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Let S be a 2-subgroup of the K-automorphism group Aut(X )
of an algebraic curve X of genus g(X ) defined over an 
algebraically closed field K of characteristic 2. It is known 
that S may be quite large compared to the classical Hurwitz 
bound 84(g(X ) −1). However, if S fixes no point, then the size 
of S is smaller than or equal to 4(g(X ) − 1). In this paper, we 
investigate algebraic curves X with a 2-subgroup S of Aut(X )
having the following properties:

(I) |S| ≥ 8 and |S| > 2(g(X ) − 1),
(II) S fixes no point on X .

Theorem 1.2 shows that X is a general curve and that either 
|S| = 4(g(X ) − 1), or |S| = 2g(X ) + 2, or, for every involution 
u ∈ Z(S), the quotient curve X/〈u〉 inherits the above 
properties, that is, it has genus ≥2, and its automorphism 
group S/〈u〉 still has properties (I) and (II). In the first two 
cases, S is completely determined. We also give examples 
illustrating our results. In particular, for every g = 2h+1 ≥ 9, 
we exhibit a (general bielliptic) curve X of genus g whose 
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K-automorphism group has a dihedral 2-subgroup S of order 
4(g − 1) that fixes no point in X .

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper, K is an algebraically closed field of characteristic 2, X is a 
(projective, non-singular, geometrically irreducible, algebraic) curve of genus g ≥ 2, 
Aut(X ) is the K-automorphism group of X , and S is a (non-trivial) subgroup of Aut(X )
whose order is a power of 2.

From previous work of Nakajima [13], the size of S is related to the 2-rank γ of X
which is defined to be the rank of the (elementary abelian) group of the 2-torsion points 
in the Jacobian variety of X ; see [8, Section 6.7]. It is known that γ ≤ g. If equality 
holds then X is a general curve, see [8, Theorem 6.96] and [3]. Nakajima [13, Theorem 1]
showed that |S| ≤ 4(γ − 1) for γ > 1, whereas |S| ≤ 4(g − 1) for γ = 1. Moreover, [7, 
Theorem 3.4] states that if γ = 0, then S has a unique fixed point on X , see also [8, 
Theorem 11.333]. In the latter case, |S| ≤ 8g2 by an earlier result of Stichtenoth [17]
who also pointed out that this bound is attained by the non-singular model X of the 
hyperelliptic curve of genus 2k−1 and equation Y 2 + Y + X2k+1 = 0.

The above results have given a motivation to investigate the possibilities for X , g and 
S when either |S| is close to 8g2 (and S fixes a point of X ), or |S| is close to 4(g − 1)
but S fixes no point of X .

The first possibilities have recently been investigated by Lehr, Matignon and Rocher, 
see [11,12,15,16]. In [11], it is shown that |S| ≥ 4g2 only occurs when X is the non-singular 
model of the Artin–Schreier curve of equation Y q+Y +f(X) = 0 with f(X) = XP (X) +
cX where P (X) is an additive polynomial of K[X] and q is a power of 2.

To investigate the second possibility the hypotheses below are assumed:

(I) |S| ≥ 8 and |S| > 2(g − 1),
(II) S fixes no point on X .

Before stating our results on S we point out the prominent role of central involutions 
in this context. Let u be a central involution in S, that is an involution u ∈ Z(S), and 
consider the associated quotient curve X̄ = X/U where U = 〈u〉. The factor group 
S̄ = S/U has order 1

2 |S| and it is a K-automorphism group of X̄ . Also, g − 1 ≥ 2(ḡ− 1)
where ḡ is the genus of X̄ . Therefore, either

(A) ḡ ≤ 1; or
(B) ḡ = 2 and |S̄| = 4; or
(C) ḡ ≥ 2, and hypothesis (I) is inherited by S̄, viewed as a subgroup of Aut(X̄ ), but S̄

fixes a point on X̄ ; or
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(D) ḡ ≥ 2 and both hypotheses (I) and (II) are inherited by S̄, viewed as a subgroup of 
Aut(X̄ ).

If case (D) occurs then u is called an inductive central involution of S. Note that, if 
|S| ≥ 16 and no non-trivial element in S fixes a point of X then every central involution 
is inductive. It may happen that S̄ also has an inductive central involution, say ū. In this 
case the quotient curve ¯̄X = X̄/〈ū〉 with its inherited K-automorphism group ¯̄S = S̄/〈ū〉
satisfies both (I) and (II), as well. Therefore, an inductive argument can be used to go 
on as far as the resulting curve has an inductive central involution. Since the order of 
the inherited group halves at each step, after a finite number of steps a curve free from 
inductive central involutions is obtained. Such a finite sequence of curves is called an 
inductive sequence. It may be noted that an inductive sequence gives rise to an upper 
central series and that its length is at most h − 3, where |S| = 2h. Actually, this bound 
can be attained, see the examples in Subsection 6.5 that also illustrate some features of 
inductive sequences of curves.

Now, our results are stated.

Theorem 1.1. Let X be a curve of genus g ≥ 2 defined over an algebraically closed field 
K of characteristic 2. Let γ be the 2-rank of X . Assume that Aut(X ) has a subgroup S
of order a power of 2 such that both (I) and (II) hold. If S contains no inductive central 
involution then g = γ, and one of the following two cases occurs.

(1) |S| = 4(g − 1), X is a bielliptic curve, and S is a dihedral group.
(2) |S| = 2g + 2, and S = D�E, the semidirect product of an elementary abelian group 

D of index 2 by a group E of order 2. If S is abelian, then it is an elementary abelian 
group and X is a hyperelliptic curve.

Theorem 1.1 is a corollary of the following result proven in Section 4.

Theorem 1.2. Let X be a curve of genus g ≥ 2 defined over an algebraically closed field 
K of characteristic 2. Let γ be the 2-rank of X . Assume that Aut(X ) has a subgroup S
of order a power of 2 such that both (I) and (II) hold. Then one of the following cases 
occurs:

(i) |S| = 4(g − 1), γ = g and X is a bielliptic curve. Furthermore, either
(ia) S is dihedral and has no inductive central involution; or
(ib) S = (E × 〈u〉) � 〈w〉 where E is a cyclic group of order g − 1 and u and 

w are involutions. The factor group S/〈u〉 is a dihedral group, and the two 
involutions of E × 〈u〉 are the unique two central inductive involutions of S.

(ii) γ = g, and (2) in Theorem 1.1 holds.
(iii) Every central involution of S is inductive.
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It is worth observing that all curves in Theorem 1.1 are general curves. In fact, auto-
morphism groups of general curves have specific properties. In particular, in characteristic 
2, every 2-element fixing a point is an involution, see corollary to Theorem 2 in [13]. 
For non-general curves with γ ≥ 2, Nakajima’s bound |S| ≤ 4(γ − 1) is better than 
|S| < 4(g − 1). For γ = 1, Nakajima’s bound can be improved to |S| ≤ g − 1, provided 
that |S| ≥ 8 and S is neither dihedral nor semi-dihedral, see the remark after Lemma 3.1. 
For γ = 0, as noted before, S must fix a point, and hence condition (II) is not satisfied.

