fn)} of torsion pairs on C are called a
chain of torsion classes of length n if T1 ⊆ T2 ⊆ · · · ⊆ Tn (equivalently, F1 ⊇F2 ⊇ · · · ⊇Fn).
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Remark 2.8. For convenience, we take the denotation: F0 = Tn+1 = C , Fn+1 = T0 = {0}. This assump-
tion will simplify some descriptions.

Definition 2.9. Let (T ,F) be a torsion pair on C , and D be a subcategory of C . We call
(D1

(T ,F)
(D), D2

(T ,F)
(D)) a decomposition of D along (T ,F), where D1

(T ,F)
(D) = {X | ∃ exact

sequence 0 → X → M → Y → 0 with X ∈ T , Y ∈ F , M ∈ D}, D2
(T ,F)

(D) = {Y | ∃ exact sequence
0 → X → M → Y → 0 with X ∈ T , Y ∈F , M ∈D}.

Lemma 2.10. If {(T1,F1), (T2,F2)} is a chain of torsion classes of length 2 on C , then

F1 ∩ T2 = D2
(T1,F1)(T2) = D1

(T2,F2)(F1).

Proof. F1 ∩T2 ⊆ D2
(T1,F1)

(T2) is clear. Now given X ∈ T2, consider the canonical short exact sequence
induced by (T1,F1)

0 → XT1 → X → XF1 → 0.

However XF1 ∈ T2 since so is X . Thus XF1 ∈ T2 ∩F1. Hence F1 ∩ T2 ⊇ D2
(T1,F1)

(T2).
The other half is similar. �
Chain of torsion classes will induce filtrations for modules in C as following.

Proposition 2.11. Let {(T1,F1), (T2,F2), . . . , (Tn,Fn)} be a chain of torsion classes of length n on C(n � 1).
Then for every module X in C , there is a filtration

0 X0 X1 · · · Xn+1 X

S1 Sn+1

such that 0 → Xi → Xi+1 → Si+1 → 0 is an exact sequence, Si+1 ∈ Fi ∩ Ti+1 and Xi+1 ∈ Ti+1 for i =
0,1,2, . . . ,n.

Proof. Using induction on n. For n = 1, it’s clear. Now suppose the proposition holds for n = k for
some k � 1. Let us consider n = k + 1. For X ∈ C , (Tk+1,Fk+1) induces the following canonical short
exact sequence

0 → Xk+1 → X → Sk+2 → 0.

Because {(T1,F1), (T2,F2), . . . , (Tk,Fk)} is a chain of torsion classes of length k on C , by induc-
tion, there is a filtration

0 X0 X1 · · · Xk Xk+1 Xk+1

S1 Sk Sk+1
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such that 0 → Xi → Xi+1 → Si+1 → 0 is a short exact sequence for i = 0,1,2, . . . ,k, and S1 ∈ T1,
Si ∈ Fi−1 ∩ Ti for 1 < i < k + 1, Sk+1 ∈ Fk , Xi ∈ Ti for 1 � i � k + 1. Thus Sk+1 ∈ Fk ∩ Tk+1 since
Xk+1 ∈ Tk+1. So we get the desired filtration. �

In fact the above filtration is unique up to isomorphism since all decompositions induced by tor-
sion pairs are canonical. So we say this is a canonical filtration (or decomposition) induced by the
chain of torsion classes.

Proposition 2.12. If {(T1,F1), (T2,F2), . . . , (Tn,Fn)} is a chain of torsion classes of length n on C(n � 1),
then Fi ∩ Ti+k = 〈Fi ∩ Ti+1,Fi+1 ∩ Ti+2, . . . ,Fi+k−1 ∩ Ti+k〉 for 0 � i < i + k � n + 1.

Proof. For X ∈Fi ∩Ti+k , by Proposition 2.11, the chain of torsion classes induces a canonical filtration
of X

0 X0 · · · Xi+1 · · · Xi+k · · · Xn+1 X

Si+1 Si+k Sn+1

Since Xi+1 is a submodule of X , Xi+1 ∈Fi . And because Xi ∈ Ti , so Hom(Xi, Xi+1) = 0, thus Xi = 0
since it is a submodule of Xi+1. Thus S1 = S2 = · · · = Si = 0.

If i + k < n + 1, then Hom(Xn+1, Sn+1) = 0 since Xn+1 = X ∈ Ti+k and Sn+1 ∈ Fn . So Sn+1 = 0
and Xn = Xn+1 = X since Sn+1 is a quotient module of X . Similarly, we have Si+k+1 = Si+k+2 = · · · =
Sn = 0. Thus X ∈ 〈Fi ∩ Ti+1,Fi+1 ∩ Ti+2, . . . ,Fi+k−1 ∩ Ti+k〉.

The other direction is clear. �
The following demonstrates the relation between torsion n + 1-tuple and chain of torsion classes

of length n.

Theorem 2.13. There is a one-to-one correspondence between the set of chains of torsion classes of length n
on C and the set of torsion n + 1-tuples on C(n � 1)

{ {(T1,F1), . . . , (Tn,Fn)}:
chain of torsion classes of length n

}
α

GGGGBF GGGG

β

{
(C1,C2, . . . ,Cn+1):
torsion n + 1-tuple

}

such that α({(T1,F1), (T2,F2), . . . , (Tn,Fn)}) = (T1,F1 ∩ T2, . . . ,Fn−1 ∩ Tn,Fn) and β((C1,C2, . . . ,

Cn+1)) = {(〈C1, . . . ,Ci〉, 〈Ci, . . . ,Cn+1〉) | i = 1,2, . . . ,n}.

Proof. Step 1. Claim: (T1,F1 ∩ T2, . . . ,Fn) is a torsion n + 1-tuple on C .

(1) Fi−1 ∩ Ti = C ∩ T ⊥
i−1 ∩ C ∩ ⊥Fi = C ∩ T ⊥

i−1 ∩ ⊥Fi = C ∩ 〈T1,F1 ∩ T2, . . . ,Fi−2 ∩ Ti−1〉⊥ ∩
⊥〈Fi ∩ Ti+1, . . . ,Fn〉 by Proposition 2.12.

(2) Obviously, (〈T1,F1 ∩ T2, . . . ,Fi−1 ∩ Ti〉, 〈Fi ∩ Ti+1, . . . ,Fn〉) = (Ti,Fi).

Step 2. It’s clear that {(〈C1, . . . ,Ci〉, 〈Ci, . . . ,Cn+1〉) | i = 1,2, . . . ,n} is a chain of torsion classes of
length n on C .

Step 3. βα({(T1,F1), (T2,F2), . . . , (Tn,Fn)}) = β((T1,F1 ∩ T2, . . . ,Fn−1 ∩ Tn,Fn)) = {(T1,F1),

(T2,F2), . . . , (Tn,Fn)} by Proposition 2.12.
Step 4. αβ((C1,C2, . . . ,Cn+1)) = α({(〈C1, . . . ,Ci〉, 〈Ci+1, . . . ,Cn+1〉)} | i = 1,2, . . . ,n) = (〈Ci, . . . ,

Cn+1〉 ∩ 〈C1, . . . ,Ci〉 | i = 1,2, . . . ,n + 1) = (C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,Cn+1〉 | i = 1,2, . . . ,

n + 1) = (C1,C2, . . . ,Cn+1). �
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The following is another characterization of torsion n-tuples.

Proposition 2.14. Let C1,C2, . . . ,Cn+1 be full subcategories of C . Then we have (C1,C2, . . . ,Cn+1) is a torsion
n + 1-tuple on C if and only if :

(1) Hom(X, Y ) = 0 for X ∈ Ci , Y ∈ C j , 1 � i < j � n + 1.
(2) For X ∈ C , there is a filtration

0 X0 X1 · · · Xn+1 X

S1 Sn+1

such that 0 → Xi → Xi+1 → Si+1 → 0 is a short exact sequence with Si+1 ∈ Ci+1 for 0 � i � n.

