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1. INTRODUCTION

Ž .Let R be a ring with identity. We will denote by spec R the set of all
Ž .prime ideals of R and by Ind R a set of representatives of the isomor-

�phism classes of indecomposable, injective right R-modules. Matlis in 12,
� Ž .Proposition 3.1 establishes a one-to-one correspondence between spec R

Ž .and Ind R for R commutative and noetherian by assigning the injective
Ž .hull E R�P of R�P to the prime ideal P of R. We mention a few

instances in which this result has been extended and generalized. If R is
right noetherian, but not necessarily commutative, a mapping � from

Ž . Ž . Ž . Ž .Ind R onto spec R can be defined by defining � E � Ass E for E in
� � Ž .Ind R; see 10, 3.60 Theorem , where Ass E consists of a single prime
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Ž Ž . . � �ideal of R and Ass E R�P � P for a prime ideal P of R. Krause in 9R

gives the exact extra conditions on R for this mapping � to be one-to-one.
� �Facchini in 6 shows that there is a one-to-one correspondence between

Ž . Ž .Ind R and spec R for a commutative integral domain R for which any
indecomposable injective R-module is uniserial over its endomorphism
ring, if and only if R is a Prufer domain with P � P 2 for every nonzero¨
prime ideal P of R. This last condition, that no nonzero prime ideal is
idempotent, characterizes therefore the commutative valuation domains V
so that every injective indecomposable V-module E is isomorphic to
Ž . � �E R�P for some prime ideal P of V; see also 15, 16, 18 . Torner showed¨
� �in 17 that for invariant valuation domains R with maximum condition on

prime ideals, either exactly one, two, or infinitely many nonisomorphic
injective indecomposable modules exist which are associated with the same
prime ideal P of R.

We consider in this paper not necessarily commutative valuation rings
R, i.e., subrings R of a skew field F such that x � F � R implies x�1 � R.

Ž . �If E is an injective indecomposable right R-module, then P E � p �R
4R 	 � 0 � m � E with mp � 0 is a completely prime ideal of R, the

associated prime of E; see Lemma 2.3. We are particularly interested in
Ž . Ž . Ž . Ž .the subset EE P of Ind R consisting of all E in Ind R with P E � P

for a given completely prime ideal of R.
Ž . Ž . Ž Ž ..If P � 0 , then the quotient skew field of R, Q R � E R� 0 � F , isR

the only indecomposable injective module with P as associated prime. The
Ž .remaining completely prime ideals P are divided into four types: i P is a

limit prime; i.e., P � � P , P 
 P , is the union of completely prime idealsi i
Ž .P properly contained in P; or ii P 
� P� has a lower neighbor P� in thei

lattice of completely prime ideals of R. We then say P 
� P� is a prime
segment of R. Prime segments P 
� P� are further classified in Lemma 3.1:
Ž .ii, a If aP � Pa for a � P � P�, then the prime segment is called invari-

Ž .ant. ii, b If there are no further ideals of R between P and P�, then the
Ž .prime segment P 
� P� is simple. ii, c If there exists a prime ideal Q of R

with P 
 Q 
 P�, then the prime segment is called exceptional. Every
nonzero completely prime ideal P of R falls into exactly one of the four

Ž . Ž . Ž . Ž .categories i , ii, a , ii, b , or ii, c . Limit primes are called not branched
� �prime ideals in 8 .

Ž .Corollary 3.5 characterizes the completely prime ideals P � 0 of R
� Ž . � 2with EE P � 1 as those for which P � P . This is equivalent to the

Ž .condition given in the case ii, a with the additional requirement that the
factor ring R �P�R of the localization R of R at P is a principal idealP P P

ring.
In Theorem 3.8 it is proved that for a completely prime ideal P of R of

Ž . � Ž . �type ii, a , only the cases EE P � 1, 2, or � can occur.
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As the main result of this paper, we show in Theorem 4.1 that there
exists for any m � 2 a valuation ring R with exactly one prime segment
Ž . Ž .J R 
� 0 , which is simple, so that R has exactly m indecomposable

� Ž Ž .. �injective nonisomorphic torsion right R-modules; i.e., EE J R � m. Here,
Ž .J R is the maximal ideal, the Jacobson radical of R. We do need some

results about limit primes P of a valuation ring R and we show that
� Ž . �EE P � 2 or � in this case is possible; see Lemmas 3.9 and 3.10 and

� Ž . �Example 3.11. We do not know the possible values for EE P if P is a
limit prime or if P has a lower neighbor P� in the lattice of completely
prime ideals and the segment P 
� P� is exceptional. However, it follows
from these results that no prime ideal Q of R which is not completely
prime is associated to an injective indecomposable right R-module. These
prime ideals Q are exactly the prime ideals of R for which R�Q is a
non-Goldie ring.

2. INJECTIVE INDECOMPOSABLE MODULES, RELATED
RIGHT IDEALS, AND ASSOCIATED PRIME IDEALS

Throughout this paper, R will be a valuation ring; that is, R is a subring
of a skew field F such that a � F � R implies a�1 � R. A valuation ring

Ž . Ž . Ž .R has a unique maximal ideal J R � R � U R with U R the group of
units of R. Since the lattice of right ideals of R is a chain, it follows that
any right ideal I of R is irreducible and that a right R-module E is an

Ž .injective indecomposable right R-module if and only if E � E R�I ,
Ž .where E R�I is the injective hull of R�I for a right ideal I � R.

If E is an injective indecomposable right R-module that contains an
Ž .element m such that mr � 0 implies r � 0 for r � R, then E � E R .

This module is isomorphic to F , since R is essential in the torsion-freeR
� �and divisible module F . With this argument used in 10, 3.25 , modifiedR

for right Ore domains, it follows that torsion-free divisible right R-modules
are injective. We can therefore restrict ourselves to injective indecompos-

Ž .able right R-modules of the form E R�I with I a right ideal of R not
Ž .equal to R or 0 . These modules are torsion modules.

�1 � 4If I � R is a nonzero right ideal of R, then a I � r � R 	 ar � I for
� � Ž . Ž .a � R. It follows from 4 that E R�I � E R�I for right ideals I , I if1 2 1 2

and only if s�1I � s�1I for elements s � R � I . We write I � I or1 1 2 2 j j 1 2
I � I in this case and say that I and I are related. It follows from the1 R 2 1 2
next result that this condition takes on a particularly easy form if R is a
valuation ring.

