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Abstract

The Nash problem on arc families is affirmatively answered for a toric variety by Ishii and Kollar’s
paper which also shows the negative answer for general case. The Nash problem is one of questions
about the relation between arc families and vatuagi In this paper, the relation is described clearly
for a toric variety. The arc space of a toric variety admits an action of the group scheme determined
by the torus. Each orbit on the arc space cqoesis to a lattice point in the cone and therefore
corresponds to a toric valuation. The dominant relation among the orbits is described in terms of the
lattice points. As a corollary, we obtain the answer to the embedded version of the Nash problem for
an invariant ideal on a toric variety.
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1. Introduction

The concept of jet schemes and arc space amelgebraic variety or an analytic space
was introduced by Nash in his preprint in 1968 which was later published as [12]. These
schemes are considered as something to represent the nature of the singularities of the
base space. In fact, papers [5,10,11] by Migst&in and Yasuda show that geometric
properties of the jet schemes determine certain properties of the singularities of the base
space. Primarily the Nash problem posedli][is based on this idea. The Nash problem
asks if the set of arc families through the siragities corresponds bijectively to the set
of the essential components of resolutionsheaf singularities. Here an arc family through
the singularities orX is a good component af ~1(SingX) (see Section 3.5 or [8] for the
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definition of a good component), whereis the canonical projection from the arc space
to X. The paper [8] proves that X is a toric variety, the answer to the Nash problem is
“yes,” while the paper also showlsd negative answer for geneél

In this paper, we study the structure of the arc space of a toric variety defined over an
algebraically closed fiel#l of arbitrary characteristic. @/prove that each jet scheme or arc
space admits a canonical action of the jet scheme or arc space of the torus. The arc space
of a toric variety becomes an almost homogeneous space by this action, which means that
the arc space is the closure of one orbit. A good component turns out to be the closure of a
certain orbit and there is no non-good component in the arc space of a toric variety.

Each orbit of the arc space corresponds to a lattice point of the cone, therefore to a toric
valuation, and the dominant relation of two orbits is translated to the order relation of the
corresponding lattice points. As a corollarye whow the answer to the embedded version
of Nash problem posed by Ein, Lazarsfeld and Mtésta,[6] for an invariant ideal on a
toric variety.

This paper is organized as follows: In Section 2 we study some basic properties on jet
schemes and arc spaces. The closed points iarthgpaces of varieties are discussed here.

In Section 3 we introduce a stratification on tire space of a toric variety according to the
fan. Some basic properties of the arc space of a toric variety (non-existence of non-good
components, irreducibility in any charadsgic) are proved here. In Section 4 we study
the orbits of the arc space of a toric variety by the action of the arc space of the torus. In
Section 5 we give the answer to the embedded version of Nash problem for an invariant
ideal on a toric variety.

Throughout this paper the base figldis an algebraically closed field of arbitrary
characteristic unlesgloerwise stated.

2. Basic propertiesof jet schemesand the arc space

Definition 2.1. Let X be a scheme of finite type overand K D k a field extension. For
m € N a morphism SpeK[t]/(t’"“) — X is called anm-jet of X and Spe&[[:] — X
is called ararc of X. We denote the closed point of Sp€fz] by 0 and the generic point

by n.

2.2. Let X be a scheme of finite type overLet Sch/k be the category of-schemes and
Setthe category of sets. Define a contravariant funéjpr Sch/k — Setby

Fu(Y) = Homy (Y xspea Speck[r]/ (™), X).
Then, F,, is representable by a scherkg of finite type overk, that is
Homy (Y, X,n) = Homk (Y xspea: Speck(r1/ ("), X).

This X,, is called then-jet schemef X. A K-valued pointx : SpecX — X, is regarded
as anm-jeta : Speck [r]/(1"t1) — X.
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Let Xoo = I(imm X, and call it thearc spaceof X. X, is a scheme which is not of finite
type overk, see [4]. Denote the canonical projecti&l, — X by 7. A K-valued point
a:Speck — X isregarded as an aoc: SpecK ] — X.

Using the representability df,,, we obtain the following universal property &f,,.

Proposition 2.3. Let X be a scheme of finite type overThen
Homk (Y, Xoo) =~ Homy (Y Xspea: Speck(t1, X)

for an arbitrary k-schemeY’, whereY Qspeck Sped[:] means the formal completion of
Y xspea Sped[[¢] along the subschenié x speq: {0}.

2.4. Amorphisme : X — Z of varieties ovek induces a canonical morphisin, : X,, —
Zn (m € NU {o0}). Some properties ob are inherited byd,,; for example, if® is a
closed immersion, an open immersion or étale, tlhgnis also a closed immersion, an
open immersion or étale. But many propertiesboéire not inherited byp,,; for example,
properness, projectiveness, closedness, and so on.

Next we study the jet schemes and the arc space of a variety which admits an action of
a group scheme.

Proposition 2.5. Let G be a group scheme of finite type okefThenG,, (m € N U {oco})
is again a group scheme overlf G is irreducible, thenG,, is also irreducible.