In the literature, there has been known, so far, only one infinite family of curves related 
to Theorem 1.1, namely the family described in Section 6.3 which provides an example of 
type (2). The existence problem for an infinite family of curves of type (1) in Theorem 1.1
is solved positively in Section 5. In fact, for every g = 2h +1 ≥ 9, we construct a general 
bielliptic curve X whose K-automorphism group has a dihedral 2-subgroup S of order 
4(g − 1) that fixes no point in X . For this purpose, cyclic extensions of elliptic curves 
over a finite field are considered. The idea is to show that some of such extensions 
have a dihedral automorphism group attaining Nakajima’s bound. This requires explicit 
computations in elliptic function fields with finite constant field, which appear to be 
of independent interest. Our construction of such curves also suggests the existence of 
curves of genus g with a semi-dihedral K-automorphism group of order 2(g − 1). An 
example with g = 17, γ = 9 and |S| = 32 is exhibited in Subsection 6.6. This shows that 
if the first hypothesis in (I) is relaxed to |S| ≥ 2g − 2, then more groups and non-general 
curves enter in play when an analog of Theorem 1.1 is considered. Finally, an infinite 
family of curves of type (iii) in Theorem 1.2 is given in Subsection 6.4.

Our proof of Theorem 1.2 combines function fields with permutation groups. The in-
gredients from function field theory are the Deuring–Shafarevich, the Hurwitz genus and 
the Hilbert differential formulaes. The basic idea is to interpret the Deuring–Shafarevich 
formula as a combinatorial result regarding the orbits of S and then use it as an extra-
tool in the study of the action of S on X . With this approach, the other two formulaes 
also play a role in the arguments, although of minor importance. The first essential step 
in the proof is to prove that S has only two short orbits on X , one of length �1 = 1

2 |S| the 
other of size �2 = 1

2 |S| −γ+1. This shows that γ heavily influences not only the size of S
but also its action on X . The second step is to prove that if |�2| = 2 then case (ii) occurs; 
in particular, when S is abelian, then X is a hyperelliptic curve and S is an elementary 
abelian group. For |�2| > 2, the picture appears to be much richer, see the examples in 
Section 6. However, if S has a non-inductive central involution, then |�2| = 1

4 |S| and X is 
a general bielliptic curve. In the final step we determine the abstract structure of S. Our 
arguments only require the existence of a central involution in S fixing a point of X that 
may be or not a non-inductive central involution. The result is stated in Theorem 4.3, 
and the proof relies on Suzuki’s classification of 2-groups containing an involution whose 
centralizer has order 4.

One may ask whether analogous results for p-groups of automorphisms S may hold 
in characteristic p > 2. The answer is negative for p > 3. In fact, if p > 2 then |S| ≤
p (γ − 1) for γ ≥ 2 and |S| ≤ g − 1 for γ = 1, see [13], while |S| ≤ 4p

2 g
2 for γ = 0
p−2 (p−1)
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(and S fixes a point), see [17]. Comparing these results with conditions (I) and (II) shows 
indeed that only the case p = 3 is possible. Therefore, let p = 3 and assume that X is a 
genus g ≥ 2 curve equipped with a 3-subgroup S of Aut(X ) satisfying both conditions 
(I) and (II). Our approach and arguments can be adapted to prove that X is a general 
curve with |S| = 3(g − 1), and that S is abelian only for g = 4. However, there is major 
difference with respect to the case p = 2, since the action of S on X has two orbits of equal 
length |S|/3, and some index 3 subgroup M of S acts on X semi-regularly so that the 
quotient curve X̄/M is a genus 2 curve with a subgroup of Aut(X̄ ) of order 3. The latter 
property means that the field extension K(X )/K(X̄ ) is unramified. Therefore, to pursuit 
the investigation, the pro-p fundamental group of X̄ is useful, see [14], and different tools 
from Group theory, such as the classification of 3-groups of maximal nilpotency class, 
are needed. This has been done in a separate work, a preliminary version being [5].

2. Preliminaries to the proof of Theorem 1.2

In this section, S is a 2-subgroup of Aut(X ), that is, a K-automorphism group of X
whose order is a power of 2.

The subfield K(X )S consisting of all elements of K(X ) fixed by every element in S, also 
has transcendency degree one over K. Let Y be a non-singular model of K(X )S, that is, 
a projective, non-singular, geometrically irreducible, algebraic curve with function field 
K(X )S . Sometimes, Y is called the quotient curve of X by S and denoted by X/S. The 
covering X �→ Y has degree |S| and the field extension K(X )/K(X )S is Galois.

Let P̄1, . . . , P̄k be the points of the quotient curve X̄ = X/S where the cover X/X̄
ramifies. For 1 ≤ i ≤ k, let Li denote the set of points of X which lie over P̄i. In other 
words, L1, . . . , Lk are the short orbits of S on its faithful action on X . Here the orbit of 
P ∈ X

o(P ) =
{
Q

∣∣ Q = P g, g ∈ S
}

is long if |o(P )| = |S|, otherwise o(P ) is short. It may be that S has no short orbits. This 
is the case if and only if every non-trivial element in S is fixed-point-free on X . On the 
other side, S has a finite number of short orbits.

If P is a point of X , the stabilizer SP of P in S is the subgroup of S consisting of all 
elements fixing P . For a non-negative integer i, the i-th ramification group of X at P is 
denoted by S(i)

P (or Si(P ) as in [18, Chapter IV]) and defined to be

S
(i)
P =

{
g
∣∣ ordP

(
g(t) − t

)
≥ i + 1, g ∈ SP

}
,

where t is a uniformizing element (local parameter) at P . Here S(0)
P = S

(1)
P = SP . 

Furthermore, for i ≥ 1, S(i)
P is a normal subgroup of SP and the factor group S(i)

P /S
(i+1)
P

is an elementary abelian p-group. For i big enough, S(i)
P is trivial.

Let ḡ be the genus of the quotient curve X̄ = X/S. The Hurwitz genus formula gives 
the following equation
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2g− 2 = |S|(2ḡ− 2) +
∑
P∈X

dP , (1)

where

dP =
∑
i≥0

(∣∣S(i)
P

∣∣− 1
)
. (2)

Let γ be the 2-rank of X , and let γ̄ be the 2-rank of the quotient curve X̄ = X/S. 
The Deuring–Shafarevich formulas, see [20] or [8, Theorem 11.62], states that

γ − 1 = |S|(γ̄ − 1) +
k∑

i=1

(
|S| − �i

)
(3)

where �1, . . . , �k are the sizes of the short orbits of S.
Besides the Hurwitz and the Deuring–Shafarevich formulas which are our main tools 

from Algebraic geometry, we also need some technical results.

Proposition 2.1. Assume that S fixes the point P ∈ X . Let i ≥ 2 be the smallest integer 
for which the ith ramification group S(i)

P of S at P is trivial. If S has order 2, then i is 
even.

Proof. Since S has order two, X is a double cover of the quotient curve X̄ = X/S. 
Hence, K(X ) is an Artin–Schreier extension of K(X )S = K(X̄ ). By (c) of Lemma 3.7.8 
in [19], the different exponent dP is even. Then the claim follows from (2). �
Proposition 2.2. If γ = 0, then S has a (unique) fixed point.

For a proof, see [6]; see also [8, Section 11.15] and [7].

Proposition 2.3 (Nakajima’s bound). If γ = 1, then |S| ≤ 4(g − 1) and if γ ≥ 2 then 
|S| ≤ 4(γ − 1).

For a proof, see [13]; see also [8, Theorem 11.84].
Our main tool from Group theory is Suzuki’s characterization of dihedral and semi-

dihedral 2-groups, see [21, Lemma 4]. We stress that the dihedral group Dn of order 
2n = 2m+1 with m ≥ 3, as well as the semi-dihedral group SDn group of the same 
order, are generated by an element g of order 2m together with an involution h. But the 
relation linking g and h is hgh = g−1 in Dn, while it is hgh = g2m−1−1 in SDn. Another 
difference between Dn and DSn is that Dn contains exactly n + 1 involutions, namely 
g2m−1 and all gih, while SDn does only 2m−1 + 1, namely g2m−1 and gih with even i.