LEMMA 2.1. The following conditions are equi�alent for right ideals I and1
Ž .I of R that are different from 0 and R:2
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Ž . �1a I � t I for some t � R � I .2 1 1

Ž .b tI � I for some t � R � I .2 1 1

Ž .c rI � I for some r � R.2 1

Ž . Ž .Proof. To show that a implies b , assume tI 
 I and b � I � tI .2 1 1 2
Then bR 
 tR, since t � I , b � tb for b � R, b � t�1I � I , and1 1 1 1 1 2
b � tb � tI , a contradiction that shows I � tI . It remains to show that1 2 1 2
Ž . Ž .c implies a . The element r is not zero and is not in I , since otherwise1

Ž . Ž .r � rt for t � I � J R implies r 1 � t � 0 and r � 0. We have I �1 1 2 1 2
r�1I . If b � r�1I , then rb � I � rI and b � I , and I � r�1I , r � R �1 1 1 2 2 2 1
I follows.1

Ž .COROLLARY 2.2. Two right ideals I and I of R, different from 0 and1 2
R, are related if and only if either I � aI or aI � I for an element a � R.1 2 1 2

Proof. If s�1I � s�1I � I, then I � s I and I � s I, where s �1 1 2 2 1 1 2 2 i
R � I . Since R is a valuation ring, either s � as or s � as for somei 1 2 2 1
a � R. Then I � aI in the first case and I � aI in the second.1 2 2 1

Let E be an indecomposable injective right R-module. We define
Ž . � 4P E � p � R 	 � 0 � m � E with mp � 0 . It follows from the next

Ž .lemma that P � P E is a completely prime ideal of R, the associated
prime of E. Isomorphic injective indecomposable right R-modules E and1

Ž . Ž .E have identical associated prime ideals P E � P E . It is the topic of2 1 2
Ž .this paper to obtain some information on the set EE P of all nonisomor-

Ž .phic indecomposable injective right R-modules E with P E � P. Since it
Ž Ž ..also follows from the next lemma that P E R�P � P for a completely

Ž . � Ž . �prime ideal P � 0 of R, we obtain EE P � 1.
Ž .For a right ideal I of R which is not equal to 0 or R, we define the

Ž . � 4 Ž . � 4sets P I � p � R 	 � t � I with tp � I and S I � s � R 	 Is � I ;r
Ž .again we say that P I is the associated prime ideal of I.r

Ž .LEMMA 2.3. Let R be a �aluation ring, let I � R, 0 be a right ideal of R,
and let E be a torsion, indecomposable, injecti�e right R-module. Then

Ž . Ž . Ž .i P I � R � S I is a completely prime ideal.r

Ž . Ž .ii P I � � I� is the union of all right ideals I� of R that arer I�� I
related to I.

Ž . Ž . Ž . Ž .iii If E � E R�I , then P E � P I .r

Ž . Ž .Proof. That P I � R � S I follows if we rewrite the definitions ofr
Ž . � �1 4these sets with the help of Lemma 2.1. We have P I � p � R 	 Ip 
 Ir

Ž . � �1 4 �1and S I � s � R 	 Is � I . Since Ir � I for any r � R, it follows
Ž . Ž . Ž .immediately that P I � R � S I . For p � P I and r � R, we haver r

Ž .I 
 Ip and I 
 Irp, and I 
 Ipr follows. This shows that P I is an ideal,r
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and since its complement in R is multiplicatively closed, it follows that
Ž .P I is completely prime.r

Ž . Ž .In order to prove ii , we rewrite P I again: We obtain from ther
Ž . �1 Ž .definition that P I � � t I. This implies that P I � � I�.r t � R � I r I�� I

To see this, we observe first that I� � I implies either I� � aI for
Ž .0 � a � R, and I� is then contained in the ideal P I that contains I, orr

�1 Ž . �1I� � t I for some t � R � I; hence � I� � P I � � t I �I�� I r t � R � I
Ž .� I�, and the equality P I � � I� follows.I�� I r I�� I

Ž . Ž . Ž .In the proof of iii , we show first that P I is contained in P E . Ifr
Ž .p � P I , then there exists 0 � t � I � m � R�I with mp � 0, and hencer
Ž . Ž .p � P E . Conversely, if q � P E , then mq � 0 for some 0 � m �

Ž . � 4 Ž . Ž .E R�I . Hence, q � I� � r � R 	 mr � 0 and E mR � E R�I� �
Ž . Ž .E R�I . Therefore, I� � I and q � I� � P I .r

COROLLARY 2.4. Let P be a nonzero completely prime ideal in R. Then
� Ž . �EE P is equal to the number of equi�alence classes with respect to the related

Ž .condition in the set of nonzero right ideals I � R of R with P I � P.r

3. PRIME SEGMENTS AND LIMIT PRIMES

As we assume throughout the paper, let R be a valuation ring, let
Ž . Ž .I � 0 , R, be a right ideal of R, and let P � P I be the associatedr

Ž . Ž .completely prime ideal. Then 0 
 P � J R 
 R.
We recall first some results about prime segments of R. Either P �

� P , P 
 P completely prime ideals in R, and we say that P is a limiti� � i i
prime, or there exists a completely prime ideal P� with P 
 P� but no
further completely prime ideal of R properly between P and P�. We then
say that P 
� P� is a prime segment of R. Prime segments correspond to

� �jumps as defined for totally ordered groups; see 7 . We say that R has
rank n if R has exactly n nonzero completely prime ideals.

� � � �The next result can be found in 3 ; see also 1 .

LEMMA 3.1. Assume that P 
� P� is a prime segment in the �aluation ring
R. Then exactly one of the following alternati�es occurs:

Ž .a The prime segment P 
� P� is in�ariant; i.e., aP � Pa for a �
P � P�.

Ž .b The prime segment P 
� P� is simple; i.e., there are no ideals of R
properly between P and P�.

Ž .c The prime segment P 
� P� is exceptional; i.e., there exists a prime
ideal Q of R with P 
 Q 
 P�. Then there are no ideals properly between P
and Q and �Qn � P�.
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2 Ž . Ž .It follows that P � P in the cases b and c . Of course, if P �
� P , P 
 P, is a limit prime, then P 
 P 2 for all i � � and P � P 2

i� � i i i
in this case as well.

� Ž . �The next result shows that for the computation of EE P , we can always
Ž .assume that P � J R is the maximal ideal of R.

