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Star configurations are certain unions of linear subspaces of
projective space. They have appeared in several different contexts:
the study of extremal Hilbert functions for fat point schemes in
the plane; the study of secant varieties of some classical algebraic
varieties; the study of the resurgence of projective schemes. In this
paper we study some algebraic properties of the ideals defining
star configurations, including getting partial results about Hilbert
functions, generators and minimal free resolutions of the ideals and
their symbolic powers. We also show that their symbolic powers
define arithmetically Cohen–Macaulay subschemes and we obtain
results about the primary decompositions of the powers of the
ideals. As an application, we compute the resurgence for the ideal
of the codimension n − 1 star configuration in P

n in the monomial
case (i.e., when the number of hyperplanes is n + 1).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A star configuration of codimension c in Pn is a certain union of linear subspaces V 1, . . . , V i each of
codimension c. These have arisen as objects of study in numerous research projects lately, including
[2,3,5,6,8,13,21,26], but these references make use of only a partial understanding of the properties of
star configurations. Thus it is of interest to understand them better.

Here we study powers and symbolic powers of ideals of star configurations in Pn (over an al-
gebraically closed field of arbitrary characteristic). Since the subspaces V i are distinct with none
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containing any of the others, and each is a complete intersection, the m-th symbolic power of the
ideal I of the star configuration is I(m) = I(V 1)

m ∩ · · · ∩ I(V i)
m .

Combinatorially equivalent collections of linear spaces can have very different algebraic properties,
as Example 2.5 shows by exhibiting two collections of lines in P3 with the same intersection posets
but where one gives an arithmetically Cohen–Macaulay (ACM) subscheme and the other not. The sit-
uation with star configurations (defined below in terms of their intersection posets) is very different.
We will show in Proposition 2.9 that every star configuration is ACM, with so-called generic Hilbert
function (meaning that the h-vector coincides with the dimension of the appropriate coordinate ring
until a prescribed degree and is then zero). We also note that this property does not characterize
star configurations, since (at least in codimension two) there exist unmixed configurations of linear
varieties with the same Hilbert functions as star configurations, which are themselves not even ACM
(see Remark 2.10).

We then show that every symbolic power of the ideal of a star configuration of any codimension
defines an ACM subscheme (see Theorem 3.1). This contrasts with what we will see in Example 2.5.
We also pose a conjecture for the primary decompositions of powers of ideals of star configurations
and in some cases verify the conjecture (see Conjecture 4.1 and Theorem 4.8). As an application
we use Theorem 4.8 to determine the resurgence ρ(I) of the ideal I of a positive dimensional star
configuration (see Theorem 4.11). The only other exact determination of the resurgence of a positive
dimensional subscheme which is not a cone over a 0-dimensional subscheme and for which the
resurgence is bigger than 1 is that of [14], using a different method.

2. Preliminaries

We let R = k[x0, . . . , xn] where k is an arbitrary infinite field, and where we regard R as a graded
ring with the usual grading (where each variable has degree 1 and nonzero elements of k have de-
gree 0).

Definition 2.1. Let H = {H1, . . . , Hs} be a collection of s � 1 distinct hyperplanes in Pn corresponding
to linear forms L1, . . . , Ls . We assume that the hyperplanes meet properly, by which we mean that
the intersection of any j of these hyperplanes is either empty or has codimension j. For any 1 �
c � min(s,n), let V c(H,Pn) be the union of the codimension c linear varieties defined by all the
intersections of these hyperplanes, taken c at a time:

V c
(
H,Pn) =

⋃
1�i1<···<ic�s

Hi1 ∩ · · · ∩ Hic .

(When Pn or H is clear from the context, we may write V c or V c(Pn) or V c(H) in place of V c(H,Pn).)
We call V c the codimension c skeleton associated to H or sometimes simply a codimension c star config-
uration. We denote by V (�)

c the subscheme of Pn defined by the ideal

I(�)Vc
=

⋂
1�i1<···<ic�s

(Li1 , . . . , Lic )
�.

Note that I(�)V c
is the �-th symbolic power of I V c .

Remark 2.2. We are most interested in the case of star configurations in Pn for which s � n +1. When
1 � s � n, the star is either a linear subvariety of projective space or a projective cone over a star in
Ps−1. But for some proofs it is convenient to allow s < n + 1.

We now recall the following definition.
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Definition 2.3. Let Z ⊆ Pn be a closed subscheme whose defining sheaf of ideals is IZ . If
Hi(Pn,IZ (d)) = 0 for all d ∈ Z and all 0 < i � dim Z , we say the scheme Z is arithmetically
Cohen–Macaulay or ACM. Note that this is equivalent to saying that the graded ring R/I Z is a Cohen–
Macaulay ring [20, Lemma 1.2.3].

Definition 2.4. For a scheme V of codimension c in Pn (not necessarily ACM), the h-vector of V (or,
more precisely, of R/I V ) is the (n − c + 1)-st difference of the Hilbert function of R/I V .

Example 2.5. Here we exhibit two subschemes of P3 consisting of linear subspaces with the same
intersection poset, the same degree and arithmetic genus (and hence the same Hilbert polynomial),
one being arithmetically Cohen–Macaulay (ACM) and the other not. In both of these cases, CoCoA [7]
shows that the symbolic squares of the ideals define subschemes which fail to be ACM. This shows
that the ACM property for the reduced curve does not imply it for symbolic powers.

Let Q be the nonsingular quadric surface in P3. Recall that Q is isomorphic to P1 ×P1 and hence
has two rulings. Choose any four distinct lines V 1, V 2, V 3, V 4 from one of the rulings and any four
distinct lines H1, H2, H3, H4 from the other. Let pi be the point where Hi and V 1 meet, i = 1,2, and
let q be a point on H2 not on any of the other lines.

Consider the line L in P3 through p1 and q. Note that Q does not contain L. We now have three
subschemes: C1, consisting of the reduced union of V 1, . . . , V 4, H1, H2; C2, consisting of the reduced
union of L, V 2, V 3, V 4, H1, H2; and C3, consisting of the reduced union of V 1, V 2, V 3, V 4, H1,
H2, H3, H4. Note for any i and j that V i ∪ H j is a hyperplane section of Q . Thus C3 is the complete
intersection of Q with four planes, these four being the planes determined by the pairs of intersecting
lines (V 1, H1), (V 2, H2), (V 3, H3), (V 4, H4).

Note that C3 is the union of C1 with the disjoint union H3 ∪ H4. Since, as it is easy to see, ACM
subschemes are connected, we see that H3 ∪ H4 is not ACM. Moreover, linked schemes are either both
ACM or neither ACM [20]. Since C1 is linked with H3 ∪ H4, we see that C1 is not ACM.

Let X be the union of V 2, V 3, V 4, H1, H2, so that X ∪ L = C2. We see that X is directly linked, by
the complete intersection of Q and three planes, to H3, and thus X is ACM. Also, since L meets Q in
the two points p1,q ∈ X ⊂ Q , the ideal I X + I L defines the reduced scheme {p1} ∪ {q}. The latter is
a complete intersection of type (1,1,2), and Q /∈ I L (where by abuse of notation, Q also represents
the quadratic form defining the quadric surface), so in fact I X + I L is saturated. Then from the exact
sequence

0 → IC2 → I X ⊕ I L → I X + I L → 0,

sheafifying and taking cohomology it follows immediately that the first cohomology of IC2 is zero in
all twists, so C2 is ACM. Notice that both C1 and C2 consist of 6 lines and thus have the same degree,
and since the intersection poset of both curves is the same, then both have the same arithmetic genus
and hence the same Hilbert polynomial. Checking computationally using CoCoA, we verified that the
symbolic square of the ideal of neither curve is ACM.

Recall from [19] the following result.

Proposition 2.6. Let IC be a saturated ideal defining a codimension c subscheme C ⊆ Pn. Let I S ⊂ IC be an
ideal which defines an ACM subscheme S of codimension c − 1. Let F be a form of degree d which is not a
zerodivisor on R/I S . Consider the ideal I ′ = F · IC + I S and let C ′ be the subscheme it defines. Then I ′ is
saturated, hence equal to IC ′ , and there is an exact sequence

0 → I S(−d) → IC (−d) ⊕ I S → IC ′ → 0.
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In particular, since S is an ACM subscheme of codimension one less than C , we see that C ′ is an ACM subscheme
if and only if C is. Also,

deg C ′ = deg C + (deg F ) · (deg S).

Furthermore, as sets on S, we have C ′ = C ∪ H F , where H F is the hypersurface section cut out on S by F . The
Hilbert function hC ′ of R/IC ′ is hC ′ (t) = hS (t) − hS(t − d) + hC (t − d).

Remark 2.7. Under rather mild assumptions, the subscheme C ′ obtained in Proposition 2.6 can be
linked in two steps to C via Gorenstein ideals, and it was in this context that it was introduced
in [19]. We will not use this fact below, but it is worth noting that in the literature this construction
is often referred to as Basic Double G-Linkage.