Proof. Step 1. Suppose (C1,C2, . . . ,Cn+1) is a torsion n + 1-tuple on C . Let Ti = 〈C1, . . . ,Ci〉 and Fi =
〈Ci+1, . . . ,Cn+1〉 for i = 1,2, . . . ,n. Then by Theorem 2.13 we know {(T1,F1), (T2,F2), . . . , (Tn,Fn)}
is a chain of torsion classes of length n and Ci = Fi−1 ∩ Ti for 1 � i � n + 1. Hence, given X ∈ C , the
canonical filtration of X induced by the chain of torsion classes is the desired in (2).

Step 2. Conversely, suppose the tuple (C1,C2, . . . ,Cn+1) satisfies (1) and (2).
Let 1 � i � n + 1. For X ∈ C ∩ 〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,Cn+1〉, by (2), there is a filtration

0 X0 X1 · · · Xi Xi+1 · · · Xn+1 X

S1 Si Si+1 Sn+1

such that 0 → Xi → Xi+1 → Si+1 → 0 is an exact sequence and Si+1 ∈ Ci+1 for 0 � i � n. Just like
the proof of Proposition 2.12, we have X0 = X1 = · · · = Xi−1 = 0 and Xi = Xi+1 = · · · = Xn+1 = X . So
X = Xi = Si ∈ Ci . Thus it’s clear that Ci = C ∩〈C1, . . . ,Ci−1〉⊥ ∩ ⊥〈Ci+1, . . . ,Cn+1〉 for i = 1,2, . . . ,n + 1.

Now we show that for i = 1,2, . . . ,n, (〈C1, . . . ,Ci〉, 〈Ci+1, . . . ,Cn+1〉) is a torsion pair on C . It’s clear
that Hom(〈C1, . . . ,Ci〉, 〈Ci+1, . . . ,Cn+1〉) = 0. Now given X ∈ C , then there is a filtration of X as above.
And it is clear that Xi ∈ 〈C1, . . . ,Ci〉. We claim that X/Xi ∈ 〈Ci+1, . . . ,Cn+1〉.

In fact, by Snake Lemma we have the following commutative diagram

0 0⏐⏐� ⏐⏐�
0 −−−−→ Xi −−−−→ Xi+1 −−−−→ Si+1 −−−−→ 0∥∥∥ ⏐⏐� ⏐⏐�
0 −−−−→ Xi −−−−→ Xi+2 −−−−→ Xi+2/Xi −−−−→ 0⏐⏐� ⏐⏐�

Si+2 Si+2⏐⏐� ⏐⏐�
0 0

Hence Xi+2/Xi ∈ 〈Ci+1,Ci+2〉.
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Inductively, we obtain that Xi+k/Xi ∈ 〈Ci+1, . . . ,Ck〉 for 1 � k � n + 1 − i, especially, Xn+1/Xi ∈
〈Ci+1, . . . ,Cn+1〉. 0 → Xi → Xn+1 → Xn+1/Xi → 0 is the desired short exact sequence. �

The above filtration is also unique up to isomorphism since it is isomorphic to the filtration
induced by the corresponding chain of torsion classes. We call it a canonical filtration (or decom-
position) induced by the torsion tuple.

The following lemma is well known [8].

Lemma 2.15. If B is a subcategory of Λ-mod, then ⊥((⊥B)⊥) = ⊥B, (⊥(B⊥))
⊥ = B⊥ , (⊥B, (⊥B)⊥) and

(B⊥, ⊥(B⊥)) are both torsion pairs on Λ-mod.

The following shows that (2) in Definition 2.3 is superfluous if C = Λ-mod.

Corollary 2.16. Let C1,C2, . . . ,Cn+1 be full subcategories of Λ-mod(n � 1). If Ci = 〈C1, . . . ,Ci−1〉⊥ ∩
⊥〈Ci+1, . . . ,Cn+1〉 for i = 1,2, . . . ,n + 1, then (C1,C2, . . . ,Cn+1) is a torsion n + 1-tuple on Λ-mod.

Proof. By Lemma 2.15, there is a fact: (⊥Cn+1,Cn+1) is a torsion pair since Cn+1 = 〈C1, . . . ,Cn〉⊥ .
We use induction on n to prove the corollary. If n = 1, it’s clear that (C1,C2) is a torsion pair by

the above fact. Now suppose that the corollary is true for n = k � 1, we consider the case n = k + 1.
It is enough to show the condition (2) in Proposition 2.14 holds since the first condition is clear.

Step 1. Claim: 〈Ck+1,Ck+2〉 = 〈C1, . . . ,Ck〉⊥ .
∀X ∈ 〈C1, . . . ,Ck〉⊥ , consider the canonical short exact sequence 0 → Xk+1 → X → Tk+2 → 0 in-

duced by the torsion pair (⊥Ck+2,Ck+2). Xk+1 ∈ 〈C1, . . . ,Ck〉⊥ since X ∈ 〈C1, . . . ,Ck〉⊥ . Thus Xk+1 ∈
Ck+1 and X ∈ 〈Ck+1,Ck+2〉.

Step 2. By induction, (C1, . . . ,Ck, 〈Ck+1,Ck+2〉) is a torsion k-tuple on Λ-mod. So for X ∈ Λ-mod, it
induces a canonical filtration of X

0 X0 X1 · · · Xk−1 Xk Xk+1 X

S1 Sk−1 Sk S

For S , the torsion pair (⊥Ck+2,Ck+2) induces the canonical short exact sequence 0 → Sk+1 → S →
Sk+2 → 0 such that Sk+1 ∈ ⊥Ck+2 and Sk+2 ∈ Ck+2. Because S ∈ 〈Ck+1,Ck+2〉, then S ∈ 〈C1, . . . ,Ck〉⊥ ,
so Sk+1 ∈ 〈C1, . . . ,Ck〉⊥ , hence Sk+1 ∈ Ck+1 since Sk+1 ∈ ⊥Ck+2. By pull-back of (X → S, Sk+1 → S),
we have the following commutative diagram

0 0⏐⏐� ⏐⏐�
0 −−−−→ Xk −−−−→ Xk+1 −−−−→ Sk+1 −−−−→ 0∥∥∥ ⏐⏐� ⏐⏐�
0 −−−−→ Xk −−−−→ X −−−−→ S −−−−→ 0⏐⏐� ⏐⏐�

Sk+2 Sk+2⏐⏐� ⏐⏐�

0 0
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Adding the exact sequence 0 → Xk+1 → Xk+2 → sSk+2 → 0 to the above filtration, we get the desired
filtration. �
Proposition 2.17. Let (C1,C2, . . . ,Cn+1) be a torsion n + 1-tuple on C(n � 1) and 1 � i + 1 < i + k � n + 1.
Then

(1) 〈Ci+1, . . . ,Ci+k〉 = C ∩ 〈C1, . . . ,Ci〉⊥ ∩ ⊥〈Ci+k+1, . . . ,Cn+1〉;
(2) (Ci+1, . . . ,Ci+k) is a torsion k-tuple on 〈Ci+1, . . . ,Ci+k〉;
(3) (C1, . . . ,Ci, 〈Ci+1, . . . ,Ci+k〉,Ci+k+1, . . . ,Cn+1) is a torsion (n + 2 − k)-tuple.

Proof. For X ∈ C , consider the canonical filtration induced by the torsion tuple

0 X0 · · · Xi+1 · · · Xi+k · · · Xn+1 X

Si+1 Si+k Sn+1

(1) If X ∈ C ∩ 〈C1, . . . ,Ci〉⊥ ∩ ⊥〈Ci+k+1, . . . ,Cn+1〉, then X0 = X1 = · · · = Xi−1 = 0 and Xi+k+1 =
Xi+k+2 = · · · = Xn+1 = X . Hence X ∈ 〈Ci+1, . . . ,Ci+k〉. The other direction is clear.

(2) By (1) and Proposition 2.14, it’s clear.
(3) Use the similar techniques in Proposition 2.14, we have the following short exact sequence

0 → Xi → Xi+k → Xi+k/Xi → 0

such that Xi+k/Xi ∈ 〈Ci+1, . . . ,Ci+k〉 Let Ŝ = Xi+k/Xi , then we have the filtration

0 X0 · · · Xi Xi+k · · · Xn+1 X

Si Ŝ Sn+1

Then by Proposition 2.14 the proof is completed. �
Corollary 2.18. Let {(T1,F1), (T2,F2), . . . , (Tn,Fn)} be a chain of torsion classes of length n on C . Then
{(Ti+1 ∩ Fi,Fi+1 ∩ Ti+k+1), . . . , (Ti+k ∩ Fi,Fi+k ∩ Ti+k+1)} is a chain of torsion classes of length k on
Ti+k+1 ∩Fi for 0 � i < i + k + 1 � n + 1.

