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Introduction

In [43], Theorem 2, it is shown that every orthomodular lattice X admits a group 
G(X) with a right invariant lattice order as a complete invariant, so that X can be 
retrieved from G(X) without use of operations other than multiplication and ∧. The 
projection lattice X of a von Neumann algebra is a special case. By Dye’s theorem [19], 
it characterizes the algebra up to ∗-symmetry and trivial summands of type I2. In [42]
the connection to G(X) was extended to unbounded lattices, which can be given by 
an abstract orthogonality relation in the sense of Janowitz [25]. The link between the 
orthogonality lattice X and the structure group G(X) was obtained by representing X
as an L-algebra, a structure which encapsulates the underlying quantum logic.

In this paper, we extend the connection in two respects. First and foremost, we drop 
the symmetry of the orthogonality relation. For example, this is quite natural if orthog-
onality is induced by the sesquilinear form of a Frobenius algebra. Secondly, we do not 
assume beforehand that X is a lattice. Since ∧ does not occur in Janowitz’ axioms, we 
start with a ∨-semilattice. It will turn out, however, that X is indeed a lattice. Therefore, 
we call it a ⊥-lattice.

The translation into an L-algebra means that the structure of a ⊥-lattice is expressed 
by a single binary operation → which can be conceived as quantum-logical implication. 
Every ⊥-lattice can thus be understood as a special type of L-algebra (Theorem 1). An 
alternative characterization is given for bounded ⊥-lattices (Proposition 4). Here the 
bi-orthogonal is an automorphism of the L-algebra.

At this point, it should be mentioned that L-algebras, while conceptually bound to 
algebraic logic, interact deeply with classical structures in geometry, topology, number 
theory, and analysis. They occur in connection with lattice-ordered groups [38], Garside 
groups [14,13,15,40], non-commutative prime factorization [44], solutions to the Yang–
Baxter equation [20,28,40], para-unitary groups [17], and von Neumann algebras [40].

A special class of L-algebras arises as intervals [u−1, 1] in right �-groups, that is, groups 
with a right invariant lattice order, where u is a strong order unit. These L-algebras admit 
an equational description, and their ambient group coincides with the structure group. 
They have been called right bricks [40]. The most classical example of a right brick is the 
unit interval in the additive group of real numbers, an MV-algebra which is fundamental 
in measure theory. Mundici’s equivalence between MV-algebras and unital (two-sided) 
abelian �-groups, which he applied to the classification of AF C∗-algebras, is based on 
such type of embedding. Dvurečenskij’s non-commutative extension [18] was the next 
step toward the ‘right bricks into right �-groups’ embedding theorem ([40], Theorem 3). 
We show that every bounded ⊥-lattice and its corresponding L-algebra is a right brick 
(Proposition 5). This enables us to embed every (not necessarily bounded) ⊥-lattice X
into its structure group (Theorem 2) which will turn out to be a complete invariant of X.

To recover X from its enveloping structure group G(X), we introduce right singular
elements in a right �-group and describe them in the presence of a strong order unit. 
For two-sided �-groups, singular elements are important in connection with complete 
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groups [2]. In the one-sided case, new phenomena arise. We show that every ⊥-lattice X
coincides with the set of right singular elements in the positive cone of its structure group 
G(X) and characterize the class of right �-groups obtained in this way (Theorem 4). The 
bounded ⊥-lattices then correspond to the right �-groups with a very strong order unit.

Extending the correspondence to the categorical level, we interpret the embedding 
X ↪→ G(X) as a universal group-valued measure. Following this paradigm, we are able 
to define group-valued measures on an arbitrary L-algebra. For a ⊥-lattice X, the uni-
versal property identifies group-valued measures on X with group homomorphisms on 
the structure group (Theorem 3). As an L-algebra is given by a single operation →, it 
is natural to define a morphism f : X → Y of L-algebras to be a map which satisfies

f(x → y) = f(x) → f(y)

for all x, y ∈ X. Similarly, a morphism of right �-groups should be a group homomorphism 
which satisfies f(x ∧ y) = f(x) ∧ f(y). For two-sided �-groups, the property f(x ∨ y) =
f(x) ∨f(y) would be a consequence. Taking this for granted, the category of right �-groups 
becomes a full subcategory of the category of L-algebras (Proposition 9). With the most 
natural morphisms, we show that the category of ⊥-lattices is equivalent to the category 
of right �-groups of singular type, and that both categories are full subcategories of the 
category of L-algebras (Theorem 5).

The last section is devoted to examples. First, we show that ⊥-lattices arise in con-
nection with non-degenerate sesquilinear forms on a vector space over a skew-field with 
involution. A space H with such a form 〈 〉 (with an extra condition in the infinite-
dimensional case) will be called orthomodular, generalizing the same-named concept in 
the hermitian case [24]. We show that the one-dimensional subspaces of an orthomod-
ular space form an L-algebra which determines the space. More generally, we introduce 
quantum sets as sets with an irreflexive binary relation ⊥ which gives rise to a ⊥-lattice. 
Together with an external unit element, every quantum set is an L-algebra. For an 
orthomodular space X, the associated projective space P(X) is a quantum set (Proposi-
tion 14).

Finally, we show that the structure group of a finite ⊥-lattice is a Garside group 
(Proposition 16). Prototypical examples of Garside groups [13] are braid groups and 
their siblings [5,16]. A gamut of examples can be found in [15]. In particular, every finite 
quantum set generates a Garside group. An explicit example of a 5-element quantum set 
will be discussed at the end of the paper.

1. One-sided orthogonality

Let X be a ∨-semilattice with smallest element 0. For a binary relation ⊥ on X, 
consider the following axioms:

x⊥x ⇐⇒ x = 0 (0)



54 C. Dietzel et al. / Journal of Algebra 526 (2019) 51–80
x � y⊥z =⇒ x⊥z (1)

x⊥y � z =⇒ x⊥z (1′)

x, y⊥z =⇒ (x ∨ y)⊥z (2)

x⊥y, z =⇒ x⊥(y ∨ z) (2′)

x � y =⇒ (∃ z ∈ X : x⊥z and x ∨ z = y) (3)

x � y =⇒ (∃ z ∈ X : z⊥x and x ∨ z = y). (3′)

In contrast to Janowitz [25], our orthogonality operation need not be symmetric. There-
fore, Janowitz’ main axioms (see (7)–(9) in [42]) split into pairs (1)–(1′), (2)–(2′), and 
(3)–(3′). So the whole system (0)–(3′) is left–right symmetric with respect to the orthog-
onality relation.

For x⊥y in X, we call x left orthogonal to y and y right orthogonal to x. If x⊥y and 
z � x, y, we can apply (1) and (1′) to obtain z⊥z. So (0) yields z = 0, which shows that 
x⊥y implies that x ∧ y = 0. Our first aim is to put the axioms into an operational form.

Proposition 1. The element z in (3) and (3′) is unique.

Proof. By symmetry, it is enough to verify this for (3). Let z′ ∈ X be another element 
with x⊥z′ and x ∨ z′ = y. Then t := z ∨ z′ satisfies x⊥t by virtue of (2′), and x ∨ t = y. 
By (3), there is an element u ∈ X with z⊥u and z ∨ u = t. Since x⊥u holds by (1′), the 
implication (2) yields y = (x ∨ z)⊥u. Hence (1) gives u⊥u. So (0) implies that u = 0. So 
z = t, and by symmetry, z′ = t = z. �

Note that all axioms (0)–(3) have been used in the preceding proof. By (3) and 
Proposition 1, every pair x, y ∈ X determines a unique element y�x ∈ X with x⊥(y�x)
and

x ∨ (y � x) = x ∨ y. (4)

Thus y � x = (x ∨ y) � x can be viewed as a right orthogonal complement of x in the 
interval [0, x ∨ y]:

x ∨ y

x y � x

0

(5)

If X is bounded, that is, X has a greatest element 1, each element x ∈ X has a right 
orthogonal x⊥ := 1 � x.
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Corollary 1. For x, y ∈ X, the following are equivalent:

(a) x⊥y

(b) y � x = y

(c) ∃ z ∈ X : z � x � y.

If X is bounded, condition (c) can be replaced by x⊥ � y.

Proof. (a) ⇒ (b) follows by Proposition 1. The implication (b) ⇒ (c) is trivial.
(c) ⇒ (a): By (1′), x⊥(z � x) � y implies that x⊥y.
If X is bounded, x⊥y implies that x⊥(x⊥ ∨ y). So Proposition 1 yields x⊥ ∨ y = x⊥. 