Proof. Letu:G x G — G be the multiplication of the group, lete G be the unit element
of the group and let: G = G be the morphism defining the inverse elements. Tligh,
becomes a group scheme with : G,, x G,, — G,, the multiplication of the group, where
Wm is induced on(G x G),, ~ G, x G, from u. The schemée},, is ak-valued point
of G, and it is the unit element under thinultiplication. The morphisny, : G,, = G,
induced from: gives the inverse elements. @f is irreducible, then it is a non-singular
irreducible variety which yields that,, is also non-singular and irreducible

Proposition 2.6. Let G be a group scheme of finite type oweand X a variety admitting
an action ofG. Then, form € NU {o0}, X,, admits a canonical action d¥,, induced from
the action ofG on X.

Proof. Let ¥ :G x X — X be the morphism defining the action 6f on X. Then the
morphismy,, : G, x X, ~ (G x X),, = X, induced fromys gives an action oiG,,
onX,. O

Example 2.7. If G is ann-dimensional toru§™” ~ (A,} \ {O}", thenG,, =~ T" x A™. Let

x:(xio),... x© xil),.-. x(V -~-ax;_m)""’x}§1m)) and

s s s

0 1
y=0 Ly O Py )
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be twok-valued points of5,,, Where(xio), e, x,(,o)), (yio), ey y,(,o)) € T". Then the mul-
. e . . 0) 0 0 0 . . . .
tiplicationx - y of x andy is (xi )yi D ., x,(, )y,g ), Ziﬂ-zlxi’)yi’), e Zi+j=1x,5’)y,gj),

e Zi+j=m xii)yi'/), s, Zi+j=m x,(li)y,(,-’)). The unit element o5, is

n times
—
1,...,1,0,...,0).

Example 2.8. Let X be a toric variety with the torug. ThenT,, acts onX,, for every
m € N U {o0}.

2.9. As them-jet schemeX,,, of a varietyX is of finite type ovek, a point ofX,, is closed
if and only if it is ak-valued point. ButX o, is not of finite type and the equivalence above
does not hold. First we will see the affirmative case under a conditién on

Proposition 2.10. Assume that the base figtds uncountable. Then, for every variexy
a point of X, is closed if and only if the point isf-valued point.

Proof. As the problem is local, we may assume tiais affine. Therefore we have only
to prove the assertion for the caXg, = SpecR, R = k[x1, x2, ..., Xp, ...], where the
variablesxi, x, ..., x,, ... are countably infinite. For the assertion of the proposition, it
is sufficient to prove that every prime idealc k[x1, x2, ..., x,, ...] iS contained in a
maximal ideal(x1 — a1, x2 —az, ..., x, —ay,...), ai1,dz2,...,d,, ... € k. For everyn,

let R, be a subring[x1, ..., x,] of R andI, be the intersectiod N R,,. Form < n the
inclusionR,, — R, induces the projection Sp&; — SpecR,,, which induces a dominant
mapyn, m: Z(I,) > Z(Iy), (a1, ..., am, ..., an) — (a1, ...am), WhereZ(1,) is the set of
closed points of the closed subscheme defined,b¥ix » > 1. SinceZ(1,) # @ for every

n > r, Imy, . is a non-empty constructible set and

Im 1»”H»l,r Dlm I/fr+2,r Do

is a non-increasing sequence. Ass uncountable, the intersectifn,,_ .
empty by [1, Proposition 6.5]. Take a point from this set. INZ (1, +1),

Im 4, , is non-

-1 -1
W,+1,,(Pr) NIMyy42,41D 1//r+1_,(17r) NIMyr43,41D - -

is a non-increasing sequence of non-empty constructible sets. Therefore, we can take
a point p,41 € Wr:rll,r(l’r) N (Mpsret MY r42). In the same way, we have points
Pr+2 € Z(Ir+2), pr+3 € Z(I;43), ... such thaty, 11, (pn+1) = pn € Z(Iy) for n > r.
Therefore, there is a sequenag ay,...,a,,... € k such thatp, = (a1, ao,...,a,).
Hence,l, C (x1 — a1,x2 — az,...,x, — a,) for everyn. Then, it follows/ =1lim 7, C
(x1—a1,x2—az,....,xp —ay,...). 0O

In the proposition above, the condition bis essential. In fact, we obtain the following.
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Proposition 2.11 (Watanabe, Yoshida).et k be a countable field. Then there is a closed
point which is not &-valued point inSped[x1, x2, ..., Xs,...].

Proof. Let y be a transcendental element okerAs k is countable, the extension field
k(y) is a countably generatédalgebra. Therefore there exists a surjective homomorphism
k[x1.x2,..., x4, ...] = k(y). The kernel of this homomorphism is a maximal ideal which
does not give &-valued point. O

As we assume that the base field is an arbjtedgebraically closed field, a closed point
of an arc space is not necessarily-galued point. In spite of such a difficulty, we can see
the structure of the arc space for a toric variety.

