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1. Introduction

We are concerned with the following question: when does a finite-dimensional Noethe-
rian ring R satisfy

p(hn) ⊂ pn ∀n ∈ N, (1.0.1)

for all prime ideals p ⊂ R and for some h independent of p? Here, the expression p(m)

denotes the m-th symbolic power of p. We invite the reader to glimpse at [6] for an 
excellent survey on this beautiful but tough problem.

This story starts, perhaps, with the work of I. Swanson. Swanson established that if 
R is a Noetherian ring and p ⊂ R is a prime ideal such that the p-adic and symbolic 
topologies are equivalent, then they are in fact linearly equivalent, meaning there is 
a constant h ∈ N depending on p such that p(hn) ⊂ pn for all n [29]. In particular, 
Swanson’s result holds for every prime ideal p when R is a normal domain essentially of 
finite type over a field.

Later, Ein–Lazarsfeld–Smith demonstrated in their seminal work [8] that if R is a 
regular C-algebra essentially of finite type, then h can be taken independently of p. In 
fact h = dimR suffices. Rings for which this number h can be taken independently 
of p (i.e. for which there exists a uniform bound on h for all p) are said to have the 
Uniform Symbolic Topology Property, or USTP for short. Ein–Lazarsfeld–Smith’s result 
is now known to hold for any finite-dimensional regular ring: their result was extended 
to regular rings of equal characteristic by M. Hochster and C. Huneke [13] and to regular 
rings of mixed characteristic by L. Ma and K. Schwede [19].

Since then, it has been of great interest to know which non-regular rings have USTP. 
For instance, Huneke–Katz–Validashti showed that, under suitable hypotheses, rings 
with isolated singularities have USTP, although without an effective bound on h [16]. 
R. Walker showed that 2-dimensional rational singularities have USTP and obtained an 
effective bound for h [30].

In this paper, we continue the above efforts in the strongly F -regular setting. Strong 
F -regularity is a weakening of regularity defined for rings of positive characteristic. 
Strong F -regularity is well-studied by positive characteristic commutative algebraists; 
see [15,25,27]. Given a field k of positive characteristic, we introduce a class of strongly 
F -regular k algebras essentially of finite type, called diagonally F -regular k-algebras, 
that are engineered to have USTP; in particular, (1.0.1) holds for these rings with h
equal to dimension. We prove that this class includes all essentially smooth1 k-algebras, 
as well as Segre products of polynomial rings over k,2 i.e. the affine cone over P r

k × P s
k

whenever k is a perfect field of positive characteristic and r, s ≥ 1. We also show that 
the class of diagonally F -regular k-algebras contains some non-isolated singularities.

1 If k is perfect, then essentially smooth k-algebras are the same as regular k-algebras essentially of finite 
type.
2 Also known as “Cartesian products,” as in [10, Ch. II, Exc. 5.11].
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To motivate our approach, we summarize the method introduced in [8], following 
the presentation of K. Schwede and K. Tucker in their survey, [25, §6.3]; see also [27]
by K. Smith and W. Zhang.3 We do this with the aim of pointing out exactly where 
this argument breaks down for non-regular rings. In positive characteristic, the crux of 
Ein–Lazarsfeld–Smith’s argument is the following chain of containments:

p(hn) (1)
⊂ τ
(
p(hn)

)
= τ

((
p(hn)

)n/n) (2)
⊂ τ

((
p(hn)

)1/n
)n (3)

⊂ pn (1.0.2)

Here, τ(at) denotes the test ideal of the (formal) power at; see Section 2 for details. 
Containment (1) holds in any strongly F -regular ring. Containment (2) holds by the 
subadditivity theorem for test ideals—this theorem requires the ambient ring R to be 
regular. Containment (3) holds quite generally (for h = dimR), as we shall discuss in 
the proof of Theorem 4.1.

So, in order to apply this technique to the non-regular case, we must deal with con-
tainment (2). Our approach here is simple: we will find an ideal t, depending on p, h, 
and n, such that the second containment

t
(2′)
⊂ τ

((
p(hn)

)1/n
)n

is guaranteed to hold. Then the problem of deciding whether a particular F -regular ring 
satisfies USTP is reduced to deciding whether the first containment,

p(nh) (1′)
⊂ t,

holds for our choice of t. Following [28], we will construct t using the so-called diagonal 
Cartier algebras. Namely, we set

t = τ
(
D(n); p(hn)

)
,

where D(n) is the n-th diagonal Cartier algebra; see Definition 3.1. Then Proposi-
tion 3.4(c) demonstrates that containment (2′) holds for any reduced k-algebra essen-
tially of finite type, while (1′) holds whenever D(n) is F -regular. When this is the case 
for all n, we say our ring is diagonally F -regular as a k-algebra. This sketches the proof 
of our main theorem:

Theorem A (Theorem 4.1). If R is a diagonally F -regular k-algebra essentially of finite 
type, then R has USTP with h = dimR.

3 Ein–Lazarsfeld–Smith’s original argument uses multiplier ideals, which are only known to exist in 
characteristic 0. Their argument was adapted to positive characteristic rings by N. Hara [9] and to mixed-
characteristic rings by L. Ma and K. Schwede [19]. Hara and Ma–Schwede achieved this by using positive 
characteristic and mixed characteristic analogs of multiplier ideals, respectively.
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As we shall see, every essentially smooth k-algebra is diagonally F -regular, but not 
conversely. Indeed, we have the following:

Theorem B (Theorem 5.6). Let k be a perfect field of positive characteristic, and let 
r, s ≥ 1 be integers. Then the affine cone over P r

k × P s
k is diagonally F -regular.

Of course, the affine cone over P r
k×P s

k is an isolated singularity, and so USTP is known 
to hold for this ring by [16]. Nonetheless, our result has the virtue of being effective in 
the sense that we determine the number h explicitly, and show h is as small as we might 
expect it to be. We also observe that the class of diagonally F -regular F -finite k-algebras 
is closed under tensor products over k:

Theorem C (Proposition 5.5). Let R and S be k-algebras essentially of finite type, where 
k is a field of characteristic p. If R and S are diagonally F -regular, then so is R⊗k S.

This implies, remarkably, that the class of diagonally F -regular singularities includes 
some non-isolated singularities. To our knowledge, this gives a new class of examples 
where USTP is known to hold. We note that R. Walker obtains orthogonal results to 
Theorem 4.1 and Theorem 5.6 using complementary techniques; see [31,32] for precise 
statements.

Finally, let K be a field of characteristic 0 and R a K-algebra. Suppose that A ⊂ K is 
a finitely generated Z-algebra and RA ⊂ R an A-module such that A −→ RA descends 
K −→ R in the sense of [14, §2]. We define R to have diagonally F -regular type if 
RA⊗A/μ is diagonally F -regular for all maximal ideals μ in a dense open set of SpecA, 
for all choices of A. By standard reduction-mod-p techniques, we get

Theorem D (Theorem 6.1). Let K be a field of characteristic 0 and let R be a K-algebra 
essentially of finite type and of diagonally F -regular type. Let d = dimR. Then we have 
p(nd) ⊂ pn for all n and all prime ideals p ⊂ R.

Thus we see that the affine cone over P r
k × P s

k has USTP even if char k = 0.

Convention 1.1. Throughout this paper, all rings are defined over a field k of positive 
characteristic p. Given a ring R, we then denote the e-th iterate of the Frobenius endo-
morphism by F e : R −→ R, and use the usual shorthand notation q := pe. We assume 
all rings are essentially of finite type over k, thus Noetherian, F -finite, and so excellent. 
All tensor products are defined over k unless explicitly stated otherwise. We also follow 
the convention N = {0, 1, 2, ...}.
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2. Preliminaries

The central objects in this paper are Cartier algebras, their test ideals, and the notion 
of (strong) F -regularity of a Cartier module. We briefly summarize these here, following 
the formalism of M. Blickle and A. Stäbler [2], [4]. It is worth mentioning that for 
the most part we will only be using Cartier algebras and test ideals in the generality 
introduced by K. Schwede in [24].