Conversely, x⊥ � y gives (c) with z = 1. �
Corollary 2. If X is bounded, the following equivalence holds for x, y ∈ X:

x � y ⇐⇒ y⊥ � x⊥.

Proof. By Corollary 1, we have x⊥ � y⊥ ⇔ x⊥y⊥ ⇔ (x ∨ y)⊥y⊥ ⇔ (x ∨ y)⊥ � y⊥. 
Hence x � y implies that x⊥ � y⊥.

Conversely, assume that y⊥ � x⊥. Since y⊥(x � y), we have y⊥ � x � y. Thus 
x⊥ � x �y, which gives x⊥(x �y). So (2) implies that (x ∨y)⊥(x �y). Since x ∨y � x �y, 
(1) gives (x � y)⊥(x � y). Hence (0) yields x � y = 0. By Eq. (4), we obtain x � y. �

Up to here, we have not used the last axiom (3′). It says that for a fixed y ∈ X, 
every x ∈ X with x � y is of the form y � z for some z � y. Now the interval [0, y]
satisfies all axioms (0)–(3′). Therefore, Corollary 2 implies that the map x 
→ y � x is 
an order-reversing bijection [0, y] ∼−→ [0, y]. If X itself is bounded, then (3′) implies that 
the map x 
→ x⊥ is bijective. If x 
→ ⊥x denotes the inverse map, this gives

⊥(x⊥) = (⊥x)⊥ = x.

So we obtain

Corollary 3. The ∨-semilattice X is a lattice. If X is bounded,

x⊥ ∨ y⊥ = (x ∧ y)⊥, x⊥ ∧ y⊥ = (x ∨ y)⊥

holds for all x, y ∈ X.

Definition 1. A ∨-semilattice (X; ⊥) satisfying (0)–(3′) will be called an orthogonality 
lattice or simply a ⊥-lattice.

We will represent any ⊥-lattice as an L-algebra [38]. Recall that an element 1 of a set 
X with a binary operation → is said to be a logical unit [38] if
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x → 1 = 1, 1 → x = x (6)

and

x → x = 1 (7)

hold for all x ∈ X. By (7), a logical unit is unique. If X has a logical unit 1 and satisfies

(x → y) → (x → z) = (y → x) → (y → z) (8)

x → y = y → x = 1 =⇒ x = y (9)

for all x, y, z ∈ X, then X is said to be an L-algebra [38]. The relation

x � y :⇐⇒ x → y = 1

defines a partial order of X such that 1 is the greatest element. If the elements of 
X are interpreted as logical propositions, and → as implication, then 1 stands for a 
true proposition, while (9) characterizes logical equivalence (=) between propositions. 
Beyond algebraic logic, L-algebras naturally arise in connection with Garside groups and 
solutions to the Yang–Baxter equation [40].

Every L-algebra X embeds into an L-algebra C(X) which is a ∧-semilattice satisfying

x → (y ∧ z) = (x → y) ∧ (x → z) (10)

(x ∧ y) → z = (x → y) → (x → z), (11)

such that every element of C(X) is of the form x1 ∧ · · · ∧ xn with xi ∈ X. Up to 
isomorphism, the embedding X ↪→ C(X) is unique [39]. Note that Eq. (11) implies 
Eq. (8) by the commutativity of ∧. An L-algebra X which coincides with C(X) will be 
called ∧-closed. More generally, an equational structure (X; →) satisfying Eqs. (6) and 
(10)–(11) is said to be a semibrace [39]. By [39], Corollary 1 of Theorem 3, an L-algebra 
X is ∧-closed if and only if X satisfies Eqs. (10)–(11).

A semibrace need not be an L-algebra. The concept is derived from that of a brace
[37], a ring-like structure equivalent to a semibrace where ∧ is a group operation. As the 
operation ∧ is idempotent for an L-algebra, adding Eq. (7) to a semibrace comes close 
to a tropicalization [29].

To make a ⊥-lattice X into an L-algebra, we define

x → y := y � x (12)

for x, y ∈ X. Since x � x = 0, the logical unit will be 0. So the L-algebra axioms can be 
rewritten as follows:
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x� x = 0 � x = 0, x� 0 = x (13)

(x� z) � (y � z) = (x� y) � (z � y) (14)

x� y = y � x = 0 =⇒ x = y. (15)

For example, the set-theoretic difference satisfies (13)–(15). A set X with a binary op-
eration � satisfying (13)–(15) will be called a positive L-algebra, or simply an L+-algebra. 
For an L+-algebra (X; �) we introduce the opposite partial order

x � y :⇐⇒ y � x = 0.

Thus each L-algebra (X; →) corresponds to a positive L-algebra (Xop; �), and vice versa. 
Accordingly, we say that an L+-algebra (X; �) is �-closed if (Xop, →) is ∧-closed.

Alternatively, there is a multiplicative version x\y of the difference operation y�x in 
an L+-algebra. Here x\y stands for a left quotient with denominator x. Accordingly, 0 
has to be replaced by 1. So (X; \) is identical with (X; →) except that the partial order 
is inverted.

Proposition 2. Every ⊥-lattice X is a �-closed L+-algebra.

Proof. To make X into an L+-algebra, we replace � by � and ∨ by �. Then Eqs. (10)
and (11) can be rewritten as

(x � y) � z = (x� z) � (y � z) (16)

x� (y � z) = (x� z) � (y � z). (17)

For x, y, z ∈ X, we have z⊥ (x � z), (y � z). Hence (2′) gives

z⊥ (x� z) � (y � z).

By Eq. (4), z � (x � z) � (y � z) = x � z � y, which proves Eq. (16). Again by Eq. (4), 
we obtain

y � z �
(
(x� z) � (y � z)

)
= z � (y � z) �

(
(x� z) � (y � z)

)
= z � (y � z) � (x� z) = z �

(
(y � x) � z

)
= x � y � z.
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x � y � z

y � z (x � y) � z

y � z (x� z) � (y � z)

0

Furthermore, (y � z)⊥(x � z) � (y � z). By (2′) and (4), we have

z⊥ (x� z) � (y � z) � (x� z) � (y � z).

Thus (2) gives y � z = z � (y � z)⊥(x � z) � (y � z). Whence Eq. (17) follows.
For any x ∈ X, there is a unique element y ∈ X with 0 �y = x, namely, y = x. So (3) 

implies that 0⊥x, which yields x � 0 = x. On the other hand, there is a unique y ∈ X

with x⊥y and x �y = x. Since x ∧y = 0, we get y = 0. Thus x⊥0. This proves Eqs. (13). 
The diagram (5) shows that y � x = 0 is equivalent to y � x. Whence X is a �-closed 
L+-algebra. �
2. L-algebras with orthogonality

As mentioned above, L-algebras arise in three forms, originally with an implicational 
arrow → as operation and a greatest element 1. In algebraic contexts, the operation may 
stand for difference � or (left) divisibility \. (We don’t consider symmetric counterparts 
like right-divisibility / here.) In many cases, L-algebras arise as subalgebras of right 
�-groups (see Section 3). In their logical form (X; →, 1) they occur in the negative cone, 
1 being the unit element of the group. The inversion x 
→ x−1 makes a right �-group 
into a left one, with a new lattice order � (see Section 3) which coincides with � for 
a two-sided �-group. Accordingly, the left counterparts of the lattice operations ∨ and 
∧ are written as � and �, respectively. Under inversion, the L-algebra (X; →, 1, �) is 
mapped to an L+-algebra (Xop; \, 1, �), that is, � is changed into � (see [40], Section 2). 
In its additive form, an L+-algebra (X; \, 1) is written as (X; �, 0), with difference x � y

replacing the quotient y\x. For those working with Garside groups, where the quotient 
notation is used within the positive cone, we remark that inversion x 
→ x−1 allows a 
quick plunge into the negative cone, translating everything correctly into L-algebraic 
terms.
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Whenever possible, we stick to L-algebras in their original form. Proposition 2 then 
states that a ∧-closed L-algebra is obtained from the opposite of any ⊥-lattice, where 
⊥ is replaced by a dual relation � with respect to a greatest element 1, and the lattice 
operation ∨ in (0)–(3′) is changed into ∧. Such a structure will be called a �-lattice. Thus 
every ⊥-lattice X = (X; ⊥, ∨, 0) can be regarded as a �-lattice Xop = (Xop; �, ∧, 1), 
and vice versa. In a �-lattice, the diagram (5) looks as follows:

1

x x → y

x ∧ y

(18)

The reader may translate the proof of Proposition 2 into �-lattices and L-algebras, to 
make the logic behind orthogonality more visible.