As an application we use Proposition 2.6 to obtain the following result. For this we make a defini-
tion.

Definition 2.8. Let I be a nonzero homogeneous ideal in the ring R . We define α(I) to be the least
degree among degrees of nonzero elements of I .

We recover the fact of [3, Lemma 2.4.2] that the initial degree α(I V c ) of I V c (i.e., the degree of
a nonzero homogeneous element of least degree) is s − c + 1. We also note that in the case where
the hyperplanes are defined by the s = n + 1 coordinate variables, V c was known to be ACM (see [16,
Example 2.2(b)]).

Proposition 2.9. Let H = {H1, . . . , Hs} be a collection of distinct hyperplanes in Pn meeting properly, and let
V c = V c(H). Then we have the following facts.

(1) V c is ACM.
(2) The h-vector of V c , which has s − c + 1 entries, is

(
1, c,

(
c + 1

2

)
, . . . ,

(
s − 1

c − 1

))
=

(
1,

(
c

c − 1

)
,

(
c + 1

c − 1

)
, . . . ,

(
s − 1

c − 1

))
.

Note that the last binomial coefficient occurs in degree s − c, and can also be written
(
(c−1)+(s−c)

s−c

)
.

(3) deg V c = (s
c

)
.

(4) The initial degree of I V c is α(I V c ) = s − c + 1, and all of its minimal generators occur in this degree and
are monomials in the linear forms Li defining the hyperplanes Hi .

Proof. Notice that (3) is trivial, and we include it only for completeness. We proceed by induction
on c and on s � c. For any c, note that if s = c then V c is a complete intersection of linear forms,
and parts (1) to (4) are trivial. If c = 1 and s is arbitrary, V 1 is the union of s hyperplanes, and
all four assertions are immediate. Now assume that the assertion is true for codimension c − 1 and
for up to s − 1 hyperplanes. Let H′ = {H1, . . . , Hs−1} and let H = H′ ∪ {Hs}. By induction, V c−1(H′)
and V c(H′) are both ACM. We now apply Proposition 2.6 to S = V c−1(H′), C = V c(H′), and F = Ls ,
the defining polynomial of Hs . Since V c(H) = V c(H′) ∪ HLs , where HLs is the hyperplane section of
V c−1 cut out by Hs , we immediately have (1). Since we have I V c(H) = Ls · I V c(H′) + I V c−1(H′) , and
by induction minimal sets of generators of I V c(H′) and I V c−1(H′) are monomials in the Li of degree
s − c and s − c + 1, respectively, we see I V c(H) is also generated by monomials in the Li , and that the
generators all have degree s − c + 1, which proves (4).

It remains to prove (2). We use the Hilbert function part of Proposition 2.6, still with S = V c−1(H′),
C = V c(H′), and F = Ls . The h-vector of V c(H′) is the (n − c + 1)-th difference of hV c(H′) , while the
h-vector of V c−1(H′) is the (n − c + 2)-th difference of hV c−1(H′) . Notice that d = 1 in this case (in the
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statement of Proposition 2.6), so the portion of the formula coming from hs(t) − hs(t − d) amounts to
a first difference. The h-vector of V c(H′) is

(
1, c,

(
c + 1

c − 1

)
, . . . ,

(
s − 3

c − 1

)
,

(
s − 2

c − 1

))
,

where the last entry is in degree s − c − 1, and the h-vector of V c−1(H′) is

(
1, c − 1,

(
c

c − 2

)
, . . . ,

(
s − 3

c − 2

)
,

(
s − 2

c − 2

))
,

where the last entry is in degree s − c. Thus the h-vector of V c is computed by

(
1, c − 1,

(
c

c − 2

)
,

(
c + 1

c − 2

)
, . . . ,

(
s − 3

c − 2

)
,

(
s − 2

c − 2

))

+
(

1, c,

(
c + 1

c − 1

)
, . . . ,

(
s − 3

c − 1

)
,

(
s − 2

c − 1

))

from which the desired h-vector of V c(H) follows. �
Remark 2.10.

(a) The h-vector given in Proposition 2.9(2) is sometimes called a generic h-vector, on account of
its being the h-vector of a generic finite set of points. Note that the ACM property automati-
cally implies that V c is a so-called scheme of maximal rank, i.e. that the natural restriction map
H0(OPn (d)) → H0(OV c (d)) has maximal rank for all d. However, even for a scheme of the right
degree, having maximal rank does not imply that R/I V c has generic h-vector. For example, when
s = 4 and c = 2, V 2 has h-vector (1,2,3), hence degree 6. However, a general set of six skew
lines in P3 has maximal rank [15] but has h-vector (1,2,3,4,0,−4).

(b) Notwithstanding the comment in (a), there do exist linear configurations that are not ACM but
nevertheless have generic h-vectors. This is an easy consequence of the construction given in [22],
starting with a minimal curve consisting of two skew lines. Indeed, here we sketch the argument
that for every codimension two generic h-vector (1,2,3, . . .) of degree at least 6, there is a non-ACM con-
figuration of codimension two linear varieties with the given generic h-vector. We begin with curves in
P3 and proceed inductively, repeatedly applying Proposition 2.6. Start with a curve C0 consisting
of two skew lines in P3. Its h-vector is (1,2,−1). Let S1 be a union of four planes, such that S1
contains C0. Note that I S1 is generated by a form of degree 4 that is the product of four linear
forms. Let F1 be a general linear form. Then F1 · IC0 + I S1 is the saturated ideal of a union of
six lines, C1, with h-vector (1,2,3). For i � 2 (but not i = 1) we obtain Ci inductively from Ci−1
by taking Si to be a union of i + 2 planes containing Ci−1, and Fi in each case to be a general
linear form (choosing a new Fi each time), and setting ICi = Fi · ICi−1 + I Si . Then Ci has h-vector
(1,2,3, . . . , i + 2). We then pass to the codimension two case by taking cones.

Remark 2.11. By Proposition 2.9(1) and (2), the Artinian reduction of the homogeneous coordinate ring
of V c is k[y1, . . . , yc]/ms−c+1, where m = (y1, . . . , yc). Since ms−c+1 is generated by the maximal (i.e.,
r × r for r = s − c + 1) minors of the r × s matrix

⎛
⎜⎝

y1 y2 · · · yc 0 · · · 0 0
0 y1 y2 · · · yc 0 · · · 0

· · ·

⎞
⎟⎠
0 · · · 0 y1 y2 y3 · · · yc
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and has codimension (s − c + 1 − r + 1)(s − r + 1) = c, the graded Betti numbers of the homogeneous
coordinate ring of V c are those given by the Eagon–Northcott resolution of the maximal minors of a
generic matrix of size r × s [17]. Note however, that it is well known that powers of m all have linear
resolution, consequently the calculation of the graded Betti numbers of the powers is straightforward.
In particular, denoting by Es,c• the minimal free resolution of I V c(H) , we have

rkEs,c
i =

(
s

s − c + i

)
·
(

s − c + i − 1

i − 1

)
. (2.12)

We will need the next result for the proof of Theorem 3.2.

Lemma 2.13. For each c, we have I V c−1(H) ⊂ I(2)

V c(H)
.

Proof. We have to show the inclusion V c(H)(2) ⊂ V c−1(H) of schemes. Since both sides are unmixed,
it is enough to do this locally. That is, we show that every component of V c(H)(2) lies in V c−1(H).
To do this, it is enough to look only at the components of V c−1 that contain the component of V c(H)

in question. Now, V c−1 is a union of codimension c − 1 linear spaces and V c is its singular locus.
In particular, each component of V c is the intersection of c of the hyperplanes Hi , so there pass c
components of V c−1 through each component of V c (take away one Hi at a time). It thus is enough
to set H = {H1, . . . , Hc} and prove it in this case. Now I V c(H) = 〈L1, . . . , Lc〉 and I(2)

V c(H)
= I2

V c(H)
.

On the other hand, let H′ = {H1, . . . , Hc−1} and consider the codimension c − 1 complete inter-
section I V c−1(H′) = 〈L1, . . . , Lc−1〉. Thanks to Proposition 2.6, we have

I Vc−1(H) = Lc · I Vc−1(H′) + I Vc−2(H′).

We can thus use induction on c (the low values are easy to check), and assume that I V c−2(H′) is gen-
erated by degree two products of L1, . . . , Lc−1, and since I V c−1(H′) is just the complete intersection of
the linear forms L1, . . . , Lc−1, we have that I V c−1(H) is generated by degree two products of L1, . . . , Lc .
This implies the asserted inclusion and completes the proof. �
Remark 2.14. S. Tohǎneanu has pointed out to us a connection between our Proposition 2.9 and
his work. In [24] and [25], he has considered ideals generated by products of linear forms, which
define zero-dimensional schemes in Pk−1. His assumption about the linear forms is weaker than our
assumption that the hyperplanes meet properly (see Definition 2.1 above), and he finds a similar
connection to the Eagon–Northcott resolution. We are grateful to him for pointing out the connection.
It is of interest to note that Tohǎneanu’s work is motivated by applications to coding theory. Applying
ideals generated by products of linear forms was first introduced by DeBoer and Pellikaan [10].