Proof. For l = 1,2, . . . ,n + 1, let Cl = Fl−1 ∩ Tl . So (C1,C2, . . . ,Cn+1) is a torsion n + 1-tuple on C
by Theorem 2.13, and (Ci+1, . . . ,Ci+k+1) is a torsion k + 1-tuple on 〈Ci+1, . . . ,Ci+k+1〉 by Proposi-
tion 2.17. Thus {(〈Ci+1, . . . ,Ci+l〉, 〈Ci+l+1, . . . ,Ci+k+l〉) | l = 1,2, . . . ,k} is a chain of torsion classes of
length k on 〈Ci+1, . . . ,Ci+k+1〉. But 〈Ci+1, . . . ,Ci+l〉 = Ti+l ∩Fi , 〈Ci+l+1, . . . ,Ci+k+l〉 = Fi+l ∩ Ti+k+l by
Proposition 2.12. The corollary is proved. �
Corollary 2.19. If (D1,D2, . . . ,Dn+1) is a defect torsion n + 1-tuple on C , then there is a unique torsion
n + 1-tuple (C1,C2, . . . ,Cn+1) on C such that Di ⊆ Ci for 1 � i � n + 1.

Proof. Let Ti = 〈D1, . . . ,Di〉, Fi = 〈Di+1, . . . ,Dn〉. Then {(T1,F1), (T2,F2), . . . , (Tn,Fn)} is a chain of
torsion classes of length n on C .
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For 1 � i � n + 1, let Ci =Fi−1 ∩ Ti , then (C1,C2, . . . ,Cn+1) is a torsion n + 1-tuple on C such that
Di ⊆ Ci by Theorem 2.13.

Suppose (C ′
1,C

′
2, . . . ,C

′
n+1) is another torsion n + 1-tuple on C such that Di ⊆ C′

i . Then for 1 �
i � n, Ti = 〈D1, . . . ,Di〉 ⊆ 〈C′

1, . . . ,C′
i 〉 = T ′

i . Similarly, F ⊆ F ′
i . Hence Ti = T ′

i and Fi = F ′
i . Therefore,

Ci =Fi−1 ∩ Ti =F ′
i−1 ∩ T ′

i = C′
i . �

Proposition 2.20. Let {(T1,F1), (T2,F2)} be a chain of torsion classes of length 2 on C . Then we have the
following one-to-one correspondence (we denote torsion pair by tp. for convenience here):

{(
T ′,F ′): tp. on F1 ∩ T2

} F
GGGGBF GGGG

G

{
(T3,F3): tp. on C with T1 ⊆ T3 ⊆ T2

}

where F ((T ′,F ′)) = (〈T1,T ′〉, 〈F ′,F2〉), G((T3,F3)) = (T3 ∩F1,F3 ∩ T2).

Proof. Given the torsion pair (T3,F3) on C with T1 ⊆ T3 ⊆ T2, then by definition {(T1,F1), (T3,F3),

(T2,F2)} is a chain of torsion classes of length 3 on C . So by Corollary 2.18, G((T3,F3)) is a torsion
pair on F1 ∩ T2. By Theorem 2.13, F G((T3,F3)) = (〈T1,T3 ∩F1〉, 〈F3 ∩ T2,F2〉) = (T3,F3).

On the other hand, suppose (T ′,F ′) is a torsion pair on F1 ∩ T2. Since {(T1,F1), (T2,F2)} is a
chain of torsion classes of length 2 on C , by Theorem 2.13, (T1,F1 ∩T2,F2) is a torsion 3-tuple on C .
By Proposition 2.6, (T1,T ′,F ′,F2) is a torsion 4-tuple on C . Then F ((T ′,F ′)) is a torsion pair on C
by Theorem 2.13.

By Proposition 2.17, we also learn that (T1,T ′) is a torsion pair (equivalently, torsion 2-tuple) on
〈T1,T ′〉 and (F ′,F2) is a torsion pair on 〈F ′,F2〉. Hence we know that 〈T1,T ′〉 ∩ F1 = 〈T1,T ′〉 ∩
T ⊥

1 = T ′ . Similarly 〈F ′,F2〉 ∩ T2 =F ′ . Therefore, G F ((T ′,F ′)) = (T ′,F ′). �
3. Decomposition by projective and injective modules

In this section, we assume Λ is a basic artin algebra. We define E(Λ) = {(T ,F) is a torsion pair on
Λ-mod | T ∩P(Λ) =F∩I(Λ) = {0}}. For a set Ψ we denote the number of the elements of Ψ by #Ψ .
The following definition is slightly different from [2, p. 191, 1.10].

Definition 3.1. Let C be a full subcategory of Λ-mod and M ∈ Λ-mod. Then M is called Ext-projective
in C if Ext1

Λ(M,C) = 0. Dually, it is called Ext-injective in C if Ext1
Λ(C, M) = 0.

If Λ′ is a quotient algebra of Λ (i.e. ∃ a surjective algebra homomorphism π : Λ � Λ′), then there
is a canonical way to view Λ′-mod as a full subcategory of Λ-mod as following: for M ∈ Λ′-mod,
a ∈ Λ, m ∈ M , a · m = π(a)m.

For a Λ-module M , we denote by Gen(M) the minimal additive full subcategory closed under
quotients and containing M of Λ-mod, by Cogen(M) the minimal additive full subcategory closed
under submodules and containing M of Λ-mod. The following lemma is well known.

Lemma 3.2. Let e be an idempotent of Λ. Then

(1) (Λe)⊥ = ⊥(D(eΛ)) = Λ/ΛeΛ-mod;
(2) (Gen(Λe),Λ/ΛeΛ-mod) and (Λ/ΛeΛ-mod,Cogen(D(eΛ))) are both torsion pairs on Λ-mod.

The following lemma is part of [2, p. 191, 1.11].

Lemma 3.3. Let (T ,F) be a torsion pair on Λ-mod and 0 
= X ∈ Λ-mod.

(1) If X ∈ F , then X is Ext-projective in F if and only if there is a projective Λ-module P and a canonical
short exact sequence 0 → K → P → X → 0 induced by (T ,F).



258 F. Kong et al. / Journal of Algebra 388 (2013) 248–267
(2) If X ∈ T , then X is Ext-injective in T if and only if there is an injective Λ-module I and a canonical short
exact sequence 0 → X → I → L → 0 induced by (T ,F).

It is obvious that the projective module in (1) can be chosen as the projective cover of X , the
injective module in (2) can be chosen as the injective envelope of X . The following is a generalization
of the above lemma.

Proposition 3.4. Let (C1,C2, . . . ,Cn+1) be a torsion n + 1-tuple on Λ-mod(n � 1). Then there exists bijec-
tions:

(1) F : IndP(Λ) → {X ∈ IndCi | X is Ext -projective in 〈Ci,Ci+1, . . . ,Cn+1〉 for some i = 1,2, . . . ,n + 1};
(2) G : IndI(Λ) → {Y ∈ IndC j | Y is Ext -injective in 〈C1,C2, . . . ,C j〉 for some j = 1,2, . . . ,n + 1}.

Proof. We only prove (1). The proof of (2) is similar.
Step 1. Let P ∈ IndP(Λ). Then the torsion tuple induces the following canonical filtration of P

0 X0 · · · Xi−1 Xi Xi+1 · · · Xn+1 P

Si−1 Si Si+1 Sn+1

There exists 1 � i � n + 1 such that Si+1 = Si+2 = · · · = 0 and Si 
= 0. Then the torsion pair
(〈C1, . . . ,Ci−1〉, 〈Ci, . . . ,Cn+1〉) induces the following canonical short exact sequence 0 → Xi−1 → P →
Si → 0. By Lemma 3.3, Si is Ext-projective in 〈Ci, . . . ,Cn+1〉. We define F (P ) = Si .