Proposition 2.4 (Suzuki’s classification). A 2-group H which contains an involution 
whose centralizer has order 4 is either dihedral, or semi-dihedral, or it has order 4.
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We also need a few technical lemmas on finite 2-groups.

Lemma 2.5. (See [9, Satz 14.9].) Up to isomorphisms, there exist exactly four non-abelian 
groups H of order 2m+1 ≥ 16 containing a cyclic subgroup of index 2, namely the dihedral 
group, the semi-dihedral group, the generalized quaternion group, and the group generated 
by an element g of order 2m−1 together with an involution h such that hgh = g1+2m−2 . 
The number of involutions of H is equal to 2m + 1, 2m−1 + 1, 1, 3 respectively.

Lemma 2.6. Let H be a transitive permutation group on a set Δ whose 1-point stabilizer 
of H has order two. Let Δw be the set of all fixed points of an involution w of H. Then 
|CH(w)| = 2|Δw|.

Proof. It is enough to observe that g ∈ H leaves Δw invariant if and only g ∈ CH(w). �
Lemma 2.7. Let u be a central involution of a 2-group H of order at least 16. Assume 
that H̄ = H/〈u〉 is a dihedral group. Let C̄ be a maximal cyclic subgroup of H̄. Then 
the counter-image C of C̄ under the natural epimorphism τ :H → H̄ is either a cyclic 
subgroup of H, or it is a direct product E × 〈u〉 with a cyclic subgroup E.

Proof. Take an element c ∈ H such that c̄ = τ(c) is a generator of C̄. Then, either 
〈c〉 = C and C is cyclic, or E = 〈c〉 is a cyclic subgroup of C of index 2. In the latter 
case, u /∈ E and hence C = E × 〈u〉. �
Lemma 2.8. (See [9, Satz 14.10].) Up to isomorphisms, there are five groups of order 8. 
Two of them are non-abelian, namely the dihedral and the quaternion groups.

3. Central involutions in Aut(X )

We begin with a number of results valid for curves X of genus g ≥ 2 which satisfy 
both hypotheses (I) and (II).

Lemma 3.1. The 2-rank γ of X is at least 2.

Proof. From Proposition 2.2, γ ≥ 1. To prove the assertion by absurd, assume that 
γ = 1.

Assume first that there is an involution u ∈ Z(S) that fixes a point on X . From (3)
applied to U = 〈u〉, the 2-rank of the quotient curve X̄ = X/U is equal to 0, and u fixes 
precisely two points on X , say P1 and P2. As u ∈ Z(S), the set {P1, P2} is preserved 
by S. Therefore, the stabilizer SP1 of P1 in S has index two in S, and it fixes P2 as 
well. Let P̄1 and P̄2 be the points of X̄ lying under P1 and P2, respectively. Obviously, 
P̄1 	= P̄2. Furthermore, the factor group SP1/U is a subgroup of Aut(X̄ ), and it fixes 
both P̄1 and P̄2. Since X̄ has zero 2-rank, Proposition 2.2 implies that SP1/U is trivial. 
Therefore, SP1 = U and hence |S| = 4; a contradiction with (I).
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Thus, we may assume by (I), together with (1), that some non-central involution v in 
S has a fixed point on X . The above argument applied to CS(v) shows that |CS(v)| = 4. 
By Proposition 2.4, then S contains a cyclic group S1 of index 2. From (I), the unique 
involution u in S1 fixes a point on X . On the other hand, u ∈ Z(S). As we have seen 
before, this is impossible. �

The proof of Lemma 3.1 also shows that if γ = 1 and |S| > g − 1, with |S| ≥ 8, then 
S is either dihedral or semi-dihedral.

Lemma 3.2. S has exactly two short orbits on X , the larger one of size �1 = 1
2 |S| and 

the shorter one of size 2 ≤ �2 ≤ 1
4 |S|.

Proof. Let γ̄ be the 2-rank of the quotient curve X̄ = X/S. From (3),

γ − 1 = γ̄|S| − |S| +
k∑

i=1

(
|S| − �i

)
= (γ̄ + k − 1)|S| −

k∑
i=1

�i ≥
(
γ̄ + k

2 − 1
)
|S|,

where �1, . . . , �k are the sizes of the short orbits of S.
If no such short orbits exist, then γ − 1 = |S|(γ̄ − 1) holds, whence γ̄ > 1 follows by 

γ ≥ 2. For γ̄ > 1, this equation yields that |S| ≤ (γ − 1) ≤ (g − 1) contradicting (I).
Therefore, k ≥ 1, and if γ̄ ≥ 1 then the above equation implies that |S| ≤ 2(γ − 1) ≤

2(g − 1), a contradiction with (I).
So, γ̄ = 0 and 1 ≤ k ≤ 2. Actually, k must be 2, γ ≥ 2 being inconsistent with k = 1

and γ̄ = 0 in the above equation.
Therefore, S has precisely two short orbits say Ω1 and Ω2, and

γ − 1 = |S| − (�1 + �2)

with |Ω1| = �1 and |Ω2| = �2.
Assume without loss of generality that �1 ≥ �2. Obviously, �2 < 1

2 |S|, as otherwise we 
would have γ = 1 contradicting Lemma 3.1. Also, �1 > 1

4 |S|, since γ−1 ≥ |S|(1 − 1
4 −

1
4 )

is inconsistent with (I). Then,

�1 = 1
2 |S|, (4)

and

γ − 1 = 1
2 |S| − �2, (5)

with �2 ≤ 1 |S|. �
4
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We keep up the notation introduced in the preceding proof. So, Ω1 and Ω2 stand for 
the two short orbits of S on X . Here �1 = |Ω1| = 1

2 |S| while 2 ≤ �2 = |Ω2| ≤ 1
4 |S|. To 

investigate the smallest case �2 = 2 some technical lemmas are needed.

Lemma 3.3. If P ∈ Ω1 then |SP | = 2. If Q ∈ Ω2 then

2g− 2 ≥ |S| + �2

(∣∣S(2)
Q

∣∣ +
∣∣S(3)

Q

∣∣− 4 +
∑
i≥4

∣∣S(i)
Q

∣∣− 1
)
, (6)

and equality holds if and only if the genus of the quotient curve X/S is equal to zero.

Proof. The first assertion clearly follows from �1 = 1
2 |S|. Let ḡ be the genus of the 

quotient curve X/S. From (1) applied to S,

2g− 2 = (2ḡ− 2)|S| + 1
2 |S|

(
2
(
|SP | − 1

)
+

∣∣S(2)
P

∣∣− 1 + . . .
)

+ �2
(
2
(
|SQ| − 1

)
+

∣∣S(2)
Q

∣∣− 1 + . . .
)
.

This together with |SP | = 2 give

2g− 2 = (2ḡ + 1)|S| + 1
2 |S|

(∣∣S(2)
P

∣∣− 1 +
∣∣S(3)

P

∣∣− 1 + . . .
)

+ �2
(
−2 +

∣∣S(2)
Q

∣∣− 1 + . . .
)
.

If |S(2)
P | = 2, then by Proposition 2.1 |S(3)

P | = 2, which contraditcs (I).
Therefore, |S(2)

P | = 1 and hence (6) holds. �
Lemma 3.4. If u is a central involution of S which fixes a point of Ω2, then u fixes Ω2
pointwise but fixes no point outside Ω2.

