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For every natural number m, there exists a noncommutative valuation ring R
with a completely prime ideal P so that there are exactly m nonisomorphic
indecomposable injective right R-modules with P as associated prime ideal.
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1. INTRODUCTION

Let R be a ring with identity. We will denote by spec(R) the set of all
prime ideals of R and by Ind(R) a set of representatives of the isomor-
phism classes of indecomposable, injective right R-modules. Matlis in [12,
Proposition 3.1] establishes a one-to-one correspondence between spec(R)
and Ind(R) for R commutative and noetherian by assigning the injective
hull E(R/P) of R/P to the prime ideal P of R. We mention a few
instances in which this result has been extended and generalized. If R is
right noetherian, but not necessarily commutative, a mapping ¢ from
Ind(R) onto spec(R) can be defined by defining ¢(E) = Ass(E) for E in
Ind R; see [10, 3.60 Theorem], where Ass(E) consists of a single prime
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ideal of R and Ass(E(R/P)p) = P for a prime ideal P of R. Krause in [9]
gives the exact extra conditions on R for this mapping ¢ to be one-to-one.
Facchini in [6] shows that there is a one-to-one correspondence between
Ind(R) and spec(R) for a commutative integral domain R for which any
indecomposable injective R-module is uniserial over its endomorphism
ring, if and only if R is a Priifer domain with P # P? for every nonzero
prime ideal P of R. This last condition, that no nonzero prime ideal is
idempotent, characterizes therefore the commutative valuation domains V
so that every injective indecomposable V-module E is isomorphic to
E(R/P) for some prime ideal P of V; see also [15, 16, 18]. Torner showed
in [17] that for invariant valuation domains R with maximum condition on
prime ideals, either exactly one, two, or infinitely many nonisomorphic
injective indecomposable modules exist which are associated with the same
prime ideal P of R.

We consider in this paper not necessarily commutative valuation rings
R, i.e., subrings R of a skew field F such that x € F\ R implies x ' € R.
If E, is an injective indecomposable right R-module, then P(E) = {p €
R|130+#meE with mp =0} is a completely prime ideal of R, the
associated prime of E; see Lemma 2.3. We are particularly interested in
the subset &(P) of Ind(R) consisting of all E in Ind(R) with P(E) = P
for a given completely prime ideal of R.

If P = (0), then the quotient skew field of R, Q(R) = E(R/(0)) = Fy, is
the only indecomposable injective module with P as associated prime. The
remaining completely prime ideals P are divided into four types: (i) P is a
limit prime; i.e., P = U P, P D P, is the union of completely prime ideals
P; properly contained in P; or (ii) P ® P’ has a lower neighbor P’ in the
lattice of completely prime ideals of R. We then say P ® P’ is a prime
segment of R. Prime segments P ® P’ are further classified in Lemma 3.1:
(ii,a) If aP = Pa for a € P\ P’, then the prime segment is called invari-
ant. (i, b) If there are no further ideals of R between P and P’, then the
prime segment P ® P’ is simple. (ii, ¢) If there exists a prime ideal Q of R
with P D Q D P’, then the prime segment is called exceptional. Every
nonzero completely prime ideal P of R falls into exactly one of the four
categories (i), (ii, a), (ii, b), or (ii, ¢). Limit primes are called not branched
prime ideals in [8].

Corollary 3.5 characterizes the completely prime ideals P # (0) of R
with |&(P)| =1 as those for which P # P2. This is equivalent to the
condition given in the case (ii, a) with the additional requirement that the
factor ring R,/P’'R, of the localization R, of R at P is a principal ideal
ring.

In Theorem 3.8 it is proved that for a completely prime ideal P of R of
type (ii, a), only the cases |&(P)| = 1, 2, or e« can occur.
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As the main result of this paper, we show in Theorem 4.1 that there
exists for any m > 2 a valuation ring R with exactly one prime segment
J(R) ©(0), which is simple, so that R has exactly m indecomposable
injective nonisomorphic torsion right R-modules; i.e., |£(J(R))| = m. Here,
J(R) is the maximal ideal, the Jacobson radical of R. We do need some
results about limit primes P of a valuation ring R and we show that
|&(P)| = 2 or « in this case is possible; see Lemmas 3.9 and 3.10 and
Example 3.11. We do not know the possible values for |&(P)| if P is a
limit prime or if P has a lower neighbor P’ in the lattice of completely
prime ideals and the segment P ® P’ is exceptional. However, it follows
from these results that no prime ideal Q of R which is not completely
prime is associated to an injective indecomposable right R-module. These
prime ideals Q are exactly the prime ideals of R for which R/Q is a
non-Goldie ring.

2. INJECTIVE INDECOMPOSABLE MODULES, RELATED
RIGHT IDEALS, AND ASSOCIATED PRIME IDEALS

Throughout this paper, R will be a valuation ring; that is, R is a subring
of a skew field F such that a € F\ R implies a~' € R. A valuation ring
R has a unique maximal ideal J(R) = R\ U(R) with U(R) the group of
units of R. Since the lattice of right ideals of R is a chain, it follows that
any right ideal I of R is irreducible and that a right R-module E is an
injective indecomposable right R-module if and only if E = E(R/I),
where E(R/I) is the injective hull of R/I for a right ideal I # R.

If E is an injective indecomposable right R-module that contains an
element m such that mr = 0 implies r = 0 for r € R, then E = E(R).
This module is isomorphic to Fj, since R is essential in the torsion-free
and divisible module Fj. With this argument used in [10, 3.25], modified
for right Ore domains, it follows that torsion-free divisible right R-modules
are injective. We can therefore restrict ourselves to injective indecompos-
able right R-modules of the form E(R/I) with I a right ideal of R not
equal to R or (0). These modules are torsion modules.