Definition 2.1 (Cartier algebras). Let R be a ring. A Cartier algebra C over R (or Cartier 
R-algebra) is an N-graded 

⊕
e∈N Ce unitary ring4 such that C0 = R, and equipped with 

a graded finitely generated R-bimodule structure so that a ·κ = κ ·aq, with κ homogeneous 
of degree e.5 A morphism of Cartier algebras is just a graded homomorphism of unitary 
rings preserving the R-bimodule structures. Note that, strictly speaking, C is not an 
R-algebra, as R is not in the center of C.

A central example for us is the full Cartier algebra over a ring R. This is defined in 
degree e > 1 as

Ce,R := HomR(F e
∗R,R).

More generally, given a finite R-module M we may define a Cartier algebra CM over R
as R in degree zero and as

Ce,M := HomR(F e
∗M,M)

in higher degrees. The ring multiplication of CM is defined by the rule

ϕe · ϕd := ϕe ◦ F e
∗ϕd for all ϕe ∈ Ce,M , ϕd ∈ Cd,M .

4 Not necessarily commutative.
5 Recall that if A and B are (commutative) rings, then an A-B-bimodule is nothing but a left A ⊗Z

B-module. More generally, if A and B are algebras over a third ring R, then a left A ⊗R B-module is 
nothing but an A-B-module, say M , with an extra compatibility condition rm = mr for all r ∈ R and 
m ∈ M . In this way, all we are saying is that Ce is an R ⊗R F e

∗R-module.
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Furthermore, the left R-module structure of CM is the usual one given by post-
multiplication, whereas the right R-module structure is given by pre-multiplication by 
elements of F e

∗R. More precisely, if ϕ ∈ Ce,M and r ∈ R, then

(ϕ · r)(−) = ϕ(F e
∗ r · −)

It is worth mentioning we are primarily concerned with Cartier subalgebras of CR in 
this work.

Definition 2.2 (Cartier modules). Given a ring R and a Cartier R-algebra C, we define a 
Cartier C-module to be a finite R-module M equipped with a homomorphism C −→ CM

of Cartier R-algebras. This is the same as saying M is a left C-module with coherent 
underlying R-module structure [4, Lemma 5.2]. A morphism of Cartier C-modules is 
defined to be a morphism of left C-modules.

Let R be a ring and C a Cartier R-algebra. Under the assumption R is essentially of 
finite type over k, Blickle and Stäbler constructed a covariant functor

τ = τ(−,C) : left-C-mod −→ R-mod,

from the category of Cartier C-modules to the category of R-modules. This functor is an 
additive subfunctor of the forgetful functor between these two categories. Thus one has 
a natural inclusion τ(M, C) ⊂ M , where the former module is called the test submodule 
of M with respect to C, or the test ideal with respect to C in case M = R.

Definition 2.3 (F -regularity). A Cartier C-module M over R is said to be (strongly) 
F -regular (with respect to C) if the inclusion τ(M, C) ⊂ M is an equality.

Blickle and Stäbler also proved that τ commutes with localizations, see [4, Proposition 
1.19.(b)]. In particular, F -regularity is a local notion. It follows that M is an F -regular 
Cartier C-module if and only if Mp is an F -regular Cartier C-module for all p ∈ SpecR.

On the other hand, suppose C is a nondegenerate6 Cartier subalgebra of CR, so that 
R is a Cartier C-module, and suppose that R is reduced. In this case, as Blickle and 
Stäbler proved, τ(R, C) ⊂ R coincides with the more classically defined (non-finitistic) 
test ideal7 of the Cartier algebra C ⊂ CR:

τ
(
R,C

)
= 〈c ∈ R | for all r ∈ R◦, there exists e and ϕ ∈ Ce so that ϕ(F e

∗ r) = c〉.

6 A map ϕ : F e
∗R −→ R is called nondegenerate if ϕ(F e

∗R)Rη �= 0 for all minimal primes η ∈ SpecR. 
A Cartier algebra C is called nondegenerate if Ce contains a nondegenerate map for some e > 0. See [24].
7 Each of the given generators c for this ideal is called a test element for the Cartier algebra, provided 

that c is not a zero divisor. The existence of test elements is central to the theory of test ideals.
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Therefore, R is F -regular with respect to C ⊂ CR if for every r ∈ R◦, there exists 
some finite collection of ei and ϕi ∈ Cei such that 

∑
i ϕi(F ei∗ r) = 1. It turns out this is 

equivalent to saying there exists a single e and a map ϕ ∈ Ce such that ϕ(F e
∗ r) = 1—for 

instance, one can see this by applying [2, Proposition 3.6] to the Cartier algebra generated 
by the maps ψi, where ψi(x) := ϕi(F ei∗ rx). In other words, R is F -regular with respect 
to C ⊂ CR if for each r ∈ R◦ we have that the R-module inclusion

R −→ F e
∗R, 1 �→ F e

∗ r

splits for e � 0 by a splitting map ϕ : F e
∗R −→ R in Ce.

If C ⊂ CR, then we say C is F -regular to mean that R is F -regular as a Cartier 
C-module. The ring R itself is said to be strongly F -regular if CR is F -regular.

Finally, if R is reduced and C is nondegenerate, the ideal τ
(
R, C

)
⊂ R can be char-

acterized as the smallest ideal of R that contains a nonzerodivisor and is compatible 
with all ϕ ∈ Ce, for all e. In general, an ideal I ⊂ R is said to be compatible with 
ϕ ∈ HomR(F e

∗R, R) if

ϕ(F e
∗ I) ⊂ I.

We may also say either I is ϕ-compatible or ϕ is I-compatible, see [20] and [27, §3A].
This notion of compatibility between I and ϕ is important because if ϕ is I-compatible 

then ϕ restricts to a unique ϕ ∈ HomR/I(F e
∗R/I, R/I) making the following diagram 

commutative

F e
∗R

ϕ
R

F e
∗R/I

ϕ
R/I

Finally, we record a criterion for verifying the F -regularity of a Cartier algebra C ⊂
CR that we will use of later on. We presume it is well-known among experts, but we give 
a proof for sake of completeness. We are thankful to Karl Schwede for bringing it to our 
attention, thus significantly simplifying part of our argument.

Proposition 2.4 (cf. [1, Proposition 4.5], [11, Theorem 3.3], [4, Lemma 2.3]). Let R be 
a ring, C ⊂ CR a Cartier R-algebra, and f ∈ R◦. Suppose that Rf is an F -regular 
C-module and moreover that there is ϕ ∈ Ce, for some e, such that ϕ(F e

∗ f) = 1. Then 
R is an F -regular C-module, i.e. C is F -regular.

Proof. We must prove that 1 ∈ τ(R, C). Our first hypothesis tells us τ(Rf , C) 
 1. 
Further, τ(Rf , C) = τ(R, C)f . Putting these two statements together we get that fn ∈
τ(R, C) for some n ∈ N.
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If there were e ∈ N and ψ ∈ Ce such that ψ(F e
∗ f

n) = 1, then we would be done, for

1 = ψ(F e
∗ f

n) ∈ ψ
(
F e
∗ τ(R,C)

)
⊂ τ(R,C).