Proof. Since Ω2 is an orbit of S and u ∈ Z(S), u fixes Ω2 pointwise. Assume on the 
contrary that u also fixes a point on Ω1. Then u must fix Ω1 pointwise. From (3) applied 
to U = 〈u〉,

γ − 1 = 2
(
γ′ − 1

)
+ 1

2 |S| + �2,

where γ′ stands for the 2-rank of the quotient curve X ′ = X/U . Since �2 ≥ 2, this yields 
that g − 1 ≥ γ − 1 ≥ 1

2 |S| contradicting (I). �
Lemma 3.5. If a central involution u of S fixes a point of Ω1 then u fixes Ω1 pointwise, 
�2 = 2 and X is a hyperelliptic curve.

Proof. From Lemma 3.4, S fixes no point outside Ω1. The argument in the proof of that 
lemma applied to Ω1 proves the first assertion and gives the equation
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γ − 1 = 2
(
γ′ − 1

)
+ 1

2 |S|,

where γ′ stands for the 2-rank of the quotient curve X ′ = X/U , with U = 〈u〉. This and 
(5) imply that γ′ = 0 and �2 = 2. In particular, X is a hyperelliptic curve. �
Lemma 3.6. If �2 > 2 then every non-inductive central involution of S fixes a point on X .

Proof. Let u be a non-inductive central involution of S and assume on the contrary that 
u fixes no point on X . From (1) applied to U = 〈u〉,

2g− 2 = 2(2ḡ− 2),

where ḡ is the genus of the quotient curve X̄ = X/U . Therefore, ḡ ≥ 2 and

|S̄| = 1
2 |S| > g− 1 = 2(ḡ− 1).

Furthermore, �2 > 2 yields that |S| ≥ 16, whence |S̄| ≥ 8. Since u is non-inductive, 
S̄ must have a fixed point on X̄ . If R̄ ∈ X̄ is such a point, and R1, R2 ∈ X are the points 
lying over R̄, then S leaves the pair {R1, R2} invariant. Hence, Ω2 consists of the points 
R1 and R2. But then �2 = 2, a contradiction. �
Lemma 3.7. If S has a non-inductive central involution then either �2 = 2, or �2 =
1
4 |S| ≥ 4. In the latter case, X is a general, bielliptic curve with |S| = 4(g − 1).

Proof. Suppose that �2 > 2 and take a non-inductive central involution u of S. By 
Lemmas 3.6, 3.4 and 3.5, the set of fixed points of u is Ω2. From (3) applied to U = 〈u〉,

γ − 1 = 2(γ̄ − 1) + �2, (7)

where γ̄ is the 2-rank of the quotient curve X̄ = X/U . Comparing this with (5) shows 
that γ̄ = 0 is inconsistent with �2 ≤ 1

4 |S|. So, the case γ̄ = 0 does not actually occur.
If γ̄ = 1 then (7) and (5) give �2 = 1

4 |S|. In this case, ḡ ≥ γ̄ = 1. From (1) applied to 
U = 〈u〉,

2g− 2 = 2(2ḡ− 2) + 1
4 |S|dP

where P is any point in Ω2. From Proposition 2.1, either dP = 2 or dP ≥ 4. The latter 
cannot actually occur by (I). Since the central involution u is non-inductive, one of the 
cases (A), (B) and (C) in Introduction occurs. Since 1

4 |S| ≥ 4, that is, |S̄| = 1
2 |S| ≥ 8, 

case (B) is ruled out. If case (C) occurred then S would have an orbit of length 2, 
contradicting the hypothesis �2 > 2. Therefore, case (A) holds. As ḡ ≥ γ̄ = 1, we have 
that ḡ = 1. This implies that |S| = 4(g − 1) = 4(γ − 1) and hence X is a general curve. 
Therefore, X is bielliptic as u is an involution and X/U is an elliptic curve.
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Let γ̄ ≥ 2. This time, (7) and (5) give

�2 = 1
4 |S| − (γ̄ − 1). (8)

From this, |S| ≥ 16 and hence |S̄| ≥ 8. Also, |S̄| = 1
2 |S| > g − 1 > 2(ḡ− 1). Since u is a 

non-inductive central involution, S̄ has a fixed point on X̄ . But this implies that �2 = 2
as in the final part of the proof of Lemma 3.6. �
4. Proof of Theorem 1.2

We prove two theorems. They together with Lemmas 3.6 and 3.7 provide a proof of 
Theorem 1.2.

Theorem 4.1. Let X be a curve of genus g ≥ 2 defined over an algebraically closed field K
of characteristic 2. Assume that Aut(X ) has a subgroup S of order a power of 2 satisfying 
both hypotheses (I) and (II). If �2 = 2 then case (ii) of Theorem 1.2 holds.

Proof. Hypothesis (I) together with (5) yield

|S| > 2(g− 1) ≥ 2(γ − 1) = |S| − 4.

Since |S| is a power of 2 bigger than four, two possibilities arise only. Either

(a) |S| = 2g and g = γ + 1, or
(b) |S| = 2g + 2 and g = γ.

In both case, from (1) applied to S we deduce that the genus of the quotient curve X/S

is equal to 0.
To rule out case (a), suppose on the contrary that g = 1

2 |S|. Lemma 3.3 for g = 1
2 |S|

implies that |S(2)
Q | = 2 but |S(3)

Q | = 1, which contradicts Proposition 2.1.
In case (b), Lemma 3.3 implies that the second ramification group S(2)

R is trivial at 
every R ∈ Ω1 ∪Ω2 and hence at every point in X . Also, since �2 = 2, the stabilizer D of 
Q ∈ Ω2 in S is an elementary abelian group D of order 1

2 |S|. From (3) applied to D,

γ − 1 = |D|(γ̃ − 1) + |D| − 2 +
k∑

i=1

(
|D| − li

)
where l1, . . . , lk are sizes of the short orbits Λ1, . . . , Λk of D disjoint from Ω2. This 
together with (5) yield that either γ̄ = 0, k = 2 and l1 = l2 = 1

2 |D|, or no non-trivial 
element of D fixes a point of X outside Ω2.

We show that the former case cannot actually occur. The factor group S̄ = S/D is a 
K-automorphism group of the quotient curve X̄ = X/D. Set Ω2 = {P1, P2}. Let P̄1 and 
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P̄2 be the points of X̄ lying under P1 and P2, respectively. Since D fixes both P1 and P2
while S interchanges them, S̄ interchanges P̄1 with P̄2. In particular, these points of X̄
are not fixed by S̄. Assume that l1 = l2 = 1

2 |D|. Let Λ̄1, Λ̄2 be the points of X̄ under the 
D-orbits Λ1 and Λ2. Since Ω1 = Λ1 ∪ Λ2 and S acts transitively on Ω1, S̄ interchanges 
Λ̄1 with Λ̄2. Since Ω1 and Ω2 are the only short orbits of S, it turns out that S̄ has no 
fixed point on X̄ . On the other hand, Proposition 2.2 shows that S̄ must have a fixed 
point on X̄ , a contradiction.

For a point P ∈ Ω1, let u ∈ S be the unique non-trivial element in SP . Then u is an 
involution not contained in D. Let U = 〈u〉. Then S = 〈D, U〉. More precisely, since D
and U have trivial intersection, S = D�U . If S is abelian, then u is a central involution, 
and hence X is hyperelliptic by Lemma 3.5. This completes the proof. �
Remark 4.2. If |S| = 8, then �2 = 2 and Lemma 2.8 yields that S is either elementary 
abelian, or dihedral.

Theorem 4.3. Let X be a curve of genus g ≥ 2 defined over an algebraically closed field K
of characteristic 2. Assume that Aut(X ) has a subgroup S of order a power of 2 satisfying 
both hypotheses (I) and (II). If �2 = 1

4 |S| > 2 and some central involution of S fixes a 
point, then case (i) of Theorem 1.2 holds.

