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We prove a number of results about the ordinary and Brauer 
characters of finite solvable groups in characteristic 2, by 
defining and using the concept of the extended nucleus of 
a real irreducible character. In particular we show that the 
Isaacs canonical lift of a real irreducible Brauer character 
has Frobenius–Schur indicator +1. We also show that the 
principal indecomposable module corresponding to a real 
irreducible Brauer character affords a quadratic geometry if 
and only if each extended nucleus is a split extension of a 
nucleus.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group with irreducible 2-Brauer characters IBr(G). The theory of 
real valued characters and self-dual G-modules over a field of characteristic 2 admits 
some remarkable improvements if G is restricted to being solvable.

Theorem 1. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued and non-trivial. 
Then there exists (U, δ) such that U ⊆ G, δ ∈ IBr(U), δG = ϕ, δ is real valued 
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and δ(1)2 = 2. Moreover, the Sylow 2-subgroups of U are determined by ϕ up to 
G-conjugacy.

We use the Isaacs nucleus of a lift of ϕ to prove the existence of our ‘extended nucleus’. 
The uniqueness part on the Sylow 2-subgroups of U lies much deeper and its proof relies 
on the new theory of symmetric vertices developed by the first author.

Now we turn our attention to Frobenius–Schur indicators. For a character χ of G the 
indicator ν(χ) is the average value of χ(g2) for g ∈ G. If χ is irreducible then ν(χ) takes 
one of the values +1, −1, 0, as χ is afforded by a real representation or is real-valued 
but not afforded by a real representation or is not real-valued, respectively. We use the 
extended nucleus to answer an old question of W. Willems [12, p. 518].

Theorem 2. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued. Then G has a real 
representation whose character lifts ϕ.

Next recall that the decomposition numbers dχϕ are given by

χ(g) =
∑

ϕ∈IBr(G)

dχϕϕ(g), for all odd order g ∈ G.

Then Φϕ :=
∑

χ∈Irr(G) dχϕχ is called the principal indecomposable character of ϕ. It is 
known that Φϕ vanishes on all elements of even order. In [11] G.R. Robinson used this 
to show that ν(Φϕ) ≥ 0. This result is peculiar to p = 2.

Theorem 3. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued and non-trivial. 
Let (U, δ) be an extended nucleus and let (W, γ) be a nucleus of ϕ. Suppose that U\W
contains an involution t. Then 〈Φϕ, 1GC(t)〉 > 0 and thus ν(Φϕ) > 0.

2. Extended nucleus

As usual Irr(G) denotes the ordinary irreducible characters of G. Also χ∗ denotes the 
restriction of a character χ to the odd order elements of G.

Let k be a field of characteristic 2 and suppose that S is a non-trivial simple self-dual 
kG-module. Fong’s Lemma asserts that S affords a G-invariant non-degenerate sym-
plectic bilinear form which is unique up to a non-zero scalar. As a consequence, every 
non-trivial real valued irreducible Brauer character of G has even degree.

Suppose that ϕ ∈ IBr(G) and G is solvable. The Fong–Swan theorem asserts that 
there exists χ ∈ Irr(G) such that χ∗ = ϕ. Let H ⊆ G be a Hall 2′-subgroup of G. So 
|H| = |G|2′ and every odd order subgroup of G is contained in a conjugate of H. For 
the given ϕ and χ, we say that ψ ∈ Irr(H) is a Fong character of χ if ψ(1) is minimal 
such that 〈χH , ψ〉 �= 0. In that case it is known that 〈χH , ψ〉 = 1, ψ(1) = χ(1)2′ and ψG

is the principal indecomposable character of G corresponding to ϕ.
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Lemma 4. Suppose that G is solvable and ϕ ∈ IBr(G) is non-trivial and real valued. Then 
there is U ⊆ G and a real valued δ ∈ IBr(U) such that δG = ϕ and δ(1)2 = 2.

Proof. In [6] I.M. Isaacs constructed for each χ ∈ Irr(G) a nucleus (W, γ); here W ⊆ G

and γ ∈ Irr(W ) is the product of a 2-special character and a 2′-special character and 
satisfies γG = χ. His construction uniquely determines (W, γ) up to G-conjugacy. By 
definition B2′(G) is the set of all χ for which γ is 2′-special. Isaacs showed that B2′(G)
gives a canonical set of lifts for the irreducible Brauer characters of G.