Proposition 3. Every �-lattice X satisfies

x → (x → y) = x → y.

Proof. This follows by the diagram (18) since x�x → (x → y) and

x ∧
(
x → (x → y)

)
= x ∧ (x → y) = x ∧ y. �

By the left–right symmetry of (0)–(3′), there is a second ∧-closed L-algebra structure 
(X; �) on any �-lattice X:

1

x � y x

x ∧ y

For a bounded �-lattice, we have a right orthogonal x� := x → 0 and a left orthogonal
�x := x � 0 such that

�(x�) = (�x)� = x. (19)

By Corollary 1 of Proposition 1, the orthogonality relation in a �-lattice satisfies

x�y ⇐⇒ x → y = y ⇐⇒ x� � y.
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Definition 2. We define an L-algebra with orthogonality or simply an OL-algebra to be a 
∧-closed L-algebra X such that the following are satisfied for x, y, z ∈ X:

(a) If x → z � y, then x → y = y.
(b) If x � y, there is a unique z � x with z → x = y.

For an OL-algebra X and x, y ∈ X, we define orthogonality by

x�y :⇐⇒ x → y = y.

Theorem 1. Every OL-algebra is a �-lattice, and vice versa. For x, y, z ∈ X with z �
x ∧ y, the following equations hold:

x ∧ (x → y) = x ∧ y. (20)

(x ∧ y) → z = (x → z) ∨ (y → z). (21)

Proof. Let X be an OL-algebra. For x, y ∈ X, we have x → y � x → y. So Definition 2(a) 
gives

x → (x → y) = x → y.

Hence (x ∧ y) → (x → y) = (x → y) →
(
x → (x → y)

)
= 1 by Eq. (11), which yields 

x ∧ y � x → y. On the other hand, 
(
x ∧ (x → y)

)
→ y =

(
x → (x → y)

)
→ (x → y) = 1. 

So we obtain Eq. (20).
Next we show that

x � y ⇐⇒ y → z � x → z (22)

holds for z � x ∧ y. Thus y → z � y → x. By Eq. (20), x � y yields

y → z = (y → x) ∧ (y → z) � (y → x) → (y → z) = (x → y) → (x → z) = x → z.

Conversely, assume that y → z � x → z. By Definition 2(b), there exists a unique 
t � y → z in X with t → (y → z) = x → z. Thus (a) yields y → t = t. Hence

(y ∧ t) → z = (y → t) → (y → z) = t → (y → z) = x → z.

By Eq. (20), z = y ∧ z � y → z � t. So we obtain (y ∧ t) → z = x → z, with z � y ∧ t. 
Therefore, the uniqueness part of (b) yields x = y ∧ t � y. Thus (22) is verified.

The inequality � in Eq. (21) follows immediately by (22). To prove the converse, 
assume that (x → z) ∨ (y → z) � t for some t ∈ X. By Definition 2(a), this implies that 
x → t = y → t = t. Since u := x ∧ y ∧ t � t, condition (b) gives a unique v � u in X
with v → u = t. Hence x → u � x → t = t = v → u and u � x ∧ v. Thus (22) yields 



C. Dietzel et al. / Journal of Algebra 526 (2019) 51–80 61
v � x. By symmetry, v � x ∧ y. Furthermore, z = x ∧ z � x → z � t. Again by (22), we 
obtain (x ∧ y) → u � v → u. Whence (x ∧ y) → z � (x ∧ y) → u � v → u = t. So the 
proof of Eq. (21) is complete.

Now let us verify the axioms (0)–(3′), adapted to a �-lattice. First, we have x�x ⇔
x → x = x ⇔ x = 1, which gives (0). We set t := x ∧ y ∧ z. If x � y�z, then Eq. (21)
gives

z = y → z � y → t = (x ∧ y) → t = (x → t) ∨ (y → t) � x → t.

So Definition 2(a) implies (1). If x�y � z, then x → y = y � z, and thus (a) gives (1′). 
To verify (2), assume that x, y�z. Then Eq. (21) yields

(x ∧ y) → t = (x → t) ∨ (y → t) � (x → z) ∨ (y → z) = z.

Thus (x ∧y)�z. Condition (2′) follows by Eq. (10), and (3) follows by Eq. (20). Further-
more, (b) and (a) imply (3′).

Conversely, assume that X is a �-lattice. By Proposition 2, this implies that X is a 
∧-closed L-algebra. So it remains to verify (a) and (b) of Definition 2. If x → z � y, then 
x�(x → z) � y. Thus (1′) yields (a). Furthermore, (b) is an immediate consequence of 
(3′) and Proposition 1. Thus X is an OL-algebra. �
Corollary 1. Let X be a bounded OL-algebra. Then → is given by the Sasaki arrow [45]:

x → y = (x ∧ y) ∨ x�. (23)

Furthermore, X satisfies the orthomodular law:

x � y =⇒ (x ∨ y�) ∧ y = (x ∨ �y) ∧ y = x. (24)

Proof. The inequality (x ∧y) ∨x� � x → y follows by Eq. (20). Conversely, assume that 
(x ∧ y) ∨x� � t for some t ∈ X. Then Definition 2(a) with z = 0 implies that x → t = t. 
Hence 1 = (x ∧ y) → t = (x → y) → (x → t). Thus x → y � x → t = t, which proves 
Eq. (23). To verify (24), assume that x � y. By Eq. (23), this gives y → x = x ∨ y�. By 
left–right symmetry, (24) follows by Eq. (20). �
Corollary 2. The map x 
→ x�� is an automorphism for any bounded OL-algebra X.

Proof. For x, y ∈ X, we have x� � x → y. Hence x��� � (x → y)��, and thus 
x�� � (x → y)��. Furthermore, Corollary 3 of Proposition 1 gives x�� ∧ (x → y)�� =
(x ∧ (x → y))�� = (x ∧ y)�� = x�� ∧ y��. So (3) yields (x → y)�� = x�� → y��. �
Corollary 3. Let X be a bounded lattice with a permutation x 
→ x� and its inverse 
x 
→ �x. Then X is a �-lattice if and only if the following are satisfied for x, y ∈ X:
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(a) x � y ⇐⇒ x� � y�

(b) x ∧ x� = 0
(c) x � y =⇒ (x ∨ y�) ∧ y = (x ∨ �y) ∧ y = x.

Proof. By Corollary 2 of Proposition 1, every �-lattice satisfies (a). With y = 0, Eq. (20)
gives (b), while (c) follows by Corollary 1.

Conversely, assume that (a)–(c) hold. Define x�y :⇔ x� � y. Then x�x implies that 
x� = 0, which proves condition (0) for a �-lattice. If x � y and y� � z, then (a) gives 
x� � y� � z, which yields (1). Furthermore, (1′) and (2′) are trivial. If x� � z and 
y� � z, then (a) implies that (x ∧y)� = x�∨y� � z. Thus (2) is valid. The implications 
(3) and (3′) follow by (c). Thus X is a �-lattice. �

Note that (b) implies that x ∨x� = 1. Corollary 3 shows that an orthomodular lattice 
[27] is the same as a �-lattice with an involutive map x 
→ x�. For bounded OL-algebras, 
the conditions of Definition 2 can be simplified:

Proposition 4. A ∧-closed L-algebra is a bounded OL-algebra if and only if X has a 
smallest element 0 such that the following are satisfied for all x, y ∈ X, where x� :=
x → 0:

(a) The map x 
→ x� is bijective.
(b) x� � y� =⇒ y � x.
(c) x� � y =⇒ x → y = y.