Conversely, let X ∈ IndCi such that X is Ext-projective in 〈Ci,Ci+1, . . . ,Cn+1〉. Then we define
F −1(X) to be the projective cover of X .

Step 2. It is clear that F −1 F (P ) = P for P ∈ IndP(Λ).
On the other hand, let 1 � i � n + 1 and X ∈ IndCi which is Ext-projective in 〈Ci,Ci+1, . . . ,Cn+1〉.

By Lemma 3.3, the torsion pair (〈C1, . . . ,Ci−1〉, 〈Ci, . . . ,Cn+1〉) induces the following canonical short
exact sequence of F −1(X): 0 → K → F −1(X) → X . Thus F (F −1(X)) = X . �
Corollary 3.5. Let (T ,F) be a torsion pair on Λ-mod. Then

(1) there is an idempotent e such that T ∩ P(Λ) = add Λe, and T ∩ (Λe)⊥ has no nonzero Ext-projective
modules in (Λe)⊥;

(2) there is an idempotent e such that F ∩I(Λ) = add D(eΛ), and ⊥ D(eΛ)∩F has no nonzero Ext-injective
modules in ⊥ D(eΛ).

Proof. We only prove (1). The proof of (2) is similar.
There is indeed an idempotent e such that T ∩P(Λ) = add Λe. Suppose that 0 
= X ∈ T ∩ (Λe)⊥ is

Ext-projective in (Λe)⊥ . Then by Lemma 3.3, there exist a projective Λ-module P and the canonical
short exact sequence 0 → K → P → X → 0 induced by the torsion pair (Gen(Λe), (Λe)⊥). Thus P ∈ T
since K ∈ Gen(Λe) ⊆ T . Thus P ∈ add Λe. Hence X ∈ Gen(Λe). This is a contradiction. �

Let C be an extension-closed full subcategory of Λ-mod. Then we say C is a Serre class of Λ-mod
if the quotient modules and submodules of the modules in C still belong to C . The following lemma
is obvious.

Lemma 3.6. Let C be a Serre class of Λ-module and 0 
= X ∈ C .

(1) If X is Ext-projective in C and not a projective Λ-module, then the projective cover of X doesn’t belong
to C .
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(2) If X is Ext-injective in C not an injective Λ-module, then the injective envelope of X doesn’t belong
to C .

Corollary 3.7. Let (T ,F) be a torsion pair on Λ-mod and e0, e1 be two orthogonal idempotents of Λ.

(1) If F ∩ I(Λ) = add D(e0Λ), T ∩ P(Λ/Λe0Λ) = add(Λ/Λe0Λ)e1 , then T ∩ P(Λ) = addΛe1 ∩
Λ/Λe0Λ-mod.

(2) If T ∩ P(Λ) = addΛe0 , F ∩ I(Λ/Λe0Λ) = add D(e1(Λ/Λe0Λ)), then F ∩ I(Λ) = add D(e1Λ) ∩
Λ/Λe0Λ-mod.

Proof. We only prove (1). The proof of (2) is similar.
Since Λ is a basic artin algebra, add Λe1 consists of the projective covers of modules in

add(Λ/Λe0Λ)e1. Suppose 0 
= P ∈ T ∩ P(Λ). Then P ∈ Λ/Λe0Λ-mod since T ⊆ Λ/Λe0Λ-mod =
⊥(D(e0Λ)). On the other hand, P is Ext-projective in Λ/Λe0Λ-mod. So P ∈ add(Λ/Λe0Λ)e1. Since P
is the projective cover of itself, P ∈ addΛe1. Therefore, P ∈ addΛe1 ∩ Λ/Λe0Λ-mod.

Conversely, suppose 0 
= P ∈ add Λe1 ∩ Λ/Λe0Λ-mod. Then P is the projective cover for some X ∈
add(Λ/Λe0Λ)e1 which means X is Ext-projective in Λ/Λe0Λ-mod. By Lemma 3.6, P = X (otherwise,
P /∈ Λ/Λe0Λ-mod). Thus P ∈ T ∩P(Λ). �

Now we start to decompose torsion pairs by projective modules and injective modules. We
always assume that � = {e1, e2, . . . , en} is a fixed complete set of primitive orthogonal idempo-
tents of Λ. For m � 0, given S = {�0,�1,�2, . . . ,�m | �i ⊆ �} such that �1,�2, . . . ,�m 
= φ and

�i ∩ � j = φ for i 
= j, we define: for 0 � i � m, ei
S = ∑

e∈�i
e, εi

S = ∑i
j=0 e j

S ; Λ0
S = Λ,Λ1

S = Λ0
S

Λ0
S e0

S Λ0
S

=
Λ

Λε0
S Λ

, . . . ,Λm+1
S = Λm

S
Λm

S em
S Λm

S
= Λ

Λεm
S Λ

;Pi(Λ
i
S ) = Λi

S ei
S , Ii(Λ

i
S ) = D(ei

SΛ
i
S ).

Definition 3.8. Let S be as above. It is called a 1-type part partition of Λ if: (1) ∀2 � 2i � m and
e ∈ �2i , e2i−1

S Λ2i−1
S e 
= 0; (2) ∀3 � 2i + 1 � m and e ∈ �2i+1, eΛ2i

S e2i
S 
= 0.

Dually, S is called a 2-type part partition if: (1) ∀2 � 2i � m and e ∈ �2i , eΛ2i−1
S e2i−1

S 
= 0; (2) ∀3 �
2i + 1 � m and e ∈ �2i+1, e2i

S Λ2i
S e 
= 0.

Lemma 3.9. Let I be an ideal of Λ, and e, e′ be two idempotents. Then HomΛ((Λ/I) · e, D(e′ · Λ/I)) = 0 if
and only if e′ · Λ/I · e = 0.

Proof. It’s clear that HomΛ((Λ/I) · e, D(e′ ·Λ/I)) = HomΛ/I ((Λ/I) · e, D(e′ ·Λ/I)) = D(e′ ·Λ/I · e). �
We give the following notations for describing our theorem easily

M= {
(T ,F)

∣∣ (T ,F) is a torsion pair on Λ-mod
}
,

N= {(
S = {�0,�1,�2, . . . ,�m}, (T ′,F ′)) ∣∣ S is a 1-type part partition and(

T ′,F ′) ∈ E
(
Λm+1

S

)}
,

N′ = {(
S ′ = {

�′
0,�

′
1,�

′
2, . . . ,�

′
n

}
,
(
T ′′,F ′′)) ∣∣ S ′ is a 2-type part partition and(

T ′′,F ′′) ∈ E
(
Λn+1

S ′
)}

.

Now we are in a position to give a demonstration of how to decompose a torsion pair into a
torsion tuple by projective modules and injective modules.

Let (T ,F) be a torsion pair on Λ-mod.
Operation 1. Let T 0 = T , F0 = F , Λ0 = Λ, there exists a set �0 ⊆ � such that T 0 ∩ P(Λ0) =

add
⊕

e∈� Λ0e. Let e0 = ∑
e∈� e, P0(Λ

0) = Λ0e0, T 1 = T 0 ∩ (P0(Λ
0))⊥ , F1 = F0, Λ1 = Λ/Λe0Λ.
0 0



260 F. Kong et al. / Journal of Algebra 388 (2013) 248–267
Then (T 1,F1) is a torsion pair on Λ1-mod and T 1 ∩P(Λ1) = {0} by Corollary 3.5. Hence we have a
torsion 3-tuple (Gen P0(Λ

0),T 1,F1) on Λ-mod.
Operation 2. There exists �1 ⊆ � − �0 such that F1 ∩ I(Λ1) = add

⊕
e∈�1

D(eΛ1). Let e1 =∑
e∈�1

e, ε = e0 +e1, I1(Λ
1) = D(e1Λ1), T 2 = T 1, F2 =F1 ∩⊥I1(Λ

1), Λ2 = Λ/Λε1Λ. Then (T 2,F2)

is a torsion pair on Λ2-mod and F2 ∩ I(Λ2) = {0} by Corollary 3.5. Hence we have a torsion 4-tuple
(Gen P0(Λ

0),T 2,F2,Cogen I1(Λ
1)) on Λ-mod.

