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Abstract

The Nash problem on arc families is affirmatively answered for a toric variety by Ishii and Ko
paper which also shows the negative answer for general case. The Nash problem is one of q
about the relation between arc families and valuations. In this paper, the relation is described clea
for a toric variety. The arc space of a toric variety admits an action of the group scheme dete
by the torus. Each orbit on the arc space corresponds to a lattice point in the cone and theref
corresponds to a toric valuation. The dominant relation among the orbits is described in term
lattice points. As a corollary, we obtain the answer to the embedded version of the Nash prob
an invariant ideal on a toric variety.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of jet schemes and arc space over an algebraic variety or an analytic spa
was introduced by Nash in his preprint in 1968 which was later published as [12]. T
schemes are considered as something to represent the nature of the singularitie
base space. In fact, papers [5,10,11] by Musta¸tǎ, Ein and Yasuda show that geomet
properties of the jet schemes determine certain properties of the singularities of th
space. Primarily the Nash problem posed in [12] is based on this idea. The Nash probl
asks if the set of arc families through the singularities corresponds bijectively to the s
of the essential components of resolutions ofthe singularities. Here an arc family throu
the singularities onX is a good component ofπ−1(SingX) (see Section 3.5 or [8] for th
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definition of a good component), whereπ is the canonical projection from the arc spa
to X. The paper [8] proves that ifX is a toric variety, the answer to the Nash problem
“yes,” while the paper also shows the negative answer for generalX.

In this paper, we study the structure of the arc space of a toric variety defined o
algebraically closed fieldk of arbitrary characteristic. We prove that each jet scheme or a
space admits a canonical action of the jet scheme or arc space of the torus. The ar
of a toric variety becomes an almost homogeneous space by this action, which mea
the arc space is the closure of one orbit. A good component turns out to be the closu
certain orbit and there is no non-good component in the arc space of a toric variety.

Each orbit of the arc space corresponds to a lattice point of the cone, therefore to
valuation, and the dominant relation of two orbits is translated to the order relation
corresponding lattice points. As a corollary, we show the answer to the embedded vers
of Nash problem posed by Ein, Lazarsfeld and Musta¸tǎ in [6] for an invariant ideal on a
toric variety.

This paper is organized as follows: In Section 2 we study some basic properties
schemes and arc spaces. The closed points in thearc spaces of varieties are discussed h
In Section 3 we introduce a stratification on thearc space of a toric variety according to t
fan. Some basic properties of the arc space of a toric variety (non-existence of non
components, irreducibility in any characteristic) are proved here. In Section 4 we stu
the orbits of the arc space of a toric variety by the action of the arc space of the to
Section 5 we give the answer to the embedded version of Nash problem for an inv
ideal on a toric variety.

Throughout this paper the base fieldk is an algebraically closed field of arbitra
characteristic unless otherwise stated.

2. Basic properties of jet schemes and the arc space

Definition 2.1. Let X be a scheme of finite type overk andK ⊃ k a field extension. Fo
m ∈ N a morphism SpecK[t]/(tm+1) → X is called anm-jet of X and SpecK[[t]] → X

is called anarc of X. We denote the closed point of SpecK[[t]] by 0 and the generic poin
by η.

2.2. Let X be a scheme of finite type overk. LetSch/k be the category ofk-schemes and
Set the category of sets. Define a contravariant functorFm :Sch/k → Set by

Fm(Y ) = Homk

(
Y ×Speck Speck[t]/(tm+1),X)

.

Then,Fm is representable by a schemeXm of finite type overk, that is

Homk(Y,Xm) � Homk

(
Y ×Speck Speck[t]/(tm+1),X)

.

This Xm is called them-jet schemeof X. A K-valued pointα : SpecK → Xm is regarded
as anm-jet α : SpecK[t]/(tm+1) → X.
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Let X∞ = lim←−m
Xm and call it thearc spaceof X. X∞ is a scheme which is not of finit

type overk, see [4]. Denote the canonical projectionX∞ → X by π . A K-valued point
α : SpecK → X∞ is regarded as an arcα : SpecK[[t]] → X.

Using the representability ofFm we obtain the following universal property ofX∞.

Proposition 2.3. LetX be a scheme of finite type overk. Then

Homk(Y,X∞) � Homk

(
Y ×̂Speck Speck[[t]],X)

for an arbitrary k-schemeY , whereY ×̂Speck Speck[[t]] means the formal completion
Y ×Speck Speck[[t]] along the subschemeY ×Speck {0}.

2.4. A morphismΦ :X → Z of varieties overk induces a canonical morphismΦm :Xm →
Zm (m ∈ N ∪ {∞}). Some properties ofΦ are inherited byΦm; for example, ifΦ is a
closed immersion, an open immersion or étale, thenΦm is also a closed immersion, a
open immersion or étale. But many properties ofΦ are not inherited byΦm; for example,
properness, projectiveness, closedness, and so on.

Next we study the jet schemes and the arc space of a variety which admits an ac
a group scheme.

Proposition 2.5. Let G be a group scheme of finite type overk. ThenGm (m ∈ N ∪ {∞})
is again a group scheme overk. If G is irreducible, thenGm is also irreducible.

Proof. Letµ :G×G → G be the multiplication of the group, lete ∈ G be the unit elemen
of the group and letι :G ∼−→ G be the morphism defining the inverse elements. Then,Gm

becomes a group scheme withµm :Gm ×Gm → Gm the multiplication of the group, wher
µm is induced on(G × G)m � Gm × Gm from µ. The scheme{e}m is a k-valued point
of Gm and it is the unit element under this multiplication. The morphismιm :Gm

∼−→ Gm

induced fromι gives the inverse elements. IfG is irreducible, then it is a non-singula
irreducible variety which yields thatGm is also non-singular and irreducible.�
Proposition 2.6. Let G be a group scheme of finite type overk andX a variety admitting
an action ofG. Then, form ∈ N∪{∞}, Xm admits a canonical action ofGm induced from
the action ofG onX.

