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1. Introduction

This paper considers a classical problem, apparently studied first by Kronecker, concerning pairs
of reflexive forms on a common vector space. Such pairs arise, for example, when intersecting two
classical groups [BF,GG1,BO,GG2], and also when constructing automorphism groups of groups and
rings [BW2]. The general objective is to understand the geometry common to both reflexive forms.
The specific goal of this paper is to introduce new algebraic ideas and algorithmic techniques that
enable us to determine the necessary geometric information very efficiently.

In earlier work [BW1], the authors solved the general problem of describing the intersection
of an arbitrary set of classical subgroups defined on a common vector space of odd order (that
is, without restriction on numbers of forms, their geometric types, degeneracy, or their specific
natural field of definition). In addition, a polynomial-time algorithm was presented to construct
this intersection and to describe its structure. The algorithm uses O ∼(MM(d2)) field operations,
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where MM(n) is the number of field operations required to multiply (n × n)-matrices. (Recall that
O ∼( f (n)) = O ( f (n) logc n), where c is a constant.)

The key algorithmic and theoretical tool in [BW1] is the ring of adjoints (Section 2) and the con-
struction of this ring is also the principal algorithmic bottleneck. Thus, improving the practical reach
of our methods demands a faster technique to compute the ring of adjoints. The main result of this
paper shows that a significant improvement is indeed possible if we restrict to a pair of classical
groups.

Theorem 1.1. There is a Las Vegas algorithm which, given classical subgroups G, H of GL(V ), where V is a
finite d-dimensional vector space over a finite field k of odd characteristic, returns a generating set X for the
group G ∩ H. The algorithm uses O ∼(|X | · MM(d) + RND(d) + FAC(d, e)) operations in k, where e = 2 if
precisely one of G or H is unitary, and e = 1 otherwise.

In the complexity statement, RND(d) denotes the number of operations needed to select inde-
pendent, (nearly) uniformly distributed random elements from an algebra of (d × d)-matrices, and
FAC(d, e) denotes the number of field operations needed to factorize a polynomial of degree d in
a skew-polynomial ring k[x; θ], where θ has order e. These complexity parameters are discussed in
more detail in the remarks below.

The main tool in Theorem 1.1 is the introduction of a single semilinear transformation, which we
call the slope (Section 3), whose centralizer is the ring of adjoints. To take advantage of this observa-
tion we devise a polynomial-time algorithm to construct the centralizer of a semilinear transformation
(Theorem 4.1) which we believe will have uses independent of our present application. Once we have
constructed the ring of adjoints as a centralizer, our strategy follows [BW1].

A notion analogous to the slope is used in both [GG1] and [BO]. We abstract that notion here to
admit cases where one or both of the forms is Hermitian. As far as we are aware no attempt has
previously been made to study such pairs of forms directly on their natural domain. They can, for
example, be handled using the (slower) methods of [BW1], but there one must consider instead the
isometries common to a set of four forms defined on a subfield.

In [BW1] we reported on an implementation of our algorithm in Magma [BCP]. We have since
incorporated the methods used to prove Theorem 1.1 and produced a Magma package to compute
effectively with reflexive forms and their associated algebraic structures. In Section 6 we report on
this package, noting the dramatic improvement in performance one sees by using the newer “slope
methods” for pairs of forms instead of the earlier generic algorithm.

Remarks on complexity. There are several aspects of the complexity stated in Theorem 1.1 that re-
quire further comment.

(1) The complexity of MM(d) is O (dω), where 2 � ω � 3. In practice the exponent ω is closer to 3
than to 2 [vzGG].

(2) The complexity of FAC(d, e) is O (MM(d) + e(e − 1)d4) [Ge]. Hence, in our setting the complexity
is O (d4) if precisely one of the input classical groups is unitary, and O (MM(d)) for all other pairs
of input groups.

(3) Despite much effort, the complexity of RND(d) is not fully understood (cf. [Iv, Section 2]). It is
no worse than O (MM(d2)), the number of field operations needed to construct a basis of the
given algebra. Fortunately, since our randomized algorithm is Las Vegas (any result is guaranteed
to be correct), we may use standard O (MM(d))-time random generation heuristics with greater
confidence.