The above operations go on alternatively until we get m � 0 such that the torsion pair
(T m+1,Fm+1) ∈ E(Λm+1). Finally, we obtain the following.

(1) {�0,�1,�2, . . . ,�m | �i ⊆ �} such that �1,�2, . . . ,�m 
= φ and �i ∩ � j = φ for i 
= j.
(2) Λ = Λ0 → Λ1 → ·· · → Λm+1 is a series of quotient algebras.
(3) For 1 � 2i − 1 � m − 1, T 2i = T 2i−1, for 0 � 2i � m − 1, F2i+1 =F2i .
(4) For 1 � 2i − 1 � m, (T 2i−1,F2i−1) is a torsion pair on Λ2i−1-mod such that T 2i−1 ∩P(Λ2i−1) =

{0}. For 2 � 2 j � m, (T 2 j,F2 j) is a torsion pair on Λ2 j-mod such that F2 j ∩ I(Λ2 j) = {0}.
(5) (Gen P0(Λ

0),Gen P2(Λ
2), . . . ,T m+1,Fm+1, . . . ,Cogen I3(Λ

3),Cogen I1(Λ
1)) is a torsion (m + 3)-

tuple on Λ-mod.

Theorem 3.10. There is a one-to-one correspondence between M and N: M
F

GGGGBF GGGG

G
N.

Proof. Step 1. Let (T ,F) ∈ M. By using the above operation, we get for some m � 0, S =
{�0,�1,�2, . . . ,�m | �i ⊆ �} and (T m+1,Fm+1) ∈ E(Λm+1). We adopt the above notations, and
claim S is a 1-type part partition.

For 1 � 2i − 1 � m − 1, (T 2i−1,F2i−1) is a torsion pair on Λ2i−1-mod such that T 2i−1 ∩
P(Λ2i−1) = {0}, F2i−1 ∩ I(Λ2i−1) = add D(e2i−1Λ2i−1) and T 2i−1 ∩ P(Λ2i) = T 2i ∩ P(Λ2i) =
add Λ2ie2i . Thus by Corollary 3.7, we know T 2i−1 ∩P(Λ2i−1) = add Λ2i−1e2i ∩ Λ2i-mod. But T 2i−1 ∩
P(Λ2i−1) = {0}. Thus add Λ2i−1e2i ∩ Λ2i-mod = {0}. So for e ∈ �2i , Hom(Λ2i−1e2i−1,Λ2i−1e) 
= 0
which means e2i−1Λ2i−1e 
= 0.

Similarly for 2 � 2 j � m − 1, add D(e2 j+1Λ2 j) ∩ Λ2 j+1-mod = {0}. This means for e ∈ �2 j+1,
D(eΛ2 j) is not a Λ2 j+1-module. Thus HomΛ2 j (Λ2 je2 j, D(eΛ2 j)) 
= 0. Therefore eΛ2 je2 j 
= 0 by
Lemma 3.9.

Define F ((T ,F)) = (S, (T m+1,Fm+1)).
Step 2. Let m � 0 and (S = {�0,�1,�2, . . . ,�m}, (T ′,F ′)) ∈ N. Define

T i =
〈
Gen

( ⊕
i�2k�m

P2k
(
Λ2k

S

))
,T ′

〉
, F i =

〈
F ′,Cogen

( ⊕
i�2k+1�m

I2k+1
(
Λ2k+1

S

))〉

for 0 � i � m + 1. Then (T m+1,Fm+1) = (T ′,F ′) is a torsion pair on Λm+1
S -mod. Now suppose

for some 1 � 2i � m + 1, (T 2i,F2i) is a torsion pair on Λ2i
S -mod. By Lemma 3.2, (Λ2i-mod,

Cogen D(e2i−1
S Λ2i−1

S )) is a torsion pair on Λ2i−1
S -mod. Thus by Proposition 2.6, (T 2i,F2i,

Cogen D(e2i−1
S Λ2i−1

S )) is a torsion 3-tuple on Λ2i−1
S -mod. Thus by Theorem 2.13, (T 2i−1,F2i−1) =

(T 2i, 〈F2i,Cogen D(e2i−1
S Λ2i−1

S )〉) is a torsion pair on Λ2i−1
S -mod. Similarly, we have if for some

1 � 2i + 1 � m + 1, (T 2i+1,F2i+1) is a torsion pair on Λ2i+1
S -mod, then (T 2i,F2i) is a torsion pair

on Λ2i
S -mod. Therefore by induction, for 0 � i � m + 1, (T i,F i) is a torsion pair on Λi

S -mod. Define
G((S, (T ′,F ′))) = (T 0,F0).

Step 3. Given (T ,F) ∈M, it is clear that G F ((T ,F)) = (T ,F).
Step 4. Let m � 0 and (S = {�0,�1,�2, . . . ,�m}, (T ′,F ′)) ∈ N. We adopt the denotations in

Step 2, and claim that for 0 � 2i � m, T 2i ∩P(Λ2i
S ) = add P2i(Λ

2i
S ).

It’s clear that add P2i(Λ
2i
S ) ⊆ T 2i ∩ P(Λ2i

S ). Now suppose there exists some e ∈ � − ⋃
0�k�2i �k

such that Λ2i
S e ∈ T 2i . We know (Gen P2i(Λ

2i
S ),Gen P2i+2(Λ

2i+2
S ), . . . ,T ′,F ′, . . . ,Cogen I2i+1(Λ

2i+1
S )) is
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a torsion tuple on Λ2i
S -mod. By Proposition 3.4, there exists 2i + 2 � 2(i +k) � m such that e ∈ �2(i+k)

since Λ2i
S e ∈ T and T ′ has no nonzero Ext-projective modules in 〈T ′,F ′〉. Since S is a 1-type part

partition, e2i+2k−1
S Λ2i+2k−1

S e 
= 0. Thus e2i+2k−1
S Λ2i+2k−1

S e = Hom(Λ2i+2k−1
S e, D(e2i+2k−1Λ2i+2k−1

S )) 
=
0. And hence Hom(Λ2i

S e, D(e2i+2k−1Λ2i+2k−1
S )) 
= 0. So Λ2i

S e /∈ T 2i because D(e2i+2k−1Λ2i+2k−1
S ) ∈F2i .

This is a contradiction.
Similarly we have I(Λ2i+1

S ) ∩ F2i+1 = add I2i+1(Λ
2i+1
S ) for 1 � 2i + 1 � m. Therefore F G((S,

(T ′,F ′))) = (S, (T ′,F ′)). �
Dually, if we start to decompose a torsion pair from the right hand (torsion-free class), then we

have the following theorem.

Theorem 3.11. There is a one-to-one correspondence between M and N′: M
F ′

GGGGGBF GGGGG

G ′
N′ .

The following proposition demonstrates the relation between the above two kinds of decomposi-
tion.

Proposition 3.12. Let (T ,F) ∈ M, F ((T ,F)) = (S ′ = {�′
0,�

′
1,�

′
2, . . . ,�

′
u}, (T ′,F ′)) and F ′((T ,F)) =

(S ′′ = {�′′
0,�′′

1,�′′
2, . . . ,�′′

v}, (T ′′,F ′′)). Then (T ′,F ′) = (T ′′,F ′′).

Proof. First, we give the following notations for any given i � 0:

Li
S ′ = 〈

Gen P2 j
(
Λ

2 j
S ′

) ∣∣ 0 � 2 j � max{u, i}〉;
Ri

S ′ = 〈
Cogen I2 j+1

(
Λ

2 j+1
S ′

) ∣∣ 0 < 2 j + 1 � max{u, i}〉;
Li

S ′′ = 〈
Gen P2 j+1

(
Λ

2 j+1
S ′′

) ∣∣ 0 < 2 j + 1 � max{v, i}〉;
Ri

S ′′ = 〈
Cogen I2 j

(
Λ

2 j
S ′′

) ∣∣ 0 � 2 j � max{v, i}〉.
It’s clear that (Lu

S ′ ,T ′,F ′, Ru
S ′ ) is a torsion 4-tuple on Λ-mod and 〈Lu

S ′ ,T ′〉 = T , 〈F ′, Ru
S ′ 〉 = F .