Proof. Let ψ :G × X → X be the morphism defining the action ofG on X. Then the
morphismψm :Gm × Xm � (G × X)m → Xm induced fromψ gives an action ofGm

onXm. �
Example 2.7. If G is ann-dimensional torusT n � (A1

k \ {0})n, thenGm � T n × Anm
k . Let

x = (
x

(0)
1 , . . . , x(0)

n , x
(1)
1 , . . . , x(1)

n , . . . , x
(m)
1 , . . . , x(m)

n

)
and

y = (
y

(0)
, . . . , y(0)

n , y
(1)

, . . . , y(1)
n , . . . , y

(m)
, . . . , y(m)

n

)

1 1 1
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be twok-valued points ofGm, where(x(0)
1 , . . . , x

(0)
n ), (y

(0)
1 , . . . , y

(0)
n ) ∈ T n. Then the mul-

tiplicationx ·y of x andy is (x
(0)
1 y

(0)
1 , . . . , x

(0)
n y

(0)
n ,

∑
i+j=1 x

(i)
1 y

(j)

1 , . . . ,
∑

i+j=1 x
(i)
n y

(j)
n ,

. . . ,
∑

i+j=m x
(i)
1 y

(j)
1 , . . . ,

∑
i+j=m x

(i)
n y

(j)
n ). The unit element ofGm is

(

n times︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0).

Example 2.8. Let X be a toric variety with the torusT . ThenTm acts onXm for every
m ∈ N ∪ {∞}.

2.9. As them-jet schemeXm of a varietyX is of finite type overk, a point ofXm is closed
if and only if it is ak-valued point. ButX∞ is not of finite type and the equivalence abo
does not hold. First we will see the affirmative case under a condition onk.

Proposition 2.10. Assume that the base fieldk is uncountable. Then, for every varietyX,
a point ofX∞ is closed if and only if the point is ak-valued point.

Proof. As the problem is local, we may assume thatX is affine. Therefore we have on
to prove the assertion for the caseX∞ = SpecR, R = k[x1, x2, . . . , xn, . . .], where the
variablesx1, x2, . . . , xn, . . . are countably infinite. For the assertion of the proposition
is sufficient to prove that every prime idealI ⊂ k[x1, x2, . . . , xn, . . .] is contained in a
maximal ideal(x1 − a1, x2 − a2, . . . , xn − an, . . .), a1, a2, . . . , an, . . . ∈ k. For everyn,
let Rn be a subringk[x1, . . . , xn] of R andIn be the intersectionI ∩ Rn. For m < n the
inclusionRm ↪→ Rn induces the projection SpecRn → SpecRm which induces a dominan
mapψn,m :Z(In) → Z(Im), (a1, . . . , am, . . . , an) �→ (a1, . . . am), whereZ(In) is the set of
closed points of the closed subscheme defined byIn. Fix r � 1. SinceZ(In) �= ∅ for every
n > r, Imψn,r is a non-empty constructible set and

Imψr+1,r ⊃ Imψr+2,r ⊃ · · ·

is a non-increasing sequence. Ask is uncountable, the intersection
⋂

n>r Imψn,r is non-
empty by [1, Proposition 6.5]. Take a pointpr from this set. InZ(Ir+1),

ψ−1
r+1,r (pr ) ∩ Imψr+2,r+1 ⊃ ψ−1

r+1,r (pr) ∩ Imψr+3,r+1 ⊃ · · ·

is a non-increasing sequence of non-empty constructible sets. Therefore, we ca
a point pr+1 ∈ ψ−1

r+1,r (pr ) ∩ (
⋂

n>r+1 Imψn,r+1). In the same way, we have poin
pr+2 ∈ Z(Ir+2), pr+3 ∈ Z(Ir+3), . . . such thatψn+1,n(pn+1) = pn ∈ Z(In) for n � r.
Therefore, there is a sequencea1, a2, . . . , an, . . . ∈ k such thatpn = (a1, a2, . . . , an).
Hence,In ⊂ (x1 − a1, x2 − a2, . . . , xn − an) for everyn. Then, it followsI = lim−→ In ⊂
(x1 − a1, x2 − a2, . . . , xn − an, . . .). �

In the proposition above, the condition onk is essential. In fact, we obtain the followin
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Proposition 2.11 (Watanabe, Yoshida).Let k be a countable field. Then there is a clos
point which is not ak-valued point inSpeck[x1, x2, . . . , xn, . . .].

Proof. Let y be a transcendental element overk. As k is countable, the extension fie
k(y) is a countably generatedk-algebra. Therefore there exists a surjective homomorp
k[x1.x2, . . . , xn, . . .] → k(y). The kernel of this homomorphism is a maximal ideal wh
does not give ak-valued point. �

As we assume that the base field is an arbitrary algebraically closed field, a closed po
of an arc space is not necessarily ak-valued point. In spite of such a difficulty, we can s
the structure of the arc space for a toric variety.

3. Basic properties of the arc space of a toric variety

3.1. We use the notation and terminology of [7]. LetM be the free abelian groupZn

(n � 1) andN its dual HomZ(M,Z). We denoteM ⊗Z R andN ⊗Z R by MR andNR,
respectively. The canonical pairing〈 , 〉 :N × M → Z extends to〈 , 〉 :NR × MR → R. For
a linear subspaceW ⊂ NR, the induced pairing(NR/W) × W⊥ → R is also denoted by
〈 , 〉. Here, forv ∈ NR, u ∈ W⊥ we have that〈v,u〉 = 〈ρ(v),u〉, whereρ :NR → NR/W is
the projection.

For a finite fan∆ in N , the corresponding toric variety is denoted byTN(∆). If ∆ is
the fan consisting of all faces of a coneσ , thenTN(∆) is affine and sometimes denot
by TN(σ).

For a coneτ ∈ ∆ we denote byUτ the invariant affine open subset which contains oτ
as the unique closed orbit. The open setUτ is isomorphic toTN(τ).

We can writek[M] ask[xu]u∈M , where we use the shorthandxu = x
u1
1 x

u2
2 · · ·xun

n for
u = (u1, . . . , un) ∈ M. The torus Speck[M] is denoted byT . We also writeT for the open
orbit of the toric variety.