Let P be a completely prime ideal of the valuation ring R. Then
S � R � P is a multiplicatively closed subset of R, and for r � R, s � S,
there exists t � R with either r � st or s � rt, and r, t are in S in the

�1 � �1second case. It follows that the localization R � RS � rs 	 r � R, sP
4 �1� S exists and that R � R � S .P

Ž .LEMMA 3.2. Assume that I and I � 0 and R are right ideals of R with1 2
Ž . Ž .P I � P I � P. Thenr 1 r 2

Ž .a I R � I for i � 1, 2, and I and I are related in R if and only ifi P i 1 2
they are related in R .P

˜Ž .b For e�ery completely prime ideal P 
 P of R, there exist right ideals
˜ ˜ ˜I � I in R for i � 1, 2 with P 
 I � P.i i i

Ž .Proof. Since P I � P implies I s � I for all s � S � R � P, it fol-r i i i
lows that I s�1 � I and I R � I for i � 1, 2. If I � I in R, theni i i P i 1 2
aI � I or I � aI for some a � R and I � I in R . Conversely, if1 2 1 2 1 2 P
bI � I for b � R , then either b � R or b � s�1 for s � S. It follows1 2 P

Ž . Ž .that I � I in R. The part b follows from Lemma 2.3 ii .1 2

Ž .COROLLARY 3.3. Let P � 0 be a completely prime ideal of R. Then
ˆ� Ž . � � Ž . � � Ž . �EE P � EE P � EE P for e�ery completely prime ideal P 
 P of RR R RPˆ ˆwith R � R �P and P � PR �P.P P

Proof. We saw in the previous lemma that classes of related right
ideals of R with associated prime ideal P correspond to classes of right
ideals of R with associated prime ideal PR � P. Since, conversely, everyP P

Ž .right ideal I � 0 , R , in R is also a right ideal of R, the first equationP P
Ž .follows. The second equation is an immediate consequence of part b of

Lemma 3.2.

In the case where P has a lower neighbour P� in the chain of com-
� Ž . �pletely prime ideals of R, it is sufficient to determine EE P , whereR � P �RP P

Ž .R � R �P�Rp is now a rank-1 valuation ring with J R � P the onlyP
nonzero completely prime ideal.

It follows from Lemma 3.1 that a rank-1 valuation ring R falls into one
of the following three categories:

Ž .a R is invariant; i.e., aR � Ra for all a � R.
Ž . Ž . Ž .b R is nearly simple; i.e., R, J R , and 0 are the only ideals of R.
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Ž .c R is exceptional; i.e., there exists a prime ideal Q in R which is
Ž � �.not completely prime see also 5 .

Ž .We can now assume that R is a valuation ring with P � J R . The
Ž .principal right ideals I � aR � 0 , R are all related and aRs � aR is

Ž . Ž .possible only for s � U R ; hence P I � J.r
� Ž . �If we assume that EE P � 1, then P � aR for some a � R, sinceR

Ž . 2 2P P � P, and P � P � a R follows; see below. This proves one half ofr
the next result.

LEMMA 3.4. Let P be a nonzero completely prime ideal in the �aluation
� Ž . � 2ring R. Then EE P � 1 if and only if P � P .

� Ž . � 2Proof. It remains to prove that EE P � 1 if P � P . We can assume
Ž . n Ž .that P � J R and that � P � 0 . The last assumption is justified since

n � � 2� P � P� is a completely prime ideal 3 and P � P implies that P 
� P�
is a prime segment. It follows that P � aR for a � P � P 2 and that
P n � anR, since P is a two-sided ideal. Hence, for every nonzero right
ideal I � R, there exists an integer n with anR � I 
 an�1R and I � anR
follows.

Ž .If P � J R � aR for a � R, then Ra � aR. Otherwise, Ra 
 aR and
there exist elements r � R, j � P, with ar � aR � Ra and a � jar. How-
ever, j � ar� for r � � R leads to a � ar�ar � a2 r � r for r � � R and a � 0,
a contradiction. It follows that R is invariant if R is a rank-1 valuation ring

2 Ž .with P � P and P � J R .

COROLLARY 3.5. The following conditions are equi�alent for a nonzero
completely prime ideal P of a �aluation ring R:

Ž . � Ž . �a EE P � 1.
Ž . 2b P � P .
Ž .c P has a lower neighbour P� in the lattice of completely prime ideals

Ž .of R, the segment P 
� P� is in�ariant, and R � P�R is a right and leftP P
principal ideal ring.

COROLLARY 3.6. Let R be a �aluation ring. There exists a one-to-one
correspondence between spec R and the set of isomorphism classes of injecti�e
indecomposable R-modules if and only if P 2 � P for all completely prime

Ž .ideals P � 0 of R.

Remark 3.7. A valuation ring R as in Corollary 3.6 has no limit primes
and only invariant prime segments; in particular, spec R consists of com-
pletely prime ideals only. However, R itself is not necessarily invariant if
the rank of R is greater than 1.

We saw that a completely prime ideal P of R with P 2 � P has a lower
neighbour P� � � P n and that the segment P 
� P� is invariant. The value
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Ž . Ž .group of the rank-1 valuation ring R � P�R is isomorphic to �, � andP P
we say that the segment P 
� P� is discrete.

Ž . Ž .If P 
� P� is invariant, then the �alue group G P, P� of R � P�R isP P
Ž . Ž � � .isomorphic to a subgroup of �, � see 3 and below .

We next prove the following result:

THEOREM 3.8. Let R be a �aluation ring and let P 
� P� be an in�ariant
prime segment of R. Then:

Ž . � Ž . � 2 Ž . Ž .a EE P � 1 if and only if P � P, if and only if G P, P� � �, � .
Ž . � Ž . � Ž . Ž .b EE P � 2 if and only if G P, P� � �, � .
Ž . � Ž . � Ž . Ž . Ž .c EE P � � if and only if �, � � G P, P� � �, � .

Proof. It follows from Corollary 3.3 that we can assume that R is an
Ž . Ž . Ž .invariant rank-1 valuation ring with P � J R 
 P� � 0 . Part a of the

theorem follows from Corollary 3.5.
Ž . Ž� 4 .The group G P, P� is equal to �R 	 � � F* , 	 , where F is the skew

Ž . Ž .field of quotients of R and �R 	 
R � �
R defines the operation.
This is a group, since R is invariant; it is totally ordered if we define
�R � 
R if and only if �R � 
R; and it is archimedean since R has rank

� � Ž .1. It follows by Holder’s Theorem 7 that G P, P� is isomorphic to a¨
Ž .subgroup of �, � as ordered groups.

Ž .If G P, P� � �, no smallest positive element exists in this group, P is
not finitely generated as a right ideal, and hence P 2 � P.

Ž� 4 .We can then consider the group � � �P 	 � � F* , 	 with �P 	 
P �
�
P, � , 
 � F*, and �P � 
P if and only if �P � 
P.

Ž .The group � is order-isomorphic to G P, P� and an order monomor-
Ž .phism w exists from � into �, � . If I � F is any not finitely generated

Ž . � Ž .R-module in F, then I � � �P and we can define w I � inf w �P� � I 1
4	 � � I � �.

