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1. Introduction

The concept of torsion pair on abelian category was introduced by Dickson in 1966 [8]. From
that time on, torsion pair has become a useful tool to study the structure of module categories.
However, it seems there is no useful way to find all torsion pairs of a given algebra, although there
are indeed some ways to construct torsion pairs among which the most well known is the tilting
theory. As a trial, we try to find a way to obtain all torsion pairs of hereditary algebras. This topic is
also discussed by Assem and Kerner in [1] where they classify and characterize the torsion pairs of
hereditary algebras by partial tilting modules.

In Section 2, we study the general theory where we introduce torsion n + 1-tuple as a general-
ization of torsion pair and study its structure which would be used in the later sections frequently.
The main skill in this section is from [12] and [6] where they study HN-filtration for some categories.
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It is helpful to study this finer structure of module categories. For example perpendicular category [9]
can be viewed to be obtained by a torsion 3-tuple.

In [1], Assem and Kerner show a relation between some particular partial tilting modules and
torsion pairs. In Section 3, we adopt their ways by restricting to projective modules and injective
modules to try to decompose all torsion pairs. We give a method for how to decompose a classic
torsion pair to torsion n + 1-tuple and find their correspondence.

In Section 4, we apply the theory in Section 3 to path algebras. As examples, we obtain all the
torsion pairs on path algebra KA, and tube categories. This topic also has been studied in [3] and [5].
But we think our results would be clearer in some aspects.

Section 5 is devoted to obtain all torsion pairs of hereditary algebras. We define an operation
called the translation of torsion pairs. Combining this with the operation developed in Sections 3
and 4, the issue comes down to find all torsion pairs on regular component. For tame hereditary
algebras, this problem is equivalent to calculate all torsion pairs on the tube categories in Sec-
tion 4.

If there is no special instruction, all modules are assumed to be finitely generated left modules.
For an artin algebra A, we denote by A-mod the category of all finitely generated left A-modules, by
P(A) the full subcategory of all projective A-modules, by Z(A) the full subcategory of all injective
A-modules. If D is a full subcategory of A-mod, then we denote by +D the full subcategory of
A-mod{M € A-mod | Hom(M, N) =0, VN € D}, by D+ the full subcategory of A-mod{N € A-mod |
Hom(M, N) =0, VM € D}, and by Ind D the set of nonzero pairwise non-isomorphic indecomposable
modules in D. Subcategories are always assumed to be closed under isomorphism.

2. Torsion n + 1-tuple
In this section, we assume that A is an artin algebra and C is an extension-closed full subcategory
of A-mod. If C1,C,...,C, are full subcategories of A-mod, then we denote the minimal extension-

closed full subcategory containing Cq,Ca,...,Cy by (C1,Ca,...,Cy). The following definition is well
known but slightly different from that in [2].

Definition 2.1. A pair (7, F) of full subcategories of C is called a torsion pair on C if the following
conditions are satisfied.

(1) Hom(X,Y)=0forall X7, Y e F.
(2) VX €, there exists a short exact sequence on A-mod

0> Xr—=>X—->Xr—>0
such that X7 €7 and Xr € F.
Remark 2.2.

(1) Let (7, F) be a torsion pair on C. Then T =1FNC; F=T+NC; T and F are closed under
extensions.

(2) It is well known that the exact sequence is unique up to isomorphism. So we call it a canonical
short exact sequence of X induced by (7, F).

Definition 2.3. Let n > 1. An n+ 1-tuple (Cq,Ca, ..., Cr+1) of full subcategories of C is called a torsion
n+ 1-tuple on C if the following conditions are satisfied.

(1) ¢ :CﬂL(Cz,...,Cn_H), Ci:Cﬂ(C1,...,C,;])lﬂL(CiJr],...,Cn_H) fori=2,...,n,Chs1 =CnN
(C1,....C)"%
(2) (Cq,...,Ci), {Cix1,...,Cnry1)) is a torsion pairon C fori=1,2,...,n.

Moreover, if (1) is not satisfied, we call it a defect torsion n + 1-tuple on C.
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Remark 2.4.

(1) The torsion pair is a torsion 2-tuple.
(2) We abbreviate the condition (1) as that C; =C N (Cy,...,Ci—1)t N+ (Ciz1,...,Cnpq) for i =
1,...,n+ 1. The similar way would be used in the rest of the section.

Lemma 2.5. Let C1, Cy, C3 be full subcategories of A-mod. Then

(1) {C1,C2,C3) = ({C1,C2),C3) = (C1,{C2,C3));
(2) H(C1,C) =+C1NLCy, (Cr, Ca)t =01t ﬂCj-;
(3) ey ="*C, et =at

Propositiop 2.6. Let (CJ ,C2,...,Cnq1) beatorsionn+1-tupleonC (n # 1). Angiforson}e i=1,2,...,n+1,
k=#1,let (C1,Cy,...,Cks1) be atorsion k+ 1-tuple on C;. Then (Cq, ...,Ci—1,C1, ..., Ckt1, Cix1s -« Cny1)
is a torsion n + k + 1-tuple on C.

Proof. Step 1. Because C; = <é1,52, e (fk+1), thus if Cs € {C1,Ca,...,Ci_1}, then

cNiCr,...,C—1) Nt (Csi1,...,Ci1,Cry oo, Cis1, Cists -+, Cap1) =Cs.

Similar argument holds for Cs € {Cit1, ..., Cn+1}-
If Cs € {C] ,Co\ .t Ck+‘1}, then

CN{Ct, ..y Cio1,Cry s Csm1) - N (Csits o, Chpts -, Cigts oo, Crt1)
=CN{Cr, .., Cie) N (Cry e Com) N Gty o Crr1) N (Cigts -+, Crgt)

=CiN{Cr,....Co-1)" N (Cst1, ..., Chy1) =Cs.

Step 2. Let 1 < s <k. We claim that ((Cq, ..., Cs), (5s+1, ...,Cnt1)) is a torsion pair on C.
Given X € C, the torsion pair ({Cq,...,Ci—1),{Ci,...,Cnps1)) on C induces a canonical short exact
sequence

0— X; 5% x T X, 0.

For X, consider the canonical short exact sequence induced by the torsion pair ({Cq,...,C;),
Cix1, -+, Cny1))

0— X35 Xy ™ X, — 0.

Because X3 € (C1,...,Ci_1)* since Xy € (C1,...,Ci_1)t, s0o X3€CN{(C1,...,Ci_1) N+ {Cit1, ...,
Cns1) =Ci. B o B

For X3, the torsion pair ((C1,...,Cs), (Cs+1,-..,Ckt1)) on C; induces a canonical short exact se-
quence

0— X5 2 X3 2 Xg — 0.
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By push-out of iy and 3, we have the following commutative diagram

0 0
X5 X5
ok
0 X3 —2 5 x, -2, x, 0
m) i |
0 X6 Xr X4 0
0 0

Hence we have a short exact sequence

0— Xs % X, ™5 X7 — 0

such that Xr € (és+1, ...,C~k+1,C,'+1, o, Cng1).
By pull-back of iy and 71, we have the following commutative diagram

0 0
l
0 X1 X7 X5 0
| | [i
0 X1 X X2 0
i1 s
l i
Xr Xr
| !
0 0

Hence we have the following exact sequence

0> X7 —>X—>Xr—0
such that X7 € (C1,...,Cs) and Xr € ((,;5+1,...,Cn+1). O
Now we give the following definition which is helpful to learn the structure of torsion n+ 1-tuple.