Proof. The necessity follows by Corollary 2 of Proposition 1 and Definition 2(a).
Conversely, assume that (a)–(c) are satisfied. Then Definition 2(a) follows by (c). So 

we get Eq. (20) as in the proof of Theorem 1. To verify Definition 2(b), assume that x � y. 
If x 
→ �x denote the inverse map of x 
→ x�, then z := �y∨x satisfies z� = y∧x� � y. 
Hence z → y = y. Furthermore, x � y gives y� � x�. So y → x� = x�. By Eq. (20), 
y� ∨ (y ∧ x�) � y → x�. Assume that y� ∨ (y ∧ x�) � t for some t ∈ X. Then y� � t

gives y → t = t, and

1 = (y ∧ x�) → t = (y → x�) → (y → t),

which yields y → x� � y → t = t. So y → x� � y� ∨ (y ∧ x�). Hence x� = y → x� =
y� ∨ (y ∧ x�), and thus x = y ∧ z. Consequently, z → x = z → (y ∧ z) = z → y = y. So 
z satisfies (b) of Definition 2, except for the uniqueness.

To show that z is unique, let z, t � x be elements in X with z → x = t → x = y. Then 
(z ∧ t)� = z� ∨ t� � y. Furthermore, there is an element u � z ∧ t with u → (z ∧ t) = z. 
Hence u� � z and u� � (z ∧ t)� � y, which yields u� � z ∧ y = z ∧ (z → x) = z ∧ x �
z ∧ t � u. Thus (c) gives u = u → u = 1. So t � z ∧ t = u → (z ∧ t) = z. By symmetry, 
z = t. �



C. Dietzel et al. / Journal of Algebra 526 (2019) 51–80 63
3. The structure group

Recall that a group G with a partial order � is said to be right partially ordered [21]
if

x � y =⇒ xz � yz

holds for x, y, z ∈ G. If (G; �) is a lattice, G is called a right �-group [40]. With the 
partial order

x � y :⇐⇒ y−1 � x−1,

every right �-group becomes a left �-group, that is, a right �-group with respect to the 
opposite multiplication. So there are two lattice structures on any right �-group G, which 
coincide if and only if G is a lattice-ordered group (an �-group for short).

Right �-groups with a total order, introduced by Paul Conrad [11] as right ordered 
groups, are important in algebraic topology [3,4,34,35,47,10]. In particular, right order-
ability of 3-manifolds is of interest here [4]. Garside groups [14,13,15] are special right 
�-groups which need not be right orderable. The structure group [20,28] of a finite in-
volutive set-theoretic solution of the Yang–Baxter equation is Garside [7,9], but right 
orderable only in case of a multipermutation solution [8,1].

The negative cone

G− := {x ∈ G | x � 1}

of a right �-group G is an L-algebra with respect to each of the two operations

x → y := yx−1 ∧ 1, x � y := (y−1x ∨ 1)−1. (25)

The induced partial orders on G− are

x � y ⇐⇒ x → y = 1, x � y ⇐⇒ x � y = 1.

An element u ∈ G is said to be normal [40] if uG−u−1 = G−, or equivalently,

x � y ⇐⇒ ux � uy

for all x, y ∈ G. In the context of Garside groups, normal elements are also called balanced
[22]. The normal elements of a right �-group G form an �-group ([41], Proposition 5), the 
quasi-centre N(G) of G. A normal element u � 1 in N(G) is said to be a strong order 
unit [40] if each x � 1 satisfies x � un for some n ∈ N. Note that normal elements u ∈ G

satisfy
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u � x ⇐⇒ u � x, x � u ⇐⇒ x � u

for all x ∈ G.
Mundici [31] proved that an abelian �-group with a distinguished strong order unit u is 

equivalent to an MV-algebra [6], given by the interval [1, u]. This result was generalized 
to non-commutative �-groups by Dvurečenskij [18]. For our present purpose, we need 
an extension to right �-groups [40], where the rôle of the MV-algebra is taken by a 
right brick, a set X with binary operations → and � such that (X; →) and (X; �) are 
L-algebras with the same logical unit 1 and a simultaneous smallest element 0. With 
x� := x → 0 and �x := x � 0, the following are required to hold for all x, y ∈ X:

(�x)� = x (26)
�(x� → y�) = (�x → �y)� (27)

x → (x � y)� = y → (y � x)� (28)

x � �(x → y) = y � �(y → x). (29)

In [40] it was shown that the symmetric counterparts

�(x�) = x

�(x� � y�) = (�x � �y)�

of (26) and (27) are also valid in a right brick. By [40], Theorem 3, every right brick 
X embeds into a right �-group G with a strong order unit u such that X ∼= [u−1, 1]. 
Eq. (27) can also be written as

(x → y)�� = x�� → y��,

and the symmetry in Eqs. (28)–(29) with respect to x and y is explained by

x� ∨ y� = x → (x � y)�

�(x ∧ y) = x � �(x → y).

Proposition 5. Every bounded OL-algebra is a right brick.

Proof. Eq. (26) is a consequence of Proposition 4. Eq. (27) follows by Corollary 2 of 
Theorem 1. By definition, x � y is given by the relations (x � y)�x and (x � y) ∧ x =
x ∧ y. Hence (x � y)� � x. By (24), this implies that 

(
(x � y)� ∨ x�)∧ x = (x � y)�. 

Since (x � y) ∧ x = x ∧ y, we have (x � y)� ∨ x� = (x ∧ y)�. Thus

(x � y)� = (x ∧ y)� ∧ x.
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So Eq. (10) yields x → (x � y)� = x →
(
(x ∧ y)� ∧ x

)
= (x → (x ∧ y)�) ∧ (x → x) =

x → (x ∧ y)�. Since x ∧ y � x, we have x� � (x ∧ y)�. Hence x�(x ∧ y)�, and thus 
x → (x ∧y)� = (x ∧y)�. So we obtain x → (x � y)� = (x ∧y)�, which proves Eq. (28). 
Now Eq. (29) follows by the left–right symmetry of (0)–(3′). �

To take profit from Proposition 5, we recall the construction of the structure group 
G(X) of an L-algebra X. For details, we refer to [38]. First, an L-algebra X is said to 
be self-similar [38] if for any x ∈ X, the map y 
→ (x → y) is a bijection from the lower 
set ↓x := {y ∈ X | y � x} onto X. Equivalently, this means that X has an associative 
multiplication with unit element 1 such that the following are satisfied for x, y, z ∈ X:

x → yx = y (30)

xy → z = x → (y → z) (31)

(x → y)x = (y → x)y. (32)

It is easily checked that these equations imply that (X; →) is an L-algebra. For x, y ∈ X, 
the product xy is the unique element z � y with y → z = x. By [38], Proposition 4, 
every self-similar L-algebra is ∧-closed, with

x ∧ y = (x → y)x = (y → x)y. (33)

Up to isomorphism, any L-algebra X admits a unique embedding into a self-similar 
L-algebra S(X), generated as a monoid by X, the self-similar closure of X. Eq. (30)
shows that the monoid S(X) is right cancellative, and Eq. (32) implies the left Ore 
condition. So S(X) has a group of left fractions G(X), the structure group [38] of the 
L-algebra X, and there is a natural map qX : X → G(X). The structure group, intro-
duced by Etingof et al. [20] in connection with solutions to the Yang–Baxter equation, 
is a special case ([40], Section 4). If X is a right brick, qX is an embedding so that S(X)
identifies with the negative cone of G(X).

Definition 3. Let G be a right �-group. We call a strong order unit u ∈ G very strong if 
the partial orders � and � coincide on the interval [1, u].

As a consequence of Proposition 5, we obtain

Proposition 6. Let X be a bounded OL-algebra. There exists a right �-group G(X) with 
a very strong order unit u such that the interval [u−1, 1] ↪→ G(X) is isomorphic to X.

Proof. By Proposition 5 and [40], Theorem 3, X embeds into a right L-group G(X) with 
a strong order unit u such that X can be identified with the interval [u−1, 1] in G(X). 
For x, y ∈ [1, u] we have x−1, y−1 ∈ [u−1, 1] and (x−1)� = u−1x ∧ 1 = u−1x. Hence 
x � y ⇐⇒ y−1 � x−1 ⇐⇒ (x−1)� � (y−1)� ⇐⇒ u−1x � u−1y ⇐⇒ x � y. Thus u is a 
very strong order unit. �
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Under the map x 
→ x−1, the interval X = [u−1, 1] in G(X) is transformed into an 
L+-algebra [1, u] ⊂ G(X) which is isomorphic to Xop.

Theorem 2. Let X be an OL-algebra. Then G(X) is a right �-group. In particular, G(X)
is a two-sided group of fractions of S(X), with S(X) = G(X)−.