Thus T ′ = T ∩ Λu+1
S ′ -mod,F ′ = F ∩ Λu+1

S ′ -mod. And (T ′′,F ′′) has the similar property. So we only

need to prove Λu+1
S ′ -mod = Λv+1

S ′′ -mod. For this we prove Lu
S ′ = Lv

S ′′ , Ru
S ′ = R v

S ′′ since Λu+1
S ′ -mod =

(Lu
S ′ )⊥ ∩ ⊥(Ru

S ′ ) and Λv+1
S ′′ -mod = (Lv

S ′′ )⊥ ∩ ⊥(R v
S ′′ ).

We suppose Λ
u+ j
S ′ = Λu+1

S ′ and Λ
v+ j
S ′′ = Λv+1

S ′′ for j � 1, and claim that ∀i � 0, L2i+1
S ′ ⊆ L2i+1

S ′′ ,
R2i

S ′ ⊆ R2i
S ′′ .

For i = 0, R0
S ′ = {0} ⊆ Cogen I0(Λ

0
S ′′ ) = R0

S ′′ , L1
S ′ = Gen P0(Λ

0
S ′ ) ⊆ Gen P1(Λ

1
S ′′ ) = L1

S ′′ since P0(Λ
0
S ′ ) ∈

add P1(Λ
1
S ′′ ).

Now we assume the claim holds for 0 � i � k − 1. Then Λ2k
S ′′ -mod is a full subcategory of

Λ2k−1
S ′ -mod since Λ2k−1

S ′ -mod = (L2k−2
S ′ )⊥ ∩ ⊥(R2k−3

S ′ ) and Λ2k
S ′′ -mod = (L2k−1

S ′′ )⊥ ∩ ⊥(R2k−2
S ′′ ).

Let 0 
= X ∈ add I2k−1(Λ
2k−1
S ′ ). So X is Ext-injective in Λ2k

S ′′ -mod. The torsion pair (F ∩ Λ2k
S ′′ -mod,

R2k−2
S ′′ ) on F induces the following canonical short exact sequence 0 → X1 → X → X2 → 0. Ap-

plying Hom(M,−) to it for M ∈ Λ2k
S ′′ -mod, we know that X1 is Ext-injective in Λ2k

S ′′ -mod. Thus

X1 ∈ add I2k(Λ
2k
S ′′ ). So X ∈ R2k

S ′′ . Therefore, R2k
S ′ ⊆ R2k

S ′′ , and similarly, we have L2k+1
S ′ ⊆ L2k+1

S ′′ .
Thus Lu

S ′ ⊆ Lv
S ′′ , Ru

S ′ ⊆ R v
S ′′ if we let i = u + v . Dually, Lv

S ′′ ⊆ Lu
S ′ , R v

S ′′ ⊆ Ru
S ′ . This completes the

proof. �
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4. Examples

In this section, we will characterize torsion pairs on some particular module categories. These
results will be related to some work in [3,4,11,5]. In this and next section, we always assume K is
an algebraically closed field of characteristic 0. If Q is a quiver and � ⊆ Q 0 where Q 0 is the set of
vertices of Q , then we denote the full sub-quiver of Q containing � by Q (�).

Definition 4.1. Let Q be a quiver, {�0,�1, . . . ,�m} a tuple of vertices such that �1, . . . ,�m 
= φ,
�i ∩ � j = φ for i 
= j.

(1) If for all 1 < 2i + 1 � m and v ∈ �2i+1 there is a path from some vertex in �2i to v in the
sub-quiver Q (Q 0 − �0 − �1 − · · · − �2i−1), and for 0 < 2i � m and v ∈ �2i there is a path
from v to some vertex in �2i−1 in the sub-quiver Q (Q 0 − �0 − �1 − · · · − �2i−2), then we call
{�0,�1, . . . ,�m} a 1-type part partition of Q .
The following diagram shows the relation:

�0 �2 �4 . . .

�1 �3 . . .

(2) Dually, we call {�0,�1, . . . ,�m} a 2-type part partition of Q if for all 1 < 2i + 1 � m and v ∈
�2i+1 there is a path from v to some vertex in �2i in the sub-quiver Q (Q 0 − �0 − �1 − · · · −
�2i−1), and for all 0 < 2i � m and v ∈ �2i there is a path from some vertex in �2i−1 to v in the
sub-quiver Q (Q 0 − �0 − �1 − · · · − �2i−2).
The following diagram shows the relation:

�1 �3 . . .

�0 �2 �4 . . .

If �0 ∪ · · · ∪ �m = Q 0 we also call {�0,�1, . . . ,�m} a complete partition.

Definition 4.2. Let Q be a quiver, {�0,�1, . . . ,�m} a tuple of vertices such that �1, . . . ,�m 
= φ,
�i ∩ � j = φ for i 
= j. If ∀i > 0, �2i−1 contains all sink points in Q (Q 0 − �0 − �1 − · · · − �2i−2),
�2i contains all source points in Q (Q 0 − �0 − �1 − · · · − �2i−1), then we call {�0,�1, . . . ,�m}
a strong 1-type part partition of Q . Dually, if ∀i > 0, �2i−1 contains all source points in Q (Q 0 −
�0 − �1 − · · · − �2i−2), �2i contains all sink points in Q (Q 0 − �0 − �1 − · · · − �2i−1), then we call
{�0,�1, . . . ,�m} a strong 2-type part partition of Q .

Lemma 4.3. Let Q be a quiver and {�0,�1, . . . ,�m} a strong 1-type part partition of Q . Then {�0,�1, . . . ,

�m} is a 1-type part partition of Q .
Dually, if {�0,�1, . . . ,�m} is a strong 2-type part partition of Q , then it is also a 2-type part partition

of Q .

For a quiver Q , we denote E(K Q ) by E(Q ). Now we have the following theorem which is the
path algebra’s version of Theorem 3.10.
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Theorem 4.4. Let Q be an acyclic quiver. Then we have a bijection between the set of torsion pairs on K Q -mod
and the set of the pair ({�0,�1, . . . ,�m}, (T ′,F ′)), where {�0,�1, . . . ,�m} is a 1-type part partition of Q
and (T ′,F ′) ∈ E(Q (Q 0 − �0 − �1 − · · · − �m)).

The dual form of the theorem is similar, we omit it here. Now let An be the following quiver:
1 → 2 → 3 → ·· · → n. Applying the above theorem to the quiver An , we have the following theorem.

Theorem 4.5. There exists a bijection between torsion pairs on K An-mod and strong 1-type complete partition
sets of An.

Proof. It is easy to see E(K Am) = φ for m � 1 since K Am has a nonzero projective–injective module.
And any 1-type part partition of An is a complete partition if and only if it is also a strong 1-type
complete partition. The rest is clear by the above theorem. �

Clearly, there is a dual form for this theorem. We also omit it here.

Proposition 4.6. The number of torsion pairs on K An is the (n + 1)-th Catalan number Cn+1 = 1
n+2

(2n+2
n+1

)
.

Proof. Adding one vertex to An , then we get the quiver An+1 : 1 → 2 → 3 → ·· · → n → n + 1. We
have a torsion pair on K An+1-mod: (K An-mod,P(K An+1)). From [10], a torsion pair (T ,F) on
K An+1-mod is induced by a cotilting module if and only if P(K An+1) ⊆ F . So we have a bijection
between torsion pairs on K An-mod and torsion pairs induced by cotilting modules on K An+1-mod
by Proposition 2.20. The number of torsion pairs induced by cotilting modules on K An+1-mod is well
known which is the (n + 1)-th Catalan number [5, Lemma A.1].

Let Λ be an artin algebra, {C} ∪ {Ci, i ∈ I} a set of full subcategories of Λ-mod which are closed
under direct summands and extensions. If IndC = ⋃

i∈I IndCi and Ci ∩ C j = {0} for i 
= j, then we call
C a direct sum of Ci for i ∈ I , and denote C = ⊕

i∈I Ci . The following lemma is clear. �
Lemma 4.7. Let C and Ci be defined as above. If Hom(Ci,C j) = 0 for i 
= j, then there exists a bijection between
torsion pairs on C and the tuple {(Ti,Fi)}i∈I where (Ti,Fi) is a torsion pair on Ci .