If I # R is a nonzero right ideal of R, then a~'I :=={r € R | ar € I} for
a € R. It follows from [4] that E(R/I,) = E(R/I,) for right ideals I, I, if
and only if s;'1; =s;'I, for elements 5s; € R\ 1. We write I, ~ I, or
I, ~; I, in this case and say that I, and I, are related. It follows from the
next result that this condition takes on a particularly easy form if R is a
valuation ring.

LEMMA 2.1.  The following conditions are equivalent for right ideals I, and
I, of R that are different from (0) and R:
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(@ I,=1t""'1 forsomet< R\]I,.
(b) ¢, =1, forsomet e R\I,.
(o) rl, =1, for somer € R.

Proof. To show that (a) implies (b), assume I, C I, and b € I, \ tI,.
Then bR C (R, since t &1, b=1tb, for b, €R, b, €t 'I, =1,, and
b = tb, € tl,, a contradiction that shows I, = t/,. It remains to show that
(c) implies (a). The element r is not zero and is not in I, since otherwise
r=rt, for t; € I, CJ(R) implies r(1 —¢,) = 0 and r = 0. We have I, C
ri b er ', thenrbel, =rl,and b€ l,,and I, =r 'I,, r € R\
I, follows. |

COROLLARY 2.2. Two right ideals I, and I, of R, different from (0) and
R, are related if and only if either I, = al, or al, = I, for an element a € R.

Proof. 1f s;'I, =s;'I, =1, then I, =s,I and I, = 5,1, where s, €
R\ I;. Since R is a valuation ring, either s, = as, or s, = as, for some
a € R. Then I, = al, in the first case and I, = al, in the second. ||

Let E be an indecomposable injective right R-module. We define
P(E)={peR|130+meE with mp=0}. It follows from the next
lemma that P = P(E) is a completely prime ideal of R, the associated
prime of E. Isomorphic injective indecomposable right R-modules E, and
E, have identical associated prime ideals P(E,) = P(E,). It is the topic of
this paper to obtain some information on the set &(P) of all nonisomor-
phic indecomposable injective right R-modules E with P(E) = P. Since it
also follows from the next lemma that P(E(R/P)) = P for a completely
prime ideal P # (0) of R, we obtain |£(P)| > 1.

For a right ideal I of R which is not equal to (0) or R, we define the
sets P(I)={peR|3t&l with tpel} and SU)={s R |Is=1};
again we say that P.(I) is the associated prime ideal of I.

LEMMA 2.3. Let R be a valuation ring, let I # R, (0) be a right ideal of R,
and let E be a torsion, indecomposable, injective right R-module. Then

@ P(I) =R\ SU) is a completely prime ideal.
(i) P(I)= U, _,I' is the union of all right ideals I' of R that are
related to I.
(i) IfE = E(R/I), then P(E) = P.(I).

Proof. That P(I) = R\ S(I) follows if we rewrite the definitions of
these sets with the help of Lemma 2.1. We have P(I) ={p € R|Ip~' DI}
and S(J) ={s €R|Is"' =1I}. Since Ir "' D1 for any r € R, it follows
immediately that P(I) = R\ S(I). For p € P(I) and r € R, we have
I>Ip and I D Irp, and I D Ipr follows. This shows that P.(I) is an ideal,
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and since its complement in R is multiplicatively closed, it follows that
P.(I) is completely prime.

In order to prove (ii), we rewrite P.([) again: We obtain from the
definition that P(I) = U,c g\, ¢ 'I. This implies that P(I) = U, . 1.
To see this, we observe first that I' ~ I implies either I' = al for
0 #+ a € R, and I’ is then contained in the ideal P,(I) that contains I, or
I' =171 for some t € R\1; hence U ., I' CP(I)= U,cp 1t '1C
U, . I', and the equality P.(I) = U, ., I’ follows.

In the proof of (iii), we show first that P.(I) is contained in P(E). If
p € P(I), then there exists 0 # ¢t + [ = m € R/I with mp = 0, and hence
p € P(E). Conversely, if g € P(E), then mq =0 for some 0+ m
E(R/I). Hence, gI' ={reR|mr=0} and E(mR) = E(R/I') =
E(R/I). Therefore, I' ~Iand g €I' c P(I). 1

COROLLARY 2.4. Let P be a nonzero completely prime ideal in R. Then
|&(P)| is equal to the number of equivalence classes with respect to the related
condition in the set of nonzero right ideals I # R of R with P(I) = P.

3. PRIME SEGMENTS AND LIMIT PRIMES

As we assume throughout the paper, let R be a valuation ring, let
I #(0), R, be a right ideal of R, and let P = P(I) be the associated
completely prime ideal. Then (0) € P € J(R) C R.

We recall first some results about prime segments of R. Either P =
U;c o P, P, C P completely prime ideals in R, and we say that P is a limit
prime, or there exists a completely prime ideal P’ with P D P’ but no
further completely prime ideal of R properly between P and P'. We then
say that P © P’ is a prime segment of R. Prime segments correspond to
jumps as defined for totally ordered groups; see [7]. We say that R has
rank n if R has exactly n nonzero completely prime ideals.

The next result can be found in [3]; see also [1].

LEMMA 3.1.  Assume that P © P' is a prime segment in the valuation ring
R. Then exactly one of the following alternatives occurs:

(a) The prime segment P ® P' is invariant; i.e., aP = Pa for a €
P\P'.

(b) The prime segment P ® P’ is simple; i.e., there are no ideals of R
properly between P and P'.