Ž � �.It follows with arguments similar to the arguments in 17 that w is an1
extension of w and defines an order isomorphism between the group of

Ž .not finitely generated right R-submodules � F of F and �, � . That
Ž� 4 .� � I 
 F 	 I not finitely generated right R-module , 	 , with I 	 I �1 1 2

� 4Ýa b 	 a � I , b � I as operation, is a group, follows from the fact thati i i 1 i 2
Ž . Ž . Ž .w is a bijective mapping from � to � with w I I � w I � w I for1 1 1 1 2 1 1 1 2

I , I � � . The element I � � that corresponds to � � � is given by1 2 1 � 1
I � � �P.� � � wŽ� P .

Ž . Ž .The group w � is dense in � � w � . If I � I are right ideals in � ,1 1 1 2 1
i.e., not finitely generated, then I � I if and only if aI � I for a � R if1 2 1 2

Ž . Ž . Ž . Ž .and only if aPI � I . Therefore, w aPI � w aP � w I � w I . We1 2 1 1 1 1 1 2
can formulate this in the following form: Two right ideals I , I � � are1 2 1

Ž . Ž . Ž .related if and only if w I � w I � w � .1 1 1 2
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Ž . � Ž . �The statement b of the theorem follows immediately. EE P � 2 if and
only if P � P 2 and � � �. The two related classes which determine two

� 4 �nonisomorphic indecomposable R-modules are aR 	 0 � a � J and aP 	
40 � 0 . Every right ideal of R is of the form aR or aP for a � R.

Ž .To prove c , it must be shown that there exist infinitely many related
classes of infinitely generated right ideals in R if � � � and P � P 2. We

Ž .assume on the contrary that w � is dense in � and that there are only
finitely many, say, n related classes of infinitely generated right ideals in

Ž . Ž .R. Let I be any right ideal with 0 � w I � 1� 2n! in �. Since not all1
the powers I i, i � 1, 2, . . . , n, n � 1, are unrelated, there exist n � 1 � m

k m m�k Ž m� k .� k � 1 with aI � I and I � aP. This implies that w I �1
Ž . Ž n!. Ž Ž .. Ž .w � . It follows that w I � n! w I � w � . However, for every real1 1

Ž . Ž .number 0 � r � 1� 2n! there exists a right ideal I in � with w I � r1 1
Ž . Ž .and n!	 r � w � , and all real numbers t with 0 � t � 1�2 are in w � .

Ž . Ž .Hence, w � � � and we are in case b and have two classes of related
right ideals only.

In contrast to the result in the last theorem, we will construct for every
� Ž Ž .. �m � 2 nearly simple rings R with EE J R � m.

� �Dubrovin 5 has constructed a rank-1 valuation ring R with an excep-
Ž . Ž .tional prime segment J R 
 0 . The principal right ideals of this ring are

given in the form t �R with 0 � � � � and t �1 R � t �2 R if and only if
� � � . It follows that there are exactly two related classes of right ideals1 2

Ž . � Ž .4I � R, 0 : The principal right ideals aR 	 0 � a � J R and the infinitely
� 4 Ž .generated ones aP 	 0 � a � R with P � J R . We have no further

Ž Ž ..information about EE J R for R an exceptional rank-1 valuation ring.
Finally, we consider limit primes P � � P , P 
 P , i � �, in ai� � i i

Ž .valuation ring R. Let R be a valuation ring, let J � J R be the maximal
ideal of R, and let P � � P be a limit prime. We consider for any a � Ji

Ž .the intersection P a � � P of all completely prime ideals P of Ra� P
Ž . Ž .containing a. Then P a is a completely prime ideal. The union P� a �

� Q of all completely prime ideals Q of R not containing a is also aa � Q
Ž . Ž . Ž .completely prime ideal P� a and P a 
� P� a is a prime segment.

Hence, we can assume that, in the representation P � � P of a limiti� � i
� Ž .prime, every P has a lower neighbor P by replacing P by P a fori i i i

a � P � P . We can also assume that � is a well-ordered index set withi i
P 
 P for i � j. In fact, we will only consider limit primes P wherei j
� � �; i.e., P � � P , P 
 P 
� P�. We will then say that P is given ini� � i i i
standard form. The next result provides us with a family of right ideals I in

Ž .a valuation ring R with limit prime P, so that P I � P.r

LEMMA 3.9. Assume that P � � P is a limit prime of a �aluationi� � i
ring R gi�en in standard form. For each i � 1, choose a nonzero a � P � P�

i i i
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and a � 0 � R. Then I � � I with I � a a 			 a R is a right ideal of R0 n n 0 1 n
Ž . Ž .with I � cP for all c in R and P I � P pro�ided I � 0 .r

Ž . 2Proof. To show that P � P I , it is enough to prove that a a �r n n�1
Ž . 2P I for n � 1, since a a � P � P . The element t � a a . . . ar n n�1 n n�1 n 0 1 n�1

Ž .is not contained in I since a � J R . We have a � a . . . a r forn n�1 n�2 n�k k
Ž 2 .some r � R and k � 2 since a . . . a � P . Therefore, t a ak n�2 n�k n�1 n n n�1

Ž .� a a . . . a a a a . . . a r for all k � 2. This shows that0 1 n�1 n n�1 n�2 n�k k
Ž 2 . 2 Ž . Ž .t a a � I and a a � P I , and P � P I follows.n n n�1 n n�1 r r

Ž .To prove that P I � P, we assume that tp � I for t � R � I, 0 � p �r
R. Then there exists an integer n and r � R with a a . . . a � tr and0 1 n
tp � a a . . . a � � tra � for some � � R. Hence, p � ra � � P0 1 n�1 n�1 n�1 n�1

Ž .� P and P I � P.r
It remains to prove that I � cP for c � R. Otherwise, we have I � cP

and c � I. Hence, there exist an integer n and r in R with a a . . . a � cr.0 1 n
Since a � P, it follows that a . . . a � cra � cP � I, a contradic-n�1 0 n�1 n�1
tion that proves I � cP.

We will prove one more result about the right ideals associated with a
limit prime P � � P in standard form. By Corollary 3.3 we cani� � i

Ž .assume that P � J R is the maximal ideal in the valuation ring R. The
ideal P is not finitely generated as a right ideal, since P � P 2. The

� 4principal right ideals aR 	 0 � a � J form one related class associated
with P. A proper nonzero right ideal I of R is not finitely generated if and
only if I � IP, since then for every a � I exists b � I with aR 
 bR 
 I.