Motivated by his comment to us, we realized that we can also weaken our hypothesis on meeting
properly, for the purpose of obtaining a generalization of Proposition 2.9. Indeed, our key ingredient
was Proposition 2.6. In order to be able to apply this result to obtain a codimension c scheme, we
only need that any c of the hyperplanes meet in codimension c. For example, taking n = 3, s = 4
and c = 3, a choice of four hyperplanes meeting properly gives a star configuration consisting of four
non-degenerate points in P3, while a choice of four hyperplanes all containing a given point P gives a
“fat” point of multiplicity two (hence degree 4) supported on P . However, for the main results below
we continue to require that the hyperplanes meet properly.

3. Symbolic powers of ideals of star configurations

Given the ideal I of a reduced ACM subscheme consisting of a union of linear spaces of projective
space, it’s natural to ask whether the symbolic powers of I also define ACM subschemes. They clearly
do if the linear subspaces are points, but otherwise it is not always the case, as Example 2.5 shows.
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Thus Theorem 3.1, showing that all of the symbolic powers of any ideal I V c of a star configuration V c
of any codimension c do define ACM subschemes, is all the more interesting.

Theorem 3.1. Let H = {H1, . . . , Hs} be hyperplanes in Pn and let V c := V c(H) for any c. Every symbolic
power of I V c is ACM. Furthermore, if Li is a linear form defining the hyperplane Hi , then each symbolic power
of I V c is generated by monomials in the Li .

Proof. Say s � n. If c = s, then V c is a linear subvariety and a complete intersection so the result is
true. If c < s � n, choose coordinates such that the hyperplanes Hi are defined by coordinate variables
x1, . . . , xs , and extend to a full set of coordinates x0, x1, . . . , xn . Let Λ be the linear subvariety defined
by x0 = xs+1 = · · · = xn = 0. Then Λ ∩ V c is a codimension c star in Λ ∼= Ps−1, and V c is a projective
cone over Λ ∩ V c . In addition to the canonical surjection k[Pn] → k[Λ], we have a non-canonical
inclusion k[Λ] = k[x1, . . . , xs] ⊆ k[x0, . . . , xn] = k[Pn], with respect to which we have I(m)

V c
= I(m)

Λ∩V c
k[Pn]

since primary decompositions extend [1, Exercise 4.7(iv)]. Thus k[Pn]/I(m)
V c

is a polynomial ring over

k[Λ]/I(m)
Λ∩V c

, so the result for V c ⊂ Pn follows if and only if it follows for Λ ∩ V c ⊂ Λ. Thus we may
assume that s � n + 1.

Now fix the codimension, c, so V c is the union of
(s

c

)
linear varieties. First assume that s = n + 1,

so without loss of generality we may assume that Li = xi for each i (modulo s, so Ls = x0).
We claim that I V c is the Stanley–Reisner ideal of a simplicial complex, �, of dimension n − c that

is the complete simplicial complex of dimension n − c on n + 1 vertices. To construct this simplicial
complex, take for the n + 1 vertices the n + 1 coordinate points in Pn . For convenience of notation, we
will label these points by p0, . . . , pn , and without loss of generality we will assume that the vertex
labelled pi is the common intersection point of the hyperplanes defined by x0, . . . , x̂i, . . . , xn .

The component of V c cut out by the hyperplanes xi1 = 0, . . . , xic = 0 has dimension n − c. The
vertices that it does not contain are precisely xi1 , . . . , xic ; that is, this component corresponds to the
face of � which is the linear span of the vertices with the complementary labels. There are n + 1 − c
such vertices, so � has dimension n − c. By construction, it is the complete simplicial complex of
dimension n − c on these vertices. Thus by construction, the Stanley–Reisner ideal corresponding to
this simplicial complex is the ideal of V c . This completes the proof of our claim.

Recall that a simplicial complex � is said to be pure if all of its facets have the same dimension. It
is said to be a matroid if, for every subset W of the vertices (in our case {p0, . . . , pn}), the restriction
�W = {F ∈ � | F ⊂ W } is a pure simplicial complex. In our setting, simplicial complex � is clearly a
matroid, since the restriction is again complete.

If c = n, the result clearly follows since any zero-dimensional scheme is ACM. Thus we may assume
that c < n, i.e. that our star configuration has dimension at least one. We now recall a key fact from
[23] and [27]:

Let � be a simplicial complex and let I� be its Stanley–Reisner ideal. Then I(�)� is Cohen–Macaulay for every
� � 1 if and only if � is a matroid.

It follows from these results that I(�)V c
is Cohen–Macaulay for every �, i.e. that the corresponding

schemes are ACM.
Now assume that s > n + 1. We still have H = {H1, . . . , Hs}, hyperplanes in Pn where Hi is the

vanishing locus of a linear form Li . Without loss of generality we may assume that Ls = x0, L1 =
x1, . . . , Ln = xn . We still denote by V c the codimension c star configuration in Pn defined by H. Let
N = s − 1 and consider the star configuration Wc ⊂ PN defined as in our first case above, with the
variables x0, . . . , xN .

Consider the linear forms Mn+1 = xn+1 − Ln+1, . . . , MN = xN − LN . It is clear that for an ACM sub-
scheme V of PN meeting each of the corresponding hyperplanes, successively, in codimension 1, the
saturated ideal of I V is obtained by replacing xi by Li , for all i = n + 1, . . . , N , since the ACM property
and the assumption about the codimension guarantee that Mn+1, . . . , MN are a regular sequence. In
particular, for any i � n + 1, xi is replaced by Li . Thus the star configuration Wc and the schemes
W (�)

c defined by its symbolic powers in PN yield V c and the schemes V (�)
c as the result of a sequence
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of hyperplane sections. Since the codimension is preserved, these hyperplane sections are all proper.
Since we have shown that W (�)

c are all ACM, the claimed result follows from the fact that the ACM
property is preserved under proper hyperplane sections (see for instance [20]). From what we have
done, the claim about the ideals is also immediate. It is also clear that α(I

W (�)
c

) = α(I
V (�)

c
); we will

use this in Corollary 4.6. �
Theorem 3.1 makes no assertion about the Hilbert function or the minimal free resolution (apart

from its length) of the symbolic powers of the ideal of a star configuration. In Theorem 3.2, only in
the case of the symbolic square, we give a different proof of the fact that we obtain an ACM scheme,
which allows us to describe the h-vector (equivalently, the Hilbert function) and the graded Betti
numbers. For the proof of the theorem, we will give an explicit construction of the symbolic square
of I V c for any c, in a way that makes it clear that it is ACM. Rather than squaring I V c , throwing away
higher codimensional primary components, and trying to verify that the result is ACM, we take a
more direct approach. We construct an ideal for which it is easy to see that it is ACM, and then we
show that this ideal is actually the symbolic square.

We will use Proposition 2.6 with C = V c and S = V c−1. We will construct an ideal IC ′ with a
special choice of F , so this gives right away that C ′ is an ACM subscheme, since C is. Furthermore,
we can get the minimal free resolution of IC ′ from that of IC and I S by studying a suitable mapping
cone. We will then see that C ′ is precisely the symbolic square of C in this case.

Theorem 3.2. Let H = {H1, . . . , Hs} and let V i := V i(H) for all i. Then

(1) The h-vector of V (2)
c is as follows

�n−c+1hR/I
V (2)

c
(t) =

⎧⎪⎨
⎪⎩

(t+c−1
c−1

)
if t � s − c,( s

c−1

)
if s − c + 1 � t � 2s − 2c + 1,

0 if t > 2s − 2c + 1.

(2) The minimal free resolution of I(2)
V c

has the form

0 → Fc → ·· · → F1 → I(2)
Vc

→ 0

where

Fi = Es,c
i (−1 + c − s) ⊕Es,c−1

i−1 (−1 + c − s) ⊕Es,c−1
i

using the notation of Remark 2.11. In particular,

Fi = R(−2s + 2c − 1 − i)Mi ⊕ R(−s + c − 1 − i)Ni

where

Mi =
{( s

s−c+1

)
if i = 1;( s

s−c+i

) · (s−c+i−1
i−1

) + ( s
s−c+i

) · (s−c+i−1
i−2

)
if 2 � i � c

and

Ni =
{( s

s−c+1+i

) · (s−c+i
i−1

)
if 1 � i � c − 1;

0 if i = c.
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Proof. By Proposition 2.9(4) applied to V c−1, I V c−1 is entirely generated in degree s − c + 2, while I V c

is entirely generated in degree s − c + 1. Let F ∈ I V c be a general element of degree s − c + 1. Then F
does not vanish on any component of V c−1, i.e. it is a non-zerodivisor on R/I V c−1 .