Definition 2.7. For n > 1, series {(71, F1), (T2, F2), ..., (Tn, Fn)} of torsion pairs on C are called a
chain of torsion classes of length n if 77 €7, C--- C 7, (equivalently, 71 2 F, 2 --- 2 Fp).
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Remark 2.8. For convenience, we take the denotation: Fo = Tp+1 =C, Fny1 = To = {0}. This assump-
tion will simplify some descriptions.

Definition 2.9. Let (7,F) be a torsion pair on C, and D be a subcategory of C. We call
(D}T,]_-)(D),D%T’}-)(D)) a decomposition of D along (7 ,F), where D}T!}-)(D) = {X | 3 exact
sequence 0 > X > M —>Y > 0with Xe7T, YeF, MeD} D%T’F)(D) = {Y | 3 exact sequence
0->X—>M-—->Y—>0withXeT, YeF, MeD}.

Lemma 2.10. If {(77, F1), (T2, F2)} is a chain of torsion classes of length 2 on C, then

FiNT2 =D 7,(T2) =Dig 5, (F1).

Proof. /1N7T, C Dfﬁ }-])(7'2) is clear. Now given X € 75, consider the canonical short exact sequence
induced by (71, F1)

0= X1, > X—> X5 —0.

However Xr, € 7 since so is X. Thus Xz, € 7 N Fq. Hence F1N'T; 2 Dle f])(ﬁ).
The other half is similar. O

Chain of torsion classes will induce filtrations for modules in C as following.

Proposition 2.11. Let {(71, F1), (T2, F2), ..., (Tn, Fn)} be a chain of torsion classes of lengthn on C(n > 1).
Then for every module X in C, there is a filtration

0 —— Xp X1 Xnp1 ——

S

S1 Snt+1

such that 0 - X; — Xjy1 — Siy1 — 0 is an exact sequence, Si+1 € Fi N Tit1 and Xi4q € Tipq fori=
0,1,2,...,n

Proof. Using induction on n. For n =1, it’s clear. Now suppose the proposition holds for n =k for
some k > 1. Let us consider n =k + 1. For X € C, (Tg+1, Fk+1) induces the following canonical short
exact sequence

0— Xgy1 = X — Sg42— 0.

Because {(71, F1), (T2, F2), ..., (Tx, Fi)} is a chain of torsion classes of length k on C, by induc-
tion, there is a filtration

0 fr— XO Xl e Xk Xk+1

Y

S1 Sk Sk+1

KXk+1
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such that 0 - X; — Xj;1 — Siz1 — 0 is a short exact sequence for i =0,1,2,...,k, and S1 € 71,
SieFioinTifor1<i<k+1, Sgq € Fiy Xi € Ti for 1 <i<k+ 1. Thus Sgy1 € Fr N Tryq1 since
Xik+1 € Ti1. So we get the desired filtration. O

In fact the above filtration is unique up to isomorphism since all decompositions induced by tor-
sion pairs are canonical. So we say this is a canonical filtration (or decomposition) induced by the
chain of torsion classes.

Proposition 2.12. If {(T1, F1), (T2, F2), ..., (Tn, Fn)} is a chain of torsion classes of lengthn on C(n > 1),
then Fi N Tipk = (Fi N Tix1, Fir1 N Tig2s oo Figk—1 N Tipp) for0 i <i+k<n+ 1.

Proof. For X € F;N 7T, by Proposition 2.11, the chain of torsion classes induces a canonical filtration
of X

0—— Xo--- Xit1 Xitk Xnp1 ——

7 e e

Sit1 Sitk Sn+1

Since Xj1 is a submodule of X, Xj;1 € F;. And because X; € T;, so Hom(X;j, Xj+1) =0, thus X; =0
since it is a submodule of Xj;1. Thus S;=S,=---=5;=0.

Ifi+k <n+1, then Hom(Xp41, Spt1) =0 since Xpy1 = X € Tiyx and Spiq € Fp. S0 Sp1 =0
and X, = Xp4+1 = X since Sp4+1 is a quotient module of X. Similarly, we have Si y11 =Sijp2=---=
Sn=0. Thus X € (Fi N Tix1, Fir1 N Tiv2, o Figkee1 O Tigk)-

The other direction is clear. O

The following demonstrates the relation between torsion n + 1-tuple and chain of torsion classes
of length n.

Theorem 2.13. There is a one-to-one correspondence between the set of chains of torsion classes of length n
on C and the set of torsion n + 1-tupleson C(n > 1)

(71, 7)., (Ta, F) }: @ .Gl Cogr):
chain of torsion classes of lengthn | ~ torsion n + 1-tuple

B

such that «({(T1, F1), (T2, F2), ..., (T, F)) = (i, F1 0N Ta, oo, Fae1 N Ty Fn) and B((Cq,Ca, ...,
Cor1) ={({C1,....Ci),{Ci,...,Car1) |1 =1,2,...,n}.

Proof. Step 1. Claim: (77, F1 N T2, ..., Fy) is a torsion n + 1-tuple on C.

MFanTi=CnTHhncntF=CnT HntF=Cn(T,FinTa... . FiaN T}t N
H(FiNTiz1,..., Fn) by Proposition 2.12.
(2) Obviously, (71, F1 N T2, ..., Fi-1 N i), AFi N Tiga, - Fa)) = (Ti, Fi).

Step 2. It's clear that {({C1,...,C;),{Ci,...,Cht1)) |1 =1,2,...,n} is a chain of torsion classes of
length n on C.

Step 3. Ba({(T1, F1), (T2, F2), ..., (Tn, F)}) = BW(T1, Fa N T, ..o Fum1 N Ty F)) = {(Th, F1),
(T2, F2), ..., (T, Fn)} by Proposition 2.12.

Step 4. aB((C1,Ca,...,Cny1)) = a({({C1,....Ci), Cix1, .-, CnaD} 11 =1,2,...,n) = (Ci, ...,
Cox1) N (C1,....C) i=1,2,....n+ 1) =CN{C1h....C1)" N Ci1,.. .. Cnp1) |1 =1,2,...,
Tl+1)=(C1,Cz,...,Cn+1). O
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The following is another characterization of torsion n-tuples.

Proposition 2.14. Let C1, Cy, . .., Ch+1 be full subcategories of C. Then we have (C1,C3, ..., Cpy1) is a torsion
n + 1-tuple on C if and only if

(1) Hom(X,Y)=0for XeC;,YeCj,1<i<j<n+ 1
(2) For X €C, there is a filtration

0 —— Xo Xi Xpy1 =——

S

S1 Sny1

such that 0 — X; — Xjy1 — Sit+1 — 0is a short exact sequence with Si11 € Ciy1 for0 <i<n.

Proof. Step 1. Suppose (C1,Ca,...,Chs1) is a torsion n + 1-tuple on C. Let 7; =(Cy,...,C;) and F; =
(Cit1,...,Cny1) for i=1,2,...,n. Then by Theorem 2.13 we know {(771, F1), (T2, F2), ..., (Tn, Fn)}
is a chain of torsion classes of length n and C; = F;_1 N7; for 1 <i<n+ 1. Hence, given X €C, the
canonical filtration of X induced by the chain of torsion classes is the desired in (2).

Step 2. Conversely, suppose the tuple (C1,Ca, ..., Cyy1) satisfies (1) and (2).