Proof. Given (T ,F) a torsion pair on C , then (T ∩ Ci,F ∩ Ci)i∈I is the corresponding tuple. Given the
tuple (Ti,Fi)i∈I where (Ti,Fi) is a torsion pair on Ci , then (

⊕
i∈I Ti,

⊕
i∈I Fi) is the corresponding

torsion pair. �
Let Ãn be a direct cycle with arrows 1 → 2,2 → 3, . . . ,n − 1 → n,n → 1, and J the ideal of K Ãn

generated by all arrows. We call a finite-dimensional K Ãn-module M is an ordinary module if there
exists N � 1 such that J N M = 0. In this condition M is a K Ãn/ J N -module. So if M is indecomposable,
then it is uniserial and determined by its socle and length. Let En be the category of all ordinary
modules. Then En is a Serre class of K Ãn-mod. We denote the simple module corresponding to the
vertex vi by Si . The following definition has been introduced in [3].

Definition 4.8. Let � ∈ ( Ãn)0. We define Ray(�) = {M ∈ En | socle(M) ∈ add
⊕

vi∈� Si}, Coray(�) =
{M ∈ En | top(M) ∈ add

⊕
vi∈� Si}.

For a subcategory D of En . Let LD = {vi ∈ ( Ãn)0 | # Ind(D ∩ Coray({vi})) = ∞}, RD = {vi ∈ ( Ãn)0 |
# Ind(D ∩ Ray({vi})) = ∞}.

The following lemma is clear by the definition of torsion pairs.

Lemma 4.9. Let φ 
= � ⊆ ( Ãn)0 . Then (Coray(�), Ãn(( Ãn)0 −�)-mod) and ( Ãn(( Ãn)0 −�)-mod,Ray(�))

are both torsion pairs on En.
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The following lemma is from [3, 4.5].

Lemma 4.10. Let (T ,F) be a torsion pair on En. Then LT ∪ RF 
= φ.

Now we have the following proposition which gives all torsion pairs on En .

Proposition 4.11. The following are all pairwise different torsion pairs on En which are classified as two kinds.

(1) (Coray(�) ⊕ T ′,F ′) for some φ 
= � ⊆ ( Ãn)0 and (T ′,F ′) which is a torsion pair on Ãn(( Ãn)0 − �)

-mod induced by a cotilting Ãn(( Ãn)0 − �)-module.
(2) (T ′,F ′ ⊕ Ray(�)) for some φ 
= � ⊆ ( Ãn)0 and (T ′,F ′) which is a torsion pair on Ãn(( Ãn)0 −�)-mod

induced by a tilting Ãn(( Ãn)0 − �)-module.

Proof. Let (T ,F) be a torsion pair on En and LT 
= φ. Then we know that Coray(LT ) ⊆ T since T is
closed under quotients. Thus {(Coray(LT ), Ãn(( Ãn)0 − LT )-mod), (T ,F)} is a chain of torsion classes.
Let T ′ = Ãn(( Ãn)0 − LT )-mod ∩ T ,F ′ = F . Then (T ′,F ′) is a torsion pair on Ãn(( Ãn)0 − LT )-mod
and T = 〈Coray(LT ),T ′〉. Note that P( Ãn(( Ãn)0 − LT )) ⊆ F ′ (if not, then LT � L〈Coray(LT ),T ′〉). Thus
(T ′,F ′) is induced by a cotilting Ãn(( Ãn)0 − LT )-module and 〈Coray(LT ),T ′〉 = Coray(LT ) ⊕ T ′ .

On the other hand, let φ 
= � ⊆ ( Ãn)0 and (T ′,F ′) be a torsion pair on Ãn(( Ãn)0 − �)-mod in-
duced by a cotilting Ãn(( Ãn)0 −�)-module. Since (Coray(LT ), Ãn(( Ãn)0 −�)-mod) is a torsion pair on
En and 〈Coray(�),T ′〉 = Coray(�) ⊕ T ′ , (Coray(�) ⊕ T ′,F ′) is a torsion pair on En by Theorem 2.13.
Meanwhile, LCoray(�)⊕T ′ = �, T ′ = (Coray(�) ⊕ T ′) ∩ Ãn(( Ãn)0 − �)-mod, thus the different vertex
sets � (or (T ′,F ′)) generate different torsion pairs.

The other half is similar. �
Since φ 
= �, we know Ãn(( Ãn)0 − �)-mod is a direct sum of module categories of Am-type al-

gebras. So by Lemma 4.7 the torsion pair is easily obtained. Theorem 4.5 and its dual form give the
structure of torsion pairs on Am-type algebras. Thus we can obtain the structure of torsion pairs
on En .

Theorem 4.12.

(1) There is a bijection between the set of the torsion pair (T ,F) on En with LT 
= φ and the set of the strong
1-type complete partition {�,�1, . . . ,�m} of Ãn with � not empty.

(2) There is a bijection between the set of the torsion pairs (T ,F) on En with RF 
= φ and the set of the
strong 2-type complete partition {�,�1, . . . ,�m} of Ãn with � not empty.

Proof. We only prove (1). The proof of (2) is similar.
By Proposition 4.11, a torsion pair (T ,F) on En with LT 
= φ can be uniquely written as

(Coray(�) ⊕ T ′,F ′) for some φ 
= � ⊆ ( Ãn)0 and (T ′,F ′) which is a torsion pair on
Ãn(( Ãn)0 − �)-mod induced by a cotilting Ãn(( Ãn)0 − �)-module. Since Ãn(( Ãn)0 − �)-mod is a
direct sum of module categories of Am-type algebras, it is uniquely corresponding to a strong 2-type
complete partition (�1, . . . ,�m) of Ãn(( Ãn)0 − �) by the dual form of Theorem 4.5. Moreover, since
P( Ãn(( Ãn)0 −�)) ⊆F ′ , all sink points of Ãn(( Ãn)0 −�) should belong to �1. Thus {�0,�1, . . . ,�m}
is a strong 1-type complete partition of Ãn . �
5. Torsion pairs on hereditary algebras

In this section we assume Q is an acyclic quiver, denote the Auslander–Reiten translation by τ , its
quasi-inverse by τ− , let P(Q ) = P(K Q ), I(Q ) = I(K Q ). We try to apply the results in the formal
sections to study the structure of torsion pairs on K Q -mod. The following two lemmas are well
known.
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Lemma 5.1. Let 0 → A → B → C → 0 be a short exact sequence on kQ -mod.

(1) If add A ∩P(Q ) = {0}, then it induces a short exact sequence 0 → τ A → τ B → τC → 0.
(2) If add C ∩ I(Q ) = {0}, then it induces a short exact sequence 0 → τ− A → τ−B → τ−C → 0.

Proof. Note that τ = D Ext1
K Q (−, K Q ). Thus applying HomK Q (−, K Q ) to the exact sequence, we

obtain 0 → τ A → τ B → τC → 0. The proof of (2) is similar. �
Lemma 5.2. Suppose X, Y ∈ kQ -mod.

(1) If add X ∩P(Q ) = {0}, then Hom(X, Y ) ∼= Hom(τ X, τ Y ).
(2) If add Y ∩ I(Q ) = {0}, then Hom(X, Y ) ∼= Hom(τ− X, τ−Y ).

We denote the set of torsion pairs on K Q -mod(T ,F) such that I(Q ) ⊆ T by F1(Q ) and the set
of torsion pairs on K Q -mod(T ,F) such that P(Q ) ⊆ F by F2(Q ). And let F(Q ) = F1(Q ) ∪ F2(Q ).
It is obvious that E(Q ) = F1(Q ) ∩ F2(Q ). As a consequence of the above two lemmas, we have the
following proposition.

Proposition 5.3. There is a one-to-one correspondence:

F1(Q )
σ−

GGGGGGBF GGGGGG

σ
F2(Q )

such that ∀(T ′,F ′) ∈ F1(Q ), σ−(T ′,F ′) = (τ−T ′, τ−F ′ ⊕ P(Q )); ∀(T ′′,F ′′) ∈ F2(Q ), σ(T ′′,F ′′) =
(I(Q ) ⊕ τT ′′, τF ′′).