(¢c) The prime segment P ® P' is exceptional; i.e., there exists a prime
ideal Q of R with P O Q D P'. Then there are no ideals properly between P
and Q and Q" = P'.
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It follows that P = P? in the cases (b) and (c). Of course, if P =
Uica P, P, € P, is a limit prime, then P; ¢ P? for all i € A and P = P?
in this case as well.

The next result shows that for the computation of |£(P)|, we can always
assume that P = J(R) is the maximal ideal of R.

Let P be a completely prime ideal of the valuation ring R. Then
S = R\ P is a multiplicatively closed subset of R, and for r € R, s € S,
there exists t € R with either r = st or s =rt, and r,f are in § in the
second case. It follows that the localization R, = RS ' ={rs"! [r €R, s
€ S} exists and that R, = R U S~

LEMMA 3.2.  Assume that I, and I, # (0) and R are right ideals of R with
P(I)) = P(I,) = P. Then

(@ ILRp=1 fori =1,2,and I, and I, are related in R if and only if
they are related in Rp.

(b)  For every completely prime ideal P C P of R, there exist right ideals
I ~ 1, inRfori=1, 2wzthPCI CcP.

L

Proof. Since P(I) = P implies I;s = I, for all s € S = R\ P, it fol-
lows that I,s~!' =1, and IR, =1, for i =1,2. If I, ~I, in R, then
al, =1, or I, = al, for some a € R and I, ~ I, in R,. Conversely, if
bl, = I, for b € Ry, then either b € R or b =s""! for s € S. It follows
that I, ~ I, in R. The part (b) follows from Lemma 2.3(Gii). |

COROLLARY 3.3. Let P + (0) be a completely prime ideal of R. Then
|&R(P) = |&, (P)] = Ié”R(P)I for every completely prime ideal P C P of R
with R = RP/P and P = PRP/P

Proof. We saw in the previous lemma that classes of related right
ideals of R with associated prime ideal P correspond to classes of right
ideals of R, with associated prime ideal PR, = P. Since, conversely, every
right ideal 7 # (0), Rp, in R, is also a right ideal of R, the first equation
follows. The second equation is an immediate consequence of part (b) of
Lemma 3.2. |

In the case where P has a lower neighbour P’ in the chain of com-
pletely prime ideals of R, it is sufficient to determine |&% - RP(F)I, where
R =R,/P'Rp is now a rank-1 valuation ring with J(R) = P the only
nonzero completely prime ideal.

It follows from Lemma 3.1 that a rank-1 valuation ring R falls into one
of the following three categories:

(a) R is invariant; i.e., aR = Ra for all a € R.
(b) R is nearly simple; i.e., R, J(R), and (0) are the only ideals of R.
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(¢) R is exceptional; i.e., there exists a prime ideal Q in R which is
not completely prime (see also [5]).

We can now assume that R is a valuation ring with P = J(R). The
principal right ideals I = aR # (0), R are all related and aRs = aR is
possible only for s € U(R); hence P.(I) =J.

If we assume that |&R(P)| =1, then P = aR for some a € R, since
P(P) = P, and P # P? = a’R follows; see below. This proves one half of
the next result.

LEMMA 3.4. Let P be a nonzero completely prime ideal in the valuation
ring R. Then |&€(P)| = 1 if and only if P # P>.

Proof. It remains to prove that |£(P)| =1 if P # P?%. We can assume
that P = J(R) and that N P" = (0). The last assumption is justified since
N P" = P’ is a completely prime ideal [3] and P # P? implies that P ® P’
is a prime segment. It follows that P =aR for a € P\ P? and that
P" =a"R, since P is a two-sided ideal. Hence, for every nonzero right
ideal I # R, there exists an integer n with "R D21 D a""'R and I = a"R
follows. |

If P=J(R) =aR for a € R, then Ra = aR. Otherwise, Ra C aR and
there exist elements » € R, j € P, with ar € aR\ Ra and a = jar. How-
ever, j =ar' forr’ € Rleadsto a = ar’ar = a“r"r for r" € R and a = 0,
a contradiction. It follows that R is invariant if R is a rank-1 valuation ring
with P # P? and P = J(R).

COROLLARY 3.5. The following conditions are equivalent for a nonzero
completely prime ideal P of a valuation ring R:

(@ [&P) =1

(b) P+P.

(¢) P has a lower neighbour P' in the lattice of completely prime ideals
of R, the segment P ® P’ is invariant, and R,/(P'Rp) is a right and left
principal ideal ring.

COROLLARY 3.6. Let R be a valuation ring. There exists a one-to-one
correspondence between spec R and the set of isomorphism classes of injective
indecomposable R-modules if and only if P? # P for all completely prime
ideals P # (0) of R.

Remark 3.7. A valuation ring R as in Corollary 3.6 has no limit primes
and only invariant prime segments; in particular, spec R consists of com-
pletely prime ideals only. However, R itself is not necessarily invariant if
the rank of R is greater than 1.

We saw that a completely prime ideal P of R with P? # P has a lower
neighbour P’ = N P” and that the segment P ® P’ is invariant. The value
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group of the rank-1 valuation ring R,/(P'R}) is isomorphic to (Z, +) and
we say that the segment P © P' is discrete.

If P P' is invariant, then the value group G(P, P') of R,/(P'R}) is
isomorphic to a subgroup of (R, +) (see [3] and below).

We next prove the following result:

THEOREM 3.8. Let R be a valuation ring and let P ® P’ be an invariant
prime segment of R. Then:

(@) |&(P)| =1 ifand only if P* # P, if and only if G(P, P') = (Z, +).
(b) |&(P)| =2 if and only if G(P, P') = (R, +).
(© |&(P)|=w>ifandonlyif (Z,+) = G(P,P’') = (R, +).