Let 1<i<n+1.For XeCN(Ci,...,Ci—1)- NL(Cit1,...,Cns1), by (2), there is a filtration

O:XO Xl N XI X,+1 e Xn+]7x
S Si Sit1 Snt1
such that 0 - X; — Xj4+1 — Siy1 — 0 is an exact sequence and S;y1 € Cj41 for 0 <i < n. Just like
the proof of Proposition 2.12, we have Xp =X =---=Xj_1 =0 and X; = Xj41=---= Xp+1 = X. So
X = X; =S; €C;. Thus it's clear that C; =CN{(Cy,...,Ci—1)" N (Ciy1,...,Cop1) fori=1,2,...,n+1.
Now we show that fori=1,2,...,n, ({(C1,...,Ci), (Cit1,...,Cny1)) is a torsion pair on C. It's clear

that Hom({Cy, ..., Ci), {Cit+1, - - -, Cnt+1)) = 0. Now given X € C, then there is a filtration of X as above.
And it is clear that X; € (C1,...,C;). We claim that X/X; € (Cit+1,-..,Cnt1).
In fact, by Snake Lemma we have the following commutative diagram

0 0
| |
0 Xi Xit1 Sim —— 0
| l |
0 Xi Xit2 Xit2/Xi — 0
| |
Sit2 Siy2
| |
0 0

Hence Xi.2/X; € (Cit1,Ciy2).
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Inductively, we obtain that Xjx/Xi € (Ciy1,...,Ck) for 1 <k <n+1—1i, especially, Xp11/X; €
(Cixt1s -+, Cnt1). 0= Xj — Xpt1 — Xpy1/Xi — 0 is the desired short exact sequence. O

The above filtration is also unique up to isomorphism since it is isomorphic to the filtration
induced by the corresponding chain of torsion classes. We call it a canonical filtration (or decom-
position) induced by the torsion tuple.

The following lemma is well known [8].

Lemma 215. If B is a subcategory of A-mod, then *((* B)Y) = 1B, (-(BL)" = B, (*B, (*B)*) and
(BL,L(BL)) are both torsion pairs on A-mod.

The following shows that (2) in Definition 2.3 is superfluous if C = A-mod.

Corollary 216. Let C,Ca, ...,Cay1 be full subcategories of A-mod(n > 1). If C; = (C1,...,Ci—1)*
L(Clurl, oo, Cpy1) fori=1,2,...,n+1, then (C1,Ca, ..., Cpy1) is a torsion n + 1-tuple on A-mod.

Proof. By Lemma 2.15, there is a fact: (+Cpy1, Cnt1) is a torsion pair since Cypyq = (C1, .. L Ot

We use induction on n to prove the corollary. If n =1, it’s clear that (Cy,Cy) is a torsion pair by
the above fact. Now suppose that the corollary is true for n =k > 1, we consider the case n =k + 1.
It is enough to show the condition (2) in Proposition 2.14 holds since the first condition is clear.

Step 1. Claim: (Cyy1, Cga) = (C1, ..., Ci)™*.

VX € (C1,...,C)", consider the canonical short exact sequence 0 — X1 — X — Tiqp — O in-
duced by the torsion pair (+Cri2,Cki2). Xkt € (C1,...,Ce)T since X € (Cq,...,Ce)* . Thus Xiyq €
Crt1 and X € (Ciy1, Cr2)-

Step 2. By induction, (Cq, ..., Ck, {Ck+1,Cr+2)) is a torsion k-tuple on A-mod. So for X € A-mod, it
induces a canonical filtration of X

0 —— X1 —— Xk —— Xpp1 =——

/ ///

For S, the torsion pair (*Cy2,Cy42) induces the canonical short exact sequence 0 — Sgy 1 — S —
Sk42 — 0 such that Sy, 1 € “Cryn and Sgyy € Crpn. Because S € (Crp1, Cri2), then S e (Cq,...,C) 5,
S0 Spi1 € (C1.....Cx)t, hence Syyq € Crqq since Sgyq € LCrya. By pull-back of (X — S, Sgy1 — S),
we have the following commutative diagram

0 0
! |
0 Xk Xie+1 Sk+1 0
| | l
0 Xp X S 0
| l
Sk+2 Sk+2

l l



256 F. Kong et al. / Journal of Algebra 388 (2013) 248-267

Adding the exact sequence 0 — X1 — Xi12 — SSk42 — 0 to the above filtration, we get the desired
filtration. O

Proposition 2.17. Let (C1,Ca, ...,Cht1) be a torsionn + 1-tupleonC(n > 1) and 1 <i+1<i+k<n+1.
Then

(1) (Cit1. - Cigtd) =CN(C1. ... COE N (Ciierts -, Caga);
(2) (Cit1,-..,Ciyx) is a torsion k-tuple on (Cit1, . .., Citk);

(3) (C1,...,Ci, {Cix1, ..., Citt), Cigks1s - - - Cny1) is a torsion (n + 2 — k)-tuple.

Proof. For X € C, consider the canonical filtration induced by the torsion tuple

0 =—— Xo-- Xit1 Xitk Xnp1 == X
Sit1 Sitk Sn+1
(M If XelnN{C, ...,C,‘)J‘ N J‘(C,‘+k+1, ...sCny1), then Xo=X1 =---=X;_1 =0 and Xjjy+1 =
Xitks2 == Xn4+1 = X. Hence X € (Ciy1, ..., Civk). The other direction is clear.

(2) By (1) and Proposition 2.14, it’s clear.
(3) Use the similar techniques in Proposition 2.14, we have the following short exact sequence

0— Xi = Xijk = Xipk/Xi— 0

such that X x/X;i € (Cit1, ..., Ciyk) Let S= Xitk/Xi, then we have the filtration

0——Xo-- Xi Xitk Xny1 —— X
Si 3 Sn+1

Then by Proposition 2.14 the proof is completed. O

Corollary 2.18. Let {(T1, F1), (T2, F2), ..., (Tn, Fn)} be a chain of torsion classes of length n on C. Then
{(Tix1 N Fiy Fixr O Tigks1)s - - (Tigk 0 Fiy Fizk N Tizk+1)} is a chain of torsion classes of length k on
Tivkp1 NFifor0O<i<i+k+1<n+1.

Proof. For [=1,2,...,n+ 1, let C;=F_1 N 7. So (C1,Ca,...,Cny1) is a torsion n + 1-tuple on C
by Theorem 2.13, and (Cit1,--.,Citk+1) is a torsion k + 1-tuple on (Cit1,-..,Citk+1) by Proposi-
tion 2.17. Thus {({Cit1, ..., Cit1), (Citix1s---,Cipks1)) | 1=1,2,...,k} is a chain of torsion classes of
length k on (Cit1, ..., Citky1). But (Cit1, ..., Cipt) = Tiyt N Fi, (Cigigts -+ Civknt) = Firt O Tipkrt by
Proposition 2.12. The corollary is proved. O

Corollary 2.19. If (D1, Da, ..., Dpt1) is a defect torsion n + 1-tuple on C, then there is a unique torsion
n+ 1-tuple (C1,Ca,...,Che1) onC such that D; CCifor1 <i<n+1.

Proof. Let 7{ = (D1, ..., Di), Fi = (Djt1, ..., Dy). Then {(T1, F1), (T2, F2), ..., (Tn, Fn)} is a chain of
torsion classes of length n on C.
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For 1<i<n+1,let C;=F_1NT; then (C1,Cs,...,Cxht1) is a torsion n + 1-tuple on C such that
D; € C; by Theorem 2.13.