As mentioned above, V c−1 is a union of codimension c − 1 linear spaces and V c is its singular
locus. In particular, each component of V c is the intersection of c of the hyperplanes Hi , so there pass
c components of V c−1 through each component of V c (take away one Hi at a time). Since F ∈ I V c

and F does not vanish on any component of V c−1, the subscheme of V c−1 cut out by F thus has
multiplicity at least c locally along each component of V c . This accounts for a subscheme of degree
at least c · (s

c

)
. On the other hand, a quick calculation shows

(deg F ) · (deg V c−1) = (s − c + 1) ·
(

s

c − 1

)
= c ·

(
s

c

)
.

We conclude that F cuts out a subscheme supported on V c ⊂ V c−1 with multiplicity exactly c along
each component of V c . Consequently, thanks to Proposition 2.6, the subscheme defined by the ideal
F · I V c + I V c−1 is supported on V c and has degree c + 1 along each component.

This is the same degree and support as the scheme defined by the symbolic square of I V c , and

both I(2)
V c

and F · I V c + I V c−1 are unmixed (in particular, saturated). To show equality, then, we just
have to show one inclusion. We will show

F · I Vc + I Vc−1 ⊆ I(2)
Vc

. (3.3)

First, any element of F · I V c is an element of I(2)
V c

since F ∈ I V c . Furthermore, by Lemma 2.13 we have

I V c−1 ⊂ I(2)
V c

, so the inclusion follows, and the ideals are equal. We thus have a new proof that V (2)
c is

ACM.
Now we can write the Hilbert function, a minimal generating set and minimal free resolution using

Proposition 2.6. Indeed, observe that the claimed h-vector is actually

�n−c+1hR/I
V

(2)
c

(t) =

⎧⎪⎨
⎪⎩

�n−c+1hR/I Vc−1
(t) = (t+c−1

c−1

)
if t � s − c,

�n−c+1hR/I Vc−1
(s − c + 1) = ( s

c−1

)
if s − c + 1 � t � 2s − 2c + 1,

0 if t > 2s − 2c + 1.

The first two lines are immediate since (3.3) shows that I V c−1 and I(2)
V c

agree through degree (s − c +
1) + (s − c) = 2s − 2c + 1 (since Proposition 2.9 gives the initial degree of I V c as s − c + 1). The third
line comes from the fact that

�n−c+1hR/I
V (2)

c
(t) = [

�n−c+1hR/I Vc−1
(t) − �n−c+1hR/I Vc−1

(
t − (s − c + 1)

)]
+ �n−c+1hR/I Vc

(
t − (s − c + 1)

)
.

Now, thanks to Proposition 2.9, the third term is zero in degree (s − c + 1) + (s − c + 1) = 2s − 2c + 2.
As for the first and second terms, they agree in degrees � (s − c + 1) + (s − c + 1), so their difference
is zero in this range.

It remains to find the minimal free resolution of I(2)
V c

. From Proposition 2.6 and the above calcula-
tions, we have the short exact sequence

0 → I Vc−1(−1 + c − s) → I Vc (−1 + c − s) ⊕ I Vc−1 → I(2)
Vc

→ 0.

The minimal free resolutions of I V c−1 and of I V c are described in Remark 2.11, and in particular

Eq. (2.12). A mapping cone then gives a free resolution of I(2)
V , and since the resolutions of I V c−1
c



288 A.V. Geramita et al. / Journal of Algebra 376 (2013) 279–299
and of I V c are linear, it is immediate that there is no splitting, so this is in fact a minimal free
resolution. �
Example 3.4. Let n = 4, s = 7 and c = 3. The h-vectors of R/I V 2 and R/I V 3 are

(1,2,3,4,5,6) and (1,3,6,10,15),

respectively. Let F ∈ (I V 3 )5. The h-vector of R/(F , I V 2 ) is

(1,3,6,10,15,20,18,15,11,6)

so using Proposition 2.6 and Proposition 3.2, we can compute the h-vector of R/I(2)
V 3

as follows:

1 3 6 10 15 20 18 15 11 6
1 3 6 10 15

1 3 6 10 15 21 21 21 21 21

The minimal free resolution of I(2)
V 3

, by Theorem 3.2, is as follows (for explicit details, see our arXiv
posting of this article):

0 → R(−12)21 →
R(−7)6

⊕
R(−11)42

→
R(−6)7

⊕
R(−10)21

→ I(2)
V 3

→ 0.

We now will consider the case of codimension 2. In preparation for stating our results, we define
some matrices. Consider a set H of s > n hyperplanes Hi ⊂ Pn meeting properly, so V 2(H,Pn) is the
union of the

(s
2

)
codimension 2 linear spaces of the form Hi ∩ H j for i �= j. Let hi be the linear form

defining Hi . Let P = h1 · · ·hs , and let Pi = P/hi . Let Am,n be the m × n 0-matrix and δ(d1, . . . ,dr) the
r × r diagonal matrix with diagonal entries di . Furthermore, consider the 1 × s matrix B , the s × s
matrices C and E and the s × (s − 1) matrix D , defined as follows:

B = (−P1 − P2 − P3 · · · − P s),

C = δ(h1, . . . ,hs),

D =

⎛
⎜⎜⎜⎜⎜⎝

−h1 0 0 · · · 0 0
h2 −h2 0 · · · 0 0
0 h3 −h3 · · · 0 0

· · ·
0 0 0 · · · hs−1 −hs−1
0 0 0 · · · 0 hs

⎞
⎟⎟⎟⎟⎟⎠ , and

E = −δ(P1, . . . , P s).

Finally,

• when m = 2r is even, let �m be the (sr + 1) × sr matrix

�m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B A1,s A1,s A1,s · · · A1,s A1,s

C E As,s As,s · · · As,s As,s

As,s C E As,s · · · As,s As,s

· · ·
As,s As,s As,s As,s · · · C E

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

;

As,s As,s As,s As,s · · · As,s C
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• when m = 2r + 1 is odd, let �m be the s(r + 1) × s(r + 1) − 1 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D E As,s As,s As,s · · · As,s As,s

As,s−1 C E As,s As,s · · · As,s As,s

As,s−1 As,s C E As,s · · · As,s As,s

· · ·
As,s−1 As,s As,s As,s As,s · · · C E

As,s−1 As,s As,s As,s As,s · · · As,s C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Lemma 3.5. The maximal minors of �m are {P r}, {P r−1 P 2
i }s

i=1 , {P r−2 P 4
i }s

i=1, . . . , {P 2r
i }s

i=1 if m is even and

{P r P i}s
i=1 , {P r−1 P 3

i }s
i=1, . . . , {P 2r+1

i }s
i=1 if m is odd.

Proof. The matrix �m is close to being upper triangular, so the maximal minors are easy to compute
with in some cases a few row and column swaps. We leave the details to the reader. �
Theorem 3.6. Let H be a set of s > n hyperplanes Hi ⊂ Pn meeting properly, where hi is the linear form
defining Hi . Let I = I V 2(H,Pn) , the ideal of the codimension 2 skeleton V 2(H,Pn). The Hilbert–Burch matrix
for I(m) is �m and the generators for I(m) are as given in Lemma 3.5.

Proof. Let J be the ideal generated by the elements listed in Lemma 3.5. It is easy to see that they
have no common divisor and the zero-locus is V 2(H,Pn). Thus by the Hilbert–Burch Theorem, J de-
fines an ACM subscheme and the primary decomposition of J consists of ideals primary for the
ideals of the components of V 2(H,Pn). The prime ideals corresponding to irreducible components of
V 2(H,Pn) are precisely the ideals of the form (hi,h j), i �= j. If one localizes by inverting all hl with
l /∈ {i, j}, it is easy to check by an explicit examination of the generators given in Lemma 3.5 that
the localization J ′ of the ideal J equals the localization of (hi,h j)

m . Thus J and I(m) have the same
primary decompositions, so J = I(m) , which concludes the proof. �

In the case of the codimension 2 skeleton, we now give yet another proof that the symbolic powers
are Cohen–Macaulay, with an eye, again, to proving more than can be concluded from Theorem 3.1.
In fact, we will show that ideals which are “almost” symbolic powers are also Cohen–Macaulay.

Corollary 3.7. Let H be a set of s > n hyperplanes Hi ⊂ Pn meeting properly, where hi is a linear form defining
Hi . Let I = I V 2(H,Pn) , the ideal of the codimension 2 skeleton V 2(H,Pn). For 1 � k � s and � � 1 arbitrary,
the schemes Wk defined by the saturated ideals

IWk =
⋂

1�i< j�k

(Li, L j)
�+2 ∩

⋂
1�i�k< j�s

(Li, L j)
�+1 ∩

⋂
k<i< j�s

(Li, L j)
�

are all ACM.