Proof. 1t follows from Corollary 3.3 that we can assume that R is an
invariant rank-1 valuation ring with P = J(R) D P’ = (0). Part (a) of the
theorem follows from Corollary 3.5.

The group G(P, P’) is equal to {aR | a € F*},-), where F is the skew
field of quotients of R and (aR)-(BR) = aBR defines the operation.
This is a group, since R is invariant; it is totally ordered if we define
aR > BR if and only if R C BR; and it is archimedean since R has rank
1. Tt follows by Holder’s Theorem [7] that G(P, P') is isomorphic to a
subgroup of (R, +) as ordered groups.

If G(P, P') £ Z, no smallest positive element exists in this group, P is
not finitely generated as a right ideal, and hence P? = P.

We can then consider the group I' = {aP | « € F*},-) with P - BP =
aBP, a, B € F*, and aP > BP if and only if aP C BP.

The group T is order-isomorphic to G(P, P’') and an order monomor-
phism w exists from T into (R, +). If I # F is any not finitely generated
R-module in F, then I = U, .; aP and we can define w,(I) = inf(w(aP)
lael} eR.

It follows (with arguments similar to the arguments in [17]) that w, is an
extension of w and defines an order isomorphism between the group of
not finitely generated right R-submodules # F of F and (R, +). That
I, = ({(I € F | I not finitely generated right R-module}, - ), with I, -1, =
{(Xa;b; | a, € I, b, € I,} as operation, is a group, follows from the fact that
w, is a bijective mapping from I', to R with w,(1,1,) = w,(1,) + w(I,) for
I}, I, € T. The element I, € I’} that corresponds to p € R is given by
Ip = UPSW(O(P) aP.

The group w(I') is dense in R = w(T)). If I, D I, are right ideals in T,
i.e., not finitely generated, then I, ~ I, if and only if al, = I, for a € R if
and only if aPI, = I,. Therefore, w (aPl,) = w(aP) + w,(I;) = w,(I,). We
can formulate this in the following form: Two right ideals I;, I, € I'; are
related if and only if w(I,) — w,(I,) € w(T).
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The statement (b) of the theorem follows immediately. |£(P)| = 2 if and
only if P =P? and I' = R. The two related classes which determine two
nonisomorphic indecomposable R-modules are {aR | 0 # a € J} and {aP |
0 # 0}. Every right ideal of R is of the form aR or aP for a € R.

To prove (c), it must be shown that there exist infinitely many related
classes of infinitely generated right ideals in R if I' # R and P = P2. We
assume on the contrary that w(I') is dense in R and that there are only
finitely many, say, n related classes of infinitely generated right ideals in
R. Let I be any right ideal with 0 < w,(I) < 1/(2n!) in R. Since not all
the powers I',i = 1,2,...,n,n + 1, are unrelated, there exist n + 1 > m
>k > 1 with al* =I™ and I * = aP. This implies that w,(I" ¥)
w(I). It follows that w,(I") = n!(w,(I)) € w(I'). However, for every real
number 0 < r < 1/(2n!) there exists a right ideal I in T, with w,(I) =r
and n!-r € w(I'), and all real numbers ¢ with 0 < ¢ < 1/2 are in w(I").
Hence, w(I') = R and we are in case (b) and have two classes of related
right ideals only. [

In contrast to the result in the last theorem, we will construct for every
m > 2 nearly simple rings R with |&(J(R))| = m.

Dubrovin [5] has constructed a rank-1 valuation ring R with an excep-
tional prime segment J(R) D (0). The principal right ideals of this ring are
given in the form #PR with 0 < p € R and ¢”"R 2 ¢”R if and only if
p; < p,. It follows that there are exactly two related classes of right ideals
I # R, (0): The principal right ideals {aR | 0 # a € J(R)} and the infinitely
generated ones {aP |0 # a € R} with P =J(R). We have no further
information about &(J(R)) for R an exceptional rank-1 valuation ring.

Finally, we consider limit primes P = U;,c, P, PDP,i €A, in a
valuation ring R. Let R be a valuation ring, let J = J(R) be the maximal
ideal of R, and let P = U P, be a limit prime. We consider for any a € J
the intersection P(a) == N, p P of all completely prime ideals P of R
containing a. Then P(a) is a completely prime ideal. The union P'(a) =
U, ¢ o Q of all completely prime ideals O of R not containing a is also a
completely prime ideal P’(a) and P(a) ® P'(a) is a prime segment.
Hence, we can assume that, in the representation P = U, , P; of a limit
prime, every P, has a lower neighbor P/ by replacing P; by P(a;) for
a; € P\ P. We can also assume that A is a well-ordered index set with
P, C P, for i <j. In fact, we will only consider limit primes P where
A =Njie, P= U;cn P, PO P, ®P/. We will then say that P is given in
standard form. The next result provides us with a family of right ideals I in
a valuation ring R with limit prime P, so that P.(I) = P.

LEMMA 3.9. Assume that P = U, P, is a limit prime of a valuation

L
ring R given in standard form. For each i > 1, choose a nonzero a; € P;\ P}
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and ay # 0 € R. Then I = N1, with I, = aya, -+ a,R is a right ideal of R
with I # c¢P for all ¢ in R and P(I) = P provided I # (0).

Proof. To show that P c P(I), it is enough to prove that a,a’,, €
P.(I) for n > 1, since a,a>,, € P,\ P,_,. The element t, = a,a,...a,_,
is not contained in [ since a, € J(R). We have a,,., =a,,,...a, ., for
some r, € R and k > 2 since a,,,,...a,,, ¢ P, . Therefore, t,(a,a?, )
=(aga,...a,_1a,a, . )a, ,...a, .1, for all k> 2. This shows that
t(a,a’,) €Iand a,a’,, € P(I), and P c P,(I) follows.