Proof. For any x ∈ X, the upper set ↑x := {y ∈ X | x � y} is a �-lattice, hence a 
bounded OL-algebra, an L-subalgebra of (X; →) and (X; �). Note that by (3′), the two 
operations are related by

(x → y) � y = x,

for x � y in X. In the proof of [40], Theorem 3, it was shown that the self-similar closure 
S(Y ) of any right brick Y coincides with the negative cone of the structure group G(Y ). 
So S(Y ) is a right �-cone in the sense of [40], Definition 2. Thus Proposition 5 implies 
that S(↑x) = G(↑x)− for all x ∈ X. By [38], Theorem 3, S(↑x) can be identified with 
the submonoid of S(X) generated by ↑x. So the direct union S(X) = lim−−→S(↑x) is a 
right �-cone. Thus [40], Theorem 1, yields S(X) = G(X)−. In particular, G(X) is a right 
�-group. Since any right �-cone is left and right cancellative and satisfies the left and 
right Ore condition, G(X) is a two-sided group of fractions of S(X). �
4. Measures on L+-algebras

Let X be an L+-algebra. In what follows, we write the operation � multiplicatively, 
that is, we pass to the operation

x\y := y � x

with 1 instead of 0. We say that X is self-similar if the L-algebra Xop is self-similar. So 
there is a natural embedding X ↪→ S(X) into a self-similar L+-algebra S(X) which is 
obtained from S(Xop) by inverting the partial order and the multiplication:

S(X)op = S(Xop).

We call S(X) the self-similar closure of X. Eqs. (30)–(32) in S(Xop) translate into the 
following equations in S(X):

x\xy = y (34)

xy\z = y\(x\z) (35)

x(x\y) = y(y\x). (36)

Note that for the difference operation, Eq. (35) takes the more natural form
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z � xy = (z � x) � y,

which partly explains why it is natural to invert the multiplication in passing from 
S(Xop) to S(X). More importantly, this convention enables us to identify G(X) with 
G(Xop). Indeed, there is a commutative diagram

Xop qX→ G(Xop)

X

1X
↓

q+
X→ G(X)

i

↓

where the identity map 1X inverts the partial order and the multiplication, while i(a) :=
a−1 for a ∈ G(Xop). The map i carries the negative cone G(X)− to the positive cone
G(X)+ := {a ∈ G(X) | a � 1}, with

a\b := (a−1 → b−1)−1.

The partial order � in G(X)− is transformed into the partial order � in G(X)+, in 
accordance with our convention to denote the partial order of an L+-algebra X by �, 
and to speak of �-closed L+-algebras. We call G(X) the structure group of X. It is 
equipped with the canonical map q+

X : X → G(X), given by q+
X = iqX . In case that 

the structure group G(X) of an L+-algebra X is abelian, we use the operation � in X
instead of its multiplicative counterpart.

Example. Classical logic is encapsulated in the Boolean algebra B := {0, 1} = P(∅), the 
subobject classifier of the topos of sets [30]. With respect to set-theoretic difference, B
is an L+-algebra. Its self-similar closure is the L-algebra (N; �, +) of natural numbers, 
with

a� b :=
{
a− b for a � b

0 for a < b.

The structure group G(B) is Z, the additive group of integers.

Definition 4. Let X be an L+-algebra. We say that x is left orthogonal to y and y is right 
orthogonal to x, written x⊥y, if x\y = y.

Viewed in S(X), the internal condition x⊥y can be expressed, more symmetrically, by 
xy = x � y. Since x(x\y) = x � y, the equivalence follows since S(X) is left cancellative. 
Thus x⊥y expresses a certain disjointness of the factors in xy.

The following result suggests a generalization to arbitrary L-algebras.
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Proposition 7. Let X be a ⊥-lattice. Then x⊥y holds in X if and only if the product 
xy ∈ S(X) belongs to X.

Proof. If x⊥y, then xy = x � y ∈ X. Conversely, let x, y ∈ X be elements with xy ∈ X. 
By Proposition 3 and Eq. (34), x\y = x\(x\xy) = x\xy = y. �
Definition 5. Let M be a monoid, and let X be a (positive) L-algebra. We define a 
measure of X with values in M to be a map μ : X → M satisfying μ(1) = 1 and

μ(xy) = μ(x)μ(y)

for all x, y ∈ X with xy ∈ X.

For example, the embedding X ↪→ S(X) of an L-algebra X into its self-similar closure 
S(X), as well as the natural map qX : X → G(X), are measures on X.

Theorem 3. Let M be a monoid, and let X be a �-closed L+-algebra. Every measure 
μ : X → M admits a unique extension to a measure on S(X) with values in M .

Proof. For an integer n ∈ N, let Sn(X) ⊂ S(X) be the subset of all a ∈ S(X) which 
can be written as a = x1 · · ·xn with xi ∈ X. Thus S0(X) = {1} and S1(X) = X. We 
proceed by induction on n. By Eq. (35) and [38], Proposition 5, the implication

b ∈ Sn(X) =⇒ a\b ∈ Sn(X)

holds for all a ∈ S(X) and n ∈ N. Hence Sn(X) is an L+-subalgebra of S(X). By [38], 
Proposition 5, the equation

a\bc = (a\b)
(
(b\a)\c

)
(37)

holds in S(X).
Now assume that μ has been extended to some Sn(X) with n � 1, such that μ(xa) =

μ(x)μ(a) holds for all x ∈ X and a ∈ Sn(X) with xa ∈ Sn(X). Then any element of 
Sn+1(X) is of the form xa with x ∈ X and a ∈ Sn(X). Hence, an extension to Sn+1(X)
must satisfy

μ(xa) = μ(x)μ(a),

which proves the uniqueness assertion of the theorem. Thus, assume that xa = yb for 
some x, y ∈ X and a, b ∈ Sn(X). We show that

μ(x)μ(a) = μ(y)μ(b). (38)

By Eqs. (35) and (37),
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xa\yb = a\(x\yb) = a\(x\y)
(
(y\x)\b

)
=

(
a\(x\y)

)(
((x\y)\a)\((y\x)\b)

)
.

Hence xa � yb is equivalent to a � x\y and (x\y)\a � (y\x)\b. So xa = yb if and only if 
(x\y)\a = (y\x)\b together with a � x\y and b � y\x. Thus c := (x\y)\a = (y\x)\b ∈
Sn(X). By Eq. (33), this gives (x\y)c = (x\y) � a = a, and similarly, (y\x)c = b. 
Thus, by assumption, μ(a) = μ(x\y)μ(c) and μ(b) = μ(y\x)μ(c). Since X is �-closed, 
this implies that μ(x)μ(a) = μ(x)μ(x\y)μ(c) = μ(x � y)μ(c). By symmetry, this proves 
Eq. (38). Therefore,

μ(xa) := μ(x)μ(a) (39)

extends μ unambiguously to Sn+1(X).
Now assume that x ∈ X and a ∈ Sn+1(X) such that xa ∈ Sn+1(X). To com-

plete the inductive step, we have to show that μ(xa) = μ(x)μ(a). Choose y ∈ X

and b ∈ Sn(X) with xa = yb. As above, we have c := (y\x)\b ∈ Sn(X). Hence 
μ(b) = μ((y\x)c) = μ(y\x)μ(c), and thus μ(xa) = μ(y)μ(b) = μ(y)μ(y\x)μ(c) =
μ(x)μ(x\y)μ(c) = μ(x)μ((x\y)c) = μ(x)μ(a). So Eq. (39) holds for all x ∈ X and 
a ∈ S(X).

Finally, let a, b ∈ S(X) be arbitrary. We prove that

μ(ab) = μ(a)μ(b).

For a ∈ X, this follows by Eq. (39). Thus, assume that a = xc ∈ Sn+1(X) and c ∈ Sn(X). 
Then μ(ab) = μ(xcb) = μ(x)μ(cb). By induction, we can assume that μ(cb) = μ(c)μ(b). 
So we obtain μ(ab) = μ(x)μ(c)μ(b) = μ(a)μ(b). �

Note that S(S(X)) ∼= S(X) holds since S(X) is self-similar [38]. Therefore, a measure 
on S(X) is just a monoid homomorphism.

Corollary. Every measure μ : X → G on a �-closed L+-algebra X with values in a group 
G admits a unique extension to a group homomorphism μ : G(X) → G, and any G-valued 
measure on X arises in this way.