Proposition 3.2. LetX be a toric variety overk andf :Y → X an equivariant resolution
of the singularities. Then, the induced morphismf∞ :Y∞ → X∞ is surjective in a strong
sense; i.e., for every extension fieldK ⊃ k the corresponding morphismY∞(K) → X∞(K)

is surjective.

Proof. Let α : SpecK[[t]] → X be an arc ofX, then the generic pointη ∈ SpecK[[t]] is
mapped to orbτ for some coneτ in the defining fan ofX. As f is equivariant,f −1(orbτ )

contains a subscheme isomorphic to orbτ × T s , whereT s is the torus of dimensio
0 � s < n. Hence the restriction SpecK((t)) → X of α can be lifted toY . Therefore, by the
properness off , α can be lifted toY . �

The irreducibility of the arc space of a variety is known for a base field of characte
zero [9]. In the positive characteristic case, [8, Example 2.13] gives an example o
irreducible arc space. But for a toric variety, the characteristic is not a problem.
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Corollary 3.3. The arc space of a toric varietyX is irreducible.

Proof. This follows immediately from the irreducibility ofY∞ and Proposition 3.2. �
Corollary 3.4. Since the arc spaceX∞ of a toric variety containsT∞ as an open orbit
X∞ is an almost homogeneous space by the action ofT∞.

3.5. An irreducible component of the fiberπ−1(SingX) of the singular locus SingX ⊂ X

is called a good componentif it contains an arcα such thatα(η) is in the non-
singular locus [8]. If the characteristic of the base field is zero, then every comp
of π−1(SingX) is a good component, while there is a non-good component for a po
characteristic case [8, Example 2.13]. The following shows that the characteristic does n
affect on this problem for a toric variety.

Proposition 3.6. For a toric variety X, every component ofπ−1(SingX) is a good
component.

Proof. Let C be a non-good component ofπ−1(SingX). Let f :Y → X be an equivarian
resolution of the singularities andEi (i = 1,2, . . . , r) be the irreducible components
f −1(SingX). Then, π−1

Y (Ei)’s are the irreducible components off −1∞ (π−1(SingX)),
where πY :Y∞ → Y is the canonical projection. By the surjectivity off∞ proved in
Proposition 3.2, there is a componentπ−1

Y (Ei) mapped toC. However,π−1
Y (Ei) contains

an arc whose image of the generic point corresponds to a point in the non-singula
onX, which is a contradiction. �

Now we are going to make a stratification of thearc space of a toric variety according
the fan. From now on we assume that a toric varietyX is defined by a fan∆. LetX(τ) ⊂ X

be the closureorbτ for the coneτ ∈ ∆. ThenX(τ) is again a toric variety.

Definition 3.7. Let X be a toric variety corresponding to a fan∆. We defineX∞(τ ) as
follows:

X∞(τ ) = {
α ∈ X∞

∣∣ α : SpecK[[t]] → X factors throughX(τ)

but does not factor throughX(γ ) for γ ≮ τ
}
.

Remark 3.8.

(i) By definition, we have:

X∞(τ ) = {
α ∈ X∞ | α(η) ∈ orbτ

}
.

In particular,

X∞(0) = {
α ∈ X∞ | α(η) ∈ T

}
.
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(ii) X∞(τ ) = X(τ)∞(0), where 0 is the cone consisting of the origin.
(iii) X∞ is the disjoint union:

X∞ =
⊔
τ∈∆

X∞(τ ).

Proposition 3.9. LetX be a toric variety defined by a fan∆, T the torus acting onX and
τ a cone in∆. Then, the subsetX∞(τ ) is a locally closed subset which is invariant und
the action ofT∞.

Proof. As X(γ ) is closed inX for every coneγ ∈ ∆, X(γ )∞ is considered as a close
subscheme ofX∞. By definition

X∞(τ ) = X(τ)∞
∖( ⋃

γ ≮τ

X(γ )∞
)

(3.9.1)

as subsets inX∞, which shows thatX∞(τ ) is locally closed.
As X(γ ) is invariant under the action ofT for every γ ∈ ∆, X(γ )∞ is invariant

under the action ofT∞. The description ofX∞(τ ) as above gives the assertion of t
invariance. �
Proposition 3.10. Let X be a toric variety defined by a fan∆ and τ , γ be cones in∆.
Then,γ < τ if and only ifX∞(γ ) ⊃ X∞(τ ).

Proof. First note thatX(γ )∞ andX(τ)∞ are irreducible (Corollary 3.3) and closed
X∞. Then, the description (3.9.1) gives thatX∞(γ ) = X(γ )∞ and X∞(τ ) = X(τ)∞.
Therefore, the relationX∞(γ ) ⊃ X∞(τ ) holds if and only ifX(γ )∞ ⊃ X(τ)∞ holds,
which is equivalent toX(γ ) ⊃ X(τ). It is well known that the last relation is equivalent
γ < τ . �
4. Orbits on the arc space of a toric variety

In this section we associate eachT∞-orbit on X∞ to a lattice point, and describe th
dominant relation of twoorbits in terms of the corresponding lattice points.

Theorem 4.1. LetX be a toric variety defined by a fan∆. Then,

(i) there is a surjective canonical map

Ψ :X∞(0) → |∆| ∩ N, α �→ vα,

(ii) for everyv ∈ |∆| ∩ N there exists ak-valued pointα ∈ X∞(0) such that

Ψ −1(v) = T∞ · α,

whereT∞ · α is the orbit ofα by the action ofT∞, and
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(iii) for v ∈ |∆| ∩ N , Ψ −1(v) is a locally closed subset ofX∞.