Suppose (C;,C;,... n+1) is another torsion n + 1-tuple on C such that D; C C/ Then for 1 <
i<n, Ti=(D1,....D;) €(C},....C{) ="T/. Similarly, F € F/. Hence 7; =7, and F; = F]. Therefore
Ci=Fi1NTi= .7-"/ 1NT=C. D

Proposition 2.20. Let {(71, F1), (T2, F2)} be a chain of torsion classes of length 2 on C. Then we have the
following one-to-one correspondence (we denote torsion pair by tp. for convenience here):

F
{(7-/ ]_-/) tp. on]:lm'rz} {(75 F3): tp.on C with T C,TBCE}
G

where F(T", F)) = (Ti, T') . (F', F2)), G(T3, F3)) = (T3 N F1, F3 N Ta).

Proof. Given the torsion pair (73, F3) on C with 7; € 73 C 7;, then by definition {(71, F1), (T3, F3),
(72, F2)} is a chain of torsion classes of length 3 on C. So by Corollary 2.18, G((73, F3)) is a torsion
pair on F1 N 73. By Theorem 2.13, FG((73, F3)) = ((T1, T3 N F1), (F3 N T2, F2)) = (T3, F3).

On the other hand, suppose (77, F’) is a torsion pair on F; N 73. Since {(71, F1), (T2, F2)} is a
chain of torsion classes of length 2 on C, by Theorem 2.13, (77, F1 N T2, F2) is a torsion 3-tuple on C.
By Proposition 2.6, (71,7, F', F>) is a torsion 4-tuple on C. Then F((7’, F’)) is a torsion pair on C
by Theorem 2.13.

By Proposition 2.17, we also learn that (77,7") is a torsion pair (equivalently, torsion 2-tuple) on
(T1, Ty and (F', F») is a torsion pair on (F’, F,). Hence we know that (77, 7"YNF1 =(T1,7) N
Tﬁ =T, Similarly (F’, 7) N7 = F'. Therefore, GF((T', F)) =(T',F). O

3. Decomposition by projective and injective modules

In this section, we assume A is a basic artin algebra. We define E(A) = {(7, F) is a torsion pair on
A-mod | TNP(A) = FNZ(A) = {0}}. For a set ¥ we denote the number of the elements of ¥ by #¥.
The following definition is slightly different from [2, p. 191, 1.10].

Definition 3.1. Let C be a full subcategory of A-mod and M € A-mod. Then M is called Ext-projective
in C if Ext}, (M, C) = 0. Dually, it is called Ext-injective in C if Ext!, (C, M) =

If A’ is a quotient algebra of A (i.e. 3 a surjective algebra homomorphism 7 : A — A’), then there
is a canonical way to view A’-mod as a full subcategory of A-mod as following: for M € A’-mod,
aeA,meM, a-m=m(aym.

For a A-module M, we denote by Gen(M) the minimal additive full subcategory closed under
quotients and containing M of A-mod, by Cogen(M) the minimal additive full subcategory closed
under submodules and containing M of A-mod. The following lemma is well known.

Lemma 3.2. Let e be an idempotent of A. Then

(1) (Ae)yt =1(D(eA)) = A/AeA-mod;
(2) (Gen(Ae), A/AeA-mod) and (A/AeA-mod, Cogen(D (e A))) are both torsion pairs on A-mod.

The following lemma is part of [2, p. 191, 1.11].

Lemma 3.3. Let (T, F) be a torsion pair on A-mod and 0 # X € A-mod.

(1) If X € F, then X is Ext-projective in F if and only if there is a projective A-module P and a canonical
short exact sequence 0 — K — P — X — 0 induced by (T, F).
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(2) If X € T, then X is Ext-injective in T if and only if there is an injective A-module I and a canonical short
exact sequence 0 — X — I — L — O induced by (T, F).

It is obvious that the projective module in (1) can be chosen as the projective cover of X, the
injective module in (2) can be chosen as the injective envelope of X. The following is a generalization
of the above lemma.

Proposition 3.4. Let (C1,Ca, ...,Chs1) be a torsion n + 1-tuple on A-mod(n > 1). Then there exists bijec-
tions:

(1) F:IndP(A) —» {X € IndC; | X is Ext-projective in (C;, Cit+1, - ..,Cnt1) forsomei=1,2,...,n+ 1};
(2) G:IndZ(A) — {Y €IndC;j | Y is Ext-injective in (C1,Ca, ..., Cj) forsome j=1,2,...,n+1}.

Proof. We only prove (1). The proof of (2) is similar.
Step 1. Let P € IndP(A). Then the torsion tuple induces the following canonical filtration of P

0 ——= Xo Xi—1 Xi Xi1 Xn+1 P
Si1 Si Sit1 Sn+1
There exists 1 <i<n+ 1 such that S;;; = Sj;» =--- =0 and S; # 0. Then the torsion pair
{Cq,...,Ci—1), (Ci, ..., Cny1)) induces the following canonical short exact sequence 0 — X;_1 — P —

Si — 0. By Lemma 3.3, S; is Ext-projective in (C;,...,Cn+1). We define F(P) = S;.

Conversely, let X € IndC; such that X is Ext-projective in (C;,Cit1,...,Cnt1). Then we define
F~1(X) to be the projective cover of X.

Step 2. It is clear that F~1F(P) = P for P € Ind P(A).

On the other hand, let 1 <i<n+1 and X € IndC; which is Ext-projective in (C;, Cit1,...,Cnt+1)-
By Lemma 3.3, the torsion pair ({C1,...,Ci—1),{(Ci,...,Cnt1)) induces the following canonical short
exact sequence of F-1(X): 0> K — F~1(X) - X. Thus F(F-'(X))=X. O

Corollary 3.5. Let (7, F) be a torsion pair on A-mod. Then

(1) there is an idempotent e such that T NP (A) = add Ae, and T N (Ae)L has no nonzero Ext-projective
modules in (Ae)t;

(2) thereis an idempotent e such that FNZ(A) = add D(e A), and 1 D (e A) N F has no nonzero Ext-injective
modules in - D (e A).

Proof. We only prove (1). The proof of (2) is similar.

There is indeed an idempotent e such that 7 NP (A) = add Ae. Suppose that 0 X € 7 N (Ae)t is
Ext-projective in (Ae)L. Then by Lemma 3.3, there exist a projective A-module P and the canonical
short exact sequence 0 — K — P — X — 0 induced by the torsion pair (Gen(Ae), (Ae)1). Thus P € T
since K € Gen(Ae) C 7. Thus P € add Ae. Hence X € Gen(Ae). This is a contradiction. O

Let C be an extension-closed full subcategory of A-mod. Then we say C is a Serre class of A-mod
if the quotient modules and submodules of the modules in C still belong to C. The following lemma

is obvious.

Lemma 3.6. Let C be a Serre class of A-module and 0 # X € C.

(1) If X is Ext-projective in C and not a projective A-module, then the projective cover of X doesn’t belong
toC.
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(2) If X is Ext-injective in C not an injective A-module, then the injective envelope of X doesn’t belong
to C.

Corollary 3.7. Let (T, F) be a torsion pair on A-mod and e, e! be two orthogonal idempotents of A.

(1) If FNI(A) = addD(e%A), T N P(A/AePA) = add(A/Ae®A)el, then T N P(A) = add Ae! N
A/Ae% A-mod.

(2) f T NP(A) = add Ae®, FNZ(A/Ae®A) = add D(e' (A/AePA)), then F N Z(A) =addD(e'A) N
A/Ae% A-mod.

Proof. We only prove (1). The proof of (2) is similar.