Proof. This will be a byproduct of a new proof of the Cohen–Macaulayness of the symbolic powers.
This proof is inspired by a construction used in [21]. That paper studied tetrahedral curves, i.e. sub-
schemes of P3 defined by the intersection of powers of the ideals of the six components of V 2. The
specialization of the current theorem to V 2 ⊂ P3 was proved in that paper as a special case.

Note that we have already shown this result for V (1)
2 and V (2)

2 . The idea of our proof, which worked

also in [21], is that we can apply an inductive argument, passing from I(�)V 2
to I(�+2)

V 2
by a sequence

of applications of Proposition 2.6, thus ensuring that each resulting scheme along the way is ACM. In
particular, V (�+2)

2 is ACM, and we have our result.
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Recall that we have hyperplanes H1, . . . , Hs defined by linear forms L1, . . . , Ls . We begin with the
ideal I(�)V 2

. Clearly we have L�+1
2 · · · L�+1

s ∈ I(�)V 2
. We first claim that we have an equality of saturated

ideals

L1 · I(�)V 2
+ (

L�+1
2 · · · L�+1

s

) =
⋂

2� j�s

(L1, L j)
�+1 ∩

⋂
2�i< j�s

(Li, L j)
�.

To see this, note first that both ideals are automatically saturated and unmixed (the first comes from
Proposition 2.6 and the second is an intersection of saturated, unmixed ideals of the same height).
Hence as before, we check that they define schemes of the same degree and that there is an inclusion
of one into the other. The first ideal defines a scheme of degree

[
deg

(
V (�)

2

)] + deg(L1) · [deg
(
L�+1

2 · · · L�+1
s

)] =
[(

s

2

)
·
(

� + 1

2

)]
+ (1) · [(s − 1)(� + 1)

]

thanks to Proposition 2.6. The ideal on the right defines a scheme of degree

(s − 1) ·
(

� + 2

2

)
+

[(
s

2

)
− (s − 1)

]
·
(

� + 1

2

)
.

We leave it to the reader to verify that these degrees are equal. Since the inclusion ⊆ is clear, the
claim is established. Note that by induction we may assume that V (�)

2 is ACM, so the scheme defined
by this new ideal is also ACM, thanks to the construction of Proposition 2.6.

We now show that we can construct a sequence of ACM schemes

V (�)
2 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ W s = V (�+2)

2

by sequentially applying Proposition 2.6. What we have shown so far is that the scheme W1 defined
by the ideal

L1 · I(�)V 2
+ (

L�+1
2 · · · L�+1

s

) =
⋂

2� j�s

(L1, L j)
�+1 ∩

⋂
2�i< j�s

(Li, L j)
�

is ACM and contains V (�)
2 . Notice that IW1 contains the element L�+2

1 L�+1
3 · · · L�+1

s .
We now turn to the inductive step. Suppose we have constructed the ACM scheme Wk defined by

the saturated ideal

IWk =
( ⋂

1�i< j�k

(Li, L j)
�+2

)
∩

( ⋂
1�i�k< j�s

(Li, L j)
�+1

)
∩

( ⋂
k<i< j�s

(Li, L j)
�

)

and that this ideal contains the element L�+2
1 · · · L�+2

k L�+1
k+2 · · · L�+1

s . Notice that

deg Wk =
(

k

2

)(
� + 3

2

)
+ (k)(s − k)

(
� + 2

2

)
+

(
s − k

2

)(
� + 1

2

)
.

We produce the ACM scheme Wk+1 via the ideal

Lk+1 · IWk + (
L�+2

1 · · · L�+2L�+1 · · · L�+1
s

)
.
k k+2
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Notice that thanks to Proposition 2.6, its degree is

deg Wk + (k)(� + 2) + (s − k − 1)(� + 1).

To prove that this ideal is equal to

IWk+1 =
⋂

1�i< j�k+1

(Li, L j)
�+2 ∩

⋂
1�i�k+1< j�s

(Li, L j)
�+1 ∩

⋂
k+1<i< j�s

(Li, L j)
�

is an elementary computation along exactly the same lines as above (although showing that the
degrees are equal is very tedious). It is not hard to check that this ideal contains the element
L�+2

1 · · · L�+2
k+1 L�+1

k+3 · · · L�+1
s . Thus the inductive step works, and after s steps we obtain W s = V (�+2)

2 .
(The referee has pointed out to us that an alternative approach to showing the equality of these ide-
als is to observe that the ideals locally coincide, thus avoiding the calculation of the degrees; this can
be applied as well to the equality at the beginning of the proof.) �

We remark that in the case n = 3, s = 4 (the tetrahedral curve case), the study of when the ideals
defined by

(x1, x2)
α1 ∩ (x1, x3)

α2 ∩ (x1, x4)
α3 ∩ (x2, x3)

α4 ∩ (x2, x4)
α5 ∩ (x3, x4)

α6

define ACM subschemes of P3 was begun in [21] and completed in [11]. Corollary 3.7 gives a partial
extension to the codimension two case in Pn .

4. Primary decompositions of powers of ideals of star configurations and applications

In this section we consider an important special case: star configurations defined by monomial
ideals. Such a star configuration arises from the set of s = N + 1 coordinate hyperplanes in PN . As
motivation, we note that given any codimension c star configuration V c(H,Pn) defined by a set H =
{H1, . . . , Hs} of s > n hyperplanes in Pn , we have V c(H,Pn) = V c(H′,PN ) ∩ L for an appropriate
n-dimensional linear subspace L ⊂ PN , where N + 1 = s and H′ = {H ′

0, . . . , H ′
N } are the coordinate

hyperplanes for PN . (In particular, define φ : k[PN ] → k[Pn] by φ : xi �→ Li+1 for 0 � i � N , where xi

is the i-th coordinate variable and Li is the linear form which defines Hi . Then L is defined by the
kernel of φ.) In fact, by Theorem 3.1, we also have φ(I(m)

V c(H′,PN )
) = I(m)

V c(H,Pn)
for all m � 1.

We now make a conjecture on the primary decomposition of Il
V c(H,Pn)

, which we will verify in the

monomial case (i.e., for Il
V c(H′,PN )

; see Theorem 4.8).

Conjecture 4.1. Let s > n and let H = {H1, . . . , Hs} be hyperplanes Hi ⊂ Pn meeting properly, defined by
linear forms Li . Let M be the irrelevant ideal in k[Pn] and M ′ the irrelevant ideal in k[PN ], where N + 1 = s
with k[PN ] = k[x0, . . . , xN ] so M ′ = (x0, . . . , xN ), and let H′ be the N + 1 coordinate hyperplanes in PN .
Define φ : k[PN ] → k[Pn] by φ : xi �→ Li+1 . Then

Il
Vc(H,Pn) = I(l)Vc(H,Pn)

∩ I(2l)
Vc+1(H,Pn)

∩ · · · ∩ I((n−c+1)l)
Vn(H,Pn)

∩ M(N−c+2)l.

Remark 4.2. The point of Conjecture 4.1 is to give primary decompositions of Il
V c(H,Pn)

in terms of
intersections of symbolic powers. Of course, the symbolic powers are not primary, but they are by
definition intersections of primary ideals; for example, I(l)V (H,Pn)

is the intersection of the l-th powers

c
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of the ideals defining the various linear components of V c(H,Pn). The equality in Conjecture 4.1 is
known to be at least a containment. What is true is:

Il
Vc(H,Pn)

= φ(I Vc(H′,PN ))
l = φ

(
Il

Vc(H′,PN )

)
= φ

(
I(l)

Vc(H′,PN )
∩ I(2l)

Vc+1(H′,PN )
∩ · · · ∩ I((N−c+1)l)

V N (H′,PN )
∩ (

M ′)(N−c+2)l)
⊆ φ

(
I(l)

Vc(H′,PN )

) ∩ φ
(

I(2l)
Vc+1(H′,PN )

) ∩ · · · ∩ φ
(

I((N−c+1)l)
V N (H′,PN )

) ∩ φ
((

M ′)(N−c+2)l)
= I(l)Vc(H,Pn)

∩ · · · ∩ I((n−c+1)l)
Vn(H,Pn)

∩ (
φ
(

I((n−c+2)l)
Vn+1(H′,PN )

) ∩ · · · ∩ φ
(

I((N−c+1)l)
V N (H′,PN )

) ∩ φ
((

M ′)(N−c+2)l))
⊆ I(l)Vc(H,Pn)

∩ I(2l)
Vc+1(H,Pn)

∩ · · · ∩ I((n−c+1)l)
Vn(H,Pn)

∩ M(N−c+2)l. (4.3)

The first equality follows from Proposition 2.9(4), the second since φ is a homomorphism and the
third by Theorem 4.8 below. The third line (i.e., the first inclusion) holds since the image of an in-
tersection is always contained in the intersection of the images (for any mapping), and the fourth
line holds since φ(I((i+1)l)

V c+i(H′,PN )
) = I((i+1)l)

V c+i(H,Pn)
for each i by Theorem 3.1. The fifth line holds since

φ(M ′) = M and since some of the terms in the intersection have been deleted. Thus the conjecture is
that the two inclusions are equalities.