Proof. For aK-valued pointα ∈ X∞(0), take a coneσ ∈ ∆ such thatα(0) ∈ Uσ . Thenα

is an arc ofUσ with α(η) ∈ T , therefore we have a commutative diagram:

k[σ∨ ∩ M] α∗
K[[t]]

k[M] α∗
K((t))

Let vα :M → Z be a map defined byu �→ ordα∗(xu). Thenvα is a group homomorphism
thereforevα ∈ N with the pairing 〈vα,u〉 = ordα∗(xu). For u ∈ σ∨ ∩ M, it follows
〈vα,u〉 = ordα∗(xu) � 0, which implies thatvα ∈ σ . Now we obtain a mapΨ :X∞(0) →
|∆| ∩ N , α �→ vα . To show the surjectivity, take a pointv ∈ |∆| ∩ N . Let σ be a cone
containingv. Let α∗ : k[M] → k((t)) be ak-algebra homomorphism defined byα∗(xu) =
t〈v,u〉 for u ∈ M. Then,α∗(k[σ∨ ∩ M]) ⊂ k[[t]], since〈v,u〉 � 0 for u ∈ σ∨. Hence,α∗
gives ak-valued pointα in X∞(0).

For (ii), we prove the equalityΨ −1(v) = T∞ · α for a k-valued pointα ∈ Ψ −1(v). For
a k-valued pointα ∈ X∞(0), take a coneσ such thatα ∈ (Uσ )∞. Thenα corresponds
to a ring homomorphismα∗ : k[σ∨ ∩ M] → k[[t]]. On the other hand, aK-valued point
γ ∈ T∞ corresponds to a ring homomorphismγ ∗ : k[M] → K[[t]]. This homomorphism is
equivalent to a ring homomorphismγ ∗ : k[σ∨ ∩M] → K[[t]] such that the order ofγ ∗(xu)

is zero for everyu ∈ σ∨ ∩ M, becauseσ∨ ∩ M generatesM. Then,γ · α corresponds to
the homomorphismk[σ∨ ∩ M] → K[[t]] which mapsxu to γ ∗(xu)α∗(xu).

Now let α ∈ (Uσ )∞ be the arc corresponding tov which was constructed in (i). I
β ∈ T∞ · α, then there exists aK-valued pointγ ∈ T∞ such thatβ = γ · α. Then, by the
above remark, it follows thatβ ∈ (Uσ )∞ andβ corresponds toβ∗ : k[σ∨ ∩ M] → K[[t]]
which mapsxu to γ ∗(xu)t〈v,u〉 whose order is〈v,u〉. Thereforeβ ∈ Ψ −1(v). Conversely,
suppose thatβ ∈ Ψ −1(v) and letσ be a cone such thatβ ∈ (Uσ )∞. Then we can defin
γ ∈ T∞ by γ ∗ : k[σ∨ ∩ M] → K[[t]], γ ∗(xu) = t−〈v,u〉β∗(xu). For thisγ we have that
γ · α = β .

For the assertion (iii), take a coneσ ∈ ∆ such thatT∞ · α ⊂ (Uσ )∞. It is sufficient
to prove thatT∞ · α is locally closed in(Uσ )∞ ∩ X∞(0). Denote(Uσ )∞ by SpecA. Let
Λ : k[σ∨ ∩ M] → A[[t]] be the ring homomorphism induced from the universal fam
of arcs on(Uσ )∞ (see Proposition 2.3). LetΛ(xuj ) = ∑

i�0 aj,i t
i for generatorsuj

(j = 1, . . . , r) of the semigroupσ∨ ∩ M. Then

T∞ · α = Ψ −1(v)

= {
β ∈ (Uσ )∞ ∩ X∞(0)

∣∣ aj,i(β) = 0 for i < 〈v,uj 〉,
aj,i(β) �= 0 for i = 〈v,uj 〉, j = 1, . . . , r

}
.

Hence,T∞ · α is locally closed in(Uσ )∞ ∩ X∞(0). �
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4.2. For τ ∈ ∆, X(τ) is a toric varietyTNτ (∆τ ), where∆τ consists of the conesσ ⊂
NR/τR which are the images of the conesσ ∈ ∆ such thatτ < σ andNτ is the image of
N in NR/τR. The affine open subsetUσ ⊂ X(τ) is Speck[τ⊥ ∩ σ∨ ∩ M].

SinceX∞(τ ) = X(τ)∞(0) as is seen in Remark 3.8, we obtain the following fr
Theorem 4.1.

Corollary 4.3. LetX be a toric variety defined by a fan∆ andτ ∈ ∆. Then,

(i) there is a surjective canonical map

Ψ :X∞(τ ) → |∆τ | ∩ Nτ , α �→ vα;

(ii) for everyv ∈ |∆τ | ∩ Nτ there exists ak-valued pointα ∈ X∞(τ ) such that

Ψ −1(v) = T∞ · α,

whereT∞ · α is the orbit ofα by the action ofT∞; and
(iii) for v ∈ |∆τ | ∩ Nτ , Ψ −1(v) is a locally closed subset ofX∞.

Corollary 4.4.

(i) X∞ =
⋃

α: k-valued point ofX∞
T∞ · α.

(ii) For every coneτ , there is a bijection:

{
T∞ · α | α is ak-valued point∈ X∞(τ )

} � |∆τ | ∩ Nτ .

Definition 4.5. As an orbit of ak-valued pointα in X∞(τ ) is determined by the lattic
pointv = vα ∈ |∆τ |, we sometimes denote the orbitT∞ · α by T∞(v).

Definition 4.6. Let σ be a cone inN and v, v′ two points inσ . We denotev �σ v′ if
v′ ∈ v + σ . It is clear that�σ is an order inσ .

Now we are going to study the dominant relation between orbits.

Proposition 4.7. Let X be a toric variety defined by a fan∆. Let α ∈ X∞(τ ) and
β ∈ X∞(γ ) be k-valued points forτ, γ ∈ ∆. If T∞ · α ⊃ T∞ · β , thenτ < γ and there
exists a coneσ ∈ ∆ containingτ andγ such thatα,β ∈ (Uσ )∞.