To prove that P(I) C P, we assume that tp € [ fort e R\ 1,0 #p
R. Then there exists an integer n and r € R with aya,...a, = tr and
Ip=aya,...a, v =tra, v for some v € R. Hence, p=ra, v €P,,,
CPand P(I)=P.

It remains to prove that I # cP for ¢ € R. Otherwise, we have I = cP
and ¢ & I. Hence, there exist an integer n and r in R with aya,...a, = cr.
Since a,,, , € P, it follows that a...a, ., = cra,,, € cP = I, a contradic-

tion that proves I # cP. |

We will prove one more result about the right ideals associated with a
limit prime P = U;cn P, in standard form. By Corollary 3.3 we can
assume that P = J(R) is the maximal ideal in the valuation ring R. The
ideal P is not finitely generated as a right ideal, since P = P2 The
principal right ideals {aR | 0 #+ a € J} form one related class associated
with P. A proper nonzero right ideal 7 of R is not finitely generated if and
only if I = IP, since then for every a € [ exists b € I with aR CbR C I.
Let I be a not finitely generated ideal with P(I) = P. Then I = IP =
I(U,cn P) = U, IP,, and we will show that P(IP,) = P,. Since P,s =
P, for all s € P\ P,, we have P(IP,)) C P,. Since P(I) = P D P,, there
exists by Lemma 2.3(ii) a right ideal I' in R related to / and P 2 I' D P,.
Hence IP, and I'P, are related and I'P, D P,, the lower neighbour of P,.
It follows that P(IP,) > P, and P.(IP,) = P,.

We now assume that I, and I, are not finitely generated right ideals of
R associated with P and that |£(P,)| < 2 for all n > n,,. This happens for
invariant prime segments P, D P, if and only if the corresponding groups
are isomorphic either to Z or R (see Theorem 3.8). Then I, P, and I, P,
are both associated with P,. If P? # P,, these two right ideals are related,
since there exists only one related class of right ideals associated with P,.
If P? =P, then (I,P)P, = I.P, for i = 1,2 and then again I, P, and I, P,
are related, since |£(P,)| = 2 and neither I,P, nor I, P, is of the form
aRp for a € P, and n > n,. It follows that there exists for n > n, an
element a, € R with a,I,P, =L,P,, or I,P, =b,I,P, for some b, € R.
Since sP, =P, for s & P,, it follows that P, P, =P, for m > n and
a,l,P,=1LP, implies a,I,P, =1,P,. We can therefore assume that
there exist elements a, in R with a,I,P,=1,P, for all n > n, and
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a,I,P, =a,l P, for m > n.1It is not possible to conclude from this that I,
and I, are related, but we obtain the following result if we add an extra
condition.

LEMMA 3.10. Let P = U,y P; be a limit prime given in standard form.
Assume that |&(P,)| € {1,2} for n > n,. Further assume that for right ideals
I, 21, # (0) of R associated with P there exists a € R with al,P, = I, P,
whenever there exist elements a, € R with a,I,P, = 1,P, and a,I P,
a,l,P, form > n > n,. Then |£(P)| = 2.

Proof. Since P = P?, we have |&(P)| > 2. The arguments before the
lemma and the assumptions show that any two right ideals I,, I, with
I,P =1 for i = 1,2 and associated with P are related. |l

We conclude this section with examples that show that |&(P)| = 2 and
|&(P)| = o are possible for a limit prime P.

If (G, =) is any ordered group, then D = Q((G)), the Malcev—
Neumann ring of generalized power series, is a skew field. It consists of
elements a of the form « = Xga, with g € G, a, € Q, and the support
supp(a) = {g | a, * 0} well ordered. The subring V' = {Zgag eDle<g}
of D is an invariant valuation ring and G is the associated group. The field
Q of rational numbers can be replaced by any skew field in this construc-
tion.

We will write Pos(G) for the set {g € G | e < g}, and a right ideal I, of
Pos(G) is a nonempty subset I, of Pos(G) with I, Pos(G) C I,. The
principal right ideals I # (0) of V' have the form I =gl for some
g € Pos(G) and (I N Pos(G))V = I for any right ideal I of V.

EXAMPLE 3.11. Let G be the subgroup of the direct product [T, Z
of copies of (Z, +) consisting of all elements g = (z,) with well-ordered
support {i | z; # 0}. Then e = (0) is the identity of G, for every e # g =
(z,) € G there exists lind(g) = min{i | z; # 0}, the leading index of g, and
G is linearly ordered lexicographically from the left: Pos(G) = {g =(z)
G | z;, > 0 for hnd(g) =i,} U {e}.

The group G contains as subgroup the group G = X, , Z;, the direct
sum of the Z,, i € Z, and G is also lexicographically ordered: Pos(G)

N Pos(G). Thus there exists the valued field (D, V) with G as assomated
value group.

Let P # (0) be a prime ideal of V. Then P = (P N Pos(G))V and P is
generated as a right V-ideal by P, = P N Pos(G). If {lind(g) | g € P} has
no maximum, then P =J(V) is the maximal ideal of V. Otherwise,
{lind(g) | g € P} has a maximum, say n, and P = P, is in this case the
prime ideal of V generated by {g € Pos(G) | lind(g) < n}. If we write e,
for the element e, = (z;) with z, = 1 and z, = 0 otherwise, then P, =
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(g gi"=e, —ke,,,, k€N);ie, P, is also generated by the ele-
ments g as a right ideal of V.