(4) The crude bound of O (d2) on the cardinality of the output generating set X is already enough to
establish the improved complexity of the new algorithm over its predecessor in [BW1]. However,
based both on intuition and experimental evidence, we believe that |X | is actually O (d). More-
over, the run-times of our implementation support the view that the complexity of the entire
algorithm is O ∼(d · MM(d)) (see Section 6).
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2. Background

To understand the new ideas we first need a brief description of the main concepts in [BW1] along
with various standard definitions. Throughout this section, k will denote a field, and V and W will
denote finite-dimensional k-vector spaces.

Bimaps and reflexive forms. A k-bimap on V is a function b : V × V → W that is k-semilinear in the
first variable and k-linear in the second variable. We associate to a k-bimap b its group of isometries

Isom(b) = {
f ∈ GL(V ): b(u f , v f ) = b(u, v) for all u, v ∈ V

}
. (2.1)

In the special case that W is 1-dimensional, a k-bimap is usually referred to as a k-form. A k-form ϕ
is reflexive if ϕ(u, v) = 0 whenever ϕ(v, u) = 0 for u, v ∈ V , meaning that the usual perpendicularity
relation is symmetric. A reflexive k-form ϕ is nondegenerate if rad(ϕ) = {v ∈ V : ϕ(v, V ) = 0} = 0.

The (misattributed) Birkhoff–von Neumann Theorem [Tay, Theorem 7.1] asserts that every nonde-
generate reflexive form on V is a scalar multiple of one of the following types of forms:

(i) alternating if ϕ(v, v) = 0 for all v ∈ V ;
(ii) symmetric if ϕ(u, v) = ϕ(v, u) for all u, v ∈ V ; or

(iii) Hermitian if there is an automorphism α of k such that ϕ(u, v) = ϕ(v, u)α for all u, v ∈ V .

These definitions apply also to degenerate reflexive k-forms. As the group of isometries is not changed
by scaling a form, we regard all reflexive forms as alternating, symmetric, or Hermitian.

Classical groups. We say that G � GL(V ) is classical if Isom(ϕ)′ � G � Isom(ϕ) for some nondegen-
erate reflexive k-form ϕ on V . Thus, the intersection of two classical groups contains isometries of
a pair [ϕ , γ ] of distinct reflexive forms. Following [BW1], we associate to such a pair the bimap
(ϕ ∩ γ ) : V × V → k2 defined naturally as

(ϕ ∩ γ )(u, v) = (
ϕ(u, v), γ (u, v)

)
(∀u, v ∈ V ) (2.2)

and work instead with b = ϕ ∩ γ , observing that Isom(ϕ ∩ γ ) = Isom(ϕ) ∩ Isom(γ ). This provides
some flexibility. For, if both ϕ and γ are degenerate (making them unsuitable for Theorem 1.1), it
may be the case that ϕ ∩ γ = ϕ′ ∩ γ ′ with one of ϕ′ or γ ′ nondegenerate; one may then replace
[ϕ,γ ] by [ϕ′, γ ′]. An example of such a pair is given in Section 7.

Algebra of adjoints. Next we associate to a k-bimap b : V × V → W a k-algebra of adjoints,

Adj(b) = {
( f , g) ∈ End V × (End V )op: ∀u, v ∈ V , b(u f , v) = b(u, gv)

}
, (2.3)

where End V is the ring of endomorphisms of V , and (End V )op is its opposite ring. We assume
that elements of End V and (End V )op act on V on the right and on the left, respectively. Then, for
f ∈ End V and g ∈ (End V )op, the assignments f op v := v f and vgop := gv for all v ∈ V define inverse
isomorphisms between End V and (End V )op. (Writing endomorphisms as matrices relative to a fixed
basis of V , the “op” map is simply transposition.)