Since A is a basic artin algebra, add Ae! consists of the projective covers of modules in
add(A/Ae®A)el. Suppose 0 # P € T N P(A). Then P € A/Ae® A-mod since T C A/Ae® A-mod =
+(D(e%A)). On the other hand, P is Ext-projective in A/Ae®A-mod. So P € add(A/Ae® A)el. Since P
is the projective cover of itself, P € add Ae'. Therefore, P € add Ae' N A/Ae® A-mod.

Conversely, suppose 0+ P € add Ae! N A/Ae% A-mod. Then P is the projective cover for some X
add(A/Ae®A)e! which means X is Ext-projective in A/Ae%A-mod. By Lemma 3.6, P = X (otherwise,
P ¢ A/Ae®A-mod). Thus P € TNP(A). O

Now we start to decompose torsion pairs by projective modules and injective modules. We
always assume that A = {e1,ey,...,ep} is a fixed complete set of primitive orthogonal idempo-
tents of A. For m > 0, given S = {Ag, A1, A2,..., An | Aj € A} such that Aq, Ay, ..., Ap # ¢ and

3 . . . . . : AO
AiNAj=¢ fori# j, we define: for 0 <i<m, e} :ZeeAie, gg = lj:Oe]S; Ag =A,A§ = W(s]sl‘g =
A +1 A%
AsgA° - A5 W: As’"A’P’(A ) = Ales, 1i(AY) = D(es AY).
Definition 3.8. Let S be as above. It is called a 1-type part partition of A if: (1) V2 < 2i <m and

ee Ay, X 1A% Te£0; (2) V3<2i+1<mand e e Ayyq, eA¥ed £0.
Dually, S is called a 2-type part partition if: (1) V2 < 2i <m and e € Ay;, eA_Zg”1 2140, (2)V
2i+1<mand e e Ay, e%iAgie #0.

Lemma 3.9. Let I be an ideal of A, and e, e’ be two idempotents. Then Hom 4 ((A/I) - e, D(e' - A/I)) =0 if
and only ife’ - A/1-e=0.

Proof. It's clear that Hom((A/I)-e, D(e’- A/I)) =Homu,;((A/I)-e,D(e’- A/I)) =D(e’- A/I-e). O

We give the following notations for describing our theorem easily

(T,F) | (T, F) is a torsion pair on A- mod}

n (S ={Ao, A1, Az, ..., A}, (T, F')) | S is a 1-type part partition and

(T, F') e E(ATTH],
={(S'={A4 AL AL AL (T, F)) | S is a 2-type part partition and
+1
(7", F") e E(Ag")
Now we are in a position to give a demonstration of how to decompose a torsion pair into a
torsion tuple by projective modules and injective modules.
Let (7, F) be a torsion pair on A-mod.

Operation 1. Let 70 =T, F0=F, A% = A, there exists a set Ag € A such that 70 N P(A%) =
add P,ep, A%. Let €0 =", e, Po(A?) = A%0, T' =TON (Po(A%))*, F! = FO, Al = A/Ae%A.
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Then (77, F1) is a torsion pair on A'-mod and 7' NP(A!) = {0} by Corollary 3.5. Hence we have a
torsion 3-tuple (GenPy(A%), 7', F1) on A-mod.

Operation 2. There exists A; € A — Ag such that F' N Z(A') = add @, D(eAl). Let e' =
Yeen, & e=e+el, (A =D('AY), T2=T", F2=F'n+1i(A"), A2 = A/Ae' A. Then (T2, F?)
is a torsion pair on A%-mod and F% NZ(A?) = {0} by Corollary 3.5. Hence we have a torsion 4-tuple
(GenPy(A%), T2, F2, Cogenl; (A1) on A-mod.

The above operations go on alternatively until we get m > 0 such that the torsion pair
(7M1 Fmtly ¢ E(A™t1), Finally, we obtain the following.

) {Ao, A1, Ag, ..., An| Aj € A} such that A1, Ay, ..., Am # ¢ and AiNAj=¢ for i # j.

) A=A Al - ... » A™H is a series of quotient algebras.

yFor 1<2i—1<m—1, T2 =721 for 0<2i <m—1, Fa+l = 24,

) For 1<2i—1<m, (T?-1, F2i-1) is a torsion pair on A%~!-mod such that 72-1 N PAZ-1) =
{0}. For 2<2j <m, (T2, F2J) is a torsion pair on A%/-mod such that F2 N Z(A2)) = {0}.

(5) (GenPy(AY), GenPy(A?), ..., 7™+ Fm+l Cogenl3(A3), Cogenli(Al)) is a torsion (m + 3)-

tuple on A-mod.

F
Theorem 3.10. There is a one-to-one correspondence between 9t and H1: M ——=N.
G

Proof. Step 1. Let (7,F) € 9. By using the above operation, we get for some m >0, S =
{Ao, A1, Az, ..., Am | Aj € A} and (7™+1, Fm+ly ¢ E(A™+1), We adopt the above notations, and
claim S is a 1-type part partition.

For 1<2i—1<m~—1, (741 F2-1) is a torsion pair on A%~'-mod such that 72-1n
P(AZifl) = {0}, ]:21'71 N I(AZifl) — add D(EZiflAZifl) and 7'21‘71 ) P(AZi) — T2i n P(AZI') —
add A%e2i, Thus by Corollary 3.7, we know T2=1 N P(A2~1) = add A%~ 1e?i N A%-mod. But T2~ 1n
P(A%-1) = {0}. Thus add A%~1eZ N A% _mod = {0}. So for e € Ay;, Hom(AZ—1e2i-1 A2i-1g) £
which means e2~14%~1e £ 0.

Similarly for 2 < 2j <m — 1, add D(e?/*1A%)) N A%*1-mod = {0}. This means for e € Ayj1,
D(eA%)y is not a A% T1-module. Thus Hom ,2;(A%/e?/, D(eA%))) # 0. Therefore eA%/e?) % 0 by
Lemma 3.9.

Define F((T, F)) = (S, (7M1, Frmly),

Step 2. Let m >0 and (S ={Ag, A1, A, ..., Ap}, (T', F))) € M. Define

rfon( @ rula).T) A= B )

i<2k<m i<2k+1<m

for 0 <i<m+1. Then (7™, F™1) = (77, F') is a torsion pair on AT"'-mod. Now suppose
for some 1<2i<m+1, (T, F%) is a torsion pair on A%-mod. By Lemma 3.2, (A%-mod,
CogenD(e2~1A%~1)) is a torsion pair on A% '-mod. Thus by Proposition 2.6, (7%,F?%,
Cogen D(e?_]A?_1)) is a torsion 3-tuple on A?_l—mod. Thus by Theorem 2.13, (72i~1, F2i-1y =
(T2 (F? Cogen D(eéi’lAéi’l))) is a torsion pair on A%i’l—mod. Similarly, we have if for some
1<2i4+1<m+1, (TZ+, F2i+ly js 3 torsion pair on A?‘H-mod, then (72, F2) is a torsion pair
on A%-mod. Therefore by induction, for 0 <i<m+1, (7%, F') is a torsion pair on Ak-mod. Define
GUS, (T, Fy)) = (T°, FO.

Step 3. Given (T, F) € 9, it is clear that GF((T, F)) = (T, F).

Step 4. Let m > 0 and (S = {Ag, A1, A2, ..., An}, (T, F))) € 9. We adopt the denotations in
Step 2, and claim that for 0 < 2i <m, T2 NP(A%) = add Py;(A%).