To prove this, we assume that g = (z,) € P, with lind(g) = n and z,
minimal. If z, > 1, then (g —¢,) + (¢,) € P with ¢,,g — ¢, &€ P, a con-
tradiction, since P is a prime ideal. We observe that addition in G
corresponds to multiplication in D and we will also use below multiplica-
tive notation for the operation in G. Similarly, if there exists a minimum
h € Z with e, + he,,, € P,, then[e, + (h — De, ] + [e,.,] € P, leads
to a contradiction.

It follows that J = P = U, P, is a limit prime, and P, ® P,_, is an
invariant prime segment with (Z, +) as associated group for every n.
Hence |£(P,)| = 1 for all n. We like to show |&(P)| = « and use Lemma
3.9.

We will choose a, = g, arbitrarily in Pos(G) and a, € Pos(G) with
lind(q;) =i for i = 1,2,... . The conditions of the lemma are then satis-
fied. For each index m there are only finitely many elements a; = (z{) in
the set {ay,a,, a,,...} such that z{) # 0. The element § =a, + a, + a,
+ -+ therefore exists in the group G.

We want to show that § € G corresponds to I = N,_,a,4,...a,V in
V. The element g € G is contained in [ if and only if g> g in G. To
prove this, we have g =¢p for g€ Pos(G) and g =a,. -y, for
Yo =,.1 - € Pos(G), if g > . Hence, g =a. e ,Band v, B =
(a,...a,)"'g € G N Pos(G) for all n; it follows that g € Nay...a,V.

Conversely, if g =(d) € 1N Pos(G), then g=h, -g, forh, =a,...a,
and g, € Pos(G) for all n > 1. If g # & = (¢;) in G, then there exists an
index i, with ¢; >d; and ¢; = d, for i <i,. This leads to a contradiction,
since g = hl0 gl and g= h Vi w1th g;, € Pos(G), v, € Pos(G), and
lind(y, ) = i, + 1. This 1mp11es d

It follows that the ideal / corresponds to a unique element g € G since
G is dense in G. If we define ideals I, by choosmg a,=ceand q;, =n-e
for i =1,2,..., then I, corresponds to §,=C..,0,n,n,...) for n =
1,2,3,....

Every nonzero element r € V' can be written as r = g, - u, g, € Pos(G),
and u a unit in V. Then r-I, corresponds to g,g, and it follows
immediately that no two of the ideals I, are related in V. By Lemma 3.9
we have P,(I) = P and therefore |&(P)| = .

The previous example gives an indication of how to obtain a limit prime
ideal P in a valuation ring V with |£(P)| = 2.

EXAMPLE 3.12. We construct a valued field (D, V) with G in place of
G, where the notation is as in the previous example. The valuation ring 14
has a limit prime ideal P=JW) and P = U, en P,; the prime ideals
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# (0) of V are P and P, for n € Z. We now apply the considerations that
lead to Lemma 3.10.

If I; D1, are not finitely generated ideals with P,(1,) = P =P(1,), then
there exist elements a, € V' N Pos(G) with aﬂIIP =I,P,and a wl P, =
a IlP for m > n. Here we use the fact that P, # P2 and hence Ié”(P )I =
1. We can also assume that a, € P, for some n > n,, since otherwise
IP IP forallnlmphesI—I Thena anJrl tEDw1thtIP
=LP. It follows that either ¢, or ;' €8 (I,P), which is equal to
S (IP ) = V\P since V' is commutative.

Therefore, a,, | = a,t, for elements a,,, ;,a, € Pos(G) with lind(a;) < i
and ¢, € G with hnd(t ) > n. As in the previous example, it follows that
g=a,tt, ... 1san element in Pos(G), and gI,P, = L, P, for all n > n,
and gI, = I, follows. There is only one related class of infinitely generated
ideals of V that belongs to P and |£(P)| = 2 follows.

ExampPLE 3.13. We replace G in the previous example by the corre-
sponding subgroup of the product IT, icz R; with R, = ([R{ +). This group
is called G again, and we obtain DoV>oP= UnEN P as before; here,
P = (e e, | for 0 < ¢ € R and lim ¢; = 0). The group associated with
P > P’ = P _1 is (R, +). However, if 1, O I, are nonzero ideals of V with
IP I for i = 1,2, then I, P, _12P are related P -ideals by Theorem
3.8(b). With the arguments as in the previous example, we obtain |&(P)| =
2 in this case as well.

4. NEARLY SIMPLE VALUATION RINGS

In this section we prove the following result:

THEOREM 4.1. Given any integer m > 2, there exists a nearly simple
valuation ring R with |£(J(R))| = m

Proof. We prove the result first in the case where m = 2n + 1 is an
odd number > 3. Let A, = Z" = {(¢,...,t,) | t; € Z} be the direct sum
of n copies of Z. This set, Wthh is used as an 1ndex set in the next step, is
lexicographically ordered from the left. We denote by G = G the sub-
group of IT,., Z, consisting of all elements g = (z,) with well ordered
support; the groups Z, are (Z, +) and G is ordered lexicographically from
the left. We will use mult1phcatlve notation for the operation in G. We will
write e; for the element in A, with 1 at the ith component and zeros
elsewhere, and will also write e, for the element in G with 1 at the
A-component and 0 elsewhere.

The group G admits automorphisms o; for i = 1,...,n with g(z,) =
(z)) and z} = z,_,. All o;’s shift the components of an element g = (z,)
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€ G to the right The subgroup of the automorphism group of G gener-
ated by the ¢;’s is isomorphic to Z".

As in Example 3.12, there exists a valued field (D, V") with G as value
group and D = Q((G)); we dropped the hat for D and V. Every ideal
I # (0) of V is generated by the set I N Pos(G). The automorphisms o,
i=1,...,n, can be extended to D by defining 0y(Xga,) = Lo,(g)a, for
Yga, € D. These automorphisms of D have the property that o;(}V) =V
for all i; we say that the o;’s are compatible with (D, V).