Proof. This follows since G(X) is a group of right fractions of S(X). �
5. Right singular right �-groups

Theorem 3 and its corollary show that the natural map qX : X ↪→ G(X) of a �-closed 
L+-algebra X is universal among the group-valued measures μ : X → G. We will use 
this fact to establish a connection between ⊥-lattices and right �-groups.

Definition 6. Let G be a right �-group. We call an element s ∈ G− right singular if the 
implication
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s � ab =⇒ ab = a ∧ b

holds for all a, b ∈ G−. The set of right singular elements will be denoted by Xr(G). We 
say that G is of right singular type if Xr(G) is closed with respect to ∧ and generates G
as a group, such that x � y implies x � y for all x, y ∈ Xr(G).

By Eqs. (33), s ∈ G− is right singular if and only if s � ab implies that a is right 
orthogonal to b. For convenience, we extend the definition to positive elements, defining 
s ∈ G+ to be right singular if s−1 is right singular, or equivalently, if

ab � s =⇒ ab = a � b

holds for all a, b ∈ G+. For �-groups, this definition coincides with the classical one, 
except that we do not exclude the unit element (see [2], 11.2.9, or [12], Definition 6.9). 
Moreover, the set of singular elements in the positive cone of an �-group G is ∨-closed. 
By [12], Proposition 55.11, an �-group G is of right singular type if and only if G is a 
Specker group, hence a subgroup of some cardinal power ZI (see [12], Theorem 55.14).

Proposition 8. Let G be a right �-group, and let u ∈ G+ be a strong order unit. Then 
any right singular element s ∈ G− is of the form s = x1 ∧ · · · ∧ xn with u−1 � xi � 1.

Proof. There is an integer n � 2 with u−n � s. Since u−1(u1−n ∨ s) = u−n ∨ u−1s � s, 
we have x := s(u1−n ∨ s)−1 ∈ [u−1, 1] and u1−n � u1−n ∨ s � 1. Hence s = x(u1−n ∨ s)
implies that s = x ∧ (u1−n ∨ s). Now the statement follows by induction. �

Next we show that the structure group of an OL-algebra is a complete invariant.

Theorem 4. Let X be an OL-algebra. The structure group G(X) is of right singular type, 
with Xr(G(X)) = X, and any right �-group of right singular type arises in this way.

Proof. Let X be an OL-algebra. By Theorem 2, G(X) is a right �-group, a two-sided 
group of fractions of its negative cone S(X). Let s ∈ G(X)− be right singular. Suppose 
that s /∈ X. Then s = xa with x ∈ X�{1} and a ∈ S(X). Hence s = x ∧a. So a is again 
right singular. By induction, we can assume that a ∈ X. Hence s ∈ X, which proves 
that Xr(G(X)) ⊂ X. Conversely, assume that x ∈ X and x � ab for some a, b ∈ S(X). 
By [38], Proposition 5, this gives 1 = x → ab =

(
(b → x) → a

)
(x → b). Thus x � b and 

b → x � a, and Proposition 6 implies that a, b ∈ X. By Theorem 1, b → a = a. So we 
obtain ab = (b → a)b = a ∧ b. Whence x is right singular. Thus Xr(G(X)) = X.

In particular, Xr(G(X)) is ∧-closed and generates G(X) as a group. Let x, y ∈
Xr(G(X)) be singular elements with x � y. By Definition 2(b), there is an element 
z � x in X with z → x = y. Hence x = z ∧ x = (z → x)z = yz � y. This proves that 
G(X) is of right singular type.
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Conversely, let G be a right �-group of right singular type. We show that X := Xr(G)
is an OL-algebra. Note first that X is a sublattice of G. For x, y ∈ X, this implies 
that x ∧ y = (x → y)x = (x → y) ∧ x � x → y. Hence X is an L-subalgebra of G−. 
For x, y, z ∈ X, assume that x → z � y. Then x ∧ z = (x → z)x � yx, which yields 
yx = x ∧ y = (x → y)x. Hence x → y = y. This establishes condition (a) of Definition 2. 
To verify (b), let x, y ∈ X be singular elements with x � y. We have to find an element 
z ∈ X with z � x and z → x = y. Such an element is unique, because x = z ∧ x = (z →
x)z = yz. Since x � y, we have x = x � y = y(y � x). So the element z := y � x ∈ X

satisfies x = yz. Hence x � z and x = yz = y ∧ z. By Eqs. (25), we thus obtain 
z → x = z → (y ∧ z) = z → y = yz−1 ∧ 1 = (y ∧ z)z−1 = xz−1 = y. Thus X is an 
OL-algebra.

For any pair x, y ∈ X, we have (x � y)�x and (x � y) ∧ x = x ∧ y. Hence (x �
y) → x = x, and thus x(x � y) =

(
(x � y) → x

)
(x � y) = (x � y) ∧ x = x ∧ y. By 

symmetry, we obtain x(x � y) = y(y � x), that is, x−1y = (x � y)(y � x)−1. If S
denotes the set of all products x1 · · ·xn ∈ G with xi ∈ X, this implies that every element 
of G is of the form ab−1 with a, b ∈ S. By [40], Theorem 1, (G−; →) is a self-similar 
L-algebra. Hence

a → bc =
(
(c → a) → b

)
(a → c) (40)

holds for a, b, c ∈ G− (see [38], Proposition 5). Together with Eq. (31), this shows that 
a → b with a, b ∈ S belongs to S. For any c ∈ G−, the representation c = ab−1 with 
a, b ∈ S gives a = cb. Hence Eq. (30) yields c = b → a ∈ S. Thus G− = S. By [38], 
Theorem 3, S ∼= S(X). This proves that G ∼= G(X). �
Corollary. Up to isomorphism, there is a one-to-one correspondence between bounded 
OL-algebras and right �-groups with a right singular very strong order unit.

Proof. By Proposition 6, every bounded OL-algebra X embeds as an interval [u−1, 1]
into its structure group G(X) such that u is a very strong order unit of G(X). Thus u
is right singular.

Conversely, let G be a right �-group with a right singular very strong order unit u. 
Then Proposition 8 implies that [u−1, 1] = Xr(G). Since u is a very strong order unit, 
the partial orders � and � coincide on [u−1, 1]. Hence G is of right singular type, and 
G can be identified with the structure group G(Xr(G)). �

Let us write Gr� for the category of right �-groups, with group homomorphisms re-
specting the ∧-semilattice structure as morphisms. By LAlg we denote the category of 
L-algebras. Morphisms are maps f : X → Y which satisfy

f(x → y) = f(x) → f(y)
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for all x, y ∈ X. By Eq. (7), this implies that f(1) = 1. We show first that Gr� can be 
regarded as a full subcategory of LAlg.

Proposition 9. The functor G 
→ G− gives a full embedding Gr� ↪→ LAlg.

Proof. Every morphism f : G → H of right �-groups induces a monoid homomorphism 
f− : G− → H−, and f is determined by f−. By Eqs. (25), f− is a morphism of L-algebras. 
Conversely, let g : G− → H− be a morphism of L-algebras. For a, b ∈ G−, Eq. (30) gives 
g(a) = g(b → ab) = g(b) → g(ab). Hence g(a)g(b) � g(ab). On the other hand, Eq. (40)
yields

g(ab) → g(a)g(b) =
(
(g(b) → g(ab)) → g(a)

)(
g(ab) → g(b)

)
=

(
g(b → ab) → g(a)

)
g(ab → b) = 1.

Thus g(ab) � g(a)g(b), which shows that g is a monoid homomorphism. Thus g extends 
uniquely to a group homomorphism f : G → H.

By [40], Theorem 1, G is a two-sided group of fractions of G−. Hence every pair of 
elements a, b ∈ G admits an element c ∈ G− with ac, bc ∈ G−. By Eqs. (33), g is a 
morphism of ∧-semilattices. So f is a morphism of ∧-semilattices. Whence f ∈ Gr�. �

In Gr�, we consider the subcategory SrGr� of right �-groups of right singular type, with 
morphisms which map right singular elements to right singular elements. By OLAlg we 
denote the full subcategory of OL-algebras in LAlg, and we write OSL for the category 
of �-lattices, with morphisms f : X → Y satisfying f(x ∧ y) = f(x) ∧ f(y) and

x�y =⇒ f(x)�f(y) (41)

for all x, y ∈ X.

Theorem 5. The categories OSL, OLAlg, and SrGr�, with their natural morphisms, are 
mutually equivalent.