3. Basic propertiesof thearc space of atoric variety

3.1. We use the notation and terminology of [7]. L& be the free abelian group”
(n > 1) andN its dual Hom,(M, Z). We denoteM ®7 R and N ®7z R by Mg and N,
respectively. The canonical pairig) : N x M — Z extends tq, ) : Ng x Mr — R. For
a linear subspac® c Ng, the induced pairingNg/ W) x W+ — R is also denoted by
(,). Here, forv € Ng, u € W+ we have thatv, u) = (p(v), u), wherep: Ng — Nr/W is
the projection.

For a finite fanA in N, the corresponding toric variety is denoted By(A). If A is
the fan consisting of all faces of a cone thenTy(A) is affine and sometimes denoted
by Tn (o).

For a cone € A we denote by, the invariant affine open subset which containsworb
as the unique closed orbit. The open 8etis isomorphic toly (7).

We can writek[M] ask[x"],em, Where we use the shorthanti = xj*x5? - - - x,," for
u=(u1,...,u,) € M. The torus Spek[M] is denoted byr". We also writeT" for the open
orbit of the toric variety.

Proposition 3.2. Let X be a toric variety ovek and f : Y — X an equivariant resolution
of the singularities. Then, the induced morphigm: Yo, — X iS Surjective in a strong
sensei.e., for every extension fielkl O k the corresponding morphisify, (K) — Xoo(K)
is surjective.

Proof. Let o: SpecK[t] — X be an arc ofX, then the generic poini € SpecK|[[t] is
mapped to orbs for some cone in the defining fan ofX. As f is equivariant,f ~1(orbr)
contains a subscheme isomorphic to ork 7°, whereT* is the torus of dimension
0 < s < n. Hence the restriction Spét(r)) — X of @ can be lifted to¥'. Therefore, by the
properness of’, « can be lifted toy. O

The irreducibility of the arc space of a variety is known for a base field of characteristic
zero [9]. In the positive characteristic case, [8, Example 2.13] gives an example of non-
irreducible arc space. But for a toric vaty, the characteristic is not a problem.
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Corollary 3.3. The arc space of a toric variety is irreducible.
Proof. This follows immediately from the irreducibility af,, and Proposition 3.2. O

Corollary 3.4. Since the arc spac&, of a toric variety containd», as an open orbit,
X is an almost homogeneous space by the actidhof

3.5. An irreducible component of the fiber—1(SingX) of the singular locus Sing c X

is called agood componentf it contains an arcae such thata(n) is in the non-
singular locus [8]. If the characteristic of the base field is zero, then every component
of 7=1(SingX) is a good component, while there is a non-good component for a positive
characteristic case [8, Example 2.13]. Thidwing shows that the characteristic does not
affect on this problem for a toric variety.

Proposition 3.6. For a toric variety X, every component of ~1(SingX) is a good
component.

Proof. Let C be a non-good componentof1(SingX). Let f: Y — X be an equivariant
resolution of the singularities anll; (i = 1,2, ...,r) be the irreducible components of
f~X(SingX). Then,,*(E;)’s are the irreducible components gf;*(x~(SingX)),
whereny: Y5 — Y is the canonical projection. By the surjectivity gf, proved in
Proposition 3.2, there is a componar}tl(E,-) mapped taC. However,n;l(E,») contains

an arc whose image of the generic point corresponds to a point in the non-singular locus
on X, which is a contradiction. O

Now we are going to make a stratification of #we space of a toric variety according to
the fan. From now on we assume that a toric variétig defined by a fam. Let X () C X
be the closurerbr for the coner € A. ThenX (7) is again a toric variety.

Definition 3.7. Let X be a toric variety corresponding to a fah We defineX,(r) as
follows:

Xoo(1) = {a € Xoo | @1 SpecK [[t] — X factors throughX (r)
but does not factor througki(y) for y « t}.

Remark 3.8.
() By definition, we have:
Xoo (1) = {o € Xoo | (i) € Orb7}.
In particular,

Xoo(0)={o € Xeo |a(n) € T}.
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(i) Xoo(t) = X(7)00(0), where 0 is the cone consisting of the origin.
(iil) X0 is the disjoint union:

Xoo = |_| Xoo(T).

TeEA

Proposition 3.9. Let X be a toric variety defined by a fas, T the torus acting orX and
T aconeinA. Then, the subséf,,(7) is a locally closed subset which is invariant under
the action ofT .

Proof. As X (y) is closed inX for every coney € A, X(¥) IS considered as a closed
subscheme oX . By definition

Xoo(1) = X(r)oo\< U X(m) (3.9.1)
y £t

as subsets iX o, which shows thak - (7) is locally closed.

As X (y) is invariant under the action df for everyy € A, X(y) iS invariant
under the action off,. The description ofX,,(z) as above gives the assertion of the
invariance. O

Proposition 3.10. Let X be a toric variety defined by a fan andt, y be cones inA.
Then,y < tifand only if Xoo (¥) D Xoo (7).

Proof. First note thatX ()« and X (t)~ are irreducible (Corollary 3.3) and closed in
X Then, the description (3.9.1) gives th¥it,(y) = X (¥)eo and Xoo(t) = X (T)oo-
Therefore, the relatioX o (y) D Xoo(t) holds if and only if X (y)eo D X (1) holds,
which is equivalent to¥ (y) D X (). It is well known that the last relation is equivalent to
y<t. O

4. Orbitson thearc space of atoric variety

In this section we associate eafh -orbit on X, to a lattice point, and describe the
dominant relation of twarbits in terms of the corresponding lattice points.