Proof. From Lemmas 3.4 and 3.5, there exists an involution u ∈ Z(S) which fixes Ω2
pointwise but no point from Ω1. Furthermore, |S| ≥ 16.

Let W ∈ Ω1. By (4) the stabilizer SW of W in S has order two. Hence SW consists of 
an involution w together with the identity. Note that w 	= u by Lemma 3.5. Let Ωw be 
the set of all fixed points of w. Since both Ω1 and Ω2 have even size, Ωw also has even 
size.

If |Ωw| = 2 then |CS(w)| = 4 by Lemma 2.6, and Proposition 2.4 yields that S is 
either dihedral, or semi-dihedral. The former case gives (ia). We must show that the 
latter case cannot actually occur.

Suppose on the contrary that S ∼= SDm with m = |S|. Since |Ωw| = 2, the conjugacy 
class of w in S consists of 14 |S| involutions. Since u is a further involution of S, Lemma 2.5
yields that these 14 |S| +1 involutions are all the involutions in S. Therefore, the stabilizer 
SQ of any point Q ∈ Ω2 has a unique involution, namely u. From (1) applied to SQ,

2g− 2 ≥ |SQ|(2g̃− 2) +
∑

P∈Ω2

dP . (9)

Here SQ is a cyclic group of order 4. Now, |SQ| = |S(1)
Q | = 4 and since the factor group 

S
(1)
Q /S

(2)
Q is elementary abelian, either S(2)

Q = SQ or S(2)
Q = 〈u〉. From Proposition 2.1, 

in the latter case S(3)
Q = S

(2)
Q holds. Therefore, dQ ≥ 8. Since Ω2 has even size, SQ fixes 

at least one more point Q′ ∈ Ω2. By the previous argument, dQ′ ≥ 8. For every other 
point P ∈ Ω2, we have dP ≥ 4. From (9), 2g − 2 ≥ |S|, a contradiction.
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Assume now that |Ωw| ≥ 4. Then |CS(w)| ≥ 8, see Lemma 2.6.
Let d = |Ωw ∩Ω2|. Consider the subgroup M of S of order 4 generated by u and w. 

Let γw be the 2-rank of the quotient curve X/M . From (3) applied to M ,

γ − 1 ≥ 4(γw − 1) +
(
|Ωw| − d

)
+ 3d +

(
1
4 |S| − d

)
= 4(γw − 1) + |Ωw| + d + 1

4 |S|. (10)

By (5), d = 0, |Ωw| = 4, γw = 0, and equality holds in (10). Therefore, the following 
assertions hold.

(a) M has exactly 1
8 |S| + 2 short orbits, each of size two; namely two orbits of 〈u〉 in 

Ωw and each of the orbits of 〈w〉 in Ω2.
(b) uw has no fixed point on Ω1.
(c) Ωw ⊆ Ω1 with

|Ωw| = 4. (11)

Since |S| ≥ 16, from (11) it follows that |Ωw| < 1
2 |S| = |Ω1|. This together with (b) 

imply that S has at least five involutions.
By Lemma 2.6, ∣∣CS(w)

∣∣ = 8. (12)

Since |S| ≥ 16, this yields that S is not abelian.
Let τ be the natural group homomorphism from S → S̄ where S̄ is the factor group 

S/〈u〉. Note that S̄ is a K-automorphism group of the quotient curve X̄= X/S of order 
at least eight, and we are going to show that S̄ is either a dihedral or a semi-dihedral 
group.

By Lemma 3.4, u fixes no point on Ω1. Therefore, |Ω̄1| = 1
2 |Ω1| where the set Ω̄1

consists of all points of X̄ lying under the points of Ω1 with respect to the covering 
X → X̄ . Also, S̄ is a transitive permutation group on Ω̄1. Take two points, P, R ∈ Ωw

such that R 	= u(P ). Then

Ωw =
{
P, u(P ), R, u(R)

}
. (13)

Let P̄ and R̄ be the points of X̄ lying under P and R, respectively. Then P̄ , R̄ are the 
only fixed points of w̄ = τ(w) on Ω̄1. From Lemma 2.6, |CS̄(w̄)| = 4. Proposition 2.4
yields that S̄ is either dihedral, or semi-dihedral. These two possibilities are investigated 
separately.

Assume that S̄ is dihedral. Let C̄ be a (maximal) cyclic subgroup of S̄ of order 1
4 |S|. 

Set C = τ−1(C̄). From Lemma 2.7, either C itself cyclic, or C = E × 〈u〉 with a cyclic 
subgroup E.
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If w ∈ C, then u ∈ C implies that C has at least two involutions. Hence C =
E × 〈u〉. Furthermore, the only involution in E is either w or uw. From Lemma 3.5 and 
assertion (b), neither u nor uw has a fixed point on Ω1. Suppose that S has an involution 
w′, w′ 	= w, with a fixed point in Ω1. Since S is transitive on Ω1 and the 1-point stabilizer 
of S on Ω1 has order two, we have that w and w′ are conjugate under S. Since C is a 
(normal) subgroup of S of index 2 and w ∈ C, this implies that w′ is also in C. But 
then we would have either w′ = u or w′ = uw, a contradiction. Therefore, every point 
in Ω1 must be fixed by w. Hence Ωw = Ω1. From (11), |Ω1| = 4 and hence |S| = 8, a 
contradiction.

If w /∈ C, then no non-trivial element in C fixes a point in Ω1, and hence C is sharply 
transitive on Ω1. Bearing (13) in mind, take h ∈ C such that h(P ) = R. Then h 	= u

and hwh−1(R) = R. Since the stabilizer of R in S is generated by w, this yields that 
h ∈ CS(w) with h 	= w. Moreover, h ∈ Z(S) as S is generated by an abelian group C
containing h together with w. As h 	= u, the center Z(S) contains at least two non-trivial 
elements, whence S can be neither dihedral or semi-dihedral. By Lemma 2.5, C is not 
cyclic, and therefore C = E × 〈u〉 holds. Since h ∈ Z(S), h preserves Ωw, and

h
(
u(P )

)
= (hu)(P ) = (uh)(P ) = u(R).

Therefore, the permutation induced by h on Ωw is either the product of the transpositions 
(PR) and (u(P )u(R)), or it is the 4-cycle (PRu(P )u(R)). In the latter case, h2 = u as 
C is sharply transitive on Ω1. Actually this is impossible, because the square of every 
element of E × 〈u〉 of order ≥ 4 is in E, and hence distinct from u. Therefore, h is an 
involution distinct from u. Suppose that h fixes a point on X . Since h ∈ Z(S) and h
does not fix P , h has no fixed point on Ω1. Therefore, h fixes a point in Ω2, and hence 
every point in Ω2 is fixed by h. Let L = 〈h, u〉. If γ̃ is the 2-rank of the quotient curve 
X̃ = X/L, from (5) and (3) applied to L,

1
4 |S| = γ − 1 ≥ 4(γ̃ − 1) + 3

4 |S|,

whence |S| ≤ 8, a contradiction. Therefore h is fixed-point-free on X . From Lemma 3.6, 
h is an inductive central involution of S.