Let χ ∈ B2′(G) with χ∗ = ϕ and let (W, γ) be a nucleus of χ. Then χ̄ belongs to 
B2′(G) as χ̄ has nucleus (W, ̄γ) and γ̄ is 2′-special. Moreover χ̄∗ = ϕ̄ = ϕ = χ∗. So 
χ̄ = χ. On the other hand, γ is non-trivial as ϕ is non-trivial, and γ(1) is odd as γ is 
2′-special. So γ̄ �= γ, using Fong’s Lemma.

Now (W, ̄γ) is G-conjugate to (W, γ) as both are nuclei of χ, and NG(W, γ) = W as 
γNG(W ) is irreducible. So the set stabilizer U of {γ, ̄γ} in NG(W ) satisfies |U : W | = 2. 
It is clear that η = γU is a real valued irreducible character of U with η(1)2 = 2. Now 
set δ = η∗, and notice that (U, δ) satisfies what is required. �

Our next result proves a precise form of Theorem 2, thus answering Willems question:

Theorem 5. Suppose that G is solvable and ϕ ∈ IBr(G) is real valued. Let χ ∈ B2′(G) be 
the Isaacs canonical lift of ϕ. Then ν(χ) = +1.

Proof. We may assume that ϕ is non-trivial. Let (W, γ) and (U, η) be as in the previous 
lemma. So |U : W | = 2, γ is 2′-special, γU = η and ηW = γ + γ̄. Now U = W 〈u〉 where 
u ∈ U\W and u2 ∈ W . We can and do assume that u is a 2-element. Set C = 〈u〉 and 
D = 〈u2〉, so that U = WC and C ∩W = D.

We claim that 〈γD, 1D〉 is odd. To show this, we may assume that D �= 1. Let ζ
generate the cyclic group Irr(D) and set q = |D|. Then the rational characters in Irr(D)
are ζ0 = 1D and ζq/2. Now γ is 2-rational as it is 2′-special. So γD is rational and hence

γD = m0ζ
0 + mq/2ζ

q/2 +
q/2−1∑

i=1
mi(ζi + ζ̄i) , for non-negative integers mi.

Then clearly det γ(u2) = (−1)mq/2 . But o(γ) is odd, as γ is 2′-special. So mq/2 is even. 
Then 〈γD, 1D〉 = m0 ≡ γ(1) (mod 2). The claim follows, as γ(1) is odd.

The previous paragraph implies that 〈η, 1UC〉 is odd, as

〈ηC , 1C〉 = 〈(γU )C , 1C〉 = 〈γD, 1D〉.

As 1UC is afforded by an R-representation of U , this implies that η is afforded by an 
R-representation of U . So finally χ = ηG is afforded by an R-representation of G. �



J.C. Murray, G. Navarro / Journal of Algebra 449 (2016) 346–354 349
Note that it can easily happen that a real irreducible Brauer character of a solvable 
group has a lift to an ordinary character with Frobenius–Schur indicator −1. For example, 
let G be the non-abelian group C3 � C4 and let ϕ ∈ IBr(G) with ϕ(1) = 2. Then 
Φϕ = χ1 + χ2, where χ1, χ2 ∈ Irr(G) are real valued and χ∗

1 = χ∗
2 = ϕ. Now ν(Φϕ) = 0

(see [9, Theorem 2]). So we can choose notation so that ν(χ1) = +1 and ν(χ2) = −1.

3. Symmetric vertices and extended nucleus

For the moment k is a field of arbitrary characteristic p. Let H ⊆ G. Following [5] a 
kG-module M is H-projective if it is a direct summand of an induced module IndG

H(L), 
for some kH-module L. Suppose that M is indecomposable. Following [2] a vertex of M
is a minimal V ⊆ G such that M is V -projective. The vertices of M are p-subgroups of G
which are determined up to G-conjugacy. Now a V -source of M is an indecomposable 
kV -module Z such that M is a direct summand of IndG

H(Z). Then Z is a direct summand 
of ResGV (M), and Z is uniquely determined by M and V up to NG(V )-conjugacy.

Recall that the dual of a left kG-module M is the left kG-module M∗ = HomkG(M, k). 
Here if f : M → k and g ∈ G, we set (gf)(m) := f(g−1m), for all m ∈ M . Now M ∼= M∗

as kG-modules if and only if there exists a G-invariant non-degenerate bilinear form 
b : M × M → k. We say that b is symmetric if b(m1, m2) = b(m2, m1), alternating if 
b(m1, m2) = −b(m2, m1) and symplectic if b(m1, m1) = 0, for all m1, m2 ∈ M . If p �= 2
alternating is the same as symplectic and no symplectic form is symmetric. If p = 2
alternating is the same as symmetric and all symplectic forms are symmetric but not all 
symmetric forms are symplectic.