Proof. We just prove that ∀(T ′,F ′) ∈ F1, (τ−T ′, τ−F ′ ⊕ P(Q )) is a torsion pair on K Q -mod. By
Lemma 5.2, we know ∀X ∈ T ′ , Y ∈ F ′ , Hom(τ− X, τ−Y ) ∼= Hom(X, Y ) = {0}. By Lemma 5.1, every in-
decomposable non-projective module has a suitable decomposition by the pair (τ−T ′, τ−F ′ ⊕P(Q )).
Thus it is a torsion pair on K Q -mod. �

Just like the Auslander–Reiten translation, σ− and σ define a translation on F (Q ). Given (T ,F) ∈
F (Q ), if I(Q ) ⊆ T , then let σ−(T ,F) = (τ−T , τ−F ⊕ P(Q )); if P(Q ) ⊆ F , then let σ(T ,F) =
(τT ⊕ I(Q ), τF). This translation defines σ -obits for elements in F(Q ). We use [T ,F ] to denote
the σ -obit of (T ,F).

Definition 5.4. Let (T ,F) ∈ F(Q ). We call the elements in [T ,F ] ∩ (F2(Q ) − F1(Q )) source points of
[T ,F ], the elements in [T ,F ] ∩ (F1(Q ) − F2(Q )) sink points of [T ,F ].

The following corollary is obvious and indicates that we can consider the σ -obit of elements in
E(Q ) to continue the decomposition in Theorem 4.4.

Lemma 5.5. Let (T ,F) ∈ F(Q ). Then [T ,F ] has at most one source point and at most one sink point. If
(T ,F) is a source point, then F ∩ I(Q ) 
= φ. If (T ,F) is a sink point, then T ∩P(Q ) 
= φ.

We denote by P∞(Q ) the full subcategory of preprojective K Q -modules, by I∞(Q ) the full sub-
category of preinjective K Q -modules, by R(Q ) the full subcategory of regular K Q -modules.

Proposition 5.6. Let (T ,F) ∈ F(Q ). Then:

(1) [T ,F ] has a source point but no sink point ⇔ for every (T ′,F ′) ∈ [T ,F ], I∞(Q ) ∩ F ′ 
= φ and
P∞(Q ) ⊆F ′ .
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(2) [T ,F ] has a sink point but no source point ⇔ for every (T ′,F ′) ∈ [T ,F ], P∞(Q ) ∩ T 
= φ and
I∞(Q ) ⊆ T ′ .

(3) [T ,F ] has a sink point and a source point ⇔ for every (T ′,F ′) ∈ [T ,F ], I∞(Q )∩F 
= φ andP∞(Q )∩
T 
= φ.

(4) [T ,F ] has no sink point and no source point ⇔ for every (T ′,F ′) ∈ [T ,F ], I∞(Q ) ⊆ T ′ , and
P∞(Q ) ⊆F ′ .

We denote the set of torsion pairs (T ,F) on K Q -mod such that I∞(Q ) ⊆ T , and P∞(Q ) ⊆ F
by H(Q ). So it is obvious that H(Q ) ⊆ E(Q ). We denote the set of torsion pairs on R(Q ) by R(Q ).
We have the following obvious lemma.

Lemma 5.7. There is a one-to-one correspondence:

H(Q )
F

GGGGBF GGGG

F −
R(Q )

such that ∀(T ,F) ∈ H(Q ), F ((T ,F)) = (T ∩ R(Q ),F ∩ R(Q )); ∀(T ′,F)′ ∈ R(Q ), F −((T ′,F ′)) =
(T ′ ⊕ I∞(Q ),F ′ ⊕P∞(Q )).

Suppose (T ,F) ∈ F(Q ) ∩ E(Q ) and [T ,F ] has at least one sink point or one source point. We
define the following operation Φ:

Case 1. If [T ,F ] has a sink point, then we denote the sink point by Φ((T ,F));
Case 2. If [T ,F ] has a source point but no sink point, then we denote the source point by

Φ((T ,F)).
Then we can apply the operations defined in Theorem 3.10 to Φ((T ,F)) to continue the decom-

position. For any torsion pair on K Q -mod we use the two kinds of operation alternatively. At last we
get a new torsion pair in H(Q ′) for some sub-quiver Q ′ of Q . This process is unique, and invertible
by Theorem 4.4 and Proposition 5.3.

From now on we suppose Q is an acyclic quiver with a Euclid ground graph. We study the struc-
ture of all the torsion pairs in R(Q ). The following definition and two lemmas are from [7].

Definition 5.8. Suppose X ∈ K Q -mod. Then Q is regular uniserial if there are regular submodules
0 = X0 ⊂ X1 ⊂ · · · ⊂ Xr = X and these are the only regular submodules of X .

Lemma 5.9. If θ : X → Y with X, Y regular K Q -modules, then Im(θ), Ker(θ) and Coker(θ) are regular.

Lemma 5.10. Every indecomposable regular K Q -module is regular universal.

As a consequence we have

Corollary 5.11. If K Q is a Euclid-type algebra, X is a regular module, then the quotient modules of X forms a
chain: X = Xr � · · · � X1 � X0 .

Corollary 5.12. Let K Q be a Euclid-type algebra, f : X → Y an injective homomorphism such that X is a
maximal regular submodule of the indecomposable regular module of Y . Then f is an irreducible morphism.

Proof. X is indecomposable by Lemma 5.10. Suppose g : X → Z , h : Z → Y satisfy f = hg . Then by
Lemma 5.10, there is an indecomposable direct summand Z ′ of Z such that ∃g′ : X → Z ′ , h : Z ′ → Y
such that h′ g′ is an injective morphism. Therefore Z ′ is a regular module since ⊥R(Q ) = I∞(Q ),
R(Q )⊥ = P∞(Q ). Since X , Y and Z ′ are regular universal, h′ is an isomorphism or g′ is an isomor-
phism. �
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Now let R(Q ) = ⊕
i∈I Ri(Q ) where {Ri(Q ), i ∈ I} is a set of minimal additive categories con-

taining a connected component consisting of regular modules in AR-quiver of K Q . We denote the set
of torsion pairs on Ri(Q ) by Ri(Q ). By Lemma 4.7, we have the following.

Corollary 5.13. There exists a bijection between R(Q ) and the set of tuples {(Ti,Fi)}i∈I with (Ti,Fi) ∈ Ri(Q ).

Proof. Let X ∈ Ri(Q ). Then all regular submodules and all regular quotient modules of X are in
Ri(Q ) by the above corollary and its dual form. So we know if i 
= j, then Hom(X, Y ) = 0, ∀X ∈
Ri(Q ) and Y ∈R j(Q ). The rest is clear by Lemma 4.7. �

By [7], a nonzero indecomposable regular K Q -module is called a regular simple module if and
only if it has no non-trivial regular submodules. And the number of nonzero regular submodules of
an indecomposable regular module is called its regular length.

Now we start to demonstrate Ri(Q ). Suppose Ri(Q ) has n regular simple modules: S1, S2, . . . ,

Sn−1, Sn where Si+1 = τ Si for 1 � i � n − 1 and τ Sn = S1. Let Ãn be the quiver in Section 4 and
S ′

1, S ′
2, . . . , S ′

n are the correspondent simple modules to the vertices. Then we construct a map:
F (S ′

i) = Si . Then F induces a one-to-one correspondence En → Ri(Q ) such that if X ∈ En and is
indecomposable with the length m and top S ′

i , then F (X) is the indecomposable regular module with
the regular length m and top Si . We have the following proposition.

Proposition 5.14. F induces a one-to-one correspondence between the set of torsion pairs on En and Ri(Q ).

Proof. Since the modules in Ri(Q ) are regular universe, we have the following assertions

(1) ∀X , Y ∈ En,Hom(X, Y ) = 0 if and only if Hom(F (X), F (Y )) = 0;
(2) Suppose Y ∈ En and X is a submodule of Y . Then F (Y /X) = F (Y )/F (X).

Thus F induces a one-to-one correspondence between the set of torsion pairs on En and Ri(Q ). �
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