Note that u, h and uh are the only three involutions in C, and each such involution 
is central in S. As S̄ is dihedral, any other involution in S is not central. We show that 
uh is fixed-point-free on X , as well. Suppose on the contrary that P ∈ Ω2 is fixed by 
uh. Since uh ∈ Z(C), the orbit Δ of P under C is pointwise fixed by uh. We have that 
|CP | ≤ 4, as CP is a subgroup of SP and |SP | = 4. Actually, |CP | = 4 since u, uh ∈ CP

and uh 	= u. Hence, CP = {1, u, h, uh}, and |Δ| = 1
8 |S|. Now, choose Q ∈ X from 

Ω2 \Δ, and s ∈ S such that s takes P to Q. Then suhs−1 fixes Q. Since uh ∈ C and C
is a normal subgroup of S, this implies that suhs−1 ∈ C. Hence, either suhs−1 = h or 
suhs−1 = uh. In both cases, CP = CQ. From (3) applied to CP ,
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1
4 |S| = γ − 1 = 4(γ̂ − 1) + 3

8 |S| +
3
8 |S|,

where γ̂ is the 2-rank of the quotient curve X̂ = X/CP . But this is only possible for 
|S| = 8, a contradiction.

From Lemma 3.6, not only h but also uh is an inductive central involution. On the 
other hand, u, the third central involution of S, is not inductive. In fact, from (1) applied 
to U = 〈u〉 it follows that the genus of the quotient curve X/U is equal to 1. This gives 
case (ib).

To rule out the case that S̄ is semi-dihedral, we give a lower bound for the number 
n4 of subgroups of S of order 4 which contains u.

By (4) and (11), S has 1
8 |S| pairwise distinct subgroups M = {1, w, u, uw} when w

ranges over the involutions in S fixing a point of Ω1.
Since �2 = 1

4 |S| and u fixes Ω2 pointwise, the stabilizer SQ with Q ∈ Ω2 contains u
and has order 4. Let r be the number of fixed points of SQ in Ω2. Obviously r ≥ 1. Let 
γ̃ be the 2-rank of the quotient curve X̃ = X/SQ. From (3) applied to SQ,

γ − 1 ≥ 4(γ̃ − 1) + 3r +
(

1
4 |S| − r

)
= 4(γ̃ − 1) + 1

4 |S| + 2r.

Since (I) holds, (5) and r ≥ 1 yield that r = 2 and γ̃ = 0.
Since |S| ≥ 16, this shows that there is point R ∈ Ω2 such that SQ 	= SR. Therefore,

n4 ≥ 1
8 |S| + 2.

As a consequence, S̄ more than 1
8 |S| + 1 = 1

4 |S̄| + 1 pairwise distinct involutions. By 
Proposition 2.5, S̄ is not a semi-dihedral group. �
5. Bielliptic curves with a large dihedral automorphism group of order a power of 2

Cyclic extensions of order a power of the characteristic of K are well known from 
the classical literature on function field theory, see [1,2,10,22,23]. Here we briefly outline 
the construction technique for such extensions when it is applied to an elliptic function 
field. Then we show that in some cases the resulting cyclic function field has a dihedral 
automorphism group with the properties described in case (1) of Theorem 1.1. This 
requires some computational results given in the forthcoming subsection.

Let X̄ be an elliptic curve with 2-rank γ̄ = 1. An affine equation of X̄ is

f(x, y) = y2 + xy + x3 + νx2 + μ (14)

where μ, ν ∈ K and μ 	= 0. Since γ̄ = 1, the zero divisor class group Pic0(X̄ ) of K(X̄ )
(isomorphic to the group defined by the point addition on X̄ ), contains a unique cyclic 
subgroup of order 2m for every m ≥ 1. Therefore, for every m ≥ 1, Aut(X̄ ) has a cyclic 
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subgroup Cn of order n = 2m such that no non-trivial element of Cn fixes a point of X̄ . 
Let g be a generator of Cn.

There exists a cyclic extension X of X̄ , and all such cyclic extensions are obtained in 
the following way, see [22, Section V].

For ξ ∈ K(X̄ ), the relative g-trace of ξ is defined to be

Trg(ξ) = ξ + g(ξ) + . . . + g2m−1(ξ). (15)

Take an element d ∈ K(X̄ ) with Trg(d) = 1, and let a = d2 + d. For a ∈ K(X̄ ) and 
v = 0, 1, . . . , n − 1, let

ag0 = 0, and agv = a + g(a) + . . . + gv−1(a) for v ≥ 1.

Furthermore, take c ∈ K(X̄ ) with Trg(c) 	= 0. Then

e = 1
Tr(c)

n−1∑
v=0

agv gv(c) (16)

satisfies the equation g(e) + e = a; see [22, Section I]. Here e cannot be written as ζ2 + ζ

with ζ ∈ K(X̄ ); see [23, Section V]. Therefore, K(X ) = K(X̄ )(z) with z2 + z + e = 0 is 
an Artin–Schreier extension of K(X̄ ). The map

ρ : (x, y, z) →
(
g(x), g(y), z + d

)
is a K-automorphism of X whose order is equal to 2n = 2m+1. Also, C2n = 〈ρ〉 preserves 
X̄ and the K-automorphism group C2n/〈ρn〉 of X̄ coincides with Cn.

Now, consider the elliptic involution

ϕ : (x, y) → (x, x + y) (17)

which is a K-automorphism of X̄ . Since ϕgϕ = g−1, g together with ϕ generate a 
K-automorphism group D̄ of X̄ that is a dihedral group Dn of order 2n.

The question arises whether ϕ extends to an involutory K-automorphism ψ of X in 
such a way that the subgroup generated by ψ and C2n is isomorphic to a dihedral group 
D2n of order 4n. If X itself is an elliptic curve, then the answer is affirmative. The main 
goal in this section is to prove that the answer is still affirmative for non-elliptic curves. 
This ensures the existence of examples for case (1) of Theorem 1.1. The proof depends on 
several computations in elliptic function fields. Some details, available in the preliminary 
version [4], will be omitted for brevity.

5.1. Some computations

Let X̄ be the elliptic curve over K with 2-rank γ̄ = 1 and affine equation

X̄ : y2 + xy + x3 + μ = 0.
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Fix a power n of 2, and let g0 be a generator of the cyclic subgroup of order 2n in the 
automorphism group of X̄ . Let g = g2

0 , and ϕ be the elliptic involution defined by (17). 
Let ⊕ denote the point addition on X̄ such that the infinite point Y∞ is the neutral 
element of (X̄ , ⊕). Also, let

[i]P = P ⊕ P ⊕ . . .⊕ P︸ ︷︷ ︸
i times

,

and �P be the opposite of P in (X̄ , ⊕). For a positive integer r, let

X̄ [r] =
{
P ∈ X̄

∣∣ [r]P = Y∞
}
.

As γ̄ = 1, when r is a power of 2 the group X̄ [r] is a cyclic group of order r.
It will cause no confusion if we use the same letter to designate an automorphism of 

X̄ and its pull-back. In particular, gi0 will also denote a map acting on the points of X̄
as follows:

gi0(P ) = P ⊕ [i]P0. (18)

Note that for each δ ∈ K(X̄ )

div(δ) =
∑
P∈X̄

nPP ⇒ div
(
gi0(δ)

)
=

∑
P∈X̄

nP

(
P ⊕ [2n− i]P0

)
. (19)

Let P0 = (w1, w2) be a generator of X̄ [2n], that is, P0 is the point of X̄ such that 
g0(P ) = P ⊕ P0.

Let P = X̄ [n] and Z = X̄ [2n] \ X̄ [n]. Clearly [2]P0 is a generator of P. Also, P
consists of points [2j]P0 with j = 0, . . . , n − 1, whereas Z comprises points [2j + 1]P0
with j = 0, . . . , n − 1.