Ž .Let I be a not finitely generated ideal with P I � P. Then I � IP �r
Ž . Ž .I � P � � IP , and we will show that P IP � P . Since P s �n� � n n� � n r n n n

Ž . Ž .P for all s � P � P , we have P IP � P . Since P I � P 
 P , theren n r n n r n
Ž .exists by Lemma 2.3 ii a right ideal I� in R related to I and P � I� 
 P .n

Hence IP and I�P are related and I�P 
 P� , the lower neighbour of P .n n n n n
Ž . � Ž .It follows that P IP 
 P and P IP � P .r n n r n n

We now assume that I and I are not finitely generated right ideals of1 2
� Ž . �R associated with P and that EE P � 2 for all n � n . This happens forn 0

invariant prime segments P 
 P� if and only if the corresponding groupsn n
Ž .are isomorphic either to � or � see Theorem 3.8 . Then I P and I P1 n 2 n

are both associated with P . If P 2 � P , these two right ideals are related,n n n
since there exists only one related class of right ideals associated with P .n

2 Ž .If P � P , then I P P � I P for i � 1, 2 and then again I P and I Pn n i n n i n 1 n 2 n
� Ž . �are related, since EE P � 2 and neither I P nor I P is of the formn 1 n 2 n

aR for a � P and n � n . It follows that there exists for n � n anP n 0 0n

element a � R with a I P � I P , or I P � b I P for some b � R.n n 1 n 2 n 1 n n 2 n n
Since sP � P for s � P , it follows that P P � P for m � n andn n n m n n
a I P � I P implies a I P � I P . We can therefore assume thatm 1 m 2 m m 1 n 2 n
there exist elements a in R with a I P � I P for all n � n andn n 1 n 2 n 0
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a I P � a I P for m � n. It is not possible to conclude from this that Im 1 n n 1 n 1
and I are related, but we obtain the following result if we add an extra2
condition.

LEMMA 3.10. Let P � � P be a limit prime gi�en in standard form.i� � i
� Ž . � � 4Assume that EE P � 1, 2 for n � n . Further assume that for right idealsn 0

Ž .I � I � 0 of R associated with P there exists a � R with aI P � I P1 2 1 n 2 n
whene�er there exist elements a � R with a I P � I P and a I P �n n 1 n 2 n m 1 n

� Ž . �a I P for m � n � n . Then EE P � 2.n 1 n 0

2 � Ž . �Proof. Since P � P , we have EE P � 2. The arguments before the
lemma and the assumptions show that any two right ideals I , I with1 2
I P � I for i � 1, 2 and associated with P are related.i i

� Ž . �We conclude this section with examples that show that EE P � 2 and
� Ž . �EE P � � are possible for a limit prime P.

Ž . ŽŽ ..If G, � is any ordered group, then D � � G , the Malcev�
Neumann ring of generalized power series, is a skew field. It consists of
elements � of the form � � Ýga with g � G, a � �, and the supportg g

Ž . � 4 � 4supp � � g 	 a � 0 well ordered. The subring V � Ýga � D 	 e � gg g
of D is an invariant valuation ring and G is the associated group. The field
� of rational numbers can be replaced by any skew field in this construc-
tion.

Ž . � 4We will write Pos G for the set g � G 	 e � g , and a right ideal I of0
Ž . Ž . Ž .Pos G is a nonempty subset I of Pos G with I Pos G � I . The0 0 0

Ž .principal right ideals I � 0 of V have the form I � gV for some
Ž . Ž Ž ..g � Pos G and I � Pos G V � I for any right ideal I of V.

ˆEXAMPLE 3.11. Let G be the subgroup of the direct product Ł �i� � i
Ž . Ž .of copies of �, � consisting of all elements g � z with well-orderedi

ˆ� 4 Ž .support i 	 z � 0 . Then e � 0 is the identity of G, for every e � g �i
ˆŽ . Ž . � 4z � G there exists lind g � min i 	 z � 0 , the leading index of g, andi i

ˆ ˆŽ . � Ž .G is linearly ordered lexicographically from the left: Pos G � g � z �i
ˆ Ž . 4 � 4G 	 z � 0 for lind g � i � e .i 00 ˆThe group G contains as subgroup the group G � Ý � , the directi� � i

Ž .sum of the � , i � �, and G is also lexicographically ordered: Pos G � Gi
ˆŽ . Ž .� Pos G . Thus there exists the valued field D, V with G as associated

value group.
Ž . Ž Ž ..Let P � 0 be a prime ideal of V. Then P � P � Pos G V and P is

Ž . � Ž . 4generated as a right V-ideal by P � P � Pos G . If lind g 	 g � P has0
Ž .no maximum, then P � J V is the maximal ideal of V. Otherwise,

� Ž . 4lind g 	 g � P has a maximum, say n, and P � P is in this case then
� Ž . Ž . 4prime ideal of V generated by g � Pos G 	 lind g � n . If we write en

Ž .for the element e � z with z � 1 and z � 0 otherwise, then P �n i n i n



BRUNGS AND TORNER¨124

² Žn. Žn. :g 	 g � e � ke , k � � ; i.e., P is also generated by the ele-k k n n�1 n
ments g Žn. as a right ideal of V.k

Ž . Ž .To prove this, we assume that g � z � P with lind g � n and zi n n
Ž . Ž .minimal. If z � 1, then g � e � e � P with e , g � e � P, a con-n n n n n

tradiction, since P is a prime ideal. We observe that addition in G
corresponds to multiplication in D and we will also use below multiplica-
tive notation for the operation in G. Similarly, if there exists a minimum

� Ž . � � �h � � with e � he � P , then e � h � 1 e � e � P leadsn n�1 n n n�1 n�1 n
to a contradiction.

It follows that J � P � � P is a limit prime, and P 
� P is ann� � n n n�1
Ž .invariant prime segment with �, � as associated group for every n.

� Ž . � � Ž . �Hence EE P � 1 for all n. We like to show EE P � � and use Lemman
3.9.

Ž . Ž .We will choose a � g arbitrarily in Pos G and a � Pos G with0 0 i
Ž .lind a � i for i � 1, 2, . . . . The conditions of the lemma are then satis-i

Ž Ž i..fied. For each index m there are only finitely many elements a � z ini t
� 4 Ž i.the set a , a , a , . . . such that z � 0. The element g � a � a � aˆ0 1 2 m 0 1 2

ˆ� 			 therefore exists in the group G.
ˆ �We want to show that g � G corresponds to I � � a a . . . a V inˆ n�1 0 1 n

ˆV. The element g � G is contained in I if and only if g � g in G. Toˆ
ˆŽ .prove this, we have g � g 
 for 
 � Pos G and g � a . . . a 	 
 forˆ ˆ 0 n n

ˆŽ .
 � a 			 � Pos G , if g � g. Hence, g � a . . . a 	 
 	 
 and 
 
 �ˆn n�1 0 n n n
�1 ˆŽ . Ž .a . . . a g � G � Pos G for all n; it follows that g � � a . . . a V.0 n 0 n