Let (L, c) be a symmetric kH-module. Now IndG
H(L) =

∑
gH g⊗L as k-vector spaces, 

where g ⊗ L is a kgH-module. The obvious isomorphism H ∼= gH maps L to g ⊗ L. So 
g ⊗ L inherits a gH-invariant non-degenerate form gc from c. The induced symmetric 
kG-module IndG

H(L, c) is the orthogonal direct sum of the symmetric k-spaces (g⊗L, gc).
Following [10] a symmetric kG-module (M, b) is H-projective if (M, b) is an orthogonal 

direct summand of IndG
H(L, c), for some symmetric kH-module (L, c). Moreover a sym-

metric vertex of M is a minimal T ⊆ G such that there exists a T -projective symmetric 
kG-module (M, b). Analogous concepts exist for alternating kG-modules.

For the remainder of this section k is a perfect field of characteristic 2 which is a 
splitting field for all subgroups of G. We simplify our exposition by referring to both 
symplectic and non-symplectic symmetric forms as symmetric forms. In practice sym-
plectic forms are more important than non-symplectic symmetric forms, because the 
isometry group of a symmetric form is closely related to a symplectic group.

Example 6. There is a unique non-trivial simple kD12-module, where D12 is the dihedral 
group of order 12. Its projective cover P affords a 2-dimensional space of D12-invariant 
symmetric bilinear forms. It can be shown that each non-central C2-subgroup of D12 is 
a symmetric vertex of P . As there are two D12-conjugacy classes of such subgroups, this 
shows that symmetric vertices are not uniquely determined up to G-conjugacy.
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However, the first author proved the following result in [10]:

Proposition 7. The symmetric vertices of a self-dual simple kG-module S are uniquely 
determined up to G-conjugacy. Let b be a symmetric form and let (V, Z) be a vertex-source 
pair of S. Then S has a symmetric vertex T ⊇ V and exactly one of (i) or (ii) holds:

(i) T = V and b is non-degenerate on a submodule of ResGV (S) isomorphic to Z. More-
over IndG

V (Z) ∼= S ⊕Q, where Q has no summands isomorphic to S.
(ii) |T : V | = 2 and IndT

V (Z) affords a non-degenerate T -invariant symmetric form c. 
For any such form c, (S, b) is an orthogonal direct summand of IndG

T (IndT
V (Z), c).

We shall see in Lemma 9 that only (ii) occurs when G is solvable and S is non-trivial.
L. Puig has shown that if G is solvable then the source Z of a simple module S is an 

endo-permutation module constructed from tensor products of endo-trivial modules of 
quotients of a vertex (cf. [8, Abstract]). As a consequence of the classification of torsion 
endo-trivial modules for p-groups and [1], the sources are self-dual unless a vertex has 
a generalized quaternion quotient. We present an example of a solvable group with a 
simple self-dual module which has a non-self-dual source, as this seems to be a relatively 
uncommon phenomenon:

Example 8. Let E be an extra-special group of order 27 and exponent 3. Then Aut(E) ∼=
GL(2, 3) has a Sylow 2-subgroup T which is semi-dihedral of order 16. Set G = E�T . 
The centralizer of Z(E) in T is a quaternion group V of order 8. Let k be a field 
extension of F4. Then kE has a faithful 3-dimensional module, which extends to a 
simple kE�V -module M . Now MT = M∗ � M . So S = IndG

E�V (M) is a self-dual 
simple kG-module with vertex V . Moreover S has V -source Z := ResE�V

V (M). As Z is a 
3-dimensional endo-trivial kV -module, Z is not self-dual [1, p. 322]. So S has symmetric 
vertex T .

Theorem 1 is a consequence of our next lemma and the uniqueness of symmetric 
vertices proved in Proposition 7.

Lemma 9. Suppose that G is solvable and ϕ ∈ IBr(G) is non-trivial and real valued. Let 
U ⊆ G and δ ∈ IBr(U) be such that δ is real valued, δG = ϕ and δ(1)2 = 2. Let S be the 
simple kG-module whose Brauer character is ϕ. Then each Sylow 2-subgroup T of U is 
a symmetric vertex of S.