From (18) we deduce for i = 1, . . . , 2n − 1 that

gi0: x′ = Xiy + Xix
2 + (X2

i + Yi)x
(x + Xi)2

, y′ = y + Yi

x + Xi

(
x′ + Xi

)
+ x′ + Yi, (20)

where [i]P = (Xi, Yi). Since ϕg0ϕ = g−1
0 , g0 together with ϕ generate a dihedral group 

of order 4n.

Lemma 5.1. Let δ be a K-linear combination of some rational functions gi0(x). Then xδ
is a square in K(X̄ ). In particular, each zero of δ has even multiplicity.

Proof. To prove that xδ is a square, it is enough to show that xgi0(x) is a square for 
each i. Eq. (20) yields

xgi0(x) = Xixy + Xix
3 + (X2

i + Yi)x2

2 .
(x + Xi)
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As xy + x3 = y2 + μ we obtain

xgi0(x) = Xi(y2 + μ) + (X2
i + Yi)x2

(x + Xi)2
=

(√
Xi(y + √

μ) + x
√
X2

i + Yi

x + Xi

)2

.

Since xδ is a square, ordP (x) +ordP (δ) is even for every P ∈ X̄ . Since ordP (x) is always 
even, every zero of δ has even multiplicity. �

For an element ξ ∈ K(X̄ ) and for a non-negative integer v, let

ξgv = 0 for v = 0, ξgv = ξ for v = 1, and ξgv :=
v−1∑
i=0

gi(ξ) for v ≥ 2.

Lemma 5.2. Let ξ ∈ K(X̄ ) be such that both Trg(ξ) = 0 and ϕ(ξ) = ξ hold. Then

(i) ξgv1 = ξgv2 when v1 ≡ v2 (mod n);
(ii) ξgv1 + ξgv2 = gv1(ξgv2−v1 (mod n));
(iii) ϕ(ξgv ) = ξg−v+1 (mod n) + ξ.

Proof. See Lemma 2.5 in [4]. �
For an odd k with 1 ≤ k ≤ 2n − 1, define, as in Witt’s paper [23]

d = x

Trg(x) , a = d2 + d. (21)

Furthermore, let

ck = gk0 (x), ek = 1
Trg(ck)

n−1∑
v=0

agvgv(ck). (22)

A straightforward computation gives the following result:

g(ek) + ek = a. (23)

Our purpose is to show that ϕ(ek) + ek = a also holds, see Proposition 5.8 below. This 
requires some more computation.

Proposition 5.3. The rational function ek is a square.

Proof. By Lemma 5.1 d = x
Trg(x) = x2

x Trg(x) is a square. Therefore agv is a square for 
each v. Then, we only need to show that Trg(ck) · gv(ck) is a square for each v. This 
follows from the fact that
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x2 · Trg(ck) · gv(ck) =
(
xTrg

(
gk0 (x)

))(
xg2v+k

0 (x)
)

=
(
x

n−1∑
i=0

g2i+k
0 (x)

)(
xg2v+k

0 (x)
)

is a square by Lemma 5.1. �
Lemma 5.4. For the rational function a, both Trg(a) = 0 and ϕ(a) = a hold.

Proof. We have that Trg(a) = Trg(d2+d) = Trg(d)2+Trg(d) = 1 +1 = 0. Moreover, from 
ϕg = g−1ϕ it follows that ϕ(Trg(x)) = Trg(x). Therefore ϕ(d) = d and ϕ(a) = a. �
Lemma 5.5. Trg(ag0(x)) = Trg(g(a)g0(x)).

Proof. See Lemma 2.8 in [4]. �
Lemma 5.6. For each odd k with 1 ≤ k ≤ 2n − 1, Trg(agk0 (x)) = Trg(gk(a)gk0 (x)).

Proof. As k is odd, gk0 is a generator of 〈g0〉. Therefore, by Lemma 5.5, we have 
Trgk(āgk0 (x)) = Trgk(gk(ā)gk0 (x)), where ā = (x/ Trgk(x))2 + x/ Trgk(x). But clearly 
Trgk coincides with Trg. Thus, ā = a and

Trg
(
agk0 (x)

)
= Trg

(
gk(a)gk0 (x)

)
also holds. �
Lemma 5.7. For each odd k with 1 ≤ k ≤ 2n − 1,

Trg
(
gk0 (x) ·

(
a + g(a) + . . . + gk(a)

))
= 0.

Proof. It is by induction on k. The assertion for k = 1 is just Lemma 5.5. Now assume 
that

Trg
(
gk−2
0 (x) ·

(
a + g(a) + . . . + gk−2(a)

))
= 0.

Applying g to the argument of Trg gives

Trg
(
gk0 (x) ·

(
g(a) + g2(a) + . . . + gk−1(a)

))
= 0.

By Lemma 5.6 and the additivity of Trg, the assertion follows. �
Proposition 5.8. For each odd k between 1 and 2n − 1,

φ(ek) + ek = a

Proof. See Proposition 2.11 in [4]. �
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5.2. Proof of the existence

We are in a position to show the existence of curves which provide examples for case 
(1) of Theorem 1.1.

For this purpose, we consider the Artin–Schreier extension Xk of X̄ defined by the 
equation z2 + z + ek = 0, where k is an odd integer with 1 ≤ k ≤ 2n − 1.

We first construct some automorphisms of Xk. Every element in K(Xk) can uniquely 
be written as (a1 + a2y)z + a3y + a4 with a1, a2, a3, a4 ∈ K(x). Furthermore, the map

ρ : (x, y, z) →
(
g(x), g(y), z + d

)
(24)

is a K-automorphism of Xk. From Trg(d) = 1 we have that

ι = ρn : (x, y, z) = (x, y, z + 1). (25)

Therefore, ι is an involution, X̄ = X ι
k, and ρ generates a cyclic subgroup C2n of Aut(Xk)

of order 2n. Also, C2n preserves Xk and the K-automorphism group C2n/〈ι〉 of X̄ coin-
cides with the cyclic group of order n generated by g.

A straightforward computation involving Proposition 5.8 gives the following result.

Lemma 5.9. The map

ψ : (x, y, z) →
(
ϕ(x), ϕ(y), z + d

)
is a K-automorphism of Xk.

Next, the structure of the group generated by ρ and ψ is described.

Proposition 5.10. The group S generated by ρ and ψ is isomorphic to D2n.

Proof. As ϕ(d) = d, both ψ and ψρ are involutions showing that S ∼= D2n. �
To prove Theorem 5.14 it remains to show that Xk is non-elliptic for some odd k with 

1 ≤ k ≤ 2n − 1. For this purpose, the following results on the pole divisor of ek ∈ K(X̄ )
are useful.

Lemma 5.11. Let k be an odd integer with 1 ≤ k ≤ 2n − 1. Then

(i) every pole of ek belongs to P ∪ Z;
(ii) the point Y∞ is not a pole of ek;
(iii) for every P ∈ Z, vP (ek) ≥ −4;
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(iv) v[−k]P0(ek) ≥ −2 and equality holds provided that [−k]P0 is not a zero of

n−1∑
v=1

(
x2 + g

(
x2) + . . . + gv−1(x2))gv(ck).

Proof. See Lemma 2.14 in [4]. �
Proposition 5.12. Assume that there exist some point P ∈ X̄ such that the order of ek at 
P is equal to −2. Then ι fixes exactly n places of X , and Xk has genus n + 1. Also, the 
2-rank of Xk is equal to n + 1.