However, this follows from our second hypothesis, which says there exist e ∈ N and 
ϕ ∈ Ce such that ϕ(F e

∗ f) = 1. We prove inductively that the same holds for all powers 
of f . Indeed, say ψ ∈ Cd is such that ψ(F d

∗ f
m−1) = 1. It follows that ϑ := ϕ · ψ · fpd−1

satisfies ϑ(F e+d
∗ fm) = 1, for

ϑ(F e+d
∗ fm) = ϕ

(
F e
∗ψ
(
F d
∗ f

pd−1fm
))

= ϕ
(
F e
∗ψ
(
F d
∗ f

pd

fm−1)) = ϕ
(
F e
∗ fψ

(
F d
∗ f

m−1))
= ϕ

(
F e
∗ f · 1

)
= 1. K

3. Diagonal Cartier algebras and diagonal F -regularity

In [28], the second named author introduced the Cartier algebra consisting of 
p−e-linear maps compatible with the diagonal closed embedding Δ2 : R⊗R −→ R. Here, 
we generalize this construction to higher diagonals and verify these have the required 
basic properties, including an analogous subadditivity formula.

For this, we consider Δn : R⊗n −→ R the n-th diagonal closed embedding given by the 
rule r1 ⊗ · · · ⊗ rn �→ r1 · · · rn. Recall our convention that all tensor products are defined 
over k unless otherwise explicitly stated. Let dn be the kernel of Δn.

Definition 3.1 (Diagonal Cartier algebras, cf. [28, Notation 3.7]). Let R be a k-algebra. 
For n ∈ N, we define the n-th diagonal Cartier algebra of R/k, denoted by D(n)(R), to 
be given in degree e by

D(n)
e (R) =

{
ϕ ∈ Ce,R

∣∣ ϕ ∈ Ce,R⊗n and ϕ is dn-compatible
}
.

In other words, D(n)
e (R) ⊂ Ce,R consists of R-linear maps ϕ : F e

∗R −→ R such that there 
is a lifting ϕ̂ : F e

∗R
⊗n −→ R⊗n making the following diagram commutative:

F e
∗R

⊗n
ϕ̂

F e
∗Δn

R⊗n

Δn

F e
∗R

ϕ
R

It is straightforward to verify D(n)(R) is a Cartier subalgebra of CR, see [28, Proposition 
3.2] and [3, Definition 2.10]. When the ring R is clear from context, we will refer to this 
Cartier algebra simply as D(n).
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Definition 3.2 (Diagonal F -regularity). We say that a k-algebra R is n-diagonally 
F -regular if D(n)(R) is F -regular. We say that R is diagonally F -regular if D(n)(R)
is F -regular for all n ∈ N.

Remark 3.3. Note that R is diagonally F -split if and only if D(2)(R) is F -pure, and so 
2-diagonal F -regularity can be seen as a strengthening of diagonal F -splitting.8 Indeed, 
a ring R is defined to be diagonally F -split whenever there is a splitting ϕ ∈ CR⊗2

compatible with d2. It is clear that D(2)(R) is F -pure whenever R is diagonally F -split. 
On the other hand, suppose that ϕ ∈ D

(2)
e (R) is a splitting. Then ϕ admits a lifting ϕ̂

in Ce,R⊗2 , with ϕ(1 ⊗ 1) = 1 ⊗ 1 + f , for some f ∈ d2. Further, we have that ϕ ⊗ ϕ is 
an F -splitting of R⊗2. It follows that ϕ̂− f · ϕ ⊗ ϕ is an F -splitting of R⊗2 compatible 
with d2.

3.1. Diagonal test ideals

The goal in this section is to define the test ideal τ
(
R, D(n); at

)
and record the prop-

erties that we will need in the study of USTP, in particular, a subadditivity formula as 
introduced in [28]. Of course, this test ideal is nothing but a particular case of τ

(
M, C; at

)
for an ideal a on R and a nonnegative real number t, as in [4, §4].

Let C be a Cartier R-algebra, a ⊂ R an ideal and t ∈ R≥0. Then, one can define a 
Cartier algebra Ca

t ⊂ C by setting Ca
t

e := Ce · a
t(q−1)� in each degree e. Then, one 
defines

τ
(
M,C; at

)
:= τ

(
M,Ca

t
)

The point in making this distinction is mainly ideological. We simply want to think 
of this object as the test ideal of at with respect to some extra data. By plugging in 
M = R and C = D(n), we obtain what we call the n-th diagonal test ideal of at. This 
test ideal inherits many of the standard properties test ideals enjoy; see [4, §4] for a 
complete account. However, we isolate the three properties conducive to studying USTP 
via test/multiplier ideals.

Proposition 3.4 (Properties of diagonal test ideals for USTP). Let R be a reduced 
k-algebra, C a Cartier R-algebra, a ⊂ R an ideal containing a regular element,9 t ∈ R≥0
and n, m ∈ N. Then, the following properties hold.

(a) (Unambiguity) τ
(
R, D(n); amt

)
= τ
(
R, D(n); 

(
am
)t),

(b) (Fundamental lower-bound) a · τ
(
R, D(n)) ⊂ τ

(
R, D(n); a

)
, so that a ⊂ τ

(
R, D(n); a

)
if R is diagonally F -regular, and

8 See [21,23,22] for more on diagonal F -splittings and their utility.
9 By a regular element we mean a nonzerodivisor.
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(c) (Subadditivity) τ
(
R, D(n); atn

)
⊂ τ
(
R, CR; at

)n.

Proof. The unambiguity property (a) holds quite generally from observing that

�mt(q − 1)� ≤ m�t(q − 1)� ≤ �mt(q − 1)� + m

so that

a
mt(q−1)� ⊃ am
t(q−1)� ⊃ a
mt(q−1)�+m = a
mt(q−1)� · am.

Hence, a test element for 
(
D(n))amt

is the same as a test element for 
(
D(n))(am)t .

For the fundamental lower-bound (b), if we take b ∈ a ∩ R◦ and c a test element for 
D(n), then bc is a test element for 

(
D(n))a. Indeed, if a ∈ R◦, then there exists ϕ ∈ D

(n)
e

such that ϕ
(
F e
∗ b

q−1a
)

= c. However, ϕ
(
F e
∗ b

q−1 · −
)

belongs to 
(
D

(n)
e

)a
, so we are done.

The proof for the subadditivity formula (c) is similar to the one in [28], though here 
we do not assume that k is perfect. As (F e

∗R)⊗n canonically surjects onto F e
∗ (R⊗n), we 

have

CR⊗n,e ⊂ HomR⊗n

(
(F e

∗R)⊗n, R⊗n
)

for all e > 0. Now let ϕ ∈ CR⊗n,e. By the above inclusion, combined with [28, Corollary 

3.10], it follows that ϕ induces an element ϕ′ ∈ HomR

(
F e
∗R, R

)⊗n, which we can be 
expressed as

ϕ′ =
∑
j

ϕj,1 ⊗ · · · ⊗ ϕj,n,

where ϕj,k ∈ HomR(F e
∗R, R). Further, given any x ∈

(
a⊗n

)
t(q−1)�, we can write

x =
∑
i

xi,1 ⊗ · · · ⊗ xi,n

where xi,k ∈ a
t(q−1)�. It follows that the map ϕ · x = ϕ(F e
∗x · −) induces the element

(ϕ · x)′ = ϕ(F e
∗x · −)′ =

∑
i,j

ϕj,1(F e
∗xi,1 · −) ⊗ · · · ⊗ ϕj,n(F e

∗xi,n · −).