Proof. Let (W, γ) be the Isaacs nucleus of the lift of δ in B2′(U), let SU be the simple 
kU -module with Brauer character δ and let SW be the simple kW -module with Brauer 
character γ∗. Recall that SW � S∗

W as γ(1) is odd. Let (V, Z) be a vertex source pair 
of SW . Then it is clear that (V, Z) is a vertex source pair of S and SU .

We claim that V is not a symmetric vertex of S. For otherwise Z ∼= Z∗ by the first 
statement in Proposition 7(i). So Z is a V -source of S∗

W . In particular SW and S∗
W
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are non-isomorphic components of IndW
V (Z). Now IndG

W (SW ) ∼= S ∼= S∗ ∼= IndG
W (S∗

W ). 
So S occurs at least twice as a direct summand of IndG

V (Z). This contradicts the second 
statement in Proposition 7(i), which proves our claim.

We can apply the previous paragraph to SU . So V is not a symmetric vertex of SU . 
Then by Proposition 7(ii), SU has a symmetric vertex T ⊇ V with |T : V | = 2. Now 
V is a Sylow 2-subgroup of W , as dim(SW ) is odd. But |U : W | = 2. So T is a Sylow 
2-subgroup of U . Now let bU be a symmetric form on SU . Then (S, b) ∼= IndG

U (SU , bU ) as 
b is unique up to isometry. Moreover bU is T -projective. So it follows from the transitivity 
of induction of forms that b is T -projective. Since |T : V | = 2, we deduce that T is a 
symmetric vertex of S. �
4. Projective indecomposable modules and orthogonal forms

Temporarily let k be a field of arbitrary characteristic p. The study of bilinear and 
quadratic forms on projective kG-modules has attracted some interest. There are ring-
theoretic criteria for a projective indecomposable kG-module to be of quadratic type 
(have a non-degenerate G-invariant quadratic form). These are due to Landrock and 
Manz [7] for p �= 2, and to Gow and Willems [3] for p = 2.

Recall that the Jacobson radical J(kG) of kG is the annihilator of all simple 
kG-modules and the contragredient map o is the k-algebra involutary anti-automorphism 
of kG such that go = g−1, for all g ∈ G.

Proposition 10 (Landrock–Manz). Suppose that p �= 2 and P is a projective indecom-
posable kG-module. Then P is of quadratic type if and only if there is a primitive 
idempotent e in kG such that P ∼= kGe and eo = e.

From now on k is a perfect field of characteristic p = 2. From [3], if P is the projective 
cover of a non-trivial simple kG-module then each G-invariant symmetric form on P is 
the polarization of a G-invariant quadratic form on P . In particular each such form is 
symplectic. Now a primitive idempotent e ∈ kG satisfies eo = e if and only if kGe is the 
projective cover of the trivial kG-module. So Proposition 10 is wrong for p = 2, and is 
replaced by:

Proposition 11 (Gow–Willems). Suppose that e is a primitive idempotent in kG. Then 
kGe is of quadratic type if and only if there is an involution t ∈ G such that eoet /∈ J(kG).

If eoet /∈ J(kG) there is a unique idempotent f ∈ kG such that kGe = kGf and 
fo = f t.

Parts of this result are only implicit in [3, Section 3].
G.R. Robinson showed in [11] that if Φ is a principal indecomposable character of G

then ν(Φ) =
∑

t〈Φ, 1GCG(t)〉 where t ranges over 1 and the conjugacy classes of involutions 
in G. The first author showed in [9, Corollaries 5.2 and 6.5]:
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Lemma 12. Suppose that e is a primitive idempotent in kG and t ∈ G is an involution 
such that eoet /∈ J(kG). Let Φ be the principal indecomposable character of kGe. Then 
〈Φ, 1GCG(t)〉 > 0. In particular ν(Φ) > 0, if kGe has a quadratic geometry.

For G solvable, we aim to directly relate the Gow–Willems criterion to the extended 
nucleus and symmetric vertex of the corresponding simple modules. We begin with a 
very general remark, which holds for an arbitrary field k:

Lemma 13. Suppose that N is a normal subgroup of G. Then J(kN) = J(kG) ∩ kN .