Theorem 4.1. Let X be a toric variety defined by a fanr. Then,
(i) there is a surjective canonical map
U: X0 — |[AINN, o> vy,
(ii) for everyv € |A|N N there exists &-valued poinx € X (0) such that
Ul =Ty - a,

whereTy - « is the orbit ofa by the action off., and
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(iiiy forve|A|NN,¥L(v)isalocally closed subset f..

Proof. For aK-valued poinix € X (0), take a cone € A such thawx(0) € U, . Thena
is an arc ofU, with a(n) € T, therefore we have a commutative diagram:

klo¥ NM] L Kz

!

K[M] ——= K (@)

Letv, : M — Z be a map defined by — orda™(x*). Thenv, is a group homomorphism,
thereforev, € N with the pairing (vy, u) = orda™(x*). Foru € ¥ N M, it follows
(v, u) = orda™*(x") > 0, which implies that,, € 0. Now we obtain a mag : Xo,(0) —
|A| NN, @ — v,. To show the surjectivity, take a pointe |A| N N. Let o be a cone
containingu. Let a*:k[M] — k(#) be ak-algebra homomorphism defined by (x*) =
1{v4) for u € M. Then,o*(k[o¥ N M]) C k[[¢], since(v,u) > 0 for u € o¥. Hence,o*
gives ak-valued pointr in X (0).

For (i), we prove the equality ~1(v) = T», - « for ak-valued pointx € ¥ ~1(v). For
a k-valued pointe € X, (0), take a coner such thate € (Uy)s. Thena corresponds
to a ring homomorphism* : k[c¥ N M] — k[[¢]. On the other hand, & -valued point
y € T corresponds to a ring homomorphism: k[M] — K[t]. This homomorphism is
equivalent to a ring homomorphispt : k[oc¥ N M]— K [[t] such that the order gf* (x*)
is zero for everyu € 0¥ N M, because” N M generated!. Then,y - « corresponds to
the homomorphism[oY N M] — K[] which mapsc” to y*(x"*)a* (x*).

Now let @ € (Uy)oo be the arc corresponding to which was constructed in (i). If
B € Ty - «, then there exists & -valued pointy € T, such thats = y - «. Then, by the
above remark, it follows tha8 € (U, )oo and B corresponds t@* :k[oc¥ N M] — K[1]
which mapsy® to y*(x*)r-*) whose order igv, u). Therefore8 € ¥ ~1(v). Conversely,
suppose thag € ¥ ~1(v) and leto be a cone such that € (U, ). Then we can define
y € Too by y*:k[cY N M] — K[t], y*(x*) =t~ g*(x*). For thisy we have that
y-a=p.

For the assertion (i), take a comee A such thatTy - @ C (Uy)co- It is sufficient
to prove thatT - « is locally closed in(Uy)oo N X0 (0). Denote(U, )~ by SpecA. Let
AkloY N M] — A[t] be the ring homomorphism induced from the universal family
of arcs on(Us)wo (See Proposition 2.3). Lefi(x*/) = Zi>0a,~,iti for generators ;
(j=1,...,r) ofthe semigroup ™ N M. Then

Too -0t =W L(v)
={B € (Us)oo N Xco(0) | @i (B) =0fori < (v, u;),
aji(B)#0fori=(v,u;), j=1,....r}

Hence, Ty, - « is locally closed iUy )oo N Xoo(0). O
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4.2. Fort € A, X(7) is a toric varietyTy, (A;), where A, consists of the cones C
Nr/tR which are the images of the cones A such thatt < ¢ andN; is the image of
N in Nr/tR. The affine open subsét; C X (z) is Sped[t NoY N M].
Since X0 (1) = X(7)0(0) as is seen in Remark 3.8, we obtain the following from
Theorem4.1.
Corollary 4.3. Let X be a toric variety defined by a fatn andz € A. Then,
(i) there is a surjective canonical map
U :Xo(t)— |[A:|NN;, ar> vy,
(ii) for everyv € |A;| N N there exists &-valued pointr € X () such that

vl =Ty - @,

whereT - « is the orbit ofe by the action ofl,; and
(iii) forve|A;|N Ny, ¥ 1(v)is alocally closed subset &f,.

Corollary 4.4.

(i) Xoo = U Too - .
a: k-valued point ofX o
(i) Forevery cone, there is a bijection

{Too - o |« is ak-valued pointe Xoo(1)} x| A | N N;.

Definition 4.5. As an orbit of ak-valued pointx in X (7) is determined by the lattice
pointv = v, € |A;|, we sometimes denote the orlf, - & by T (v).

Definition 4.6. Let o be a cone inV andv, v’ two points ino. We denotev <, v’ if
v €v+o. ltis clear that<, is an order ins.