If b is nondegenerate then ( f , g), ( f , g′) ∈ Adj(b) implies that g = g′; in that case we usually write
f ∗ for g . Furthermore, since ϕ and γ are reflexive, if ( f , f ∗) ∈ Adj(b), then also (( f ∗)op, f op) ∈ Adj(b).
Thus Adj(b) is equipped with a natural involution (anti-automorphism of order at most 2) defined by

( f , g)∗ = (
gop, f op) (∀( f , g) ∈ Adj(b)

)
. (2.4)
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As with isometry groups, observe that Adj(ϕ ∩γ ) = Adj(ϕ)∩ Adj(γ ). Observe also that V is both a
left and a right Adj(b)-module and so we can form V ⊗Adj(b) V . Then Eq. (2.3) may be interpreted as
saying that b factors through the k-bimap ⊗Adj(b) : V × V → V ⊗Adj(b) V ; indeed Adj(b) is universal
with that property.

Isometry groups. In Eq. (2.1) notice that isometries of b : V × V → W are applied only to V and not
to W . Hence, we might hope to replace b with another k-bimap on V possessing the same isometries
as b, but having a more natural codomain. Indeed, observe that Isom(b) = Isom(⊗Adj(b)). Expressed
another way, we see that

Isom(b) = {
f ∈ GL(V ):

(
f ,

(
f −1)op) ∈ Adj(b)

}
(2.5)

∼= {
( f , g) ∈ Adj(b): ( f , g)( f , g)∗ = (1,1)

}
. (2.6)

The group in Eq. (2.6) is referred to as the group of unitary elements (or the norm 1 group) of the
∗-algebra Adj(b) and we denote it Adj(b)� .

Remark 2.1. When defining Isom(b) and Adj(b) it is not necessary to specify k. Indeed we were careful
not do so explicitly in their definitions in Eqs. (2.1) and (2.3). We need only define elements of Adj(b)

and Isom(b) as endomorphisms of V as an abelian group. For, if ( f , g) ∈ Adj(ϕ), then, for all u, v ∈ V
and a ∈ k, we have

b
(
(au) f , v

) = b(au, gv) = aαb(u, gv) = aαb(u f , v) = b
(
a(u f ), v

)
.

Since b is nondegenerate, f is k-linear. Likewise, g is k-linear. Using the observation that Isom(b)

embeds in Adj(b) as Adj(b)� we see that elements of Isom(b) are also k-linear. This subtle observation
is crucial to our proof of Lemma 3.2.

From Adj(b) to Isom(b). Eq. (2.6) translates the problem of computing isometries of a k-bimap into
the problem of constructing unitary elements in a ∗-algebra. The following result, which is extracted
from [BW1], shows that the latter can be solved very efficiently over finite fields k of odd character-
istic.

Theorem 2.1. There is a Las Vegas algorithm which, given A � Endk V × (Endk V )op , where k is a finite field
of odd characteristic, and an involution ( f , g)∗ = (gop, f op) on A, returns a generating set, X , for A� and
describes the structure of the group. The algorithm uses O (|X | · MM(d) + RND(d)) operations in k.

Proof. We use the algorithm IsometryGroup [BW1, Section 5], but omit Line 1 (since we make the
assumption that the ∗-ring is given). Its complexity is then O ∼(|X | · MM(d) + RND(d)) field oper-
ations [BW1, Section 5.5]. Note that, in [BW1], complexity estimates are stated assuming standard
cubic algorithms for matrix operations, so that MM(d) = Θ(d3). �

The hypothesis that k has odd characteristic is needed only if A has a nontrivial Jacobson radical.
In particular, the same result holds for semisimple ∗-algebras over any finite field.

3. The slope of a pair of reflexive forms

Throughout this section ϕ and γ denote reflexive forms on a finite-dimensional k-vector space V ,
and we shall further assume that ϕ is nondegenerate. We intend to prove Theorem 1.1 using The-
orem 2.1 together with an efficient method to construct the adjoint algebra Adj(ϕ ∩ γ ) = Adj(ϕ) ∩
Adj(γ ). In this section we make the crucial observation that Adj(ϕ ∩ γ ) may be realized as the cen-
tralizer of a certain isometry invariant that we call the slope of [ϕ,γ ].
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This section applies to all fields in all characteristics.

As mentioned in the introduction, the concept of slope has appeared in various guises in the liter-
ature. However, it has always been expressed with matrices, which naturally resulted in the exclusion
of Hermitian forms. The following general definition captures the essential properties needed for our
purpose, and allows us to apply the slope to a wider range of geometric configurations.