It's clear that addPy;(A%) € 72 NP(A%). Now suppose there exists some e € A — Uo<ksai Ak
such that AZe € T%. We know (GenPyi(A%), GenPaiya(AZT2), ..., T', F', ..., Cogenlyit1(AZT)) is
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a torsion tuple on A?—mod. By Proposition 3.4, there exists 2i 42 < 2(i+k) <m such that e € Ay
since A%ie €7 and 7’ has no nonzero Ext-projective modules in (77, F'). Since S is a 1-type part
partition, e§1+2k 1A21+2k le £ 0. Thus e§i+2k—1A§i+2k—1e _ Hom(Ag_iJer—le’D(e2i+2k—1A§i+2k—1)) ”
0. And hence Hom(Aé’e, D(e2+2k=1 p21+2k=1)y £ 0, S0 A%e ¢ T% because D(e?+2k—1 A2~y ¢ F2i,
This is a contradiction.

Similarly we have Z(AZT1) N F2+1 = add i1 (A% for 1 < 2i + 1 < m. Therefore FG((S,
(T F»=@6. (T, F). o

Dually, if we start to decompose a torsion pair from the right hand (torsion-free class), then we
have the following theorem.

/
Theorem 3.11. There is a one-to-one correspondence between 9 and N : M == .
G/

The following proposition demonstrates the relation between the above two kinds of decomposi-
tion.

Proposition 3.12. Let (T, F) e M, F((T, F)) = (' ={Ay, A, AL, .., ALY, (T, F) and F'((T, F)) =
(" ={AG A} Ay, oo AU (T, F). Then (T', F'y = (T", J—‘”)

Proof. First, we give the following notations for any given i > 0:

LL, = (GenPyj(A%) | 0 < 2j < max{u, i});

R%, = (Cogenlyji1(AY 2j+1 )10 <2j+ 1< max{u,i});

LL, = (GenPZJH( o ) |0<2j+ 1< max{v,i});
R%, = (Cogenlj(4A 5,, ] 0 < 2j < max{v, i}).

It's clear that (LY, 7', F',RY) is a torsion 4-tuple on A-mod and (LY, 7") =T, (F,R§) = F.
Thus 7' =T N AL -mod, 7' = F N A% -mod. And (7", F”) has the similar property. So we only
need to prove A”“-mod A% -mod. For this we prove L% =LY%, RY = RY, since A%"'-mod =
(L4t N+ (RY) and A% -mod = (L%)*+ N+ (RY,).

S//
We suppose Ag, wh — = A% and AZT’ AL for j > 1, and claim that Vi >0, L2 c 2,
RZI - R21
-

For i =0, RY, = {0} < Cogenlo(AY,) =R, Li, = GenPy(A2,) < GenPy(A},) =L, since Po(A) €
add P, (AS,,).

Now we assume the claim holds for 0 <i < k — 1. Then Aé’,‘,-mod is a full subcategory of
A%~-mod since A%~ -mod = (L% n l(R2’< 3) and A%-mod = (L& 1L n+(RZE2).

Let 0 # X € add 12k71(A§’,‘_]). So X is Ext-injective in A%’,‘, mod. The torsion pair (F N A?S’,‘, mod,
R%7%) on F induces the following canonical short exact sequence 0 — X; — X — Xz — 0. Ap-
plying Hom(M, —) to it for M € A%’,‘,-mod we know that X; is Ext-injective in A2X-mod. Thus
X1 € add Iy (A%). So X € R%. Therefore, R% < R%, and similarly, we have L% c 121,

Thus LY C LY, RY CR¢, if we let i =u +v. Dually, L¢, €LY, R¢, C R“ This completes the
proof. O
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4. Examples

In this section, we will characterize torsion pairs on some particular module categories. These
results will be related to some work in [3,4,11,5]. In this and next section, we always assume K is
an algebraically closed field of characteristic 0. If Q is a quiver and A € Q¢ where Qg is the set of
vertices of Q, then we denote the full sub-quiver of Q containing A by Q (A).

Definition 4.1. Let Q be a quiver, {Ag, A1,..., An} a tuple of vertices such that Aq,..., Ap # ¢,
AiNAj=¢ for i # j.

(1) If for all 1 <2i4+1<m and v € Ay;jy; there is a path from some vertex in Ap; to v in the
sub-quiver Q (Qgp — A9 — A1 — -+ — Ayj_1), and for 0 < 2i <m and v € Ay; there is a path
from v to some vertex in Aj;j_q in the sub-quiver Q (Qo — Ag — A1 — -+ — Azj_3), then we call
{Ao, A1,..., An} a 1-type part partition of Q.

The following diagram shows the relation:

Ag Ay Ay

Aq A3

(2) Dually, we call {Ag, Aq,..., An} a 2-type part partition of Q if forall 1<2i+1<m and v e
Ani4+q there is a path from v to some vertex in Ay; in the sub-quiver Q (Qp — Ag — A1 —--- —
Ayi_1), and for all 0 <2i <m and v € Ay; there is a path from some vertex in Ay;j_1 to v in the
sub-quiver Q (Qo — Ag — A1 — -+ — Agj_3).

The following diagram shows the relation:

Aq As

Ao AY) Ay

If AgU---UAR = Qo we also call {Ag, A1,..., An} a complete partition.

Definition 4.2. Let Q be a quiver, {Ag, Aq,..., A} a tuple of vertices such that Aq,..., Ap # ¢,
AiNAj=¢ fori#j. If Vi >0, Ayi_q contains all sink points in Q(Qo — Ag — Ay — -+ — Agi_2),
A»; contains all source points in Q(Qg — Ag — A1 — -+ — Agi—1), then we call {Ag, A1,..., Am}
a strong 1-type part partition of Q. Dually, if Vi > 0, Ay;_1 contains all source points in Q (Qg —
Ag — A1 — -+ — Api_3), Ay contains all sink points in Q (Qg — Ag — A1 —--- — Ayj_1), then we call
{Ap, A1, ..., A} a strong 2-type part partition of Q.

Lemma 4.3. Let Q be a quiver and {Ag, A1, ..., Ay} astrong 1-type part partition of Q. Then {Ag, A1, ..
A} is a 1-type part partition of Q.

Dually, if {Ao, A1, ..., Ap} is a strong 2-type part partition of Q, then it is also a 2-type part partition
of Q.

LR}

For a quiver Q, we denote E(KQ) by E(Q). Now we have the following theorem which is the
path algebra’s version of Theorem 3.10.
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Theorem 4.4. Let Q be an acyclic quiver. Then we have a bijection between the set of torsion pairs on K Q -mod
and the set of the pair ({Ag, A1, ..., Am}, (T, F")), where {Ag, A1, ..., An} is a 1-type part partition of Q
and (T', F') e E(Q(Qo — Ao — A1 — -+ — Ap)).

The dual form of the theorem is similar, we omit it here. Now let A, be the following quiver:
1—2—3— ... — n. Applying the above theorem to the quiver A,, we have the following theorem.

Theorem 4.5. There exists a bijection between torsion pairs on K A,-mod and strong 1-type complete partition
sets of Ap.

Proof. It is easy to see E(KAp,) = ¢ for m > 1 since KA, has a nonzero projective-injective module.
And any 1-type part partition of A, is a complete partition if and only if it is also a strong 1-type
complete partition. The rest is clear by the above theorem. O

Clearly, there is a dual form for this theorem. We also omit it here.