Now we are going to study the dominant relation between orbits.
Proposition 4.7. Let X be a toric variety defined by a fal. Let ¢ € X () and

B € X (y) be k-valued points forr,y € A. If Too - D Too - 8, thent < y and there
exists a cone € A containingr andy such thatr, 8 € (Uy ) o.

Proof. By the condition of the proposition, it follows th@ € Xoo(t) = X (7)co- AS
B(n) € orby, we haveorby C X(t), which impliest < y. To see the second assertion,
take acone € A suchthaps € (Uy)oo- Theng(n) € orb(y) impliesy < o. Since(Uy ) o

is an open subset df 5, containingg, thereis an are’ € T, - @ N (Ug)oo- AS (U ) oo IS

T~ -invariant, it contains botly, - @ andT - 8. O
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Hence, in order to interpret the condition of the dominatign- « O Tw - B in terms
of the corresponding lattice points, we may assume ¥as an affine toric variety. If
X is an affine toric variety defined by a coaeand T, (v) C X~ (7) for a facer < o,
thenv € @ N N; by Corollary 4.3, wheres is the image ofr ¢ Nr by the projection
Nr — Nr/tR.

Proposition 4.8. Let X be an affine toric variety defined by a canén N. Then, two orbits
T (v) and T (V') IN X6 (0) satisfyTe (v) D T (V) if and only ifv <, V.

Proof. AssumeT(v) D Too (V). If (v, u) > (v, u) for someu € ¥V N M, then
Too(v) C Too(v) N {a € X0 (0) | Orde*(x*) > (v', u) + 1},

where the right-hand side is a proper closed subseft.ofv). This is a contradiction.
Hencep <, v'.

Next, assume that <, v’ for v, v" € 0 N N. To prove the converse, we divide the proof
into two steps.

Step 1. The caseX is non-singular.
Lete1,ez,..., e, be the basis oM such thates, ..., e, e, ... ef! generater".
Define ak-algebra homomorphis@* : k[c¥ N M] — k[[A, t] by

@*(x¢) =1Vl gt

Here, note thatb*(x¢) =1+ A fori > r + 1, since(v, e;) = (v, e;) = 0 for thesei’s.
Then, we obtain a morphisnd : Spedc[[A] — X (0) such that®(0) € To(v') and
®(n') € T (v), where 0 is the closed point ang’ is the generic point of Sp&dA].
This implies thatT, (v) contains a point 0f 5, (v'). As T (v) IS Txo-invariant, it follows
that Too (v) D Too (V).

Step 2. The general case.
Defines’ as the cone generated byandv’ — v. Then, note that’ C o and

vy V.

Let N’ be the subgroup oV generated by, v/ — v andvy, v, ..., v; € N, where their
imagesvs, v2,...,0; € N/N No'R are a basis oN/N N ¢’R. Then, the toric variety
Z = Ty(d') is non-singular and there is a canonical equivariant morphism

p:Z—>X

with the surjective morphisid’ — T of the tori. By Step 1T/ (v) D T.,(v) follows
from v <, v'. Take k-valued pointse, B € Z(0) such thatv, = v, vg = v, then
Too - Poo(@) = ¢oo(Th - @) aNA Teo - Poo(B) = Poo(Ty, - B). ThereforeTo (v) O Too (V')
follows from Voo () = VU Vg (B) = v. O
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As X (1) = X (1)00(0) we obtain the following as a corollary of Proposition 4.8.

Corollary 4.9. Let X be an affine toric variety defined by a comein N. Then, for a
facetr < o, two orbitsToo (v) and T, (V) in X oo (1) SatisfyTeo (v) D To (V') if and only if
v <z v/, wherec C Ng /TR is the image o0& .

Next we will see the relation of the orbits in mutually different strata. To see this we
need the following combinatorial lemma:

Lemma 4.10. Let o be ann-dimensional cone iV, wheren = dimNg, andt an r-di-
mensional face of . Then, there exist a non-singulardimensional coneg in N and its
r-dimensional faceq such thatog C o andtg C 7.

Proof. First, subdivider into non-singular cones and take one-edimensional cones as
70. Take anyr-dimensional cone’ in N with the facery inside ofo, and then subdivide
o’ into a non-singular farZ by Danilov’s procedure [3, §8]. As is non-singular, it is
still in the new fanX' as a cone. Hence, we can takeradimensional non-singular cone
oo with the facergin X. O

Proposition 4.11. Let X be an affine toric variety defined by a comen N. Then, two
orbits T (v) C Xoo(7), Too (V') C X oo () satisfy the relatiorfs, (v) D Teo (V') if and only
if T <y andp(v) <z v/, wherep: Ng/tR — Nr/yR is the canonical projection ana

is the image o& in Ng/yR.

Proof. First assume thaf,(v) D T (v'). Then, we have < y by Proposition 4.7. By
the assumption, there is a morphishn Spedc[[A] — X (0) such thatg := & (0') €
Too(v) and a := @ (') € Too(v), where 0 is the closed point andg’ is the generic
point of Spe&[[A]. As o € X (1), @ factors throughX (t)... This gives thek-algebra
homomorphism:

o* k[t NoY N M| — kl[A, 1]

By using®*, we obtain ord*(x*) < ordg*(x*) for u € v+ No¥ N M in the same way
as in the proof of Proposition 4.8. Therefore, foe y- No¥ N M Cc tt No¥ N M the
inequality (v, u) = (p(v), u) < (v', u) holds. Hencep (v) <z v'.