Ž . Ž .Conversely, if g � d � I � Pos G , then g � h 	 g for h � a . . . ai n n n 0 n
ˆŽ . Ž .and g � Pos G for all n � 1. If g � g � c in G, then there exists anˆn i

index i with c � d and c � d for i � i . This leads to a contradiction,0 i i i i 00 0 ˆŽ . Ž .since g � h 	 g and g � h 
 with g � Pos G , 
 � Pos G , andˆi i i i i i0 0 0 0 0 0
Ž .lind 
 � i � 1. This implies d � c .i 0 i i0 0 0 ˆIt follows that the ideal I corresponds to a unique element g � G sinceˆ

ˆG is dense in G. If we define ideals I by choosing a � e and a � n 	 en 0 i i
Ž .for i � 1, 2, . . . , then I corresponds to g � . . . , 0, n, n, . . . for n �ˆn n

1, 2, 3, . . . .
Ž .Every nonzero element r � V can be written as r � g 	 u, g � Pos G ,0 0

and u a unit in V. Then r 	 I corresponds to g g and it followsˆn 0 n
immediately that no two of the ideals I are related in V. By Lemma 3.9n

Ž . � Ž . �we have P I � P and therefore EE P � �.n n

The previous example gives an indication of how to obtain a limit prime
� Ž . �ideal P in a valuation ring V with EE P � 2.

ˆ ˆ ˆŽ .EXAMPLE 3.12. We construct a valued field D, V with G in place of
ˆG, where the notation is as in the previous example. The valuation ring V

ˆ ˆ ˆ ˆŽ .has a limit prime ideal P � J V and P � � P ; the prime idealsn� � n
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ˆ ˆ ˆŽ .� 0 of V are P and P for n � �. We now apply the considerations thatn
lead to Lemma 3.10.

ˆŽ . Ž .If I � I are not finitely generated ideals with P I � P � P I , then1 2 r 1 r 2
ˆ ˆ ˆ ˆ ˆŽ .there exist elements a � V � Pos G with a I P � I P , and a I P �n n 1 n 2 n m 1 n

ˆ ˆ ˆ2 ˆ� Ž . �a I P for m � n. Here we use the fact that P � P and hence EE P �n 1 n n n n
1. We can also assume that a � P for some n � n , since otherwisen n 0

ˆ ˆ �1 ˆ ˆI P � I P for all n implies I � I . Then a a � t � D with t I P1 n 2 n 1 2 n n�1 n n 1 n
ˆ �1 ˆŽ .� I P . It follows that either t or t � S I P , which is equal to1 n n n l 1 n

ˆ ˆ ˆ ˆŽ .S IP � V � P , since V is commutative.r n n
ˆŽ . Ž .Therefore, a � a t for elements a , a � Pos G with lind a � in�1 n n n�1 n i

ˆ Ž .and t � G with lind t � n. As in the previous example, it follows thatn n
ˆ ˆ ˆŽ .g � a t t . . . is an element in Pos G , and gI P � I P for all n � nˆ ˆn n n�1 1 n 2 n 0

and gI � I follows. There is only one related class of infinitely generatedˆ 1 2
ˆ ˆ ˆ� Ž . �ideals of V that belongs to P and EE P � 2 follows.

ˆEXAMPLE 3.13. We replace G in the previous example by the corre-
Ž .sponding subgroup of the product Ł � with � � �, � . This groupi� � i i

ˆ ˆ ˆ ˆ ˆis called G again, and we obtain D 
 V 
 P � � P as before; here,n� � n
ˆ ² :P � � 	 e 	 for 0 � � � � and lim � � 0 . The group associated withn i n i i
ˆ �̂ ˆ ˆŽ .P 
� P � P is �, � . However, if I 
 I are nonzero ideals of V withn n n�1 1 2

ˆ ˆ ˆ ˆI P � I for i � 1, 2, then I P � I P are related P -ideals by Theoremi i 1 n 2 n n
ˆŽ . � Ž . �3.8 b . With the arguments as in the previous example, we obtain EE P �

2 in this case as well.

4. NEARLY SIMPLE VALUATION RINGS

In this section we prove the following result:

THEOREM 4.1. Gi�en any integer m � 2, there exists a nearly simple
� Ž Ž .. ��aluation ring R with EE J R � m.

Proof. We prove the result first in the case where m � 2n � 1 is an
n �Ž . 4odd number � 3. Let � � � � t , . . . , t 	 t � � be the direct sumn 1 n i

of n copies of �. This set, which is used as an index set in the next step, is
ˆ ˆlexicographically ordered from the left. We denote by G � G the sub-n

Ž .group of Ł � consisting of all elements g � z with well-ordered�� � � �n ˆŽ .support; the groups � are �, � and G is ordered lexicographically from�
ˆthe left. We will use multiplicative notation for the operation in G. We will

write e for the element in � with 1 at the ith component and zerosi n
ˆelsewhere, and will also write e for the element in G with 1 at the�

�-component and 0 elsewhere.
ˆ Ž .The group G admits automorphisms � for i � 1, . . . , n with � z �i i �

Ž � . � Ž .z and z � z . All � ’s shift the components of an element g � z� � ��e i �i
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ˆ ˆ� G to the right. The subgroup of the automorphism group of G gener-
ated by the � ’s is isomorphic to �n.i

ˆŽ .As in Example 3.12, there exists a valued field D, V with G as value
ˆŽŽ ..group and D � � G ; we dropped the hat for D and V. Every ideal

ˆŽ . Ž .I � 0 of V is generated by the set I � Pos G . The automorphisms � ,i
Ž . Ž .i � 1, . . . , n, can be extended to D by defining � Ýga � Ý� g a fori g i g

Ž .Ýga � D. These automorphisms of D have the property that � V � Vg i
Ž .for all i; we say that the � ’s are compatible with D, V .i

Ž .We determine in the next step the prime ideals P � 0 of V. If
n ˆŽ . � Ž . Ž . 4C P � t 	 lind g � t � � , g � P � G has no maximal element,1 1 i

Ž .then P � J V � J � P , the maximal ideal of V. If, on the other hand,�
Ž0. Ž . Ž . � Ž .t � max C P , then we consider C P � t 	 lind g �1 1 2 2
Ž0. ˆŽ . 4 Ž .t , t , . . . , t , g � P � G . Either C P has no maximal element and we1 2 n 2

Ž0. Ž .Ž0.write P � P , or t � max C P .Ž t , �. 2 21

Repeating this process, it follows that P is equal either to P Ž0. Ž0.Ž t , . . . , t , �.1 i
Ž Ž0. Ž0.. i� P with � � t , . . . , t � � for i � n, or P is equal to P forŽ � , �. 0 1 i �0 0