The conjecture that the first inclusion is an equality says that φ commutes with the intersections.
Having equality would give a primary decomposition of Il

V c(H,Pn)
. Note that the tail end of this con-

jectured primary decomposition, namely

φ
(

I((n−c+2)l)
Vn+1(H′,PN )

) ∩ φ
(

I((n−c+3)l)
Vn+2(H′,PN )

) ∩ · · · ∩ φ
(

I((N−c+1)l)
V N (H′,PN )

) ∩ φ
((

M ′)(N−c+2)l)
,

is primary for the irrelevant ideal, M . The last line of the conjecture simply asserts that this irrelevant
component, which is not itself in general a pure power of M , can nonetheless be replaced by a pure
power of M .

Finally, note that the primary decompositions proposed here need not be irredundant. For example,
when l = 1, the last line of (4.3) is contained in (hence equal to) I V c(H,Pn) , hence Conjecture 4.1 holds
for l = 1, but obviously the primary decomposition it gives is not minimal.

Remark 4.4. Here we note some cases where Conjecture 4.1 is known to hold. Conjecture 4.1 holds
when l = 1, as noted at the end of Remark 4.2. It is easy to see that Conjecture 4.1 holds when c = 1,
since I V c(H,Pn) is principal and V c(H,Pn) is a complete intersection. Conjecture 4.1 holds when c = n,

since (Il
V c(H,Pn)

)t = (I(l)V c(H,Pn)
)t for t � α(Il

V c(H,Pn)
) = l(s − c +1) by [3, Lemma 2.3.3(c), Lemma 2.4.2],

and hence Il
Vn(H,Pn)

= I(l)Vn(H,Pn)
∩ M(N−c+2)l . And Conjecture 4.1 holds when n = N = s − 1, by Theo-

rem 4.8.

So now we begin a study of monomial star configurations V (l)
c (H′,PN ), where H′ consists of the

N + 1 coordinate hyperplanes. Consider k[PN ] = k[x0, . . . , xN ]. Let p0, . . . , pN be the coordinate ver-
tices, where I pi = ({x j: j �= i}). More generally, let Λ = 〈pi1 , . . . , pir 〉 be the linear subspace spanned
by the given points pi j ; then

IΛ = ({
x j: j /∈ {i1, . . . , ir}

})
.

Given any monomial μ = xm0
0 · · · xmN

N , we can define its Λ-degree as degΛ(μ) = ∑
j /∈{i1,...,ir } m j =

deg(μ) − ∑
j∈{i1,...,ir } m j . Note that degΛ(μ) is just the order of vanishing of μ on Λ (i.e., the largest

power of IΛ containing μ). Let V c = V c(H′,PN ) and let I = I V c be its ideal. It now follows from the
definition of symbolic power that I(l) is generated by all monomials μ such that degΛ(μ) � l for all
irreducible components Λ of V c .
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In the next result we determine α(I(l)). This is a special case extension of the result α(I) =
N − c + 2 given in Proposition 2.9(4). We will use this extension in Corollary 4.6 to extend the deter-
mination of α given in Proposition 2.9(4) to symbolic powers in general.

Proposition 4.5. Let I be the ideal of V c = V c(H′,PN ) where H′ consists of the N +1 coordinate hyperplanes,
and let l � 1. Define q and r by writing l = qc + r for 1 � r � c. Then α(I(l)) = (q + 1)(N + 1) − c + r.

Proof. Let μ = (x0 · · · xN )qx0 · · · xN−c+r . Every component Λ of V c is the span of exactly N − c + 1 of
the coordinate vertices pi . Thus degΛ(x0 · · · xN ) = N + 1 − (N − c + 1) = c and degΛ(x0 · · · xN−c+r) �
(N − c + r + 1) − (N − c + 1) = r, so degΛ(μ) � qc + r = l. Thus μ ∈ I(l) , so α(I(l)) � deg(μ) = (q +
1)(N + 1) − c + r.

To show that α(I(l)) � (q + 1)(N + 1) − c + r, it is enough to show for each monomial of degree
(q + 1)(N + 1) − c + r − 1 that there is a component Λ of V c on which the monomial has order of
vanishing less than l. So let μ = xm0

0 · · · xmN
N be any monomial such that deg(μ) = (q + 1)(N + 1) −

c + r − 1 = q(N + 1) + (N − c + r). For some permutation i0, . . . , iN of the indices 0, . . . , N we have
mi0 � mi1 � · · · � miN . Let Λ = 〈pi0 , . . . , piN−c 〉. The order of vanishing of μ on Λ is

degΛ(μ) = miN−c+1 + · · · + miN = deg(μ) − (mi0 + · · · + miN−c ).

This is largest when mi0 + · · · + miN−c is least. We can replace μ with μ′ = x
m′

0
0 · · · x

m′
N

N of the same
degree such that still m′

i0
� · · · � m′

iN
but such that the exponents are as close to constant as possible

(i.e., such that m′
i0

− m′
iN

� 1). Doing this increases the smaller exponents at the expense of the
larger exponents, so we have degΛ(μ) � degΛ(μ′). Since deg(μ′) = q(N + 1) + (N − c + r) we see
that mi j = q + 1 for j = 0, . . . , N − c + r − 1, while mi j = q for j = N − c + r, . . . , N . Thus degΛ(μ) �
degΛ(μ′) = deg(μ′)−(mi0 +· · ·+miN−c ) = q(N +1)+(N −c+r)−(N −c+1)(q+1) = qc+r −1 < l. �

More generally we have:

Corollary 4.6. Now let V c(Pn) be the codimension c skeleton for a star configuration on s > n hyperplanes in
Pn and let I be its ideal. Define q and r by writing l = qc + r for 1 � r � c. Then α(I(l)) = (q + 1)s − c + r.

Proof. This follows from Theorem 3.1 (see also the last sentence of the proof of Theorem 3.1) and
Proposition 4.5. �
Proposition 4.7. Let I be the ideal of V c = V c(H′,PN ) where H′ consists of the N + 1 coordinate hy-
perplanes, and let l � 1. Then I(l) is generated in degree at most l(N − c + 2); more precisely, in any
minimal set of homogeneous generators of I(l) , the degree ω(I(l)) of a generator of maximum degree is
ω(I(l)) = l(N − c + 2) = α(Il).

Proof. First we note that α(Il) = lα(I) = l(N − c + 2). The ideal I(l) is generated by all monomials
μ = xm0

0 · · · xmN
N such that the c smallest exponents sum to l. The maximum degree of such a monomial

which is not divisible by another such monomial is l(N − c + 2); take for example μ = (xc−1 · · · xN )l ,
and note μ is not divisible by any other monomial in this generating set. �

We now prove Conjecture 4.1 in the monomial case. (See [12] for irreducible decompositions of
monomial ideals and for results on their associated primes.)

Theorem 4.8. Let I be the ideal of V c = V c(H′,PN ) where H′ consists of the N + 1 coordinate hyperplanes
and M ′ is the irrelevant ideal, and let l � 1. Then

Il = I(l)Vc
∩ I(2l)

Vc+1
∩ · · · ∩ I((N−c+1)l)

V N
∩ (

M ′)(N−c+2)l
.
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Proof. It is enough to show both the forward containment Il ⊆ I(l)V c
∩ I(2l)

V c+1
∩ · · · ∩ I((N−c+1)l)

V N
∩

(M ′)(N−c+2)l and the reverse containment Il ⊇ I(l)V c
∩ I(2l)

V c+1
∩ · · · ∩ I((N−c+1)l)

V N
∩ (M ′)(N−c+2)l . Moreover,

if we show the forward containment for l = 1, then we clearly have equality for l = 1, so it follows
for l > 1 that

Il = (
I Vc ∩ · · · ∩ I(N−c+1)

V N
∩ (

M ′)N−c+2)l ⊆ I(l)Vc
∩ I(2l)

Vc+1
∩ · · · ∩ I((N−c+1)l)

V N
∩ (

M ′)(N−c+2)l;

i.e., the forward containment for l = 1 implies the reverse containment for l = 1 and it implies the
forward containments for all l > 1.

So now we verify the forward containment for l = 1. As noted in the proof of Proposition 4.7, I is
generated by all monomials μ = xm0

0 · · · xmN
N such that the c smallest exponents sum to l = 1. We also

know that I is generated by monomials of degree N − c + 2. Thus exactly c − 1 of the exponents
mi must be 0, so the other N − c + 2 must be equal to 1. I.e., I is generated by the square-free
monomials of degree N − c + 2, so each μ is of the form μ = xi0 · · · xiN−c+1 for some indices 0 � i0 <

· · · < iN−c+1 � N . Thus it is enough to show for every square-free monomial μ of degree N −c+2 that
μ ∈ I(i+1)

V c+i
for i = 0, . . . , N −c +1 and that μ ∈ (M ′)N−c+2. Clearly we have μ ∈ (M ′)N−c+2, so consider

μ ∈ I(i+1)
V c+i

. We must check that degΛ(μ) � i + 1 for each component Λ of V c+i . But Λ is spanned by
exactly N − c − i + 1 coordinate vertices, hence degΛ(μ) � deg(μ)− (N − c − i + 1) = i + 1, as needed.