To prove the converse, assum@) <z v'. Then, it is sufficient to prove that,, (v) D
Too(p(v)), becausels (p(v)) D Too(v') follows from Corollary 4.9. To provd s (v) D
T (p(v)), we may assume that = o, sinceXq (¥) = X (¥)0(0). We also can assume
that dimo = n = dimNg, because if diner = s < n, then To(v) = T x T3, (v),
Too(p(v) =TS x TS (p'(v)), wherep’:0R — oR/7R is the projection and™, 7"~*
ares and(n — s)-dimensional tori, respectively. So the problem is reduced to proving that
T3, (v) DT, (p'(v)).

Now, for o andz, letog andzg be as in Lemma 4.10. Let, e, .. ., e, be a basis oM
which generateyy andei, ez, ..., e, (r <n) generateg Noy . Let

A*:k[oy N M] — KIAT()
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be ak-algebra homomorphism defined by

A*(x)y = (A + D fori=1,...,r,

A*(xy =) fori=r+1,...,n.

It is easy to check thatt*(x*) € k[, t]] for everyu € ¥ N M, sincev € o. Then, we
obtain a morphism : SpedA] — Xoo. For everyu € ¥ N M, we have ordi*(x*) =
(v, u), thereforew := A(n’) € T (v) C X0 (0), where Qis the closed point ang’ is the
generic point of Speld[A]. Sincer =7y, B := A(0):Sped[] - X factors through
X (1) by the definition ofA*. As the corresponding ring homomorphigrhis extended to
a ring homomorphisnk[z+ N M| — (1), it follows that 8(n) € orbt, which implies
B € Xoo(r). For everyu € t+ Nno¥ N M, we have orgg*(x*) = (v, u) = (p(v), u).
Thereforeg € T (0 (v)). Hence, it follows thaffs (v) contains a point of o (0 (v)). By
the To-invariance ofT s (v), We obtainTo, (v) D T (p(v)). O

Summing up Propositions 4.7, 4.11, and @ltary 4.9, we obtain the following.

Theorem 4.12. Let X be a toric variety andl’» (v) and T, (v') two orbits inX(z) and
Xoo(y), respectively. Then the following are equivalent

(l) Too(v) D T (U/)a
(i) T <y, there exists a cone > y such thatTeo (v), Tee (V') C (Uy)oo, andp(v) <z v/,
wherep : Ng/tR — Ngr/yR is the projection and is the image o& in Ng/yR.

4.13. By now, the dominant relation of orbits is discussed in terms of the order relation
of lattice points. This gives a relation between arc families and valuations, which will
be discussed in the next section. But the dominant relation of orbits can be more simply
described in terms of homomorphisms of semigroups.

If X is an affine toric variety defined by a comeand T, (v) C X () for a face
T < o, thenv e 3 N N; C Nr/tR, whereg is the image otr in Ng/tR. Then,v can
be considered as a semigroup homomorphism- Nov N M — Zx0. Here,v can be
extended as a semigroup homomorphisna¥ N M — Z>q U {oco}, where we define
v(u) = oo for everyu ¢ tt.

Conversely, every semigroup homomorphisna ¥ N M — Zx>o U {oo} is obtained by
such an extension from an elementoff N; C Ng/tR for some facer.

Lemma 4.14. Leto be a cone inV andv:o¥ N M — Zxo U {oo} @ homomorphism of
semigroups. Then, there exists a face o such thatv—l(Z>o) =t+tNnoVNM.

Proof. Take the minimal faces of o containingC = v*l(Z>0). Then, C contains a
relative interior pointz of y. We will show thatC = y N M. Assume that there exists
a pointug € y N M such that(ug) = co. Then, note thatg + 0¥ C v~1(c0). Leto ¥ be
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generated byt1, uo, ..., u,. Then, there is a representatios=  ;_; a;u; with a; > 0 for
everyi andug =Y ;_4 bju; with b; > 0 for everyi. Then, in the equality:

mu = Zbiui + Z(mai —bi)u;,
i

the second term of the right-hand side issitt for m > 0. Hencey(mu) = oo, but this
contradicts to that (mu) = mv(u) € Zxo. Now, we obtain thaC =y N M andy can be
written astt NoV for somer <o. O

By Corollary 4.3 and Theorem 4.12, we obtain the following interpretation.
Theorem 4.15. Let X be a toric variety defined by a fas, then we obtain the following
(i) There is a bijective map

{Tso - o | @ : k-valued point ofx} => |_| Hom, ¢ (0¥ N M, Z>o U {o0}),
[e2

whereo varies the maximal cones . Via this map, eacll, - @ can be written as
T (v) for a suitable element of the right-hand side.

(i) We have the relatiofs (v) D Too (V') if and only if there is a maximal cone in A
such thatv, v" € Hom, g(6¥ N M, Z>o U {oo}) and v < v', wherev < v' means that
v(u) <V (u) foreveryu e oV N M.