Definition 3.1. The (left) slope of a pair [ϕ,γ ] of reflexive forms on a k-vector space V is a function
σ : V → V which, for all u, v ∈ V , satisfies

ϕ(uσ , v) = γ (u, v). (3.1)

We say a pair [ϕ,γ ] of forms is sloped if it has a slope and otherwise we say the pair is flat.

Notice we did not demand that σ is k-linear, only that it is a function. The biadditivity of ϕ and γ
implies that σ is additive; however, we will see that σ may only be k-semilinear. It is this generality
that enables us to include intersections of unitary groups with non-unitary groups in the present
treatment. Those cases had been handled previously only by the very different methods of [BW1].

We give examples of flat pairs [ϕ,γ ] in Section 7.
Recall that each reflexive form is a scalar multiple of an alternating, symmetric, or Hermitian form.

Hence, there exist field automorphisms α and β associated to ϕ and γ , respectively, such that, for all
u, v ∈ V and all a ∈ k, ϕ(au, v) = aαϕ(u, v) and γ (au, v) = aβγ (u, v).

Our first result establishes the basic properties of slope.

Lemma 3.1. Let ϕ and γ be reflexive forms on V , with ϕ nondegenerate. Then [ϕ,γ ] determines a unique
slope, which is a k-semilinear transformation of V .

Proof. First we prove uniqueness. Suppose σ and τ are functions that satisfy Eq. (3.1). Then, for all
u, v ∈ V , ϕ(uσ , v) = γ (u, v) = ϕ(uτ , v), so that ϕ(u(σ −τ ), v) = 0. As ϕ is nondegenerate, σ −τ = 0.

To establish the existence of a slope, we define ϕ� : V → Homk(V ,k) such that uϕ� = ϕ(u,−).
Note that ϕ� is well-defined by our convention for Hermitian forms, since uϕ� is k-linear. Similarly
define γ � : V → Homk(V ,k). Both ϕ� and γ � are semilinear transformations. As ϕ is nondegenerate
and V is finite-dimensional over k, ϕ� is a k-semilinear isomorphism. Evidently σ := γ �(ϕ�)−1 is
k-semilinear and satisfies Eq. (3.1). �

The essential condition in this proof that ensures the existence of a slope for a pair [ϕ,γ ] is that
V γ � � V ϕ� . Thus slopes exist in greater generality than is stated in the lemma. For convenience we
write σ = γϕ−1 even though that notation is not as precise as σ = γ �(ϕ�)−1.

The following result is the key to computing effectively with Adj(ϕ ∩ γ ). Part (i) shows that
Adj(ϕ ∩ γ ) may be realized as a centralizer ring, and part (ii) may be adapted to construct the invo-
lution on this ring efficiently (cf. Section 5).

Lemma 3.2. Let ϕ and γ be reflexive k-forms on V , with ϕ nondegenerate, and let σ = γϕ−1 . Then the
following hold.

(i) (x, x∗) ∈ Adj(ϕ ∩ γ ) ⇔ x ∈ CEndk(V )(σ ) = { f ∈ Endk V : σ f = f σ }.
(ii) Adj(ϕ)|V = Endk V ; moreover, for every x ∈ Endk V there is a unique x∗ ∈ (Endk V )op with (x, x∗) ∈

Adj(ϕ).

Proof. For part (ii) observe, by Remark 2.1, that Adj(ϕ)|V ⊆ Endk V . For the reverse inclusion, we
regard Homk(V ,k) as a right (Endk V )op-module where, for each f ∈ (Endk V )op, we define τ f ◦ := f τ
for all τ ∈ Homk(V , K ). As ϕ is nondegenerate, ϕ� is an isomorphism and xϕ� = ϕ�(x∗op)◦ defines x∗
uniquely.
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Now we prove part (i). Let (x, x∗) ∈ Adj(ϕ ∩ γ ). Note that x ∈ Endk V by Remark 2.1. Also, for all
u, v ∈ V ,

ϕ(uxσ , v) = γ (ux, v) = γ
(
u, x∗v

) = ϕ
(
uσ , x∗v

) = ϕ(uσ x, v).