Proof. Let S be a simple kG-module. Then ResGN (S) is semi-simple, by Clifford’s the-
orem. So J(kN) ⊆ J(kG) ∩ kN . Conversely, let SN be a simple kN -module. Then 
ResGN IndG

N (SN ) =
∑

gN⊆G Sg
N by Mackey’s formula. This implies that SN is a direct 

summand of ResGN (S), for some simple kG-module S. So J(kN) ⊇ J(kG) ∩ kN . �
We also need a result from [4]:

Lemma 14. Suppose that (M, b) is a symmetric kG-module and M = M1+̇ . . . +̇Mt is a 
decomposition of M as an internal direct sum of indecomposable kG-modules Mi. Then 
for each i, either b is non-degenerate on Mi or there exists j �= i such that Mj

∼= M∗
i

and b is non-degenerate on Mi+̇Mj.

Let PG(M) = P (M) denote the projective cover of a kG-module M . Theorem 3 is a 
consequence of Lemmas 9 and 12 and our next result:

Theorem 15. Suppose G is solvable and S is a self-dual simple kG-module with a vertex 
and symmetric vertex V ⊆ T . Then P (S) is of quadratic type if and only if T : V splits.

Proof. If S is trivial, then T = V and it is easy to see that P (S) has a quadratic 
geometry. So from now on S is non-trivial. Let ϕ be the Brauer character of S and let 
χ ∈ B2′(G) with χ∗ = ϕ. Also let (W, γ) and (U, δ) be as in Lemma 4. So δ(1)2 = 2 and 
δG = ϕ.

Let SU be the self-dual simple kU module whose Brauer character is δ. As 
IndG

U (SU ) = S, Frobenius–Nakayama reciprocity implies that ResGU (P (S)) = P (SU ) ⊕Q, 
where no component of Q is isomorphic to P (SU )∗ ∼= P (SU ).

Suppose first that P (S) is of quadratic type. Then P (SU ) is of quadratic type, by 
the previous paragraph and Lemma 14. Now ResUW (SU ) = SW ⊕ S∗

W , where SW is the 
simple kW -module whose Brauer character is γ∗. Let e be a primitive idempotent in kW
such that kWe ∼= P (SW ). Then e is still primitive in kU and indeed kUe ∼= P (SU ). So 
according to Proposition 11, there is an involution t ∈ U such that eoet /∈ J(kU).

We claim that t /∈ W . For suppose otherwise. Then eoet ∈ kW . But Lemma 13 implies 
that eoet /∈ J(kW ). So P (SW ) ∼= kWe is of quadratic type and in particular SW

∼= S∗
W . 
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This contradiction proves the claim. We have shown that U splits over W . So T splits 
over V , by Lemma 9.

Suppose now that T splits over V . Let t be any involution in T\V and let H be a 
Hall 2′-subgroup of G such that H ∩W is a Hall 2′-subgroup of W . As χ = γG we have

χ(1)2′ = [G : W ]2′γ(1) = |H : H ∩W |γ(1) = (γH∩W )H(1).

Moreover 〈χ, (γH∩W )G〉 ≥ 〈γ, (γH∩W )H〉 ≥ 1. So γH∩W is a Fong character for γ and 
(γH∩W )H is a Fong character for χ. Then Φδ = (γH∩W )U and Φϕ = (γH∩W )G are the 
principal indecomposable characters of SU and S, respectively. In particular ΦG

δ = Φϕ. 
It follows from this that IndG

U (P (SU )) = P (S). So to complete the proof we need only 
show that P (SU ) is of quadratic type.

We can and do assume that U = G, SU = S and thus |G : W | = 2. Set N = O2′(G).
Suppose first that N acts trivially on S. Set L = O2′,2(G) and G = G/L. Then S

can be identified (by deflation) with an irreducible kG-module. As kG-module it has 
vertex V and symmetric vertex T . Now t is an involution in T\V and |G/L| < |G|. So 
by induction on |G| there is a primitive idempotent e ∈ kG such that kGe ∼= PG(S) and 
et = eo.

The map xσ := txot, for x ∈ kG, is an involutary k-algebra anti-automorphism of kG. 
The kernel of the projection map kG → kG is sp{g(1 − 
) | g ∈ G, 
 ∈ L}. It is easy to 
check that this is σ-invariant. So σ induces the involutary k-algebra anti-automorphism 
xσ = txot on kG.

Notice that eσ = e. By idempotent lifting [10, Lemma 2.1] there is a primitive idem-
potent e ∈ kG such that eσ = eo and e is the image of e in kG. Then Proposition 11
implies that kGe ∼= P (S) is of quadratic type. This completes the case N ⊆ ker(S).