Proof. By the condition of the proposition, it follows thatβ ∈ X∞(τ ) = X(τ)∞. As
β(η) ∈ orbγ , we haveorbγ ⊂ X(τ), which impliesτ < γ . To see the second assertio
take a coneσ ∈ ∆ such thatβ ∈ (Uσ )∞. Thenβ(η) ∈ orb(γ ) impliesγ < σ . Since(Uσ )∞
is an open subset ofX∞ containingβ , there is an arcα′ ∈ T∞ · α ∩ (Uσ )∞. As (Uσ )∞ is
T∞-invariant, it contains bothT∞ · α andT∞ · β . �
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Hence, in order to interpret the condition of the dominationT∞ · α ⊃ T∞ · β in terms
of the corresponding lattice points, we may assume thatX is an affine toric variety. If
X is an affine toric variety defined by a coneσ andT∞(v) ⊂ X∞(τ ) for a faceτ < σ ,
then v ∈ σ ∩ Nτ by Corollary 4.3, whereσ is the image ofσ ⊂ NR by the projection
NR → NR/τR.

Proposition 4.8. LetX be an affine toric variety defined by a coneσ in N . Then, two orbits
T∞(v) andT∞(v′) in X∞(0) satisfyT∞(v) ⊃ T∞(v′) if and only ifv �σ v′.

Proof. AssumeT∞(v) ⊃ T∞(v′). If 〈v,u〉 > 〈v′, u〉 for someu ∈ σ∨ ∩ M, then

T∞(v) ⊂ T∞(v) ∩ {
α ∈ X∞(0)

∣∣ ordα∗(xu) � 〈v′, u〉 + 1
}
,

where the right-hand side is a proper closed subset ofT∞(v). This is a contradiction
Hence,v �σ v′.

Next, assume thatv �σ v′ for v, v′ ∈ σ ∩N . To prove the converse, we divide the pro
into two steps.

Step 1. The caseX is non-singular.
Let e1, e2, . . . , en be the basis ofM such thate1, . . . , er , e

±1
r+1, . . . , e

±1
n generateσ∨.

Define ak-algebra homomorphismΦ∗ : k[σ∨ ∩ M] → k[[λ, t]] by

Φ∗(xei ) = t〈v′,ei 〉 + λt〈v,ei 〉.

Here, note thatΦ∗(xei ) = 1 + λ for i � r + 1, since〈v, ei 〉 = 〈v′, ei〉 = 0 for thesei ’s.
Then, we obtain a morphismΦ : Speck[[λ]] → X∞(0) such thatΦ(0′) ∈ T∞(v′) and
Φ(η′) ∈ T∞(v), where 0′ is the closed point andη′ is the generic point of Speck[[λ]].
This implies thatT∞(v) contains a point ofT∞(v′). As T∞(v) is T∞-invariant, it follows
thatT∞(v) ⊃ T∞(v′).

Step 2. The general case.
Defineσ ′ as the cone generated byv andv′ − v. Then, note thatσ ′ ⊂ σ and

v �σ ′ v′.

Let N ′ be the subgroup ofN generated byv, v′ − v andv1, v2, . . . , vs ∈ N , where their
imagesv1, v2, . . . , vs ∈ N/N ∩ σ ′R are a basis ofN/N ∩ σ ′R. Then, the toric variety
Z = TN ′(σ ′) is non-singular and there is a canonical equivariant morphism

ϕ :Z → X

with the surjective morphismT ′ → T of the tori. By Step 1,T ′∞(v) ⊃ T ′∞(v′) follows
from v �σ ′ v′. Take k-valued pointsα,β ∈ Z∞(0) such thatvα = v, vβ = v′, then
T∞ · ϕ∞(α) = ϕ∞(T ′∞ · α) andT∞ · ϕ∞(β) = ϕ∞(T ′∞ · β). ThereforeT∞(v) ⊃ T∞(v′)
follows fromvϕ∞(α) = v, vϕ∞(β) = v′. �
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As X∞(τ ) = X(τ)∞(0) we obtain the following as a corollary of Proposition 4.8.

Corollary 4.9. Let X be an affine toric variety defined by a coneσ in N . Then, for a
faceτ < σ , two orbitsT∞(v) andT∞(v′) in X∞(τ ) satisfyT∞(v) ⊃ T∞(v′) if and only if
v �σ v′, whereσ ⊂ NR/τR is the image ofσ .

Next we will see the relation of the orbits in mutually different strata. To see thi
need the following combinatorial lemma:

Lemma 4.10. Let σ be ann-dimensional cone inN , wheren = dimNR, andτ an r-di-
mensional face ofσ . Then, there exist a non-singularn-dimensional coneσ0 in N and its
r-dimensional faceτ0 such thatσ0 ⊂ σ andτ0 ⊂ τ .

Proof. First, subdivideτ into non-singular cones and take one ofr-dimensional cones a
τ0. Take anyn-dimensional coneσ ′ in N with the faceτ0 inside ofσ , and then subdivide
σ ′ into a non-singular fanΣ by Danilov’s procedure [3, §8]. Asτ0 is non-singular, it is
still in the new fanΣ as a cone. Hence, we can take ann-dimensional non-singular con
σ0 with the faceτ0 in Σ . �
Proposition 4.11. Let X be an affine toric variety defined by a coneσ in N . Then, two
orbitsT∞(v) ⊂ X∞(τ ), T∞(v′) ⊂ X∞(γ ) satisfy the relationT∞(v) ⊃ T∞(v′) if and only
if τ < γ andρ(v) �σ v′, whereρ :NR/τR → NR/γ R is the canonical projection andσ
is the image ofσ in NR/γ R.

Proof. First assume thatT∞(v) ⊃ T∞(v′). Then, we haveτ < γ by Proposition 4.7. By
the assumption, there is a morphismΦ : Speck[[λ]] → X∞(0) such thatβ := Φ(0′) ∈
T∞(v′) and α := Φ(η′) ∈ T∞(v), where 0′ is the closed point andη′ is the generic
point of Speck[[λ]]. As α ∈ X∞(τ ), Φ factors throughX(τ)∞. This gives thek-algebra
homomorphism:

Φ∗ : k
[
τ⊥ ∩ σ∨ ∩ M

] → k[[λ, t]].