Ž Ž0. Ž0.. n� � t , . . . , t � � .0 1 n
Ž Ž0. Ž0.. iThe prime ideal P with � � t , . . . , t � � , i � n, is a limitŽ � , �. 0 1 i0 Ž � 0 . ˆ 4prime in V generated by the set p � e � G 	 k � 1, 2, . . . .k Ž � , k , 0, . . . , 0.0

Ž .�kThe prime ideal P is generated by the elements g � e e for� k � � �e0 0 0 n

k � 1, 2, . . . ; see Examples 3.11, 3.12. Every P has a lower neighbor�0

P� � P in the chain of prime ideals of V.� � �e0 0 n

We have P � P � � P for the limit prime P �Ž � , �. k � � Ž � , k , 0, . . . , 0.0 0
� Ž . � 2P . It follows that EE P � 1 since P � P for all � � �. ToŽ � , �. V � � � 00 0 0 0

� Ž . � Ž .prove that EE P � 2, we denote � , k, 0, . . . , 0 by � and obtain forV 0 k
Ž . Ž . Ž .ideals J � I 
 I � 0 with P I � P I � P and I P � I , I P � I ,1 2 r 1 r 2 1 1 2 2

that a I P � I P . We assume further that a � P for k � n andk 1 � 2 � k � 0k k k
Ž .a � a t . . . t follows see Lemma 3.10 and Example 3.12 . Thek�m k k k�m�1

elements a can be chosen in such a way that their �th components arek
zero for � � � . The elements t therefore have nonzero �-componentsk k

ˆˆpossibly only for � � � � � . The element t � t t . . . exists in Gk k�1 k k�1
� Ž . �ˆand a tI � I in V. Hence, EE P � 2 for any limit prime P � Pk 1 2 V Ž � , �.0

in V.
We therefore have the following classes of related proper nonzero

Ž . Ž .right ideals of V: There are two classes associated with J V , the proper
Ž .nonzero principal ideals of V and the class represented by J V . Since

P � P 2 , there exists by Theorem 3.8 exactly one class of related ideals of� �0 0

V associated with P , and P is a representative of this class.� �0 0
i � 4Finally, for P , � � � for some i � 1, 2, . . . , n � 1 , we have twoŽ � , �. 00

classes, one represented by P and the other represented, for example,Ž � , �.0
� �1by the ideal I generated by the set e e � g , k �� Ž � , 0, . . . , 0. Ž � �e , �k , 0, . . . , 0. k0 0 0 i

4� . This last class corresponds to the proper nonzero principal ideals of
the localization V of V at P with I � e V .P Ž � , �. � Ž � , 0, . . . , 0. PŽ � 0 0 0 Ž �0, �. 0, �.
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We now describe the final step of the construction. Consider the valued
Ž .field D, V and the automorphism � of D that is compatible with V. We1

� � � � � i 4can therefore form the subring V x , � of D x , � � Ýa x 	 a � D1 1 1 1 i 1 i
Ž . � � � �with x a � � a x for a � D. Then D x , � and V x , � are both Ore1 1 1 1 1 1

Ž .domains with F � D x , � as skew field of quotients.1 1 1
� i � � 4The set T � Ýc x � V x , � 	 Ýc V � V is a right Ore system in1 i 1 1 1 i

� � � � �1V x , � and R � V x , � T is a valuation subring of F . We will1 1 1 1 1 1 1
show below that the nonzero principal right ideals of R are in one-to-one1

ˆŽ .correspondence with the elements in Pos G , and it follows that R has no1
Ž . Ž . n �nideals besides 0 , J R , and R since x is a unit in R and x ax �1 1 1 1 1 1

nŽ . � �� a for a � D; see also 2 .1
Ž .The automorphism � of D also has the property � V � V. If we2 2

Ž . Ž .define � x � x , this automorphism can be extended to F since � T2 1 1 1 2 1
Ž .� T and � � � � � . Therefore � R � R , � is compatible with R1 1 2 2 1 2 1 1 2 1
� � � � Ž .and we can consider the domains R x , � 
 F x , � 
 F x , � �1 2 2 1 2 2 1 2 2

� �F , where F is the skew field of quotients of R x , � . This ring contains2 2 1 2 2
� i � � 4the Ore set T � Ýc x � R x , � 	 Ýc R � R , and R �2 i 2 1 2 2 i 1 1 2

� � �1R x , � T is a valuation subring of F . Again, R is a nearly simple2 2 2 2 2 2
valuation subring of F and its principal nonzero right ideals are in2

ˆŽ .one-to-one correspondence with the elements in Pos G by Lemma 4.2
below.

Repeating this step, we obtain a nearly simple valuation ring R � R ofn
Ž . Ž .the skew field F � F � D x , � . . . x , � . We want to show thatn 1 1 n n

� Ž Ž .. �EE J R � 2n � 1.
The next lemma describes the nonzero principal right ideals of R fork

k � 1, . . . , n and will be used to determine the classes of related right
ideals of R.

� 4LEMMA 4.2. Let k � 1, 2, . . . , n . Then:

Ž .i E�ery nonzero principal right ideal rR is of the form gR for ank k
ˆŽ .element g � Pos G .

ˆŽ . Ž .ii Let g , g � Pos G . Then g R � g R if and only if g � g .1 2 1 k 2 k 1 2

Ž .iii For e�ery 0 � r � R and e�ery right ideal I � � g R , g �k j k j
ˆ ˆ kŽ . Ž .Pos G, j � �, there exist h � Pos G and u , . . . , u � � such that1 k

hrI � x u1 			 x uk I or rI � hx u1 			 x uk I.1 k 1 k

Ž .Proof. i The claims are true for R � V 
 D � F . We assume that0 0
� � �1they are true for k � 1 and that k � 1. We have R � R x , � Tk k�1 k k k

Ž . � i � �with x r � � r x , r � R , and T � Ýc x � R x , � 	 � i withk k k k�1 k i k k�1 k k 0
Ž .4c � U R . An element 0 � r � R has the form r �i k� 1 k0

Ž i .Ž i .�1Ýa x Ýc x with a , c � R for all i, not all a are zero, andi k i k i i k�1 i
Ž . Ž i .c � U R for at least one index i . It follows that rR � Ýa x R �i k�1 0 k i k k0
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a R � gR for an index i� with a R � a R for all i and a R �i� k k i� k�1 i k�1 i� k�1
ˆŽ . Ž .gR for some g � Pos G by induction. This proves i .k�1

ˆ ˆŽ . Ž .We also use induction to prove R � G � Pos G , which implies ii .k
i i �1 ˆŽ .Ž .Assume that Ýa x Ýc x � g � G with a , c � R , c �i k i k i i k�1 i0i i �1 ˆŽ .U R . Then Ýa x � Ýgc x , and a � gc , g � a c � R � Gk�1 i k i k i i i i k�10 0 0 0ˆŽ .� Pos G follows.