Proposition 4.6. The number of torsion pairs on K Ay is the (n 4+ 1)-th Catalan number Cpq = L(

s 2n+2)'

n+1

Proof. Adding one vertex to Ap, then we get the quiver Ap41:1—>2—>3— .- —>n—>n+1. We
have a torsion pair on KAp;q1-mod: (KA,-mod, P(KAp+1)). From [10], a torsion pair (7,F) on
KAp+1-mod is induced by a cotilting module if and only if P(KA;+1) € F. So we have a bijection
between torsion pairs on KA,;-mod and torsion pairs induced by cotilting modules on KAp+1-mod
by Proposition 2.20. The number of torsion pairs induced by cotilting modules on KA;1-mod is well
known which is the (n 4 1)-th Catalan number [5, Lemma A.1].

Let A be an artin algebra, {C} U {C;, i €I} a set of full subcategories of A-mod which are closed
under direct summands and extensions. If IndC = J;;IndC; and C; N C; = {0} for i # j, then we call
C a direct sum of C; for i € I, and denote C = &, C;. The following lemma is clear. O

Lemma 4.7. Let C and C; be defined as above. If Hom(C;, Cj) = 0 for i # j, then there exists a bijection between
torsion pairs on C and the tuple {(T;, Fi)}ie; where (7;, J;) is a torsion pair on C;.

Proof. Given (7, F) a torsion pair on C, then (7 NC;, F NCj)j¢; is the corresponding tuple. Given the
tuple (7;, Fi)ic; where (7;, ;) is a torsion pair on C;, then (P;.; 7, @jc; Fi) is the corresponding
torsion pair. O

Let /Z\n be a direct cycle with arrows 1 — 2,2 — 3,...,n—1—n,n— 1, and ] the ideal of K;\r,
generated by all arrows. We call a finite-dimensional KA,-module M is an ordinary module if there
exists N > 1 such that JNM = 0. In this condition M is a KA,/ JN-module. So if M is indecomposable,
then it is uniserial and determined by its socle and length. Let &, be the category of all ordinary
modules. Then &, is a Serre class of KA,-mod. We denote the simple module corresponding to the
vertex v; by S;. The following definition has been introduced in [3].

Definition 4.8. Let A € (A;)o. We define Ray(A) = {M € &, | socle(M) € add @v,-eA Si}, Coray(A) =
{M € &, | top(M) € add EBvieA Sil.

For a subcategory D of &,. Let Lp ={v; € (An)o | #Ind(D N Coray({v;})) = oo}, Rp ={v; € (An)o |
#Ind(D NRay({vi})) = oo}.

The following lemma is clear by the definition of torsion pairs.

Lemma 4.9. Let ¢ # A C (An)o. Then (Coray(A), An((An)o — A)-mod) and (Ap((An)o — A)-mod, Ray(A))
are both torsion pairs on &,.
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The following lemma is from [3, 4.5].
Lemma 4.10. Let (7, F) be a torsion pair on &,. Then L U R # ¢.
Now we have the following proposition which gives all torsion pairs on &,.

Proposition 4.11. The following are all pairwise different torsion pairs on £, which are classified as two kinds.

(1) (Coray(A) & T, F') for some ¢ # A C (An)o and (T, F') which is a torsion pair on An((An)o — A)
-mod induced by a cotilting An((An)o — A)-module,

(2) (T", F' ®Ray(A)) for some ¢ # A C (Ap)o and (77, F') which is a torsion pair on Ap((An)o — A)-mod
induced by a tilting An((An)o — A)-module.

Proof. Let (7, F) be a torsion pair on &, and L7 # ¢. Then we know that Coray(L7) C T since T is
closed under quotients. Thus {(Coray(L1), An((An)o — L7)-mod), (7, F)} is a chain of torsion classes.
Let 7' = Ay((An)o — L7)-mod N7, F' = F. Then (77, F') is a torsion pair on A,((An)g — L7)-mod
and T = (Coray(L7), T'). Note that P(A,((An)o — L7)) € F (if not, then Ly & Licorayw 7y, 77y)- Thus
(T', F') is induced by a cotilting Ay ((An)o — L7)-module and (Coray(Ly),7") = Coray(LT) & T".

On the other hand, let ¢ # A C (An)o and (77, F’) be a torsion pair on An((An)o — A)-mod in-
duced by a cotilting An((Ap)o — A)-module. Since (Coray(LT), An((Ap)o— A)-mod) is a torsion pair on
&n and (Coray(A), T') = Coray(A) & T, (Coray(A) ® 7', F') is a torsion pair on &, by Theorem 2.13.
Meanwhile, Leorayaye7 = A, T’ = (Coray(A) & T') N An((An)o — A)-mod, thus the different vertex
sets A (or (77, F')) generate different torsion pairs.

The other half is similar. O

Since ¢ # A, we know An((An)o — A)-mod is a direct sum of module categories of Ap-type al-
gebras. So by Lemma 4.7 the torsion pair is easily obtained. Theorem 4.5 and its dual form give the
structure of torsion pairs on Ap-type algebras. Thus we can obtain the structure of torsion pairs
on &,.

Theorem 4.12.

(1) There is a bijection between the set of the torsion pair (T, F) on &, with L+ # ¢ and the set of the strong
1-type complete partition {A, A1, . .., A} of Ay with A not empty.

(2) There is a bijection between the set of the torsion pairs (T, F) on &, with R x # ¢ and the set of the
strong 2-type complete partition {A, A1, ..., Am} of A, with A not empty.

Proof. We only prove (1). The proof of (2) is similar.

By Proposition 4.11, a torsion pair (7,F) on & with Ly # ¢ can be uniquely written as
(Coray(A) ® T',F') for some ¢ # A C (An)o and (7,F) which is a torsion pair on
A ((An)o — A)-mod induced by a cotilting An ((Ap)o — A)-module. Since A ((An)o — A)-mod is a
direct sum of module categories of Ap-type algebras, it is uniquely corresponding to a strong 2-type
complete partition (Aq,..., Ap) of An((An)o — A) by the dual form of Theorem 4.5. Moreover, since
P(An((An)o — A)) € F', all sink points of Ay((Ap)o — A) should belong to Ay. Thus {Ag, A1, ..., An}
is a strong 1-type complete partition of A,. O

5. Torsion pairs on hereditary algebras

In this section we assume Q is an acyclic quiver, denote the Auslander-Reiten translation by t, its
quasi-inverse by 77, let P(Q) =P(KQ), Z(Q) =Z(KQ). We try to apply the results in the formal
sections to study the structure of torsion pairs on KQ-mod. The following two lemmas are well
known.
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Lemma 5.1. Let 0 - A — B — C — 0 be a short exact sequence on kQ -mod.

(1) Ifadd ANP(Q) = {0}, then it induces a short exact sequence 0 - tA— 7B — 7C — 0.
(2) IfaddC NZ(Q) = {0}, then it induces a short exact sequence 0 - 1~"A— 1t B—> 1 C— 0.

Proof. Note that 7 = DExt}(Q(—, KQ). Thus applying Homgq (—, KQ) to the exact sequence, we
obtain 0 - tA — tB — tC — 0. The proof of (2) is similar. O

Lemma 5.2. Suppose X, Y € kQ -mod.

(1) Ifadd X NP(Q) = {0}, then Hom(X, Y) = Hom(t X, tY).
(2) IfaddY NZ(Q) = {0}, then Hom(X, Y) = Hom(t~ X, t~Y).