Since ϕ is nondegenerate, xσ − σ x = 0. So x ∈ CEndk V (σ ).
Next, let x ∈ CEndk V (σ ). By (ii) there is a unique x• ∈ (Endk V )op such that (x, x•) ∈ Adj(ϕ). So, for

all u, v ∈ V , we have

γ (ux, v) = ϕ(uxσ , v) = ϕ(uσ x, v) = ϕ
(
uσ , x•v

) = γ
(
u, x•v

)
.

Hence, (x, x•) ∈ Adj(γ ), so that (x, x•) ∈ Adj(ϕ ∩ γ ). �
Historical comment. Previous uses of “slope” in the literature have focused on the transformation
σ itself, rather than on its centralizing ring. While many geometric properties of Isom(ϕ) ∩ Isom(γ )

can be understood in terms of this single transformation, there does not seem to be a way to use it
directly to describe intersections with unitary groups. We can now see why this is the case.

When one or both of the forms ϕ and γ is Hermitian, the slope σ can be semilinear, and so σ
need not lie in CEndk V (σ ). Hence one cannot in general find σ ∗ such that (σ ,σ ∗) lies in Adj(ϕ ∩ γ ).
Nevertheless, Lemma 3.2 shows that σ may still be used to recover the entire adjoint ring, rather
than just one element of it. That makes all the geometric analysis possible.

4. The centralizer of a semilinear transformation

In this section we describe centralizers of semilinear transformations in a manner that admits
an algorithmic treatment. The ideas underlying our exposition are classical [Ja, Chapter 3] and are
analogous to the more familiar theory of finitely generated modules over principal ideal domains.

The results in this section hold for all finite fields.

Let K be a finite degree field extension of a finite field k, let U be a finite-dimensional K -vector
space, and let h ∈ Endk U be K -semilinear. Hence, there exists θ ∈ Gal(K/k) such that

(av)h = aθ vh (∀a ∈ K , ∀v ∈ V ). (4.1)

We are concerned with the structure and computability of the ring

CEndK U (h) = { f ∈ EndK U : hf = f h}. (4.2)

The skew polynomial ring K [x; θ] is the free K -algebra with generator x having relations

axi = xiaθ i
(∀a ∈ K , ∀i ∈ N).

Elements of K [x; θ] can be expressed as right polynomials
∑

i∈N
xiai , with ai ∈ K with only finitely

many ai ’s nonzero. As θ is invertible and K is a field, K [x; θ] is a principal right ideal domain (PRI).
This ring is noncommutative so when we say one element divides another we mean division on the
right.

The ring K [x; θ] acts on U via up(x) := up(h), for u ∈ U and p(x) ∈ K [x; θ]. The image of this repre-
sentation of K [x; θ] in Endk U is the enveloping algebra K [h], namely the ring of right K -polynomials
in h. We now use U as a K [x; θ]-module to describe CEndK U (h) = EndK [h] U = EndK [x;θ] U .
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As K [x; θ] is a PRI, there is a monic polynomial mh(x) – the minimum polynomial of h – generating
the annihilator of U in K [x; θ]. Furthermore, there is a decomposition of the form

mh(x) = p1(x)λ1 · · · ps(x)λs , (4.3)

where p1(x), . . . , ps(x) ∈ K [x; θ] are irreducible, with ordering and choice of pi unique up to a per-
mutation and unit, respectively [Ja, Chapter 3, Theorem 5].

Fix i ∈ {1, . . . , s}. Define

Ui = ker pi(h)λi , and (4.4)

qi(x) = p1(x)λ1 · · · pi−1(x)λi−1 pi+1(x)λi+1 · · · ps(x)λs ∈ K [x; θ]. (4.5)

By the Chinese Remainder Theorem, we have K [x; θ]/(m(x)) = (pi(x)λi ) ⊕ (qi(x)) so that U =
U (pi(x)λi ) ⊕ U (qi(x)). Intentionally, U (qi(x)) � Ui and, since the annihilator in K [x; θ] of Ui is
(pi(x)λi ), it follows that U (qi(x)) = Ui . Eq. (4.4) shows that Ui is readily computable, while the second
description shows that Ui is the pi(x)-primary component of U , and that U = U1 ⊕ · · · ⊕ Us . Set

Ri = K [x; θ]/(pi(x)λi
)
. (4.6)