As 
(
F e
∗ τ(R, CR; at)

)⊗n canonically surjects onto F e
∗
(
τ(R, CR; at)⊗n

)
, we see that

ϕ
(
F e
∗
(
x · τ(R,CR; at)⊗n

))
=
∑
i,j

ϕj,1
(
F e
∗xi,1τ(R,CR; at)

)
⊗· · ·⊗ϕj,n

(
F e
∗xi,nτ(R,CR; at)

)
⊂ τ(R,CR; at)⊗n.
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Thus, we obtain

τ
(
R⊗n,CR⊗n ;

(
a⊗n

)t) ⊂
(
τ(R,CR; at)

)⊗n
,

by the minimality of the test ideal on the left. Then, we apply Δn to both sides. On 
the right-hand side we get τ(R, CR; at)n. On the left-hand side we get something larger 
than τ(R, D(n); atn) by [28, Proposition 3.6]. The fact that D(n) is nondegenerate follows 
mutatis mutandis from the same argument as in [28, Theorem 3.11]. K

4. USTP for diagonally F -regular singularities

In this section, we prove our main result, namely that USTP is satisfied by locally 
diagonally F -regular rings with h equal to the dimension. We do this by making our 
discussion in the introduction rigorous. For this we establish:

Theorem 4.1. Let R be a diagonally F -regular k-algebra, and let p ∈ SpecR be an ideal 
of height h. Then p(hn) ⊂ pn for all n ∈ N.

Proof. This containment of ideals can be checked locally, and so we may assume that R
is local. We can also assume that p is not the maximal ideal of R, because in that case 
p(n) = pn for all n. This implies that the residue field of R at p is transcendental over 
k, and so κ(p) is infinite.10

As mentioned in the introduction, our strategy for proving this theorem is to en-
large the scope of the proof in [25, §6.3] and [27, §4.3]. We just need to verify that the 
upper-bound

τ
(
R,CR;

(
p(hn)

)1/n
)

⊂ p (4.1.1)

holds for all n ∈ N, all prime ideals p ⊂ R, and all R under our consideration. This 
inclusion can be checked after localizing at p, which means that we may assume R is 
local with maximal ideal p and infinite residue field. However, in that case p(hn) = phn. 
Therefore, the left-hand side in (4.1.1) simply becomes

τ
((

p(hn)
)1/n

)
= τ
((

phn
)1/n) = τ

(
phn/n

)
= τ
(
ph
)
.

Using [17, Theorems 8.3.7 and 8.3.9], just as in [25, Proof of Theorem 6.23], we have 
that p admits a reduction,11 say q ⊂ p, generated by less than h = dimRp elements.12
Hence,

10 Recall that κ(p)/k is algebraic if and only if p is maximal in R.
11 That is, a subideal with the same integral closure.
12 Here it is where we need the residue field to be infinite.
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τ
(
ph
)

= τ
(
qh
)
⊂ q ⊂ p,

where the penultimate inclusion is nothing but a consequence of the Briançon–Skoda 
theorem for test ideals [12], [4, Proposition 4.2]. The equality simply follows from unam-
biguity and the invariance of test ideals under integral closure; see [25, Theorem 6.9].

Thus, for all p ∈ SpecR and n ∈ N we have the following:

p(hn) (1)
⊂ τ
(
R,D(n); p(hn)

) (∗)= τ
(
R,D(n);

(
p(hn)

)n/n) (2)
⊂ τ

(
R,CR;

(
p(hn)

)1/n
)n (3)

⊂ pn.

Here, (1) follows from R being diagonally F -regular and Proposition 3.4. The equality 
(∗) is simply unambiguity, whereas (2) follows from subadditivity and (3) is just (4.1.1)
raised to the n-th power. K

Remark 4.2. Thus, if R is diagonally F -regular, we have p(dn) ⊂ pn, where d = dimR, 
for all p ∈ SpecR. If R is local or graded, then in fact p((d−1)n) ⊂ pn holds, because 
symbolic and ordinary powers of the maximal ideal are the same.

5. On the class of diagonally F -regular rings

Here is a simple observation about the class of diagonally F -regular rings.

Proposition 5.1. Essentially smooth k-algebras are diagonally F -regular. Further, 
n-diagonally F -regular k-algebras are strongly F -regular, in particular normal and 
Cohen–Macaulay.

Proof. The second statement is obvious, whereas the former is a consequence of Kunz’s 
theorem [18] just as in [28, §7]. Indeed, if R is smooth over k, then R⊗n is smooth and 
therefore regular for all n. Thus Kunz’s theorem tells us that F e

∗R
⊗n is a projective 

R⊗n-module, which implies that D(n)(R) = CR for all n. Similarly, if R is a localization 
of S, where S is a smooth k algebra, then R⊗n is a localization of S⊗n, and so R⊗n is 
still regular. The result follows. K

It follows from the following proposition that the class of diagonally F -regular 
k-algebras is properly contained in the class of strongly F -regular ones. In the next 
subsection, we will show that the class of diagonally F -regular k-algebras properly con-
tains the class of essentially smooth algebras.

We thank Linquan Ma for giving us the following observation:

Proposition 5.2. Let (R, m) be a local normal domain essentially of finite type over k, 
with R/m infinite. If R is diagonally F -regular, then the divisor class group Cl(R) is 
torsion-free. In fact, if Cl(R) has r-torsion,13 then D(nr)(R) is not F -regular for n � 0.

13 That is, some element of Cl(R) is annihilated by r.
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Proof. Suppose D(nr) is F -regular for all n. Then, for all prime ideals p, we have

p(hnr) ⊂ pnr

where h is the height of p. By assumption, there exists some non-principal prime ideal q
in R of height 1 such that q(r) is principal, for some r > 0. Thus q(rn) = qrn is principal 
for all n.

However, this cannot happen. Indeed, since R is a normal domain, we know that 
principal ideals of R are integrally closed, and so the analytic spread of q is at least 2. 
This tells us that the fiber cone of q,

Fq = R

m
⊕ q

mq
⊕ q2

mq2 ⊕ · · ·

has dimension at least 2, so the Hilbert function of Fq, h(Fq, n), agrees with a non-
constant polynomial for n � 0. However, we know that h(Fq, n) = μ(qn) by Nakayama’s 
lemma, so qrn is not principal for n � 0. K

Example 5.3. By the above proposition, we see that Veronese subrings of polynomial 
rings are never diagonally F -regular, cf. [28, Example 6.9].

By [5, Theorem G], if s(R) > 1/2 then Cl(R) is torsion-free. In light of Proposition 5.2, 
we suspect there is an interesting connection between diagonally F -regular rings and 
rings with F -signature greater than 1/2. For example, we pose the following question:

Question 5.4. If s(R) > 1/2, is R diagonally F -regular? In particular, is

k[x1, . . . , xd]
/ (

x2
1 + · · · + x2

d

)
diagonally F -regular for all d ≥ 4? We note that there exist diagonally F -regular rings 
with F -signature less than 1/2, by Theorem 5.6 and work of A. Singh [26, Example 7].

The following proposition shows that the class of diagonally F -regular k-algebras is 
closed under tensor product.

Proposition 5.5. Let R and S be n-diagonally F -regular k-algebras. Then R ⊗ S is a 
n-diagonally F -regular k-algebra.

Proof. We prove this via global F -signatures [7]. For simplicity, write a = ae
(
R, D(n))

and b = ae
(
S, D(n)). Suppose

ϕ : F e
∗R � R⊕a, ψ : F e

∗S � S⊕b

are surjections, such that each composition
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F e
∗R

ϕ−→ R⊕a πi−−→ R

is in D(n)(R), and similarly, each composition

F e
∗S

ψ−→ S⊕b σj−−→ S

is in D(n)(S). Then we get a surjection of R⊗ S-modules

F e
∗ (R⊗ S) ∼= F e

∗R⊗ F e
∗S

ϕ⊗ψ−−−→ R⊕a ⊗ S⊕b ∼= (R⊗ S)⊕ab
.