We denote the set of torsion pairs on KQ-mod(7, F) such that Z(Q) €7 by F1(Q) and the set
of torsion pairs on KQ-mod(7,F) such that P(Q) € F by F2(Q). And let F(Q) =F1(Q) UF,(Q).
It is obvious that E(Q) =F1(Q) NF,(Q). As a consequence of the above two lemmas, we have the
following proposition.

Proposition 5.3. There is a one-to-one correspondence:

o
Fl(Q)?B(Q)

such that V(T', F) e F1(Q), o~ (T, FHY =~ T, v F & P(Q):;Y(T",F") e B2(Q), o (T", F") =
ZQ)etT", tF").

Proof. We just prove that V(7',F) e Fy, (t-T',t-F @& P(Q)) is a torsion pair on KQ-mod. By
Lemma 5.2, we know VX € 7, Y € 7/, Hom(t~ X, T~Y) = Hom(X, Y) = {0}. By Lemma 5.1, every in-
decomposable non-projective module has a suitable decomposition by the pair (t~77, 7~ F ®P(Q)).
Thus it is a torsion pair on KQ-mod. O

Just like the Auslander-Reiten translation, 0~ and o define a translation on F(Q). Given (7, F) €
F(Q),if Z(Q)C T, then let o~ (T, F)=(t T,1- F®P(Q)); if P(Q) C F, then let o(T,F) =
(tT ®Z(Q), tF). This translation defines o -obits for elements in F(Q). We use [7, 7] to denote
the o-obit of (T, F).

Definition 5.4. Let (7, F) € F(Q). We call the elements in [7, F]N (F2(Q) —F1(Q)) source points of
[T, F1, the elements in [T, F]1 N (F1(Q) — F2(Q)) sink points of [T, FI.

The following corollary is obvious and indicates that we can consider the o -obit of elements in
E(Q) to continue the decomposition in Theorem 4.4.

Lemma 5.5. Let (7, F) € F(Q). Then [T, F] has at most one source point and at most one sink point. If
(T, F) is a source point, then F N Z(Q) # ¢. If (T, F) is a sink point, then T N P(Q) # ¢.

We denote by P, (Q) the full subcategory of preprojective K Q -modules, by Zo,(Q) the full sub-
category of preinjective K Q -modules, by R(Q) the full subcategory of regular K Q -modules.

Proposition 5.6. Let (7, F) € F(Q). Then:

(1) [T, F] has a source point but no sink point < for every (7', F') € [T, F), Zo(Q) N F # ¢ and
Poo(Q) S F.
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(2) [T, F] has a sink point but no source point < for every (7', F') € [T, F]l, Po(Q) NT # ¢ and
TIo(Q) ST

(3) [T, F1 has asink point and a source point < forevery (7', F') € [T, F1, Zoo(Q)NF # ¢ and P (Q)N
T #¢.

(4) [T, F] has no sink point and no source point < for every (T',F') € [T,F], Zoo(Q) € T', and
Peo(Q) S F'.

We denote the set of torsion pairs (7, F) on KQ-mod such that Z,(Q) € 7, and P5(Q) € F
by H(Q). So it is obvious that H(Q) € E(Q). We denote the set of torsion pairs on R(Q) by R(Q).
We have the following obvious lemma.

Lemma 5.7. There is a one-to-one correspondence:

F
H(Q) =—=R(Q)
—

such that ¥(T, F) € H(Q), F(T. F)) = (T N R(Q). F N R(Q)); V(T". F) e RQ), F~((T". F) =
(T"®Zoo(Q), F' © Poc(Q)).

Suppose (7,F) € F(Q) NE(Q) and [T, F] has at least one sink point or one source point. We
define the following operation &:

Case 1. If [T, F] has a sink point, then we denote the sink point by @ ((7, F));

Case 2. If [T, F] has a source point but no sink point, then we denote the source point by
(T, F)).

Then we can apply the operations defined in Theorem 3.10 to @ ((7, F)) to continue the decom-
position. For any torsion pair on KQ-mod we use the two kinds of operation alternatively. At last we
get a new torsion pair in H(Q’) for some sub-quiver Q' of Q. This process is unique, and invertible
by Theorem 4.4 and Proposition 5.3.

From now on we suppose Q is an acyclic quiver with a Euclid ground graph. We study the struc-
ture of all the torsion pairs in R(Q). The following definition and two lemmas are from [7].

Definition 5.8. Suppose X € KQ-mod. Then Q is regular uniserial if there are regular submodules
0=XoC X1 C---C X, =X and these are the only regular submodules of X.

Lemma 5.9.If0 : X — Y with X, Y regular K Q -modules, then Im(0), Ker (@) and Coker(0) are regular.
Lemma 5.10. Every indecomposable regular K Q -module is regular universal.
As a consequence we have

Corollary 5.11.If K Q is a Euclid-type algebra, X is a regular module, then the quotient modules of X forms a
Chain:X:XT_»,.._»Xl _»Xo_

Corollary 5.12. Let KQ be a Euclid-type algebra, f : X — Y an injective homomorphism such that X is a
maximal regular submodule of the indecomposable regular module of Y. Then f is an irreducible morphism.

Proof. X is indecomposable by Lemma 5.10. Suppose g: X — Z, h: Z — Y satisfy f = hg. Then by
Lemma 5.10, there is an indecomposable direct summand Z’ of Z such that 3g’: X —> Z',h:Z' > Y
such that h’g’ is an injective morphism. Therefore Z’ is a regular module since TR(Q) = Zo.(Q),
R(Q)J— =Ps(Q). Since X, Y and Z’ are regular universal, h’ is an isomorphism or g’ is an isomor-
phism. O
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Now let R(Q) = P;; Ri(Q) where {R;(Q), i eI} is a set of minimal additive categories con-
taining a connected component consisting of regular modules in AR-quiver of KQ. We denote the set
of torsion pairs on R;(Q) by R;(Q). By Lemma 4.7, we have the following.

Corollary 5.13. There exists a bijection between R(Q ) and the set of tuples {(T;, Fi) }ie; with (T;, Fi) € Ri(Q).

Proof. Let X € R;(Q). Then all regular submodules and all regular quotient modules of X are in
Ri(Q) by the above corollary and its dual form. So we know if i # j, then Hom(X,Y) =0, VX ¢
Ri(Q) and Y € R;(Q). The rest is clear by Lemma 4.7. O

By [7], a nonzero indecomposable regular K Q -module is called a regular simple module if and
only if it has no non-trivial regular submodules. And the number of nonzero regular submodules of
an indecomposable regular module is called its regular length.

Now we start to demonstrate R;(Q). Suppose R;(Q) has n regular simple modules: Sy, S, ...,
Sn—1,Sn where S;;1 =71S; for 1<i<n-—1and 7S, = S;. Let Ap be the quiver in Section 4 and
S7.S85,..., S, are the correspondent simple modules to the vertices. Then we construct a map:
F(Slf) = S;. Then F induces a one-to-one correspondence &, — R;(Q) such that if X € & and is
indecomposable with the length m and top S}, then F(X) is the indecomposable regular module with
the regular length m and top S;. We have the following proposition.

Proposition 5.14. F induces a one-to-one correspondence between the set of torsion pairs on £, and R;(Q).

Proof. Since the modules in R;(Q) are regular universe, we have the following assertions

(1) VX, Y € &,Hom(X, Y) =0 if and only if Hom(F (X), F(Y)) =0;
(2) Suppose Y € &, and X is a submodule of Y. Then F(Y/X) = F(Y)/F(X).

Thus F induces a one-to-one correspondence between the set of torsion pairs on &, and R;(Q). O
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