Proof. Let us start with the more obvious equivalence OSL ≈ OLAlg. By Theorem 1, the 
two structures live on the same set. Thus, let f : X → Y be a morphism of �-lattices. 
Since f respects meets, the diagram (18) with (41) implies that f is a morphism of 
L-algebras. So f ∈ OLAlg. Conversely, assume that f ∈ OLAlg. Then (41) follows since 
x�y ⇔ x → y = y. As qY f : X → Y ↪→ G(Y ) is a measure, Eqs. (33) imply that qY f is 
a morphism of ∧-semilattices. Hence f ∈ OSL.

Now let f : X → Y be a morphism of OL-algebras. Since qY f : X → G(Y ) is a 
measure, the corollary of Theorem 3 implies that f gives rise to a commutative diagram
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X
f → Y

G(X)

qX

↓

∩

G(f)→ G(Y )

qY

↓

∩

with a group homomorphism G(f). By Theorem 2, G(X) is a two-sided group of fractions 
of S(X) = G(X)−. Thus G(f) restricts to a monoid homomorphism S(f) : S(X) →
S(Y ). By Eqs. (31) and (40), every element x1 · · ·xn → y1 · · · ym with xi, yj ∈ X can be 
represented as a term in the xi, yj with → and multiplication as operations. Hence S(f)
is a morphism of L-algebras. By Proposition 9, this implies that G(f) is a morphism of 
right �-groups. So we obtain a functor G : OLAlg → SrGr�.

Conversely, every morphism g : G → H in SrGr� induces a morphism Xr(g) : Xr(G) →
Xr(H) of L-algebras. So the equivalence OLAlg ≈ SrGr� follows by Theorem 4. �
6. Examples

Let K be a skew-field with an involutive anti-automorphism λ 
→ λ∗, and let H be a 
left K-vector space with a sesquilinear form σ : H ×H → K, that is, σ is linear in the 
first variable, additive in the second, and σ(x, λy) = σ(x, y)λ∗ holds for x, y ∈ H and 
λ ∈ K. For a subspace U of H, we define the left orthogonal ⊥U := {x ∈ H | σ(x, U) = 0}
and the right orthogonal U⊥ := {x ∈ H | σ(U, x) = 0}. Assume that σ is non-degenerate, 
that is ⊥H = H⊥ = 0. If H is finite dimensional, there is a unique automorphism ν of 
H with

σ(x, νy) = σ(y, x)∗ (42)

for all x, y ∈ H, the Nakayama automorphism [26]. Two-fold application of (42) yields

σ(νx, νy) = σ(x, y),

which shows that ν is σ-invariant. By Eq. (42), every subspace U of H satisfies

U⊥ = ⊥(νU) = ν(⊥U). (43)

The subspaces U with (⊥U)⊥ = U coincide with the subspaces of the form V ⊥. We call 
them closed. The set X(H) of closed subspaces is closed with respect to intersection. 
So X(H) is a complete lattice with set-theoretic intersection as meet. For U ∈ X(H), 
Eqs. (43) give

ν(U) = U⊥⊥.
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Definition 7. Let K be a skew-field with an involutive anti-automorphism λ 
→ λ∗. We 
say that a sesquilinear form 〈 〉 : H ×H → K on a K-vector space H is orthomodular if 
〈 〉 admits a Nakayama automorphism ν, and

U⊥ ⊕ U⊥⊥ = H (44)

holds for all subspaces U of H. Accordingly, we call H = (H; 〈 〉) an orthomodular space.

By Eqs. (43), the sesquilinear form of an orthomodular space H is anisotropic, that 
is, 〈x, x〉 = 0 implies x = 0 for all x ∈ H. Indeed, a vector x ∈ H with 〈x, x〉 = 0
satisfies x ∈ ⊥(Kx) ∩ (⊥Kx)⊥ = ν−1(Kx)⊥ ∩ ν−1(Kx)⊥⊥ = 0. In particular, 〈 〉 is 
non-degenerate. For an orthomodular space H, we introduce the orthogonality relation

U⊥V :⇐⇒ U ⊂ ⊥V ⇐⇒ U⊥ ⊃ V.

If H is hermitian (〈x, y〉∗ = 〈y, x〉 for all x, y ∈ H), the left and right orthogonals 
coincide. By Solèr’s theorem [24], the skew-field of scalars of a hermitian orthomodular 
space with an infinite orthonormal sequence must be either R or C, or the skew-field H
of quaternions.

Proposition 10. Let H be an orthomodular space. Then X(H) is a bounded ⊥-lattice.

Proof. The axioms (0)–(2′) are easily verified. Let U, V be closed subspaces of H with 
U ⊂ V . Then U⊥(U⊥ ∩ V ) and U + (U⊥ ∩ V ) = (U +U⊥) ∩ V = V . Since U = (⊥U)⊥, 
Definition 7 gives U ∩ U⊥ = 0. Thus (3) holds. Axiom (3′) follows by symmetry. �

Remarks. 1. For example, every Frobenius algebra [32,33] is an orthomodular space. 
By Proposition 10, the ideals form a ⊥-lattice. More generally, Jans [26] considers 
generalized Frobenius algebras A with an associative bilinear form and a Nakayama 
automorphism. So the ideals of A form a ⊥-lattice if they satisfy Eq. (44).

2. In case that H is a finite dimensional vector space over a field K with an anisotropic 
symmetric bilinear form 〈 〉 : H×H → K, the set X(H) of all subspaces of H is a modular 
ortho-lattice [27]. The first author proved [17] that the structure group G(X(H)) is 
isomorphic to the corresponding pure para-unitary group, that is, the kernel of the map 
PU(H) � U(H), where U(H) is the automorphism group of the bilinear form, and 
PU(H) is the group of para-unitary matrices over K[t, t−1] (see [17] for details).

For H := R
n, equipped with the standard Euclidean inner product σ(v, w) := v�w,

PU(H) :=
{
M(t) ∈ K

[
t, t−1]n×n : M(t)�M(t−1) = 1

}
,

where M(t−1) is obtained by replacing t by t−1. The pure para-unitary group is the 
subgroup
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PPU(H) = {M(t) ∈ PU(H) : M(1) = 1} .

It has a right-invariant lattice-order with negative cone

PPU(H)− = PPU(H) ∩ k
[
t−1]n×n

.

Now consider the lattice Xf (H) of finite dimensional subspaces of an orthomodular 
space H. Let X1(H) be the set of subspaces of dimension at most 1. Thus P(H) :=
X1(H) � {0} consists of the points of the projective space associated to H.

Proposition 11. Let H be an orthomodular space. Then Xf (H) is a positive OL-subalgebra 
of X(H) with X1(H) as an L+-subalgebra.

Proof. Let U ∈ X(H) be finite dimensional, with a basis {x1, . . . , xn}. Then the fi :=
〈xi, −〉∗ are linear forms on H with Ker fi = (Kxi)⊥, and U⊥ = (Kx1)⊥∩· · ·∩ (Kxn)⊥. 
Hence dimH/U⊥ � n. As the elements of ⊥(U⊥) are linear forms on H/U⊥, it follows 
that U = ⊥(U⊥) ∈ X(H). Thus Xf (H) is a modular sublattice of X(H). Therefore, Xf

is a positive OL-subalgebra of X(H) with

V � U = (U + V ) ∩ U⊥

for U, V ∈ Xf (H). If U, V are one-dimensional with U �= V , then U is of codimension 1 
in U + V . Since [U, H] ∼= [0, U⊥], this implies that (U + V ) ∩ U⊥ is one-dimensional. If 
U = V , then V � U = U ∩ U⊥ = 0. Thus X1(H) is an L-subalgebra. �

We will show that X(H) is completely determined by the L-algebra X1(H). Let X
be a set with an irreflexive binary relation ⊥. For subsets A, B ⊂ X, we write A⊥B if 
x⊥y for all x ∈ A and y ∈ B. If x ∈ X and A ⊂ X, we abbreviate {x}⊥A and A⊥{x} by 
x⊥A and A⊥x, respectively. We define the left and right orthogonal of a subset A ⊂ X

to be

⊥A := {x ∈ X | x⊥A}, A⊥ := {x ∈ X |A⊥x}.

Accordingly, we write ⊥x := ⊥{x} and x⊥ := {x}⊥. For brevity, let us call (X; ⊥) a 
⊥-set. In particular, every subset of (X; ⊥) is a ⊥-set.