Then, each composition

(πi ◦ ϕ) ⊗ (σj ◦ ψ) : F e
∗ (R⊗ S) ϕ⊗ψ−−−→ (R⊗ S)⊕ab πi⊗σj−−−−→ R⊗ S

is in the Cartier algebra D(n)(R ⊗ S). Indeed, given any maps θ ∈ D
(n)
e (R) and η ∈

D
(n)
e (S), with liftings θ̂ ∈ Ce,R⊗n and η̂ ∈ Ce,S⊗n , one checks that θ̂ ⊗ η̂ is a lifting of 

θ ⊗ η by a diagram chase. Thus, ae
(
R⊗ S, D(n)(R⊗ S)

)
≥ ab. It follows that

s
(
R⊗ S,D(n)(R⊗ S)

)
≥ s
(
R,D(n)(R)) · s(S,D(n)(S)

)
> 0,

as desired. K

5.1. Segre products of polynomial rings are diagonally F -regular

The remainder of this section will be spent proving the following theorem:

Theorem 5.6. Let R be the Segre product k[x0, . . . , xr]#k[y0, . . . , ys], with r, s > 0, and 
k perfect. Then R is diagonally F -regular.

Combined with Theorem 4.1, we get the following corollary:

Corollary 5.7. Let R = k[x0, . . . , xr]#k[y0, . . . , ys], and let p ⊂ R be a prime ideal. Then 
p(hn) ⊂ pn for all n, where h = dimR− 1 = r + s.

Remark 5.8. Let l/k be a finitely generated field extension over a perfect field. Then, in 
view of Proposition 5.5 and Theorem 5.6, we have that Rl = l[x0, . . . , xr]#l[y0, . . . , ys]
is a diagonally F -regular k-algebra. In particular, USTP holds for Rl as well.

Combining Theorem 5.6 and Proposition 5.5, we obtain the following observation:

Corollary 5.9. The class of diagonally F -regular k-algebras includes some non-isolated 
singularities.
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We now prove Theorem 5.6. Observe that R can be realized as the following subring 
of S := k[x0, . . . , xr, y0, . . . , ys]:

R = k[x0y0, . . . , xiyj , . . . , xrys] ⊂ k[x0, . . . , xr, y0, . . . , ys] = S.

Fix an integer n > 1. We wish to show that, for all f ∈ R, there exist e ≥ 0 and ϕ ∈ D
(n)
e

such that ϕ(F e
∗ f) = 1. We have the following lemma:

Lemma 5.10. Let A be a k-algebra, where k is perfect. Let f be an element of A◦ such 
that Af is regular. Suppose also that there exist e > 0 and ψ ∈ D

(n)
e (A) with ψ(F e

∗ f) = 1. 
Then Af is an F -regular D(n)(A)-module for all n > 0.

Proof. We want to show that τ := τ
(
Af , D(n)(A)

)
= Af . A priori, τ is an A-submodule 

of Af . However, by [4, Proposition 1.19b], we know that τ is an ideal of Af .

Claim 5.11. Let x be an arbitrary element of A◦
f . Then there exist e′ > 0 and ϕ ∈

D
(n)
e′ (A) such that ϕ · x = (ϕ/1)

(
F e′
∗ x
)

= 1, where we used the canonical isomorphism 
HomAf

(
F e′
∗ Af , Af

)
= HomA

(
F e′
∗ A, A

)
f

to realize the action of ϕ on x.

Proof of claim. As Af is regular and k is perfect, we know that Af is diago-
nally F -regular, and so there exists φ ∈ D(n)(Af ) with φ

(
F e′
∗ x
)

= 1. Further, as 
HomAf

(
F e′
∗ Af , Af

)
= HomA

(
F e′
∗ A, A

)
f
, we can write φ = ϑ/f j for some j, where 

ϑ ∈ HomA

(
F e′
∗ A, A

)
. It follows that there exists i such that f iϑ ∈ D(n)(A). Now we 

have14

f iϑ
(
F e′

∗ x
)

= f i+j .

By hypothesis, there exist e > 0 and ψ ∈ D
(n)
e (A) with ψ(F e

∗ f) = 1. As in the proof of 
Proposition 2.4, there exist e′′ > 0 and ψ′′ ∈ D

(n)
e′′ (A) with ψ′′(F e′′

∗ f i+j) = 1. Then, we 
get the desired map by taking ϕ = ψ′′ · f iϑ. This proves the claim. K

By the claim, Af is an F -pure D(n)(A)-module. By definition, we have that H0
η(τη) ⊂

H0
η

(
(Af )η

)
is a nil-isomorphism15 for every associated prime η ∈ AssA(Af ), where H0

η

denotes the local cohomology functor. This means τ contains a nonzerodivisor of Af . 
Indeed, if this is not the case, then τ ⊂

⋃
η∈Ass(Af ) η, and so τ ⊂ η for some η ∈ Ass(Af )

by prime avoidance. Further, we know that η = η′Af for some η′ ∈ AssA(Af ). It 
follows that H0

η′(τη′) = H0
η (τη) = τη, as η is a nilpotent ideal in Aη. Similarly, 

H0
η′
(
(Af )η′

)
= H0

η (Aη) = Aη. As Af is F -pure as a D(n)(A)-module, so is Aη. It follows 

14 Note that, a priori, we only have this equation after multiplying both sides by a sufficiently large power 
of f . However, we get this equation by virtue of f being a nonzerodivisor.
15 See [4, §1] for the definition of a nil-isomorphism.
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that 
(
D(n)(A)

)N
+Aη = Aη for all N > 0, so the inclusion H0

η′(τη′) ⊂ H0
η′
(
(Af )η′

)
is not 

a nil-isomorphism.
As τ contains a nonzerodivisor, and τ is a D(n)(A)-submodule of Af , it follows from 

the claim that 1 ∈ τ. As τ is an ideal of Af , it follows that τ = Af , as desired. K

By Proposition 2.4 combined with the above lemma, to prove Theorem 5.6 it suffices 
to find an integer e and a map ϕ ∈ D

(n)
e (R) with ϕ(F e

∗x0y0) = 1. It turns out that 
finding the correct map ϕ is easy; the hard part is checking that ϕ ∈ D(n)(R). Our 
strategy will be to work mostly in the polynomial ring S. This is possible thanks to the 
following lemma:

Lemma 5.12. The Frobenius trace Φe ∈ Ce,S restricts to a map in Ce,R, i.e. Φe(F e
∗R) ⊂

R, so that there is a commutative diagram

F e
∗R R

F e
∗S S

Φe

Φe

Proof. Let xa0
0 · · ·xar

r · yb00 · · · ybss be a monomial in R, meaning

r∑
i=0

ai =
s∑

i=0
bi. (5.12.1)

For convenience, we will use the notation

xa• := xa0
0 · · ·xar

r , yb• := yb00 · · · ybss .

Write using the Eucliden algorithm,

ai =: μiq + αi, 0 ≤ αi ≤ q − 1. (5.12.2)

Similarly,

bi =: νiq + βi, 0 ≤ βi ≤ q − 1, (5.12.3)

in such a way that,

F e
∗x

a•yb• = xμ•yν• · F e
∗x

α•yβ• .

Therefore,

Φe
(
F e
∗x

a•yb•
)

=
{
xμ•yν• if αi, βi = q − 1,

0 otherwise.
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Now, combining (5.12.1), (5.12.2) and (5.12.3) we get(∑
μi

)
q +

∑
αi =

(∑
νi

)
q +

∑
βi. (5.12.4)

Introducing the notation μ :=
∑

i μi etcetera, we conclude that μ = ν if and only if α = β. 
In particular, if αi, βi = q − 1, then μ = ν, meaning that

xμ•yν• ∈ R,

as desired. This proves the lemma. K

Continuing with the proof of Theorem 5.6, consider the map

ϕe := Φe · xq−2
0 xq−1

1 · · ·xq−1
r yq−2

0 yq−1
1 · · · yq−1

s ∈ CS
e .