Then Ui is a right Ri -module. Since Ri is a chain ring (i.e. its ideals are linearly ordered) every directly
indecomposable submodule of Ui is isomorphic to K [x; θ]/(pi(x)d) for some d � λi . Hence,

Ui = Ui1 ⊕ · · · ⊕ Uiti , (4.7)

where, for 1 � i � ti , Uij ∼= K [x; θ]/(pi(x)λi j ) with 0 < λi1 � · · · � λiti = λi .
This information is sufficient to determine the structure of EndK [x;θ] U . As the annihilators of Ui

and U j are relatively prime for distinct i, j ∈ {1, . . . , s}, it follows that HomK [x;θ](Ui, U j) = 0 if i �= j.
Hence,

EndK [x;θ ] U = EndK [x;θ ] U1 ⊕ · · · ⊕ EndK [x;θ ] Us. (4.8)

Thus, the problem is reduced to studying the endomorphism rings of the primary components.
Once again, fix i ∈ {1, . . . , s}, and consider the decomposition in Eq. (4.7). For a,b ∈ {1, . . . , ti}, we

see that

HomK [x;θ ](Uia, Uib) = {
u �→ uq(x): pi(x)λib−λia q(x)

}
. (4.9)

Note that divisibility is meaningful in k[x; θ] since this ring possesses a left Euclidean algorithm.
Applying the ‘checkered matrix theorem’ [Pa, p. 42] to Eq. (4.7), we see that EndK [x;θ] Ui is the epi-
morphic image of the ring

Si(x) = {[[Fab]
] ∈ Mti (Ri): pi(x)λib−λia divides Fab for all 1 � a < b � ti

}
. (4.10)

Evaluating x at h, we see that Si(h) = EndK [x;θ] Ui = CEndK Ui (h).
We can now prove the crucial algorithmic result that we need for our main theorem.

Theorem 4.1. There is a Las Vegas algorithm which, given a semilinear transformation h on a d-dimensional
k-vector space V , where k is a finite field, returns CEndk V (h) as the enveloping algebra of some set X . The
complexity of the algorithm is O ∼(MM(d) + e(e − 1)d4) field operations, where e is the order of the field
automorphism associated with h.
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Proof. The algorithm first computes the characteristic polynomial χh(x) of h and then factors this
polynomial in k[x; θ] using the Las Vegas algorithm of Giesbrecht [Ge]. The total number of field
operations needed for this is the complexity stated in the theorem.

Next, the factors of χh(x) are used to produce the minimum polynomial mh(x) of h factored as in
Eq. (4.3). This involves raising h to successive powers, which requires O (MM(d) · log d) field operations.
Since V = ⊕

i

⊕
j U i j (as defined above), all the bases for the submodules Uij are computed in aggre-

gate using O (MM(d)) field operations. The algorithm concludes by returning canonical generators for
each Si(x) block of checkered matrices. �
Remark 4.1. The context in which we shall make use of Theorem 4.1 involves a semilinear transfor-
mation h associated to a field automorphism of order at most 2. Thus, in our particular application,
we construct CEndk V (h) using O (MM(d) + d4) field operations (see comment (2) on complexity in
Section 1).

5. Proof of Theorem 1.1

In this section we combine the results of Sections 3 and 4 with Theorem 2.1 to establish our main
algorithmic result.

Let k be a finite field of odd characteristic and let V be a k-space of dimension d. Let ϕ,γ be
reflexive forms on V with ϕ nondegenerate. Take α and β to be the field automorphisms associated
to ϕ and γ , respectively (one or both of these could be the identity automorphism).

By Lemma 3.1, σ := γϕ−1 is the αβ-semilinear slope of [ϕ,γ ]. It follows from Lemma 3.2(ii) that
(x, x∗) ∈ Adj(ϕ ∩ γ ) if and only if x ∈ CEndk V (σ ). A generating set X for the latter ring is constructed
using Theorem 4.1 in O (MM(d) + e(e − 1)d4) field operations, where (αβ)e = 1 (so that e = 1 or 2).