We now verify the reverse inclusion. Let μ = xm0
0 · · · xmN

N and assume

μ ∈ I(l)Vc
∩ I(2l)

Vc+1
∩ · · · ∩ I((N−c+1)l)

V N
∩ (

M ′)(N−c+2)l
. (**)

We will show that μ ∈ Il . For simplicity we demonstrate the argument only in case m0 � m1 � · · · �
mN ; up to a permutation of the indices, the general argument is the same. Our proof will be by
induction on l, the case l = 1 having been established above.

If mN−c+1 � l, then (x0 · · · xN−c+1)
l divides μ, but x0 · · · xN−c+1 ∈ I , so μ ∈ Il . Now assume

mN−c+1 < l. In any case we have mN−c+1 > 0, since if mN−c+1 = 0, then μ is not divisible by any
square-free monomial of degree N − c + 2 and hence μ /∈ I , but by assumption (**), μ ∈ I(l) ⊆ I . In
particular, μ is divisible by x0 · · · xN−c+1; let μ′ = μ/(x0 · · · xN−c+1). If we check that

μ′ ∈ I(l−1)
Vc

∩ I(2(l−1))
Vc+1

∩ · · · ∩ I((N−c+1)(l−1))
V N

∩ (
M ′)(N−c+2)(l−1);

then μ′ ∈ Il−1 by induction, so μ = μ′x0 · · · xN−c+1 ∈ Il , as claimed. We will use the following
function. Given distinct elements j1, . . . , jr ∈ {0, . . . , N} and 0 � t � N , let ν j1,..., jr (t) = |{0, . . . , t} ∩
{ j1, . . . , jr}|. Thus, for example, ν j(t) is 1 if 0 � j � t � N and ν j(t) is 0 if 0 � t < j � N .

We first check that μ′ ∈ (M ′)(N−c+2)(l−1) . Since μ ∈ (M ′)(N−c+2)l , we have deg(μ) � (N − c + 2)l,
so deg(μ′) � (N − c + 2)l − (N − c + 2) = (N − c + 2)(l − 1), hence μ′ ∈ (M ′)(N−c+2)(l−1) .

Now we check that μ′ ∈ I((N−c+1)(l−1))
V N

. It suffices to check that deg〈pi〉(μ
′) � (N − c + 1)(l − 1) for

each i, where p0, . . . , pN are the coordinate vertices. For all i we have

deg〈pi〉
(
μ′) = deg〈pi〉(μ) − (

N − c + 2 − νi(N − c + 1)
)
.

If i � N − c + 1, then νi(N − c + 1) = 1 so using deg〈pi〉(μ) � (N − c + 1)l (which we have since

μ ∈ I((N−c+1)l)
V N

) we obtain

deg〈pi〉(μ) − (
N − c + 2 − νi(N − c + 1)

)
� (N − c + 1)l − (N − c + 1) = (N − c + 1)(l − 1).

If i > N − c + 1, then νi(N − c + 1) = 0 and
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deg〈pi〉
(
μ′) = deg〈pi〉(μ) − (

N − c + 2 − νi(N − c + 1)
)

= deg(μ) − mi − (N − c + 2)

� (N − c + 2)l − mi − (N − c + 2)

� (N − c + 2)l − (l − 1) − (N − c + 2)

= (N − c + 1)(l − 1),

where the fourth line uses the assumption that mN−c+1 < l.
Now we check that μ′ ∈ I((N−c)(l−1))

V N−1
. Let pi1 and pi2 be arbitrary distinct coordinate vertices, and

assume i1 < i2. It suffices to check that deg〈pi1 ,pi2 〉(μ′) � (N − c)(l − 1). For all i we have

deg〈pi1 ,pi2 〉
(
μ′) = deg〈pi1 ,pi2 〉(μ) − (

N − c + 2 − νi1,i2(N − c + 1)
)
.

If i2 � N − c + 1, then νi1,i2(N − c + 1) = 2 so using deg〈pi1 ,pi2 〉(μ) � (N − c)l we have

deg〈pi1 ,pi2 〉(μ) − (
N − c + 2 − νi1,i2(N − c + 1)

)
� (N − c)l − (N − c) = (N − c)(l − 1).

If i1 � N − c + 1 < i2, then νi1,i2 (N − c + 1) = 1 so using deg〈pi1 ,pi2 〉(μ) = deg〈pi1 〉(μ) − mi2 � (N −
c + 1)l − mi2 � (N − c + 1)l − (l − 1) gives

deg〈pi1 ,pi2 〉(μ) − (
N − c + 2 − νi1,i2(N − c + 1)

)
� (N − c + 1)l − (l − 1) − (N − c + 1)

= (N − c)(l − 1).

If N − c + 1 < i1, then νi1,i2 (N − c + 1) = 0 so using deg〈pi1 ,pi2 〉(μ) = deg(μ) − mi1 − mi2 � (N −
c + 2)l − 2(l − 1) = (N − c)l + 2 gives

deg〈pi1 ,pi2 〉(μ) − (
N − c + 2 − νi1,i2(N − c + 1)

)
� (N − c)l + 2 − (N − c + 2) = (N − c)(l − 1).

Now we must check that μ′ ∈ I((N−c−1)(l−1))
V N−2

, and then μ′ ∈ I((N−c−2)(l−1))
V N−3

, etc., but the argument
follows the same pattern of checking cases depending on how many of the indices of 〈pi1 , . . . , pir 〉
are less than or equal to N − c + 1, and each case is verified in the same way as indicated above. �

We can partially extend this to the non-monomial case. Given a homogeneous ideal J in a
polynomial ring, we denote the saturation of J by sat( J ), meaning the intersection of the primary
components of J excluding the component primary to the irrelevant ideal (if there is one).

Corollary 4.9. Let I ⊂ k[Pn] = R be the ideal of V c = V c(H,Pn) where H consists of s > n hyperplanes
H1, . . . , Hs meeting properly where M is the irrelevant ideal, and let l � 1. Then

sat
(

Il) = I(l)Vc
∩ I(2l)

Vc+1
∩ · · · ∩ I((n−c+1)l)

Vn
.

Proof. Since Il ⊆ I(l)V c
∩ I(2l)

V c+1
∩ · · · ∩ I((n−c+1)l)

Vn
by Remark 4.2 but the latter is saturated, we at least

have sat(Il) ⊆ I(l)V c
∩ I(2l)

V c+1
∩ · · · ∩ I((n−c+1)l)

Vn
. Since Il is homogeneous, the associated primes and their

primary components are homogeneous also [28, Theorem 9, p. 153]. Thus to show equality it suffices
to show equality after localizing for every prime ideal of the form I p for p ∈ V c . But after such a
localization, every hyperplane Hi not passing through p becomes a unit and hence Il R I p is generated
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by monomials in the linear forms L j for all H j passing through p. Say that these H j are H j0 , . . . , H jr

and pick any other n − r of the hyperplanes Hi to obtain H j0 , . . . , H jn . After a change of coordinates
we may assume H ji = xi for i = 0, . . . ,n. Let H′ = {x0, . . . , xn}, let V ′

i = V i(H′,Pn) for all i and let
J = I V ′

c
. Clearly p ∈ V ′

c ⊆ V c and Il R I p = J l R I p . We know the primary decomposition of J l and hence

of J l R I p from Theorem 4.8; i.e., we have

Il R I p = J l R I p

= (
I(l)

V ′
c
∩ I(2l)

V ′
c+1

∩ · · · ∩ I((n−c+1)l)
V ′

n
∩ M(n−c+2)l)R I p

= I(l)
V ′

c
R I p ∩ I(2l)

V ′
c+1

R I p ∩ · · · ∩ I((n−c+1)l)
V ′

n
R I p

= I(l)Vc
R I p ∩ I(2l)

Vc+1
R I p ∩ · · · ∩ I((n−c+1)l)

Vn
R I p

= (
I(l)Vc

∩ I(2l)
Vc+1

∩ · · · ∩ I((n−c+1)l)
Vn

)
R I p .

Since this holds for all p ∈ V c , we have

sat
(

Il) = I(l)Vc
∩ I(2l)

Vc+1
∩ · · · ∩ I((n−c+1)l)

Vn
,

as claimed. �
As an application we apply our results to compute the resurgence for certain subschemes. We first

recall the definition of the resurgence [3]. The point of the resurgence is to provide an asymptotic
measure of how far symbolic powers deviate from ordinary powers of the same ideal. This is not
interesting in the case of an ideal I if I = (0) or I = (1), so we do not define the resurgence in those
cases.