Since

xq−2
0 xq−1

1 · · ·xq−1
r yq−2

0 yq−1
1 · · · yq−1

s ∈ R,

we have that ϕe also restricts to a map in CR
e . Moreover,

ϕe(F e
∗x0y0) = Φe

(
F e
∗x

q−1
0 · · ·xq−1

r yq−1
0 · · · yq−1

s

)
= 1.

Hence, it suffices to prove that ϕe ∈ D(n)(R) for e large enough. Our strategy will be to 
show the following.

Claim 5.13. There exists a lifting of ϕe ∈ Ce,S to Ce,S⊗n , say

F e
∗S

⊗n
ϕ̂e

F e
∗Δn

S⊗n

Δn

F e
∗S

ϕe

S

such that ϕ̂e restricts to R⊗n, i.e. ϕ̂e

(
R⊗n

)
⊂ R⊗n, for e � 0.

It suffices to show this claim, for then the restriction of ϕ̂e to F e
∗R

⊗n will be a lifting 
of ϕe : F e

∗R −→ R. We are going to spend the rest of the section proving Claim 5.13. For 
this, we use the following notation,

S⊗n = k[x1,y1, . . . ,xn,yn],

where
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xk := x0,k, x1,k, . . . , xr,k,

and similarly for yk, where the second subscript of xi,k (resp. yj,k) denotes which copy 
of the n-fold tensor product it corresponds to. We also write

R⊗n = k

⎡⎢⎣xi,kyj,k

∣∣∣∣∣
1 ≤ i ≤ r,

0 ≤ j ≤ s,

0 ≤ k ≤ n

⎤⎥⎦
so that a monomial

n∏
k=1

x
a•,k
k y

b•,k
k ∈ S⊗n

belongs to R⊗n if and only if

ak = bk

for all k, where we use the notation

ak :=
r∑

i=0
ai,k and x

a•,k
k :=

r∏
i=0

x
ai,k

i,k ,

and similarly for bk and yb•,k
k . To be clear, the second subscript always denotes which 

factor of the n-fold tensor product we are working in.
Recall that

F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k , 0 ≤ ai,k, bj,k ≤ q − 1

is a (free) basis of F e
∗S

⊗n as an S⊗n-module. We will construct the map ϕ̂e from 
Claim 5.13 explicitly by assigning values for ϕ̂e at each of these basis elements, pur-
suant to the two conditions:

(a) Δn ◦ ϕ̂e = ϕe ◦ F e
∗Δn, and

(b) ϕ̂e

(
F e
∗R

⊗n
)
⊂ R⊗n.

For some basis elements, it is easy to figure out where we can send them. For others, it 
is a more delicate question. We begin by taking care of the easy ones.

One easier case is when our basis element is in the kernel of ϕe ◦ F e
∗Δn. Let ψ :=

ϕe ◦ F e
∗Δn. Then we have
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ψ

(
F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)

= ϕe

(
F e
∗x

∑
k a•,ky

∑
k b•,k

)
= Φe

(
F e
∗x

q−2+
∑

k a0,k
0 x

q−1+
∑

k a1,k
1 · · ·xq−1+

∑
k ar,k

r · yq−2+
∑

k b0,k
0 y

q−1+
∑

k b1,k
1

· · · yq−1+
∑

k bs,k
s

)
.

This will be nonzero precisely when∑
k

a0,k,
∑
k

b0,k ≡ 1 (mod q),

∑
k

ai,k,
∑
k

bj,k ≡ 0 (mod q), where 1 ≤ i ≤ r, 1 ≤ j ≤ s.
(C)

Let υ(x) = �x/q�. Hence, in case (C) we have

Φe
(
F e
∗x

q−2+
∑

k a0,k
0 x

q−1+
∑

k a1,k
1 · · ·xq−1+

∑
k ar,k

r · yq−2+
∑

k b0,k
0 y

q−1+
∑

k b1,k
1

· · · yq−1+
∑

k bs,k
s

)
= xυ

(∑
k a•,k

)
yυ
(∑

k b•,k
)
.

In summary,

ψ

(
F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
=
{
xυ
(∑

k a•,k
)
yυ
(∑

k b•,k
)

if condition (C) holds,
0 otherwise.

If condition (C) does not hold, we set

ϕ̂e

(
F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
= 0 ∈ R⊗n.

The next case that is easy to deal with is the case where our generator of F e
∗S

⊗n has 
nothing to do with F e

∗R
⊗n. More precisely, if we have(

S⊗nF e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
∩ F e

∗R
⊗n = 0

then the value we assign to

ϕ̂e

(
F e
∗

n∏
x
a•,k
k y

b•,k
k

)

k=1
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has no bearing on whether ϕ̂e(F e
∗R

⊗n) ⊂ R⊗n. So for these generators we only need to 
worry about the requirement that Δn ◦ ϕ̂e = ϕe ◦ F e

∗Δn. We deduce which generators 
satisfy this condition in the following lemma.

Lemma 5.14. F e
∗R is generated as an R-submodule of F e

∗S by the elements

xμ• · F e
∗x

α•yβ• , 0 ≤ αi, βj ≤ q − 1

such that sq ≥ μq = β − α ≥ 0, along with the elements

yν• · F e
∗x

α•yβ• , 0 ≤ αi, βj ≤ q − 1

such that rq ≥ νq = α − β ≥ 0. Moreover, F e
∗R

⊗n is generated as an R⊗n-module by 
tensor products of these generators. Here, we are still using the notation μ =

∑r
i=0 μi

and ν =
∑s

j=0 νj, and similarly for α and β.
In particular, the ring F e

∗R
⊗n is contained in the direct summand of F e

∗S
⊗n generated 

as a (free) S⊗n-module by monomials of the form

F e
∗
∏
k

x
a•,k
k y

b•,k
k

such that bk − ak ≡ 0 (mod q) for all k, 1 ≤ k ≤ n. Here, we are still using the notation 
bk :=

∑s
j=0 bj,k and ak :=

∑r
i=0 ai,k.

Proof. We observed in the proof of Lemma 5.12 that elements in F e
∗R are k-linear 

combinations of elements of the form

xμ•yν• · F e
∗x

α•yβ• , 0 ≤ αi, βj ≤ q − 1

such that

μq + α = νq + β,

equivalently,

(μ− ν)q = β − α. (5.14.1)

In particular, μ − ν and β − α have both the same sign (including zero). Note that

β − α ∈ {−(r + 1)(q − 1),−(r + 1)(q − 1) + 1, . . . ,−1, 0, 1, . . . , (s + 1)(q − 1)}

and (μ −ν)q ∈ qZ. We see that the intersection of these two sets is {−rq, −rq+1, . . . , sq}, 
assuming q > max{r + 1, s + 1}. Therefore, for (5.14.1) to hold, there are three possi-
bilities: if μ − ν = 0, then both monomials xμ•yν• and xα•yβ• are in R. Otherwise, if 



J. Carvajal-Rojas, D. Smolkin / Journal of Algebra 548 (2020) 25–52 45
μ − ν > 0 (respectively, μ − ν < 0), then the monomial xμ•yν• can be factored as a 
product of a monomial in R times a monomial xμ′

• (respectively, yν′
•) with μ′ = μ − ν

(respectively, ν′ = ν − μ). This proves the lemma. K

The above being said, we proceed as follows. If we have bk − ak �≡ 0 (mod q) for some 
1 ≤ k ≤ n, we set

ϕ̂e

(
F e
∗
∏
k

x
a•,k
k y

b•,k
k

)
= ψ

(
F e
∗
∏
k

x
a•,k
k y

b•,k
k

)
⊗ 1 ⊗ · · · ⊗ 1.