5. Contact loci of an invariant ideal

In this section, we will give the answer to the embedded version of Nash problem for
an invariant ideal of a toric variety.

Definition 5.1. Let X be a variety over an algebraically closed figldndk (X) the rational
function field of X. A divisorial valuationof k(X) is a positive integer times discrete
valuationvalp associated to a prime divisdp on some normal varietyX” which is
birational toX . Note that this definition is wider than the definition of “divisorial valuation”
in [6].

Definition 5.2. Let X be an affine toric variety defined by a comeén N. For every point
v € o0 N N we can associate a valuationl/, onk(X) as follows:

Define

valy(f) = mir}(v,u), for f ek[o¥ N M]
xte,

and extend it ork(X), the quotient field ok[c> N M]. This valuation is called #oric
valuation Herex" € f means that the coefficient of the monomi&lin f is not zero.
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Note that the toric valuation defined by a primitive elemeri$ valp,, whereD, is the
irreducible invariant divisoorb(R>ov) on some toric varietyX” which is birational toX .

Since every toric valuation is a positive integer times such a valuation, every toric valuation
is a divisorial valuation.

5.3. For a varietyX over an algebraically closed field let v, : Xoo — X (m € Zx0) be
the truncation morphism. Note thét = 7. Recall that a cylinde€ in X, is a subset of
the formy,,.1(S), for somem and some constructible subset X,,.

Example5.4. Let X be a toric variety. Then an orbit, (v) of ak-valued point inX - (0)

is a cylinder. Indeed, we may assume tiais the affine toric variety defined by a cose
The orbit is the subset of ,, consisting of arca whose corresponding homomorphisms
a*:k[o¥ N M] — K[t] satisfy ordx*(x*) = (v,u;) for generatorsus,...,u; oOf
oV N M. Let m > max—1, s{v,u;) and S,, C X,, the subset consisting ofi-jets

y whose corresponding homomorphisms: k[¢¥ N M] — SpecK [t]/(t"+1) satisfy
ordy*(x") = (v, u;). Then,S,, is a locally closed subset &f,, andT (v) = 1//,;1(5,,,).

5.5. Let X be a non-singular variety ovér andC an irreducible cylinder inX . In [6]

a valuationvalc corresponding taC is defined as follows: Note first that if € X

is a C-valued point, and iff is a rational function onX defined in a neighborhood of

7 (a), then orde*(f) is well defined, where* : Ox — C[[¢] is the ring homomorphism
corresponding tar. If the domain of f intersectst (C), thenvalc(f) := orda™(f), for
generale € C. Thenvalc (f) is well defined and can be extended to a valuation of the
function field of X.

Proposition 5.6 [6]. Let X be a non-singular variety ovef andC an irreducible cylinder
in X Which does not dominatg€. Thenvalc is equal with a divisorial valuation.

In the proof of Proposition 5.6, the condition t¥atis non-singular is used. Therefore,
this proposition does not imply that for a cylindér= T (v) C X+ (0) on a singular
toric variety X, the corresponding valuatiamlc is a divisorial valuation. However, the
following proposition shows thatalc is a divisorial valuation folC = T (v).

Proposition 5.7. Let X be a toric variety over an algebraically closed field and
C =T (v) C X50(0); thenvalc = val,. In particular, valc is a divisorial valuation.

Proof. We may assume thaX is an affine toric variety defined by a come It is
sufficient to prove thatalc (f) = val,(f) for every elementf € k[o¥ N M]. Note that
valc (f) = orda™(f) for the generic poink € C. If f is a monomiak” (u € o¥ N M),
then by the definition o€ = T, (v) we have

valc (x*) = orda™ (x") = (v, u) = val, (x*).
For generalf, we have

valc (f) = minvalc(x*) = min (v, u) = val,(f).
xtef xtef
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On the other hand, leR, is the discrete valuation ring of the divisorial valuatiodm,.
Then there is an indeterminatsuch that the composite

B*k[loV N M] <> Ry < Ry~ K[t°] = K[t]

satisfies or@*(f) = val, (f) for f € k[c¥ N M]. Here K is the residue field oR, by the

maximal ideal and is the positive integer such that= evg for a primitive elementg. As

the arcB: SpecK [[¢] — X corresponding t@* is a K-valued point ofC, we obtain the
following inequality by the upper semicontinuity

valc (f) =orda™(f) <ordB*(f) =val,(f).
Therefore, we obtainalc (f) =val,(f). O
Now we recall the definition of the contact locus of an ideal of a vadetizet X be an

affine variety over an algebraically closed fi¢lavith the coordinate ringt anda an ideal
of A. Then, we define thgth contact locus o# by

Con?(a) = {a € Xoo | minorda*(f) =p}.
fea

Itis clear that this is a cylinder. IX is non-singular then the irreducible components are
also cylinders. Therefore each irreduciblEmponent of the contact locus corresponds to

a divisorial valuation. Now, we can state the embedded version of Nash problem posed
in [6].