By usingΦ∗, we obtain ordα∗(xu) � ordβ∗(xu) for u ∈ τ⊥ ∩ σ∨ ∩ M in the same way
as in the proof of Proposition 4.8. Therefore, foru ∈ γ ⊥ ∩ σ∨ ∩ M ⊂ τ⊥ ∩ σ∨ ∩ M the
inequality〈v,u〉 = 〈ρ(v),u〉 � 〈v′, u〉 holds. Hence,ρ(v) �σ v′.

To prove the converse, assumeρ(v) �σ v′. Then, it is sufficient to prove thatT∞(v) ⊃
T∞(ρ(v)), becauseT∞(ρ(v)) ⊃ T∞(v′) follows from Corollary 4.9. To proveT∞(v) ⊃
T∞(ρ(v)), we may assume thatγ = σ , sinceX∞(γ ) = X(γ )∞(0). We also can assum
that dimσ = n = dimNR, because if dimσ = s < n, then T∞(v) = T n−s∞ × T s∞(v),
T∞(ρ(v)) = T n−s∞ × T s∞(ρ′(v)), whereρ′ :σR → σR/τR is the projection andT s, T n−s

ares and(n − s)-dimensional tori, respectively. So the problem is reduced to proving
T s∞(v) ⊃ T s∞(ρ′(v)).

Now, for σ andτ , let σ0 andτ0 be as in Lemma 4.10. Lete1, e2, . . . , en be a basis ofM
which generateσ∨

0 ande1, e2, . . . , er (r < n) generateτ⊥
0 ∩ σ∨

0 . Let

Λ∗ : k
[
σ∨

0 ∩ M
] → k[[λ]]((t))
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be ak-algebra homomorphism defined by

Λ∗(xei ) = (λ + 1)t〈v,ei〉 for i = 1, . . . , r,

Λ∗(xei ) = λt〈v,ei〉 for i = r + 1, . . . , n.

It is easy to check thatΛ∗(xu) ∈ k[[λ, t]] for everyu ∈ σ∨ ∩ M, sincev ∈ σ . Then, we
obtain a morphismΛ : Spec[[λ]] → X∞. For everyu ∈ σ∨ ∩ M, we have ordΛ∗(xu) =
〈v,u〉, thereforeα := Λ(η′) ∈ T∞(v) ⊂ X∞(0), where 0′ is the closed point andη′ is the
generic point of Speck[[λ]]. Sinceτ⊥ = τ⊥

0 , β := Λ(0′) : Speck[[t]] → X factors through
X(τ) by the definition ofΛ∗. As the corresponding ring homomorphismβ∗ is extended to
a ring homomorphismk[τ⊥ ∩ M] → k((t)), it follows that β(η) ∈ orbτ , which implies
β ∈ X∞(τ ). For everyu ∈ τ⊥ ∩ σ∨ ∩ M, we have ordβ∗(xu) = 〈v,u〉 = 〈ρ(v),u〉.
Thereforeβ ∈ T∞(ρ(v)). Hence, it follows thatT∞(v) contains a point ofT∞(ρ(v)). By
theT∞-invariance ofT∞(v), we obtainT∞(v) ⊃ T∞(ρ(v)). �

Summing up Propositions 4.7, 4.11, and Corollary 4.9, we obtain the following.

Theorem 4.12. Let X be a toric variety andT∞(v) andT∞(v′) two orbits inX∞(τ ) and
X∞(γ ), respectively. Then the following are equivalent:

(i) T∞(v) ⊃ T∞(v′),
(ii) τ < γ , there exists a coneσ > γ such thatT∞(v), T∞(v′) ⊂ (Uσ )∞, andρ(v) �σ v′,

whereρ :NR/τR → NR/γ R is the projection andσ is the image ofσ in NR/γ R.

4.13. By now, the dominant relation of orbits is discussed in terms of the order rel
of lattice points. This gives a relation between arc families and valuations, which
be discussed in the next section. But the dominant relation of orbits can be more
described in terms of homomorphisms of semigroups.

If X is an affine toric variety defined by a coneσ and T∞(v) ⊂ X∞(τ ) for a face
τ < σ , thenv ∈ σ ∩ Nτ ⊂ NR/τR, whereσ is the image ofσ in NR/τR. Then,v can
be considered as a semigroup homomorphismv : τ⊥ ∩ σ∨ ∩ M → Z�0. Here,v can be
extended as a semigroup homomorphismv :σ∨ ∩ M → Z�0 ∪ {∞}, where we define
v(u) = ∞ for everyu /∈ τ⊥.

Conversely, every semigroup homomorphismv :σ∨ ∩ M → Z�0 ∪ {∞} is obtained by
such an extension from an element ofσ ∩ Nτ ⊂ NR/τR for some faceτ .

Lemma 4.14. Let σ be a cone inN and v :σ∨ ∩ M → Z�0 ∪ {∞} a homomorphism o
semigroups. Then, there exists a faceτ < σ such thatv−1(Z�0) = τ⊥ ∩ σ∨ ∩ M.

Proof. Take the minimal faceγ of σ containingC = v−1(Z�0). Then,C contains a
relative interior pointu of γ . We will show thatC = γ ∩ M. Assume that there exis
a pointu0 ∈ γ ∩ M such thatv(u0) = ∞. Then, note thatu0 + σ∨ ⊂ v−1(∞). Let σ∨ be
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te

n”
generated byu1, u2, . . . , ur . Then, there is a representationu = ∑r
i=1 aiui with ai > 0 for

everyi andu0 = ∑r
i=1 biui with bi � 0 for everyi. Then, in the equality:

mu =
∑

biui +
∑

i

(mai − bi)ui,

the second term of the right-hand side is inσ∨ for m � 0. Hence,v(mu) = ∞, but this
contradicts to thatv(mu) = mv(u) ∈ Z�0. Now, we obtain thatC = γ ∩ M andγ can be
written asτ⊥ ∩ σ∨ for someτ < σ . �

By Corollary 4.3 and Theorem 4.12, we obtain the following interpretation.

Theorem 4.15. LetX be a toric variety defined by a fan∆, then we obtain the following:

(i) There is a bijective map:

{T∞ · α | α : k-valued point ofX} ∼−→
⊔
σ

Homs.g.