Note that this is consistent with our earlier assignment, even if condition (C) does not 
hold.

Now we come to the hard part of this proof. We are given a monomial that satisfies 
condition (C) and also satisfies bk − ak ≡ 0 (mod q) for all k and we need to figure out 
where ϕ̂e should send it to. Our idea is quite simple, though it might be lost in the 
cumbersome notation. Thus it makes sense to do an example first.

Example 5.15. Say p = 5, e = 1, n = 2, and r = s = 1. Let F∗g := F∗x0,1x1,1y
3
0,1y

4
1,1 ⊗

x4
1,2y

3
0,2y1,2 be the generator in question. To figure out where we should send this gener-

ator, we first compute ϕ1 ◦ F∗Δ2(F∗g):

ϕ1 ◦ F∗Δ2
(
F∗x0,1x1,1y

3
0,1y

4
1,1 ⊗ x4

1,2y
3
0,2y1,2

)
= ϕe

(
x0x

5
1y

6
0y

5
1
)

= x1y0y1.

Now, F∗g /∈ F∗R
⊗2, as x0x1y

3
0y

4
1 /∈ R, but there are certainly many S-multiples of F∗g

that land in F∗R
⊗2. Wherever we send F∗g, we need to make sure that these S-multiples 

get sent to R⊗2.
Luckily, as described in Lemma 5.14, the multiples of F∗g that appear in F∗R⊗2 have 

a very precise form. The point is that the monomial F e
∗x0,1x1,1y

3
0,1y

4
1,1 has a surplus 

of 5 more y’s than x’s. To multiply this monomial into F e
∗R, we must balance this out 

by multiplying by one more x relative to the number of y’s (which becomes a surplus 
of 5 more x’s than y’s once we move them across the F∗). So for instance, x0,1 ⊗ 1 ·
F∗x0,1x1,1y

3
0,1y

4
1,1 ⊗ x4

1,2y
3
0,2y1,2 ∈ F∗R

⊗2. This means that, if we set

ϕ̂e

(
F∗x0,1x1,1y

3
0,1y

4
1,1 ⊗ x4

1,2y
3
0,2y1,2

)
= x

c0,1
0,1 x

c1,1
1,1 y

d0,1
0,1 y

d1,1
1,1 ⊗ x

c0,2
0,2 x

c1,2
1,2 y

d0,2
0,2 y

d1,2
1,2

we must have

1 + c0,1 + c1,1 = d0,1 + d1,1 and c0,2 + c1,2 = d0,2 + d1,2.

In other words, ϕ̂1(F∗g) needs to have one more y than it does x’s in the first tensor 
factor and the same number of x’s and y’s in the second tensor factor. We do this by 
“taking” one of the y’s from the product x1y0y1 (it does not matter which) and “giving” 
it to the first tensor factor of ϕ̂1(F∗g). For instance, we can set the first tensor factor 
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of ϕ̂1(F∗g) to be y0. Then we give the rest of the product x1y0y1 to the second tensor 
factor. At the end of the day, we have

ϕ̂1(F∗g) = y0,1 ⊗ x1,2y1,2,

and we see that x0,1ϕ̂1(F∗g) ∈ R⊗2 and Δ2 ◦ ϕ̂1(F∗g) = x1y0y1, as desired. K

In what follows, we use the same technique as in the above example, but in a more 
general setting. We go through each tensor factor of the generator F e

∗g and we ask: does 
it have more y’s than x’s? If so, we take the correct number of y’s from ϕe ◦F e

∗Δn(F e
∗ g)

and give them to the corresponding tensor factor of ϕ̂e(F e
∗ g). Similarly, if that tensor 

factor of F e
∗ g has more x’s, we take the correct number of x’s from ϕe ◦F e

∗Δn(F e
∗ g) and 

give them to the corresponding tensor factor of ϕ̂e(F e
∗ g). The fact that ϕe ◦F e

∗Δn(F e
∗ g)

will always have enough x’s and y’s to do this process is expressed by (5.16.2). The fact 
that, after removing these x’s and y’s, whatever is left of ϕe ◦ F e

∗Δn(F e
∗ g) will be an 

element of R is expressed by (5.16.1). We can then tack on these left-overs to any tensor 
factor of ϕ̂e(F e

∗ g) to ensure that we have Δn ◦ ϕ̂e(F e
∗ g) = ϕe ◦ F e

∗Δn(F e
∗ g).

Recall that υ(x) = �x/q�.

Lemma 5.16. Let F e
∗
∏

k x
a•,k
k y

b•,k
k be an S⊗n-module generator of F e

∗S
⊗n satisfying con-

dition (C), and suppose bk − ak ≡ 0 (mod q) for all k with 1 ≤ k ≤ n. Then

n∑
k=1

bk − ak = q

⎛⎝ s∑
j=0

υ

(
n∑

k=1

bj,k

)
−

r∑
i=0

υ

(
n∑

k=1

ai,k

)⎞⎠ . (5.16.1)

Moreover, setting

(μ+,k, ν+,k) =
{(

(bk − ak)/q, 0
)
, bk − ak ≥ 0,(

0, (ak − bk)/q
)
, bk − ak < 0

we have

s∑
j=0

υ

(
n∑

k=1

bj,k

)
≥

n∑
k=1

μ+,k =: μ+,
r∑

i=0
υ

(
n∑

k=1

ai,k

)
≥

n∑
k=1

ν+,k =: ν+. (5.16.2)

Assuming this lemma, we define

ϕ̂e

(
F e
∗
∏
k

x
a•,k
k y

b•,k
k

)
= ϑ ·

n∏
k=1

ϑk,

where ϑk ∈ k[xk, yk] ⊂ S⊗n is defined inductively as follows.
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For ϑ1, if b1 − a1 ≥ 0 then b1 − a1 = μ+,1q. Let f1 = 1 and let g1 be some factor 
of yυ

(∑
k b•,k

)
of degree μ+,1. This is possible by (5.16.2), as 

∑s
j=0 υ

(∑n
k=1 bj,k

)
≥ μ+,1. 

For all k, let �k : S −→ S⊗n be the canonical homomorphism that sends S to the k-th 
factor of the tensor product. Then ϑ1 = �1(g1).

Similarly, if b1 − a1 < 0, we know that a1 − b1 = ν+,1q. We let f1 be some factor of 
xυ
(∑

k a•,k
)

of degree ν+,1 and let g1 = 1. This is again possible by (5.16.2). Then, we 
define ϑ1 = �1(f1).

Having defined ϑk, fk, and gk for i = 1, . . . , m, we define ϑm+1 as follows: if bm+1 −
am+1 ≥ 0 then let fm+1 = 1 and let gm+1 be some factor of

yυ
(∑

k b•,k
)/

g1 · · · gm

of degree μ+,m+1. We know that this is always possible by (5.16.2). Then ϑm+1 =
�m+1(gm+1). Similarly, if bm+1 − am+1 < 0, we let fm+1 be some factor of

xυ
(∑

k a•,k
)/

f1 · · · fm

of degree ν+,m+1 and let gm+1 = 1. Then ϑm+1 = �m+1(fm+1).
Having defined ϑk for k = 1, . . . , n, we simply let

ϑ = �1

(
xυ
(∑

k a•,k
)
yυ
(∑

k b•,k
)/

f1 · · · fng1 · · · gn
)
.

It is clear from the definition of ψ that ϕ̂e satisfies

Δn ◦ ϕ̂e = ψ.