Ž . iTo prove iii , we consider first r � Ýa x , a � R , and I � gR ,i k i k�1 k
ˆ i� i�Ž . Ž .g � Pos G . Then rgR � a x gR � a � g R for an index i� withk i� k k i� k k

i�Ž . iŽ .a � g R � a � g R for all i. By induction, there exist h �i� k k�1 i k k�1
ˆ k�1 u1 uk� 1 i�Ž . Ž .Pos G , u , . . . , u � � with either hrgR � x 			 x x gR or1 k�1 k 1 k�1 k k

rgR � hx u1 			 x uk� 1 x i�gR . If I � � g R , g R 
 g R for j � j� � �,k 1 k�1 k k j k j k j� k
is not finitely generated, then there exists an infinite subset S of � such
that rg R � a� x i�g R for the same i� and all j in S. Then I � � g R ,j k i k j k j k , j� S

� Ž i� .and rI � � rg R � a x I , and the result follows by induction sincej k i k
� ˆa � R and every right ideal in R is generated by elements in G.i k�1 k

Ž i .�1 Ž .Finally, if r � Ýc x , c � R , c � U R , then rI � I� and I �i k i k�1 i k�10
Ž i .Ýc x I�. The result follows from the first part.i k

We would like to determine the classes of related nonzero, proper right
ˆŽ .ideals I of R. Such a right ideal is of the form I � I R for I � I � Pos G0 0

and we know that I is related either to some P for some � � �, to� 00

P R, or to e V R for � � � i, i � 0, . . . , n � 1. Here weŽ � , �. Ž � , 0, . . . , 0. P 00 0 Ž � , �.0 Ž .have for i � 0 that P R � P R � J R is the maximal ideal of R, andŽ � , �. �0

I � e R represents the class of proper nonzero principal right� Ž0, 0, . . . , 0.
ˆŽ .ideals of R. So far we have only used multiplication by elements in Pos G

as operation on the set of all nonzero, proper right ideals I of R. If we
also consider multiplication by the elements x �1, we obtain x u1 x u2 			i 1 2

un Ž . nx P R � P R for u , u , . . . , u � � � � ; it follows thatn � Žu , . . . , u .�� 1 2 n0 1 n 0

P R � P R for � , � � �. Further, P R � P � R for any � , �� �� � 1 2 Ž � , �. Ž � , �. 0 01 2 0 0

� i for some i � 1, . . . , n � 1, since

x u1 x u2 			 x un P R � P R .1 2 n Ž � , �. ŽŽu , . . . , u .�� , �.0 1 i 0

We also have x u1 x u2 			 x un I � e V R �1 2 n � ŽŽu , . . . , u .�� , u , . . . , u . P0 1 i 0 i�1 n ŽŽu , . . . , u .� � , �.1 i 0

I . Finally, multiplication by the x �1 from the left reproducesŽu , . . . , u .�� i1 i 0
Ž .the maximal ideal J R and maps a proper nonzero principal right ideal of

R into another.
It remains to prove that the 2n � 1 classes of related proper nonzero

right ideals of R represented by the 2n � 1 types of right ideals as listed
above are indeed distinct. Let I and I be right ideals of R, related in R,1 2
say rI � I but representing two different types. It follows from Lemma1 2

n ˆŽ . Ž . Ž .4.2 iii that there exists u , . . . , u � � and h � Pos G so that rI �1 n 1
hx u1 			 x un I � I or that hrI � hI � x u1 			 x un I . However, x u1 			 x un I1 n 1 2 1 2 1 n 1 1 n 1
is of the same type as I , as we saw above, and these last equations would1
imply that I � V and x u1 			 x un I � V are related in V, a contradiction.2 1 n 1
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Ž .For this last argument, the fact hI � V � h I � V , which can be proved2 2
by induction, was used.

� Ž Ž . � Ž .This shows that EE J R � 2n � 1 since J R is the only nonzero
completely prime ideal in R.

We must now consider the case where m � 2n, n � 1, is even. We will
deal with the case m � 2 separately at the end. We repeat the construc-

n ˆtion as in the first part with � � � , but G this time is the subgroup ofn
elements g � Ł � with well-ordered support. The components � ofi� � i i

Ž .the direct product are isomorphic to �, � . Again there is a valued field
ˆŽ .D, V with G as associated value group, and the prime ideals of V are of

the form P , � � � , or P , � � � i for i � 0, . . . , n � 1.� 0 n Ž � , �. 00 0
Ž . � Ž . �It follows from Theorem 3.8 b that EE P � 2, in contrast to the firstV �0

� Ž k . 4case, with P generated by g � 1�2 e , k � � as representative of� k �0 0
� Ž .�k 4one class and I generated by g � e e � e , k � � representing� k � � n0 0 0

the other class; here P 2 � P .� �0 0
� Ž . �It follows from Lemma 3.10 that EE P � 2 for all limit primeV � , �0

Ž .ideals including the maximal ideal P � J V . The representatives of these�

� 4two classes are P generated as before by g � e , k � �Ž � , �. k Ž � , k , 0, . . . , 0.0 0i �for � � � , i � 0, 1, . . . , n � 1, and I generated by g �0 � k0�1 4 ie e , k � � for � � � , i � 1, . . . , n � 1. Of course, any� Ž � �e , �k , 0, . . . , 0. 00 0 i
Ž . Ž .proper principal right ideal � 0 of V represents the other class associ-

Ž .ated with J V .
ˆWe use the automorphisms � , . . . , � of G defined as in the first part1 n

and obtain a nearly simple valuation ring R in F � F �n
Ž . Ž . � Ž Ž .. �D x , � . . . x , � with EE J R � 2n � 2.1 1 n n R

Ž r .Finally, we consider the case m � 2. Let D � � t 	 r � � be a field
� �which is isomorphic to the field of quotients of the group ring � � where

Ž .� � �, � . Then D contains V the t-adic valuation ring and admits an
Ž r . r�2 Ž .automorphism � , defined by � t � t . Then � V � V and � is

� �compatible with V. Hence V x, � contains the right Ore system T �
� i � � Ž .4 � � �1Ýc x � V x, � 	 � i with c � U V , and we define R � V x, � T .i 0 i0

The nonzero principal right ideals aR of R are of the form aR � t rR for
0 � r � �. Since x n 	 t rR � t r�2 n

R, it follows that R is nearly simple. Every
Ž .right ideal of R is either principal or of the form aJ R , 0 � a � R.

� Ž Ž .. �Hence, EE J R � 2.
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