Let θ ∈ Irr(N |γ). By the work above we may assume that θ is non-trivial. In particular 
θ �= θ. Set m := 〈χN , θ〉 = 〈γN , θ〉. Then m is odd, as it divides γ(1). Let Z be the simple 
kN -module whose Brauer character is θ. Then Z occurs m times as a direct summand 
of the semisimple kN -module ResGN (S). So by Frobenius–Nakayama reciprocity, P (S)
occurs m times as a direct summand of the projective kG-module IndG

N (Z).
Now m = |W : NW (θ)| is odd. So NW (θ) contains a Sylow 2-subgroup of W . Moreover 

θ is G-conjugate to θ as both belong to Irr(N |χ). So | NG(θ, θ) : NG(θ)| = 2. As |G : W | =
2, it follows that NG(θ, θ) contains a Sylow 2-subgroup of G. So we can and do assume 
that T is a Sylow 2-subgroup of NG(θ, θ) and V = T ∩ NG(θ). In particular θt = θ.

Consider the group E := N〈t〉, which is a degree 2-extension of N . Then IndE
N (Z)

is a simple kE-module which is self-dual as its Brauer character is θE . So it affords 
a non-degenerate E-invariant symplectic bilinear form which is 〈t〉-projective. As P (S)
occurs with odd multiplicity m in IndG

N (Z) = IndG
E(IndE

N (Z)), we deduce that P (S)
affords a non-degenerate G-invariant symplectic bilinear form which is 〈t〉-projective. In 
particular P (S) is of quadratic type and there is a primitive idempotent e ∈ kG such 
that et = eo and P (S) ∼= kGe. This completes the proof of the theorem. �



354 J.C. Murray, G. Navarro / Journal of Algebra 449 (2016) 346–354
Acknowledgments

This paper was initiated at the conference ‘Representations of Finite Groups’ held 
at the Mathematisches Forschungsinstitut Oberwolfach in April 2015. We thank the 
institute for its support. N. Mazza alerted us to the significance of the torsion endo-trivial 
modules of quaternion groups for the sources of simple modules of solvable groups. 
Following our query, E.C. Dade found a simple self-dual module for a solvable group 
which has a non-self-dual source. We briefly describe this in Example 8, with his kind 
permission.

References

[1] J.F. Carlson, J. Thévenaz, Torsion endo-trivial modules, Algebr. Represent. Theory 3 (4) (2000) 
303–335.

[2] J.A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959) 430–445.
[3] R. Gow, W. Willems, Quadratic geometries, projective modules and idempotents, J. Algebra 160 

(1993) 257–272.
[4] R. Gow, W. Willems, A note on Green correspondence and forms, Comm. Algebra 23 (4) (1995) 

1239–1248.
[5] D.G. Higman, Modules with a group of operators, Duke Math. J. 21 (1954) 369–376.
[6] I.M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984) 98–128.
[7] P. Landrock, O. Manz, Symmetric forms, idempotents and involutary anti-isomorphisms, Nagoya 

Math. J. 125 (1992) 33–51.
[8] N. Mazza, Endo-permutation modules as sources of simple modules, J. Group Theory 6 (4) (2003) 

477–497.
[9] J. Murray, Strongly real 2-blocks and the Frobenius–Schur indicator, Osaka J. Math. 43 (1) (2006) 

201–213.
[10] J. Murray, Symmetric vertices for symmetric modules in characteristic 2, arXiv:1501.00862 

[math.RT].
[11] G.R. Robinson, The Frobenius–Schur indicator and projective modules, J. Algebra 126 (1989) 

252–257.
[12] W. Willems, Duality and forms in representation theory, in: Representation Theory of Finite Groups 

and Finite-Dimensional Algebras, Bielefeld, 1991, in: Progr. Math., vol. 95, Birkhäuser, Basel, 1991, 
pp. 509–520.

http://refhub.elsevier.com/S0021-8693(15)00570-0/bib43543030s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib43543030s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib473539s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib47573933s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib47573933s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib47573935s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib47573935s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib483534s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib493834s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4C4D3932s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4C4D3932s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D7A3036s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D7A3036s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D3036s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D3036s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D3135s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib4D3135s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib523839s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib523839s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib573931s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib573931s1
http://refhub.elsevier.com/S0021-8693(15)00570-0/bib573931s1

	Characters, bilinear forms and solvable groups
	1 Introduction
	2 Extended nucleus
	3 Symmetric vertices and extended nucleus
	4 Projective indecomposable modules and orthogonal forms
	Acknowledgments
	References