It remains to check that ϕ̂e (F e
∗R

⊗n) ⊂ R⊗n. It is enough to check that ϕ̂e sends each 
of the R⊗n-module generators from Lemma 5.14 to R⊗n. Recall any such generator can 
be written as

n∏
k=1

z
ρ•,k
k · F e

∗

n∏
k=1

x
a•,k
k y

b•,k
k ,

where, for each k, zρ•,k
k = x

μ•,k
k if bk − ak ≥ 0, and zρ•,k

k = y
ν•,k
k if bk − ak < 0. Here, as 

in Lemma 5.14, 
∑

i μi,k = (bk − ak)/q and 
∑

j νj,k = (ak − bk)/q. Note that 
∑

i μi,k and ∑
j νj,k are respectively the quantities μ+.k and ν+,k defined in Lemma 5.16. Then

ϕ̂e

(
n∏

k=1

z
ρ•,k
k · F e

∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
=

n∏
k=1

z
ρ•,k
k · ϕ̂e

(
F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
= 0

if condition (C) is not satisfied by 
∏n

k=1 x
a•,k
k y

b•,k
k . Otherwise,
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ϕ̂e

(
n∏

k=1

z
ρ•,k
k · F e

∗

n∏
k=1

x
a•,k
k y

b•,k
k

)
=

n∏
k=1

z
ρ•,k
k · ϕ̂e

(
F e
∗

n∏
k=1

x
a•,k
k y

b•,k
k

)

=
n∏

k=1

z
ρ•,k
k · ϑ ·

n∏
k=1

ϑk

= ϑ ·
n∏

k=1

z
ρ•,k
k ϑk.

For each k, if bk − ak ≥ 0, then zρ•,k
k = x

μ•,k
k and ϑk is a monomial in {y0,k, . . . , ys,k}

of degree μ+,k. Similarly, if bk − ak < 0, then by construciton zρ•,k
k = y

ν•,k
k and ϑk is a 

monomial in {x0,k, . . . , xr,k} of degree ν+,k. In either case, we see that

n∏
k=1

z
ρ•,k
k ϑk ∈ R⊗n.

So it just remains to show that ϑ ∈ R⊗n. To see this, it suffices to show that

xυ
(∑

k a•,k
)
yυ
(∑

k b•,k
)/

f1 · · · fng1 · · · gn ∈ R.

That is what (5.16.1) is all about, for the degrees in terms of y’s and x’s in this monomial 
are, respectively,

s∑
j=0

υ

(∑
k

bj,k

)
−
∑
k

ν+,k,

r∑
i=0

υ

(∑
k

ai,k

)
−
∑
k

μ+,k.

In order to prove these two numbers are equal, it suffices to show that

s∑
j=0

υ

(∑
k

bj,k

)
−

r∑
i=0

υ

(∑
k

ai,k

)
=
∑
k

ν+,k −
∑
k

μ+,k.

However, the right-hand side is nothing but 
∑

k(bk−ak)/q, so this follows from (5.16.1). 
This shows that ϕ̂e (F e

∗R
⊗n) ⊂ R⊗n.

All that remains now is to prove Lemma 5.16.

Proof of Lemma 5.16. To prove (5.16.1), we just switch the order of summation:

n∑
k=1

bk − ak =
n∑

k=1

⎛⎝ s∑
j=0

bj,k −
r∑

i=0
ai,k

⎞⎠ =
s∑

j=0

n∑
k=1

bj,k −
r∑

i=0

n∑
k=1

ai,k.

As (C) holds, we know that, for i, j ≥ 1, we have 
∑n

k=1 bj,k = qυ (
∑n

k=1 bj,k) and ∑n
k=1 ai,k = qυ (

∑n
k=1 ai,k). On the other hand, for i = j = 0, we rather have 
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∑n
k=1 bj,k = qυ (

∑n
k=1 bj,k)+1 and 

∑n
k=1 ai,k = qυ (

∑n
k=1 ai,k)+1. In particular, for all 

i and j we have

n∑
k=1

bj,k −
n∑

k=1

ai,k = q

(
υ

(
n∑

k=1

bj,k

)
− υ

(
n∑

k=1

ai,k

))
,

which finishes the proof of equation (5.16.1).
To prove (5.16.2), it is enough to show

q

s∑
j=0

υ

(
n∑

k=1

bj,k

)
≥ q

n∑
k=1

μ+,k

(by symmetry, we will not have to check the other inequality). To see this, note that, by 
condition (C), we have

q
s∑

j=0
υ

(
n∑

k=1

bj,k

)
=

n∑
k=1

s∑
j=0

bj,k − 1.

Further, we have

q

n∑
k=1

μ+,k ≤
n∑

k=1

|bk − ak| ≤
n∑

k=1

bk =
n∑

k=1

s∑
j=0

bj,k.

However, by condition (C), we see that

n∑
k=1

s∑
j=0

bj,k ≡ 1 (mod q),

so we have

q
n∑

k=1

μ+,k �=
n∑

k=1

s∑
j=0

bj,k.

Thus,

q
n∑

k=1

μ+,k ≤
n∑

k=1

s∑
j=0

bj,k − 1 = q
s∑

j=0
υ

(
n∑

k=1

bj,k

)
.

This proves Claim 5.13 and therefore Theorem 5.6. K
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6. USTP for KLT complex singularities of diagonal F -regular type

Let R be a ring of equicharacteristic 0. A descent datum is a finitely generated 
Z-algebra A ⊂ K. A model of R for this descent datum is an A-algebra RA ⊂ R, 
such that RA is a free A-module and RA⊗AK = R; see for instance [14] or [28, Remark 
5.3]. Note that A/μ is a finite field, and in particular a perfect field of positive charac-
teristic, for all maximal ideals μ ⊂ A. We say that R is of diagonally F -regular type if, 
for all choices of descent data A ⊂ K, the set

{μ ∈ MaxSpecA | RA ⊗A A/μ is diagonally F -regular}

contains a dense open subset of MaxSpecA. In this case, we say that RA⊗AA/μ is diag-
onally F -regular for μ “sufficiently general.” We notice that rings of diagonally F -regular 
type satisfy USTP via a standard reduction-mod p argument.

Theorem 6.1. Let K be a field of characteristic 0 and let R be a K-algebra essentially 
of finite type and of diagonally F -regular type. Let d = dimR. Then we have p(nd) ⊂ pn

for all n and all prime ideals p ⊂ R.

Proof. For any decent datum A, let pA = p ∩RA, pnA = pn∩RA, and p(dn)
A = p(dn) ∩RA. 

It suffices to show that p(dn)
A ⊗A A/μ ⊂ pnA ⊗A A/μ for μ sufficiently general. We can 

choose a descent datum A ⊂ K and a model RA ⊂ R such that:

(a) RA ⊗A A/μ is diagonally F -regular,
(b) pA ⊗A A/μ is a prime ideal, and
(c) p

(dn)
A ⊗A A/μ = (pA ⊗A A/μ)(dn),

for μ sufficiently general. For part (c), we use the facts that p(dn) is the p-primary 
component of pdn, that taking powers of ideals commutes with descent, and that we can 
choose A so that descent commutes with taking the primary decomposition of a given 
ideal. See [14, §2.1] for details. It follows that

p
(dn)
A ⊗A A/μ = (p⊗A A/μ)(dn) ⊂ (p⊗A A/μ)n = pnA ⊗A A/μ,

as desired. K

Example 6.2. The affine cone over P r
C ×C P s

C is a KLT singularity of diagonal F -regular 
type. In particular, USTP holds for this ring, with the uniform multiplier h equal to 
r + s = (r + s + 1) − 1.

We conclude this paper by asking how varieties of diagonally F -regular type fit into 
the theory of singularities studied in birational geometry.
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Question 6.3. Is there a characterization of complex varieties of diagonally F -regular 
type in terms of log-discrepancies?
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