Next, for each x ∈ X , by Lemma 3.2(i) there is a unique x∗ ∈ (Endk V )op such that ϕ(ux, v) =
ϕ(u, x∗v), and x∗ may be constructed with elementary linear algebra using O (MM(d)) field opera-
tions. Hence, using O (|X | · MM(d)) field operations we construct {(x, x∗): x ∈ X }, which generates
Adj(ϕ ∩ γ ) as a ∗-algebra.

Theorem 1.1 now follows by appealing to Theorem 2.1.

6. Implementation and performance

Both the generic algorithm in [BW1], and its variant in Theorem 1.1, have been implemented as a
Magma package. In order to illustrate the principal bottlenecks in the original version, and to demon-
strate the improvements obtained by its slope variant, we ran more than a thousand random trials
across multiple geometric types, fields, and dimensions. In this section we report some of the more
significant findings from those trials. All trials were carried out at the University of Auckland on a
2.4 GHz microprocessor with 112 GB RAM.

Generic versus slope. Our trials indicate that any comparison of the two implementations (“generic”
versus “slope”) will not be unduly influenced by the geometric types of the pair [ϕ,γ ] of reflexive
forms used as input. In this report we take ϕ to be alternating and γ to be symmetric over the field
GF(27) (so we are computing intersections of orthogonal groups with symplectic groups).

There are a couple of reasons for highlighting this particular type of intersection. First, the perfor-
mance of the generic method was already tested for this type of intersection, and reported in [BW1,
Section 6]. Second, it would be natural – given our propaganda concerning our ability to handle uni-
tary groups by the slope method – to make one of the forms Hermitian in our trials. Unfortunately,
there are as yet no effective computational tools for skew polynomial rings implemented in Magma.
We therefore content ourselves to consider pairs of bilinear forms that cannot be handled by the
existing “slope-like” method described in [BO].

Fig. 1 illustrates the overall runtimes of the two methods for 100 random choices of pair [ϕ,γ ],
and random dimension in the range 10 � d � 70. As one can readily see from the plot, the timings of
the slope method show a larger variance, the likely reason for which is explained below. Nevertheless,
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Fig. 1. Total time to compute the intersection of an orthogonal group and a symplectic group over GF(27) with varied dimen-
sions.
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Fig. 2. In the generic method the time spent computing adjoint dominates. In the slope method this is the least costly of the
main steps in the algorithm.

the furthest outliers in the slope method (beyond dimension 20) remain an order of magnitude faster
than the generic method.

It is instructive in this comparison to profile the amount of time spent computing the adjoint
algebra. Fig. 2 shows that, in the generic version of the algorithm, computing the adjoint algebra ac-
counts for most of the runtime. In the slope version, however, the proportion of time spent computing
adjoints becomes the least significant of the main components.
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Fig. 3. Comparison of the running times for intersections of classical groups of varied types over GF(27) (or GF(25) in the
unitary case).

Dependence on field and geometry. Obviously the time to compute the algebra of adjoints by the
slope method (and also by the generic method) increases with the size of the defining field of the
input forms. For the fields used in our trials, however, that performance is not significantly influenced
by the structure of the field; the runtimes over the cubic field extension GF(27), for example, do not
differ significantly from those over the prime field GF(31).

What does seem to influence the performance of the slope method are the geometric types of
the input forms ϕ and γ , and also the geometric types of the simple ∗-ideals that comprise the
semisimple quotient of Adj(ϕ ∩γ ). The general reason for this is that computing adjoints is no longer
a significant contributor to the overall runtime, so variations in the time spent on the other steps are
more noticeable.

The specific reason that geometry influences the performance of the constructive recognition
seems to be the following. The algebraic structure of the simple ∗-ideals tends generally to be low-
degree (typically 1 or 2) matrix algebras over high degree (of the order of the input dimension) field
extensions. Although this does not present difficulties from a complexity viewpoint, it does cause
practical bottlenecks in the implementation. In short, Magma does not deal as effectively with fields
of size 2750 as it does prime fields of roughly the same size. Although the identification of the simple
∗-ideals is carried out in identical fashion in both methods, the identification phase itself commands
a far greater percentage of the overall runtime in the slope method. Hence fluctuations in the time
spent in recognition have a more significant influence on the variance of overall runtimes in the slope
method than they do in the generic method.