Definition 4.10. Let (0) �= I � k[Pn] be a homogeneous ideal. The resurgence of I , denoted ρ(I) is

sup

{
m

r
: I(m) � Ir

}
.

We always have 1 � ρ(I) � n. (Since α(I(m)) � α(Im) = mα(I) and rα(I) = α(Ir), we see that m < r
implies α(I(m)) < α(Ir) and hence I(m) � Ir . It follows that 1 � ρ(I), and by applying the main result
of [18] we know that ρ(I) � n.) However, it is in general quite difficult to compute the resurgence
exactly, and only a few cases have been done, so finding methods to provide exact determinations in
additional cases is of substantial interest. When I is the ideal of a complete intersection, I(m) = Im

for all m � 0 [28, Lemma 5, Appendix 6] so ρ(I) = 1. Moreover, ρ(I) = ρ(I ′) if I ⊂ k[Pn] ⊆ k[PN ]
with I ′ = Ik[PN ] [3, Proposition 2.5.1(a)], so if the resurgence is known for a subscheme it is known
for projective cones over the subscheme. Some exact values of ρ(I) are known when I defines a
0-dimensional subscheme [3,4,9]. For example, if H consists of s > N hyperplanes in PN meeting
properly, then [3] shows that

c(s − c + 1)

s
� ρ(I Vc(H,PN ))

with equality in case c = N . Thus when s = N + 1 we have c(N−c+2)
N+1 � ρ(I V c(H,PN )) with

ρ(I V N (H,PN )) = 2N/(N + 1) when c = N . We will show equality also holds when c = N − 1, giv-
ing ρ(I V N (H,PN )) = 3(N − 1)/(N + 1). The only exact determinations up to now for subschemes which
are not complete intersections nor are 0-dimensional nor are cones over such and for which the
resurgence is bigger than 1 are for certain smooth unions of lines in projective space [14].
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Theorem 4.11. Let N � 3 and let I ⊂ k[PN ] be the ideal of V N−1 = V N−1(H′,PN ) where H′ consists of the
N + 1 coordinate hyperplanes, which we denote as H1, . . . , HN+1 . Then

ρ(I) = 3(N − 1)

N + 1
.

Moreover, given m, r � 1, we have I(m) � Ir if and only if

m

r
<

(
3 − 2N − 4

(N − 1)r

)
N − 1

N + 1
.

Proof. Assume k[PN ] = k[x0, . . . , xN ]. Let M be the irrelevant ideal and let J = I V N . By Theorem 4.8

Ir = I(r)V N−1
∩ I(2r)

V N
∩ M3r = I(r) ∩ J (2r) ∩ M3r .

Thus I(m) fails to be contained in Ir if and only if either

I(m) � I(r), I(m) � J (2r) or I(m) � M3r,

so

ρ(I) = max
(
sup

{
m/r: I(m) � I(r)

}
, sup

{
m/r: I(m) � J (2r)}, sup

{
m/r: I(m) � M3r}).

Since I(m) � I(r) if and only if m < r, we have sup{m/r: I(m) � I(r)} � 1.
Next, I(m) � J (2r) if and only if there is a monomial xm0

0 · · · xmN
N in I(m) but not in J (2r) . After a

permutation of the indices if need be, this condition is equivalent to there being exponents m0 � · · · �
mN such that m2 + · · · + mN � m but m1 + · · · + mN < 2r. Let q = �m/(N − 1)� and σ = m − (N − 1)q
so m = (N − 1)q + σ and 0 � σ < N − 1. Let m′

0 = m′
1 = m′

2, and if σ = 0, let m′
2 = · · · = m′

N = q,
while if σ > 0, let m′

2 = · · · = m′
σ+1 = q + 1, and m′

σ+2 = · · · = m′
N = q. Note that m2 � �(m2 + · · · +

mN )/(N − 1)� � �m/(N − 1)� so m2 � m′
2, hence m1 � m2 � m′

2 = m′
1. Then m′

0 � · · · � m′
N with

m′
2 + · · · + m′

N = (N − 1)q + σ = m and m′
1 + · · · + m′

N = m′
1 + m′

2 + · · · + m′
N = m′

1 + m � m1 + m2 +
· · · + mN < 2r. Thus μ′ = x

m′
0

0 · · · x
m′

N
N ∈ I(m) \ J (2r) , and we have m′

0 − m′
N � 1; in particular, each m′

i
is either �m/(N − 1)� or �m/(N − 1)� (and necessarily m′

2 = �m/(N − 1)� and m′
N = �m/(N − 1)�).

The condition that m′
1 + · · · + m′

N < 2r can now be stated as m + �m/(N − 1)� < 2r, or equivalently as
mN/(N − 1) = m + m/(N − 1) � 2r − 1; i.e., I(m) � J (2r) if and only if

m

r
� (N − 1)

2 − 1
r

N
.

Thus sup{m/r: I(m) � J (2r)} � 2(N − 1)/N .
Finally, I(m) � M3r if and only if α(I(m)) < 3r. By Proposition 4.5, α(I(m)) = (q + 1)(N + 1) −

(N − 1) + r, where m = q(N − 1) + σ for 1 � σ � N − 1. Note that

(q + 1)(N + 1) − (N − 1) + σ = m + 2q + 2 = m + 2(m − σ)/(N − 1) + 2

= m + 2 + 2

⌊
m − 1

N − 1

⌋
.
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Thus m + 2 + 2�m−1
N−1 � = α(I(m)) < 3r holds if and only if m + 2 + 2 m−1

N−1 < 3r, which simplifies to

m

r
<

(
3 − 2N − 4

(N − 1)r

)
N − 1

N + 1
.

The supremum of the right hand side over all values of r � 1 is 3 N−1
N+1 . Since 3 N−1

N+1 is greater than

either 1 or 2(N − 1)/N , we see that ρ(I) � 3 N−1
N+1 . To show that we actually have equality, let m =

3(N − 1)2t and let r = (N2 − 1)t + N − 1. Then m + 2 + 2 m−1
N−1 < 3r holds (it simplifies to (3N − 8)N +

7 > 0), and

m

r
= 3(N − 1)2t

(N2 − 1)t + N − 1
= 3(N − 1)

N + 1 + 1
t

has supremum 3(N − 1)/(N + 1), taken over all t � 1.
We now have

ρ(I) = max

(
3(N − 1)

N + 1
,

2(N − 1)

N
,1

)
= 3(N − 1)

N + 1
.

We close by proving that I(m) � Ir if and only if

m

r
<

(
3 − 2N − 4

(N − 1)r

)
N − 1

N + 1
.

From our work above we have I(m) � Ir if and only if either

m

r
< 1 or

m

r
�

(
2 − 1

r

)
N − 1

N
or

m

r
<

(
3 − 2N − 4

(N − 1)r

)
N − 1

N + 1
.

But 1 � (2 − 1
r ) N−1

N < (3 − 2N−4
(N−1)r )

N−1
N+1 for r � 2, so the three inequalities are subsumed by the last

one when r � 2, while when r = 1 it is enough to note that (3 − 2N−4
(N−1)

) N−1
N+1 = 1. �

One of the things our results suggest is that the nice properties of star configurations generally
may derive from the nice behavior coming from stars configurations whose ideals are monomial ide-
als. As we have seen, a codimension c star V c(Pn) coming from s hyperplanes in Pn is, as a point set,
the intersection with an appropriate linear space L ⊂ PN of dimension n of the codimension c star
V c(PN ) coming from the N + 1 coordinate hyperplanes in PN , where N + 1 = s. Thus it is reasonable
to ask the following question.

Question 4.12. If H is a set of s > n hyperplanes in Pn meeting properly and H′ is the set of coordi-
nate hyperplanes in PN for N = s − 1, is it true that ρ(I V c(H,Pn)) = ρ(I V c(H′,PN ))?

We do not know the answer, but we at least have ρ(I V c(H,Pn)) � ρ(I V c(H′,PN )). (This is be-
cause if (I V c(H′,PN ))

(m) ⊆ (I V c(H′,PN ))
r , then (I V c(H,Pn))

(m) ⊆ (I V c(H,Pn))
r , since by Theorem 3.1 and

its proof we have (I V c(H,Pn))
(m) = ((I V c(H′,PN ))

(m) + J )/ J and (I V c(H′,PN ))
r = ((I V c(H,Pn))

r + J )/ J ,
where J is an ideal generated by linear forms, these forms being the ones defining the linear space
whose intersection with V c(H′,PN ) gives V c(H,Pn).) In addition, Theorem 4.11 shows that Ques-
tion 4.12 is true when c = n = N − 1 and s = n + 2: using ρ(I Vn(Pn)) = n(s − n + 1)/s [3], we have
ρ(I Vn(Pn)) = n(s − n + 1)/s = 3(N − 1)/(N + 1) = ρ(I V (PN )).
N−1
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