Problem 5.8. Which valuations correspond to the irreducible componen@aft’ (a)?

We consider this problem for an invariant ideabn a toric varietyX. We should note
that for a singular variety, an irreducible component of a cylinder is not a cylinder in
general, therefore an irreducible componentdduoat necessarily correspond to a divisorial
valuation. But in our toric case, an irreducible component of the contact locus corresponds
to a divisorial valuation.

Lemma5.9. Let X be an affine toric variety andl an invariant ideal onX. Then, for every
integerp > 0, an orbit T (v) is either contained irCon¥ (a) or disjoint fromCon? (a).

Proof. Take an arex € T (v). Thena belongs to Cort(a) if and only if
p = minorda™(x*) = min(v, u),
xtea xtea

where we defingv, u) = oo if v € Ng/tR andu ¢ t+ for a coner. The assertion of the
lemma follows immediately from this. O

By this lemma it follows that Co#it(a) is a union ofTy (v)’s.
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Lemma5.10. Let X be an affine toric variety defined by a camén N anda an invariant
ideal on X. If an orbit T, (v) C Con¥(a) is in X (7) for t # 0, then there is an orbit
T (V) C X (0) such thatT, (v) C Cont’ (a) and T (V) D Too (V).

Proof. Letp: Nr — Nr/tR be the projection. As is in the imagep (o N N), we can take
a pointvg € ¢ N N such thato(vo) = v. Then(v, u) = (vo, u) for u € ¥ N v-. We can
naturally defingv, u) = oo foru e ¥\ t. Letvy € T N N be in the relative interior of .
Then(mvy,u) > p for everyu € (¢ \ t+) N N and an integem > p. Let = vg + mvy
(m > p). Then, for every: € - NoY N M it follows that (7, u) = (vo, u) = (v, u), while
for everyu € (o \ v+) N M it follows that (9, u) > p. Therefore

min{v, u) = min{v, u) = p.
xtea xlea
HenceT (v) C Conf (a).
On the other hangy (v) = v yields T (V) D T (v), by Proposition 4.11. O

By these lemmas, we obtain that an irreducible component of AConis the closure
of T (v) for somev € o N N such that migucq (v, u) = p. Here, by Proposition 4.8 and
Proposition 5.7, we obtain the answer to the embedded version of Nash problem.

Theorem 5.11. Leta be an invariant ideal on an affine toric variefy defined by a cone
o. Then, an irreducible component Gon# (a) is the closure off,(v) for an element
v minimal inV(a, p) = {v € 0 N N | Minueq (v, u) = p} with respect to the ordex, .
Therefore the valuationfal, | ve o N N minimal in V (a, p)} correspond bijectively to
the irreducible components Qfont’ (a).

Remark 5.12. Let G(a) ¢ Mr be the Newton polytope of as in Fig. 1 andA(a)

the dual fan ofG(a). The dual fan is the subdivision ef. Then, the functiorg(v) :=
min,eG(a) (v, u) (v € o) is a strongly convex piecewise linear function with respect to
the fanA(a). Therefore the subset1(p) = {v € o | g(v) = p} is the boundary of some
convex polytope as in the Fig. 2. The minimal element® ¢f, p) are on this boundary. It

Mg

G(a)

Fig. 1.
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NR 71
g (p)

Fig. 2.

is clear that this convex polytope jgG (a)°, whereG (a)° is the polar polytope defined as
{veo|g() =1}

We can see that a lattice point of a compact facg df(p) is always a minimal element
of V(a, p), therefore it gives a valuation corresponding to an irreducible component of
Cont (a). If p is divisible enough so that every vertexof; (a)° is in N, then the minimal
elements inV (a, p) coincide with the lattice points on the compact faceg of(p).

Remark 5.13. The referee kindly informed the following to the author: kos ¥ N M,
the log canonical threshold(¥, V (a), V (x*)) turns out to be the maximal valuesuch
thatx* ¢ Z(X, a*) by [2], whereZ (X, a*) is a multiplier ideal fora. Some multiple of the
primitive vectorv € o N N corresponding to a divisor which compute&X¢ V (a), V (x*))
lies on a compact face @f~1(p) for somep. Conversely, for some multiple of a primitive
vectorv € o NN on a compact face of ~1(p), there exists: € ¥ N M such that the
divisor corresponding to computes the log canonical thresholdX¢c V (a), V (x*)).

Example5.14. Let X be an affine toric variety defined by a cameThen the components
in 7~1(SingX) are 7o, (v)’s, wherev's are the minimal elements 0 —o singulart® NN
with respect to the ordex,. Here, t? is the relative interior ofc. This is proved as
follows: Let a be the ideal of Sing, then it is an invariant ideal. As ~1(SingX) =
Up>1Con'e”(a), it follows that an irreducible componentof-1(SingX) is Ta (v), Wwhere

v is minimal among’’s such thatv’ € 0 N N and min.ucq (v, u) > 1 by Theorem 5.11.
Here, minueqa(v/,u) > 1 if and only if «(0) € SingX for a with v, = v/, which is
equivalent to the fact that € ¢ for a singular face < o by [8, Propogion 3.9].
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