(
σ∨ ∩ M,Z�0 ∪ {∞}),

whereσ varies the maximal cones in∆. Via this map, eachT∞ · α can be written as
T∞(v) for a suitable elementv of the right-hand side.

(ii) We have the relationT∞(v) ⊃ T∞(v′) if and only if there is a maximal coneσ in ∆

such thatv, v′ ∈ Homs.g(σ
∨ ∩ M,Z�0 ∪ {∞}) andv � v′, wherev � v′ means that

v(u) � v′(u) for everyu ∈ σ∨ ∩ M.

5. Contact loci of an invariant ideal

In this section, we will give the answer to the embedded version of Nash proble
an invariant ideal of a toric variety.

Definition 5.1. Let X be a variety over an algebraically closed fieldk andk(X) the rational
function field of X. A divisorial valuationof k(X) is a positive integer times discre
valuation valD associated to a prime divisorD on some normal varietyX′ which is
birational toX. Note that this definition is wider than the definition of “divisorial valuatio
in [6].

Definition 5.2. Let X be an affine toric variety defined by a coneσ in N . For every point
v ∈ σ ∩ N we can associate a valuationvalv onk(X) as follows:

Define

valv(f ) := min
xu∈f

〈v,u〉, for f ∈ k
[
σ∨ ∩ M

]
and extend it onk(X), the quotient field ofk[σ∨ ∩ M]. This valuation is called atoric
valuation. Herexu ∈ f means that the coefficient of the monomialxu in f is not zero.
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Note that the toric valuation defined by a primitive elementv is valDv , whereDv is the
irreducible invariant divisororb(R�0v) on some toric varietyX′ which is birational toX.
Since every toric valuation is a positive integer times such a valuation, every toric valu
is a divisorial valuation.

5.3. For a varietyX over an algebraically closed fieldk, let ψm :X∞ → Xm (m ∈ Z�0) be
the truncation morphism. Note thatψ0 = π . Recall that a cylinderC in X∞ is a subset o
the formψ−1

m (S), for somem and some constructible subsetS ⊂ Xm.

Example 5.4. Let X be a toric variety. Then an orbitT∞(v) of a k-valued point inX∞(0)

is a cylinder. Indeed, we may assume thatX is the affine toric variety defined by a coneσ .
The orbit is the subset ofX∞ consisting of arcsα whose corresponding homomorphis
α∗ : k[σ∨ ∩ M] → K[[t]] satisfy ordα∗(xui ) = 〈v,ui〉 for generatorsu1, . . . , us of
σ∨ ∩ M. Let m � maxi=1,...,s〈v,ui 〉 and Sm ⊂ Xm the subset consisting ofm-jets
γ whose corresponding homomorphismsγ ∗ : k[σ∨ ∩ M] → SpecK[t]/(tm+1) satisfy
ordγ ∗(xui ) = 〈v,ui 〉. Then,Sm is a locally closed subset ofXm andT∞(v) = ψ−1

m (Sm).

5.5. Let X be a non-singular variety overC andC an irreducible cylinder inX∞. In [6]
a valuationvalC corresponding toC is defined as follows: Note first that ifα ∈ X∞
is a C-valued point, and iff is a rational function onX defined in a neighborhood o
π(α), then ordα∗(f ) is well defined, whereα∗ :OX → C[[t]] is the ring homomorphism
corresponding toα. If the domain off intersectsπ(C), thenvalC(f ) := ordα∗(f ), for
generalα ∈ C. ThenvalC(f ) is well defined and can be extended to a valuation of
function field ofX.

Proposition 5.6 [6]. LetX be a non-singular variety overC andC an irreducible cylinder
in X∞ which does not dominateX. ThenvalC is equal with a divisorial valuation.

In the proof of Proposition 5.6, the condition thatX is non-singular is used. Therefor
this proposition does not imply that for a cylinderC = T∞(v) ⊂ X∞(0) on a singular
toric varietyX, the corresponding valuationvalC is a divisorial valuation. However, th
following proposition shows thatvalC is a divisorial valuation forC = T∞(v).

Proposition 5.7. Let X be a toric variety over an algebraically closed fieldk and
C = T∞(v) ⊂ X∞(0); thenvalC = valv . In particular,valC is a divisorial valuation.

Proof. We may assume thatX is an affine toric variety defined by a coneσ . It is
sufficient to prove thatvalC(f ) = valv(f ) for every elementf ∈ k[σ∨ ∩ M]. Note that
valC(f ) = ordα∗(f ) for the generic pointα ∈ C. If f is a monomialxu (u ∈ σ∨ ∩ M),
then by the definition ofC = T∞(v) we have

valC(xu) = ordα∗(xu) = 〈v,u〉 = valv(x
u).

For generalf , we have

valC(f ) � min
u

valC(xu) = min
u

〈v,u〉 = valv(f ).

x ∈f x ∈f
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On the other hand, letRv is the discrete valuation ring of the divisorial valuationvalv .
Then there is an indeterminatet such that the composite

β∗ : k[σ∨ ∩ M] ↪→ Rv ↪→ R̂v � K[[te]] ↪→ K[[t]]

satisfies ordβ∗(f ) = valv(f ) for f ∈ k[σ∨ ∩M]. Here,K is the residue field ofRv by the
maximal ideal ande is the positive integer such thatv = ev0 for a primitive elementv0. As
the arcβ : SpecK[[t]] → X corresponding toβ∗ is aK-valued point ofC, we obtain the
following inequality by the upper semicontinuity

valC(f ) = ordα∗(f ) � ordβ∗(f ) = valv(f ).

Therefore, we obtainvalC(f ) = valv(f ). �
Now we recall the definition of the contact locus of an ideal of a varietyX. Let X be an

affine variety over an algebraically closed fieldk with the coordinate ringA anda an ideal
of A. Then, we define thepth contact locus ofa by

Contp(a) =
{
α ∈ X∞

∣∣ min
f ∈a

ordα∗(f ) = p
}
.

It is clear that this is a cylinder. IfX is non-singular then the irreducible components
also cylinders. Therefore each irreduciblecomponent of the contact locus correspond
a divisorial valuation. Now, we can state the embedded version of Nash problem
in [6].