Furthermore, certain input configurations are more apt than others to produce simple ∗-algebras
that require significant computing effort to recognize. For instance, intersections of two symplectic
groups always produce ∗-simples of degree at least 2 (never degree 1), and indeed such intersections
tend to require more time to compute. Fig. 3 provides an illustration of the variation in runtime over
input geometric type.

7. Limitations and examples

Our motivation in formulating the notion of “slope” was to provide, for as broad a range of geo-
metric types of form pair [ϕ,γ ] as possible, an explicit description of Adj(ϕ ∩ γ ) that admits a very
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effective algorithm to construct this ring. For, it is this ring that contains all of the information needed
to construct Isom(ϕ) ∩ Isom(γ ), and it is also a crucial component in other ongoing investigations,
such as [BW2]. We believe that we succeeded in this goal: for any pair of reflexive forms (including
Hermitian forms), one of which is nondegenerate, the target ring Adj(ϕ ∩ γ ) may be realized as the
centralizing ring of the slope transformation that we have defined here.

While we have not been able to find a slope method to incorporate pairs [ϕ,γ ] where both forms
are degenerate, we now see that any attempt to do so using the centralizer of a single (semi)linear
transformation is doomed to failure. We conclude by giving two constructions of form pairs [ϕ,γ ]
that are flat (i.e. have no slope) and, more significantly, where Adj(ϕ ∩ γ ) is not a centralizing ring,
even of a set of semilinear transformations.

Degenerate forms. Consider two nonzero alternating forms ϕ and γ on a 3-dimensional space V
over the field Z/p, where p is an odd prime. As V has odd dimension, both forms are degenerate
and, unless their radicals coincide, there is a basis for V relative to which

ϕ(u, v) = u

[ 0 1 0
−1 0 0
0 0 0

]
vt, γ (u, v) = u

[ 0 0 1
0 0 0

−1 0 0

]
vt .

Observe that ϕ ∩ γ is nondegenerate and alternating. Also,

Adj(ϕ ∩ γ ) =
{([ a c d

0 b 0
0 0 b

]
,

[b −c −d
0 a 0
0 0 a

])
: a,b, c,d ∈ k

}
. (7.1)

If the restriction A of Adj(ϕ ∩ γ ) to the first component is the centralizer of some S ⊆ M3(k), then
A = CM3(k)(CM3(k)(A)). However, CM3(k)(A) = {aI3: a ∈ k}, so that CM3(k)(CM3(k)(A)) = M3(k) �= A.

On the other hand there are flat pairs of forms whose adjoint algebra is a centralizer subring. For
example,

Adj

([
1 0
0 0

]
∩

[
0 0
0 1

])
=

{[
a 0
0 b

]
: a,b ∈ k

}
= CM2(k)

([
1 0
0 −1

])
. (7.2)

In fact this example shows that it is possible to have a flat pair [ϕ,γ ] and a sloped pair [ϕ′, γ ′] such
that ϕ ∩ γ = ϕ′ ∩ γ ′ .

Classical intersections over different fields. In general, intersections of classical groups over different
fields are impossible to manage by slope methods. For instance, let p > 3, k = Z/p, and let K = k[ω]
be a quadratic field extension of k. Let V = K and define ϕ : V × V → k and γ : V × V → K , where

ϕ(u0 + u1ω, v0 + v1ω) = u0 v0 + u1 v1,

γ (u0 + u1ω, v0 + v1ω) = (
u0 v0 + ω2u1 v1

) + (u0 v1 + u1 v0)ω.

Then ϕ is a symmetric k-form and γ is a Hermitian K -form and both are defined on V . Observe
that Adj(ϕ ∩ γ ) = {v �→ sv: s ∈ Z/p}, so that Adj(ϕ ∩ γ ) is a centralizer. For p > 3, however, it is not
the centralizer of a single linear transformation. It is therefore impossible to construct GO+(2, p) ∩
GU(1, p) by centralizing one transformation. We note that the number of field operations needed
to centralize a bounded set of transformations containing more than one element is O (MM(d2)), so
there is no advantage to be gained over our generic algorithm in such situations.

We remark that the generic algorithm of [BW1] handles each of the examples described above,
though rather less efficiently than the new algorithm handles suitable inputs of comparable size.
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