We determine in the next step the prime ideals P # (0) of V. If

C(P)={4|lind(g) =) e Z", gePn G} has no maximal element,
then P =J(V) =J = P,, the maximal ideal of V. If, on the other hand,
tf” = max C,(P), then we consider C,(P) = {z, | lind(g) =
(tlO ,1y,...,1,), & € P N GY}. Either C,(P) has no maximal element and we
write P = P 0,y OF 187 = max C,(P).

Repeating this process, it follows that P is equal either to P,

0, o)

.....

=P, = With uy =", (") € 7' for i <n, or P is equal to P, for
A = (t(o) Lty e 77,
The prime ideal P, ., with w,= O,..., 1" e 7/, i <n,is a limit

prime in V' generated by the set pLr) = e(M,k)0 0w E€Glk=12..}
The prime ideal P, is generated by the elements g =ele to ) for
k=1,2,...; see Examples 3.11, 3.12. Every P, has a lower neighbor
P, =P, _. in the chain of prime ideals of V.

We have P = P = Uken Pp, KO0 for the limit prime P =
Py, - 1t follows that &, (P )l =1 since P # P, for all A; € A. To
prove that |&,(P)| = 2, we denote ( Mo, K, 0,. 0) by A, and obtain for
ideals J 2 I, oI, # (0) with P(I)) = P.(1,) —P and [P=1, L,P=1,,
that a1, P, = I,P, . We assume further that a, € P, for k >n, and
Appm = aktk .ty s follows (see Lemma 3.10 and Example 3.12). The
elements a, can be chosen in such a way that their Ath components are
zero for A > A,. The elements ¢, therefore have nonzero A-components
p0551bly only for A, < A < A, ,. The element 7 =t,t, ... exists in G
and a, 7, = I, in V. Hence, |&,,(P)| = 2 for any limit prime P = P,
in V.

We therefore have the following classes of related proper nonzero
(right) ideals of V: There are two classes associated with J(7/), the proper
nonzero principal ideals of V' and the class represented by J(V). Since
P # Pfﬂ, there exists by Theorem 3.8 exactly one class of related ideals of
V' associated with P, , and P, is a representative of this class.

Finally, for P, oy Mo € 7' for some i € {1,2,. — 1}, we have two
classes, one represented by P, = and the other represented for example,
by the ideal I, generated by the set {ecu, 0., O)ewoﬁ, k0.0 =& k €
N}. This last class corresponds to the proper nonzero prmcrpal ideals of
the localization V), of Vat P, ., with [, =e., o O)VP(,LO K

M0, )
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We now describe the final step of the construction. Consider the valued
field (D, V') and the automorphism o, of D that is compatible with . We
can therefore form the subring V[x,, o,] of Dlx,, o,] = {Xa,x! | a, € D}
with x,a = o(a)x, for a € D. Then D[x,, o] and V[x,, o,] are both Ore
domains with F; = D(x,, o) as skew field of quotients.

The set T, = {Zc;x} € Vx,, a-l] | Xc;V =V} is a right Ore system in
Vix,, 0,1 and R, == V[x,, o,]T; " is a valuation subring of F,. We will
show below that the nonzero principal right ideals of R, are in one-to-one
correspondence with the elements in Pos(G), and it follows that R, has no
ideals besides (0), J(R,), and R, since x; is a unit in R, and x}ax;"
o{'(a) for a € D; see also [2].

The automorphism o, of D also has the property o,(J) = V. If we
define o,(x,) = x,, this automorphism can be extended to F, since o,(T},)
=T, and 0,0, = 0,0,. Therefore o,(R,) = R,, o, is compatible with R,
and we can consider the domains R[x,, o,] C F|[x,, 0,] € F(x,, 0,) =
F,, where F, is the skew field of quotients of R [x,, o,]. This ring contains
the Ore set T, = {Yc;x) € R[x,, 0,11 Xc,R, = R}, and R, =
R,[x,, 0,]T; ! is a valuation subring of F,. Again, R, is a nearly simple
valuation subring of F, and its principal nonzero right ideals are in
one-to-one correspondence with the elements in Pos(G) by Lemma 4.2
below.

Repeating this step, we obtain a nearly simple valuation ring R = R, of
the skew field F = F, = D(x,,0¢)...(x,, g,). We want to show that
|ET(R) =2n + 1.

The next lemma describes the nonzero principal right ideals of R, for
k=1,...,n and will be used to determine the classes of related right
ideals of R.

LEmMMA 4.2. Letk €{1,2,...,n}. Then:

() Every nonzero principal right ideal rR, is of the form gR, for an
element g € Pos(G).

(i) Letg, g, € Pos(G). Then g,R, = g, R, if and only if g, =

(i) For every 0 +#r € R, and_every right ideal 1= U g;R,, g]
Pos G, j €N, there exist h € Pos(G) and (uy,...,u,) € Z* such that
hrl = x{t -~ xpxl or vl = hx{' -+ xp 1.

Proof. (1) The claims are true for R, = V € D = F,. We assume that
they are true for k — 1 and that k > 1. We have R, = R,_ [x;, o, IT; !
with x,.r = 0,.(P)x,, r € R,_,, and T, = {Xc;x. € R,_,[x,, 0,11 i, with
c,; € UR,_)}). An element 0 # r € R, has the form r =

Ca,x)Xe;xi)~! with a;,c; € R,_, for all i, not all a, are zero, and
c;, € U(R,_,) for at least one index i,. It follows that rR; = (Xa,x;)R; =
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a; R, = gR, for an index i’ with a; R,_, 2a;R,_, forall i and a; R, _, =
gR ., for some g € Pos(G) by 1nduct10n This proves (i).