Problem 5.8. Which valuations correspond to the irreducible components ofContp(a)?

We consider this problem for an invariant ideala on a toric varietyX. We should note
that for a singular varietyX, an irreducible component of a cylinder is not a cylinder
general, therefore an irreducible component does not necessarily correspond to a divisor
valuation. But in our toric case, an irreducible component of the contact locus corres
to a divisorial valuation.

Lemma 5.9. LetX be an affine toric variety anda an invariant ideal onX. Then, for every
integerp > 0, an orbitT∞(v) is either contained inContp(a) or disjoint fromContp(a).

Proof. Take an arcα ∈ T∞(v). Thenα belongs to Contp(a) if and only if

p = min
xu∈a

ordα∗(xu) = min
xu∈a

〈v,u〉,

where we define〈v,u〉 = ∞ if v ∈ NR/τR andu /∈ τ⊥ for a coneτ . The assertion of th
lemma follows immediately from this.�

By this lemma it follows that Contp(a) is a union ofT∞(v)’s.
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Lemma 5.10. LetX be an affine toric variety defined by a coneσ in N anda an invariant
ideal onX. If an orbit T∞(v) ⊂ Contp(a) is in X∞(τ ) for τ �= 0, then there is an orbi
T∞(ṽ) ⊂ X∞(0) such thatT∞(ṽ) ⊂ Contp(a) andT∞(ṽ) ⊃ T∞(v).

Proof. Letρ :NR → NR/τR be the projection. Asv is in the imageρ(σ ∩N), we can take
a pointv0 ∈ σ ∩ N such thatρ(v0) = v. Then〈v,u〉 = 〈v0, u〉 for u ∈ σ∨ ∩ τ⊥. We can
naturally define〈v,u〉 = ∞ for u ∈ σ∨ \ τ⊥. Let v1 ∈ τ ∩N be in the relative interior ofτ .
Then〈mv1, u〉 > p for everyu ∈ (σ∨ \ τ⊥) ∩ N and an integerm > p. Let ṽ = v0 + mv1
(m > p). Then, for everyu ∈ τ⊥ ∩ σ∨ ∩ M it follows that〈ṽ, u〉 = 〈v0, u〉 = 〈v,u〉, while
for everyu ∈ (σ∨ \ τ⊥) ∩ M it follows that〈ṽ, u〉 > p. Therefore

min
xu∈a

〈ṽ, u〉 = min
xu∈a

〈v,u〉 = p.

HenceT∞(ṽ) ⊂ Contp(a).
On the other hand,ρ(ṽ) = v yieldsT∞(ṽ) ⊃ T∞(v), by Proposition 4.11. �
By these lemmas, we obtain that an irreducible component of Contp(a) is the closure

of T∞(v) for somev ∈ σ ∩ N such that minxu∈a〈v,u〉 = p. Here, by Proposition 4.8 an
Proposition 5.7, we obtain the answer to the embedded version of Nash problem.

Theorem 5.11. Let a be an invariant ideal on an affine toric varietyX defined by a cone
σ . Then, an irreducible component ofContp(a) is the closure ofT∞(v) for an element
v minimal inV (a,p) = {v′ ∈ σ ∩ N | minxu∈a〈v′, u〉 = p} with respect to the order�σ .
Therefore the valuations{valv | v ∈ σ ∩ N minimal inV (a,p)} correspond bijectively to
the irreducible components ofContp(a).

Remark 5.12. Let G(a) ⊂ MR be the Newton polytope ofa as in Fig. 1 and∆(a)

the dual fan ofG(a). The dual fan is the subdivision ofσ . Then, the functiong(v) :=
minu∈G(a)〈v,u〉 (v ∈ σ) is a strongly convex piecewise linear function with respec
the fan∆(a). Therefore the subsetg−1(p) = {v ∈ σ | g(v) = p} is the boundary of som
convex polytope as in the Fig. 2. The minimal elements ofV (a,p) are on this boundary. I

Fig. 1.
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Fig. 2.

is clear that this convex polytope ispG(a)◦, whereG(a)◦ is the polar polytope defined a
{v ∈ σ | g(v) � 1}.

We can see that a lattice point of a compact face ofg−1(p) is always a minimal elemen
of V (a,p), therefore it gives a valuation corresponding to an irreducible compone
Contp(a). If p is divisible enough so that every vertex ofpG(a)◦ is in N , then the minima
elements inV (a,p) coincide with the lattice points on the compact faces ofg−1(p).

Remark 5.13. The referee kindly informed the following to the author: Foru ∈ σ∨ ∩ M,
the log canonical threshold lc(X,V (a),V (xu)) turns out to be the maximal valueλ such
thatxu /∈ I(X,aλ) by [2], whereI(X,aλ) is a multiplier ideal fora. Some multiple of the
primitive vectorv ∈ σ ∩N corresponding to a divisor which computes lc(X,V (a),V (xu))

lies on a compact face ofg−1(p) for somep. Conversely, for some multiple of a primitiv
vectorv ∈ σ ∩ N on a compact face ofg−1(p), there existsu ∈ σ∨ ∩ M such that the
divisor corresponding tov computes the log canonical threshold lc(X,V (a),V (xu)).

Example 5.14. Let X be an affine toric variety defined by a coneσ . Then the component
in π−1(SingX) areT∞(v)’s, wherev’s are the minimal elements in

⋃
τ<σ :singularτ

o ∩ N

with respect to the order�σ . Here, τo is the relative interior ofτ . This is proved as
follows: Let a be the ideal of SingX, then it is an invariant ideal. Asπ−1(SingX) =⋃

p�1 Contp(a), it follows that an irreducible component ofπ−1(SingX) is T∞(v), where
v is minimal amongv′ ’s such thatv′ ∈ σ ∩ N and minxu∈a〈v′, u〉 � 1 by Theorem 5.11
Here, minxu∈a〈v′, u〉 � 1 if and only if α(0) ∈ SingX for α with vα = v′, which is
equivalent to the fact thatv′ ∈ τo for a singular faceτ < σ by [8, Proposition 3.9].
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