Definition 8. We call a ⊥-set X non-degenerate if there exists a permutation ν of X such 
that ⊥(x⊥) = (⊥x)⊥ = x and x⊥ = ⊥ν(x) holds for all x ∈ X. The subsets of the form 
A⊥ will be called closed.

Thus any subset A of a non-degenerate ⊥-set X satisfies

A⊥ = ⊥ν(A),
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and A is closed if and only if (⊥A)⊥ = A or equivalently, ⊥(A⊥) = A. As any intersection 
of closed subsets is closed, the closed subsets of X form an atomistic complete lattice 
L(X). If no confusion is possible, we also write x for the atoms {x} of L(X). We call 
them points. Since

A ⊂ B ⇐⇒ B⊥ ⊂ A⊥ (45)

holds for closed subsets A, B of X, the closed sets x⊥ with x ∈ X are maximal among 
the proper closed subsets. We call them co-points.

Proposition 12. Let X be a non-degenerate ⊥-set. The following are equivalent:

(a) For closed sets A ⊂ B of X, the set A is closed in B.
(b) For closed subsets A ⊂ B in X, we have A = ⊥(A⊥ ∩B) ∩B = (⊥A ∩B)⊥ ∩B.
(c) L(X) is a ⊥-lattice.

Proof. The axioms (0)–(2′) follow by (45). The implications (c) ⇒ (a) ⇒ (b) are trivial.
(b) ⇒ (c): Since B⊥ ⊂ A⊥, we have B⊥ = (B∩A⊥)⊥∩A⊥, that is, B = (B∩A⊥) ∨A. 

Thus (3) holds. By symmetry, this implies (c). �
Note that the equations in (b) are equivalent to the orthomodular law (24). For a 

non-degenerate ⊥-set X, we write X1 for the set of all points together with 0. By Xf we 
denote the set of all elements of the form x1 ∨ · · · ∨ xn with xi ∈ X1.

Proposition 13. Let X be a non-degenerate ⊥-set satisfying the equivalent properties 
of Proposition 12. Then Xf is a modular sublattice of L(X) if and only if X1 is an 
L+-subalgebra of L(X). If these equivalent conditions hold, Xf = C(X).

Proof. Assume that Xf is a modular sublattice of L(X). For distinct x, y ∈ X, Propo-
sition 12 implies that y � x := (x ∨ y) ∩ x⊥ is a complement of x in [0, x ∨ y]. Hence 
y � x ∈ X1. So X1 is an L+-subalgebra of L(X).

Conversely, let X1 be �-closed. For a ∈ Xf and x, y ∈ X1, Eq. (17) gives y� (x �a) =
(y�a) �(x �a). Thus, by induction, x �a ∈ X1 for all x ∈ X1 and a ∈ Xf . Since x �a is 
a complement of a in the interval [0, a ∨x], the length of [a, a ∨x] is 1 in X. Hence Xf is 
an upper semimodular semilattice. So the Jordan–Dedekind chain condition holds [36], 
which implies that the intervals [0, a] in X with a ∈ Xf belong to Xf . Hence Xf is a 
lattice. By (45), the intervals [0, a] in Xf are lower semimodular. Hence Xf is modular. 
By Proposition 2, L(X) is a �-closed L+-algebra. So C(X1) = Xf . �
Definition 9. We define a quantum set to be a non-degenerate ⊥-set X for which L(X)
is a ⊥-lattice with X1 as an L+-subalgebra.
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For example, every set X with the trivial orthogonality relation

x⊥y :⇐⇒ x �= y

is a quantum set. The corresponding L+-algebra X1 is given by

x� y :=
{

0 for x = y

x for x �= y.

Proposition 14. Let H be an orthomodular space. Then P(H) is a quantum set.

Proof. By Proposition 10, X(H) is a bounded ⊥-lattice. Its Nakayama automorphism ν
satisfies ν(U) = U⊥⊥ and induces a permutation on the L+-algebra X1(H). Hence P(H)
is a non-degenerate ⊥-set. Since Xf (H) is modular, Proposition 13 implies that P(H) is 
a quantum set. �

In accordance with [40], Definition 8, we call a (positive) L-algebra X discrete if 
X � {1} is an antichain. For example, the L+-algebra X1(H) of an orthomodular space 
H or the L+-algebra X1 of a quantum set X is discrete.

Proposition 15. A quantum set X is uniquely determined by the L+-algebra X1.

Proof. For x, y ∈ X, we have y � x = (x ∨ y) ∩ x⊥. Hence y � x = y ⇔ y ⊂ x⊥ ⇔ x⊥y. 
Thus X is determined by X1. �

Therefore, quantum sets in the sense of Definition 9 are equivalent to a special class of 
L+-algebras or ⊥-lattices. The category of quantum sets and its connection with classical 
set theory will be studied in a forthcoming article.

We conclude with a characterization of Garside groups arising from OL-algebras. 
A quasi-Garside monoid [15] is a left and right cancellative monoid M which admits 
a function λ : M → N, non-zero on M � {1}, satisfying λ(ab) � λ(a) + λ(b), such 
that any pair of elements has a left and right lcm and left and right gcd. Further-
more, it is assumed that there is a Garside element, an element Δ for which the left 
and right divisors form the same set S which generates M . If S is finite, M is said to 
be Garside. The group of left fractions of a Garside monoid is said to be a Garside 
group.

Equivalently, a quasi-Garside group can be defined to be a right �-group G with a 
strong order unit Δ such that G+ is bounded atomic, which means that every a ∈ G+

is a finite product a = x1 · · ·xn of minimal xi > 1 (atoms) such that n is bounded 
for each a. The following result extends [40], Theorem 3, to a wider class of Garside 
groups.
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Proposition 16. The structure group G(X) of an OL-algebra X is a Garside group if and 
only if X is finite.

Proof. Assume that X is finite. Then X is bounded, hence an interval [u−1, 1] in S(X)
with a strong order unit u. Let m be the maximal length of a chain in X. So there is no 
representation s−1 = x1 · · ·xn with xi < 1 and n > m. For any a ∈ S(X) there exists 
an integer n > 0 with s−n � a. Thus sa � a ∨ s1−n, which shows that the length of the 
interval [a, a ∨ s1−n] is at most m. By induction, we infer that S(X) is bounded atomic. 
Hence G(X) is a Garside group. The converse is trivial. �

As there are no anisotropic bilinear forms of rank � 3 over a finite field ([46], I, 
Chap. IV), most of the Garside groups of Proposition 16 do not arise from an ortho-
modular space. Those with symmetric orthogonality can be constructed via Greechie 
diagrams [23]. The simplest example with a non-symmetric orthogonality relation is 
given by the bilinear form

〈x, y〉 := x1y1 + x1y2 + x2y2

in F2
2, where 

(1
0
)
⊥
(0
1
)
⊥
(1
1
)
⊥
(1
0
)
.

A sesquilinear example is obtained from the bilinear form

〈x, y〉 := x1y1 + αx1y2 + x2y2

on F2
4, where the field F4 = F2(α) with α2 = α + 1 is equipped with the Frobenius 

involution α 
→ α2. Here the orthogonality relation gives the cycle

(1
0
)
⊥
(
α
1
)
⊥
(1
α

)
⊥
(0
1
)
⊥
(1
1
)
⊥
(1
0
)
.

A wide class of Garside groups consists of the structure groups of finite quantum sets. 
For example, the set X = {a, b, c, d, e} with a⊥ = {c, e}, b⊥ = {c, d}, c⊥ = {a, b, d, e}, 
d⊥ = {a, c}, and e⊥ = {b, c}, is a quantum set with permutation ν = (ab)(de) and 
L+-algebra X1 given by the following table:

� a b c d e

a 0 d a a b

b e 0 b a b

c c c 0 c c

d e d d 0 b

e e d e a 0
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The corresponding ⊥-lattice L(X) is
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0

a b c d e

1

f g h i j

Since Xf is modular for any quantum set X, the structure group G(X) is a mod-
ular Garside group. By [40], Theorem 5, the corresponding discrete L+-algebra X1 is 
characterized by the property

x� y = y � x =⇒ x = y

for all non-zero x, y ∈ X1. Quantum sets thus correspond to a subclass of these 
L+-algebras. For example, the L+-algebra X = {0, 1, 2} with 1 � 2 = 2 and 2 � 1 = 1
has no orthogonality relation between 1 and 2. So it does not belong to a quantum set.
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