We also use induction to prove R, N G Pos(G), which implies (ii).
Assume that (Za, xk)(ZC x))"'=ge G with a,c < Ry 1, ¢ €
U(Ry_,). Then Ya,x; = Lgcx;, and a;, =gc,, g =a,¢;;' €R,_, NG
= Pos(G) follows.

To prove (iii), we consider first r = Xa, xk, a;, €R,_,, and I =gR,,
g €< Pos(G) Then rgR, = a, x.gR, = a, o} (g)Rk for an index i’ with
a; 07 (QR,_ 2a;00(g)R,_, for all i. By induction, there exist h €
Pos(G), (u, .. uk 1) € Z¥7 " with either hrgR, =x{' - x{-{x; gR, or
rgR, = hxit - xiixigR,. If I = UgRy, &R, Cgj Rk for j <j' €N,
is not finitely generated then there exists an infinite subset S of N such
that rg; R, = d; xkijk for the same /" and all jin S. Then I = U g;R, jess
and rl = Urg;R, = a; '(xi 1), and the result follows by induction since
a; € R,_, and every rlght ideal in R, is generated by elements in G.
Finally, if r=Ccx)", ¢, €R_y, ¢;, € UR,_ ), then rT=1"and I =
(Xc;x})I'. The result follows from the first part.

We would like to determine the classes of related nonzero, proper right
ideals I of R. Such a right ideal is of the form I = IR for I, = I N Pos(G)
and we know that [ is related either to some P, for some A, € A, to
P, »Rs or to e, q..., O)VP(n R for p, € 7', l—O ,n — 1. Here we
have for i = 0 that P, R = P R =J(R) is the max1mal ideal of R, and
Iy =eq, . . oR represents the class of proper nonzero principal right
ideals of R. So far we have only used multiplication by elements in Pos(G)
as operation on the set of all nonzero, proper right ideals I of R. If we
also consider multiplication by the elements x;', we obtain x¥1x%
Xy R=P, R for (w,u,,...,u,)€A=27" it follows that

.....

P.R~P R for AL )\2 € A. Further, P, oc)R P, R for any p, py €
/7' forsome i =1,...,n — 1, since
u Usy
Xyplay? x P(Mo °°)R P((ul ’’’’’ L‘i)+/'LU’°°)R'
Up-Uy ~
We also have X1'%x3° x” Iﬂn e((“l ,,,,, U+ oy Ujsgseees un)VP((u] ..... U+ g, ®)

Lo, up+p, Finally, multlphca‘non by the x;*! from the left reproduces
the maximal ideal J (R) and maps a proper nonzero principal right ideal of
R into another.

It remains to prove that the 2n + 1 classes of related proper nonzero
right ideals of R represented by the 2n + 1 types of right ideals as listed
above are indeed distinct. Let /; and I, be right ideals of R, related in R,
say rl; = I, but representing two dlfferent types. It follows from Lemma
4. 2(111) that there exists (u,,...,u,) € Z” and h € Pos(G) so that rl, =
hx{r --- xunI, = I, or that hrI1 = h12 = xj* --- x4»I,. However, x{' -- n"I1
is of the same type as I,, as we saw above, and these last equations would
imply that [, NV and x{* --- x,»I; N V are related in V/, a contradiction.
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For this last argument, the fact 2l, N V = h(I, N V'), which can be proved
by induction, was used.

This shows that |&(J(R)| = 2n + 1 since J(R) is the only nonzero
completely prime ideal in R.

We must now consider the case where m = 2n, n > 1, is even. We will
deal with the case m = 2 separately at the end. We repeat the construc-
tion as in the first part with A, = Z", but G this time is the subgroup of
elements g € I'l;. , R, with well-ordered support. The components R; of
the direct product are 1s0rn0rph1(: to (R, +). Again there is a valued fleld
(D, V) with G as associated value group, and the prime ideals of } are of
the form P, , Ay € A, or P, m),,uOEZ fori=0,...,n — 1.

It follows from Theorem 3 8(b) that Ié”V(P )= 2,1in contrast to the first
case, with P, ~generated by {g, = (1 /Zk)eA , k € N} as representative of
one class and I,, generated by {g, = ¢, (er +e,) %, k € N} representing
the other class; here Pl=P,.

It follows from Lemma 3 10 that IgV(P =2 for all limit prime
ideals including the maximal ideal P, = J (V) "The representatives of these
two classes are P(M . generated as before by {g, = e, 0 . 05 K €N}
for o ez, i=0,1,...,n — 1, and 1, ~generated by {g, =

MO(MOH k0. O,keN}for,quZ’i—l ,n — 1. Of course, any
proper principal (rrght) ideal # (0) of V' represents the other class associ-
ated with J(). X

We use the automorphisms oy, ..., 0, of G defined as in the first part
and obtain a nearly simple valuation ring R in F =F, =
D(x,, 0))...(x,, g,) with |£(J(R))| = 2n + 2.

Finally, we consider the case m = 2. Let D = Q(¢t" | r € R) be a field
which is isomorphic to the field of quotients of the group ring Q[R] where

= (R, +). Then D contains V' the f-adic valuation ring and admits an
automorphism o, defined by o(¢t") =¢"/2. Then o(V) =V and o is
compatible with V. Hence V[x, o] contains the right Ore system T =
{(Zc;x' € Vix, o]l 3 i, with ¢;, € U(V)}, and we define R := Vx, o T~
The nonzero principal right ideals aR of R are of the form aR = 'R for
0 <r € R. Since x" - t'R = t"/*'R, it follows that R is nearly simple. Every
right ideal of R is either principal or of the form aJ(R), 0 #a € R.
Hence, |Z(J(R)| =2. 1
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