Proof. Let Yk be a non-singular model of Xk, so that D2n can be viewed as an automor-
phism group of Yk. Let π : Yk → X̄ denote the covering of degree 2 associated with the 
function field extension K(Yk) : K(Yk)ι. By the Hurwitz genus formula applied to π, the 
genus of Xk is equal to 1 + 1

2
∑

dQ, where, as usual, dQ denotes the different exponent 
of a point Q of Yk with respect to π (see e.g. [19, Proposition 3.7.8]). Let E be the set 
of points Q of Yk such that dQ > 0. As E coincides with the set of points fixed by ι, E
is preserved by C2n. More precisely, as C2n/〈ι〉 coincides with 〈g〉, the set E consists of 
the points of Yk lying over a g-invariant set of points D of X̄ . By [19, Proposition 3.7.8]
each point in D is a pole of ek. By Lemma 5.11, either D is empty, or D = Z. Under 
our assumption, we prove that the former case cannot actually occur. Let t be a local 
parameter at P . By Proposition 5.3,

ek = σt−2 + e′k

with σ ∈ K, σ 	= 0 and vP (e′k) = 0. Then clearly

vP
(
ek + (

√
σ/t)2 + (

√
σ/t)

)
= −1.

By [19, Proposition 3.7.8(c)], P is totally ramified, and if P ′ denotes the only point 
in Xk lying over P , then the different exponent dP ′ is equal to 2. This proves that 
D = Z. Now let R ∈ Z be such that vR(ek) 	= −2, and let R′ be the only point in 
E such that π(R′) = R. By (iii) of Lemma 5.11, vR(ek) = −4 holds. Then, by [19, 
Proposition 3.7.8], either dR′ = 4 or dR′ = 2. If dR′ = 4, then there exists ξ ∈ K(X̄ )
with vR(ek + ξ2 + ξ) = −3. But this is impossible ek being a square. Therefore, for each 
Q ∈ E we have dQ = 2. Finally, as the size of E is n, from the Hurwitz genus formula 
the genus of Xk is equal to n + 1. The Deuring–Shafarevich formula, see (3), applied to 
S = 〈ι〉 shows that the 2-rank of Xk is equal to n + 1 as well. �
Proposition 5.13. There exists k for which P̄ = [−k]P0 is not a zero of

n−1∑
v=1

(
x2 + g

(
x2) + . . . + gv−1(x2))gv(ck).



M. Giulietti, G. Korchmáros / Journal of Algebra 427 (2015) 264–294 285
Proof. Let ζv = x + g(x) + . . .+ gv−1(x), and consider the rational function ε defined as 
follows:

ε(P ) = ζ1(P )2 · x
(
[2]P0

)
+ ζ2(P )2 · x

(
[4]P0

)
+ . . . + ζn−1(P )2 · x

(
[2n− 2]P0

)
.

As gv(gk0 (x))(P̄ ) is the x-coordinate of [2v]P0,

ε(P̄ ) =
(

n−1∑
v=1

(
x2 + . . . + gv−1(x2))gv(ck)

)
(P̄ ).

Therefore, to prove the existence of a suitable k it will be enough to show that ε has 
less than n distinct zeros in Z. Note that the values of x([2v]P0) are independent of P , 
and therefore can be viewed as constants. Let αv ∈ K be the square root of x([2v]P0). 
Then ε(P ) = θ(P )2, where

θ(P ) = ζ1(P ) · α1 + ζ2(P ) · α2 + . . . + ζn−1(P ) · αn−1.

We will prove that θ has less than n distinct zeros in Z. Expanding ζi(P ) gives

θ(P ) = x(P )α1 +
(
x(P ) + x

(
P ⊕ [2]P0

))
α2

+
(
x(P ) + x

(
P ⊕ [2]P0

)
+ x

(
P ⊕ [4]P0

))
α3

+ . . . +
(
x(P ) + . . . + x

(
P ⊕ [2n− 4]P0

))
αn−1.

Note that αn/2 = 0 and that αv = αn−v. This depends on [n]P0 = (0, √μ) and on [2v]P0
being the opposite of [2n − 2v]P0. Therefore α1 + . . . + αn−1 = 0, and hence there exist 
constants βi ∈ K with

θ(P ) = x
(
P ⊕ [2]P0

)
· β1 + . . . + x

(
P ⊕ [2n− 4]P0

)
· βn−2.

As x(P ⊕ [2i]P0) = gi(x)(P ), θ is a linear combination of some gi(x)’s. Clearly, the only 
poles of θ are points [2n −2v]P0 for which βv 	= 0. Each of those poles has multiplicity 2. 
Then the number of zeros of θ is at most 2(n − 2). By Lemma 5.1, each zero of θ has 
even multiplicity. If [−k]P0 is a zero of θ for each k, then the number of zeros is larger 
than 2n − 4, which is a contradiction. �

Taking into account (iv) of Lemma 5.11 together with Proposition 5.12, this ends the 
proof of the following result.

Theorem 5.14. For every n = 2h ≥ 8, some of the above bielliptic curves Xk is of genus 
g = n + 1 ≥ 2 and it has a dihedral K-automorphism group S such that |S| = 4(g − 1). 
Furthermore, γ = g and the (unique) central involution in S fixes some points of X and 
hence it is not inductive.
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5.3. Some more examples

From Theorem 5.14, the question arises whether curves other than Xk can provide 
examples for case (1) of Theorem 1.1. To construct such a curve, a different choice for d
in (21) is necessary. The possibilities are described in the following result.

Lemma 5.15. For d ∈ K(X̄ ) with Trg(d) = 1, a = d2 + d, c ∈ K(X̄ ) with Trg(c) 	= 0, let 
e be as defined in (16). Assume that ϕ(a) = a and ϕ(c) = g(c). Then ϕ(e) + e = a, and 
either

(i) d = x
Trg(x) + δ, or

(ii) d = y
x + (Trg( yx ) + 1) x

Tr(x) + δ,

with Trg(δ) = 0 and δ ∈ K(x).

Proof. Since Trg(c) 	= 0, we have that g(c) 	= c. From ϕg = g−1ϕ,

ϕ
(
Trg(c)

)
= g−1(Trg

(
ϕ(e)

))
= g−1 Trg

(
g(c)

)
= g−1(Trg(c)

)
= Trg(c).

By (iii) of Lemma 5.2,

ϕ(e) + e = 1
Trg(c)

(
n−1∑
v=0

agvgv(c) +
n−1∑
v=0

(a + ag−v+1 (mod n)g−v+1(c)
)

= 1
Trg(c)

n−1∑
v=0

ag−v+1(c) = a
Trg(c)
Trg(c)

= a.

It has been already noticed that Trg(x/ Trg(x)) = 1. Hence, if d ∈ K(x) then δ =
d + (x/ Trg(x)) has zero relative trace. Here δ ∈ K(x) because x/ Trg(x) ∈ K(x).

To show the last assertion, observe that

d2 + d ∈ K(x). (26)

Assume that ϕ(d) 	= d. Then d /∈ K(x) and d = ω1y + ω with ω1, ω ∈ K(x) and ω1 	= 0. 
From (26)

ω2
1y

2 + ω1y + ω2 + ω = ω2
1
(
xy + x3 + μ

)
+ ω1y + ω2 + ω

= ω1(ω1x + 1)y + ω2
1
(
x3 + μ

)
+ ω2 + ω

belongs to K(X ), whence ω1 = 1/x. Observe that

ϕ

(
Trg

(
y
))

= Trg
(
ϕ

(
y
))

= Trg
(
x + y

)
= Trg

(
y + 1

)
= Trg

(
y
)
.

x x x x x
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This shows that

Trg
(
y

x

)
∈ K(x).

Hence (
Trg

(
y

x

)
+ 1

)
x

Trg(x) ∈ K(x).

Since Trg(d) = 1 and

Trg
(
y

x
+

(
Trg

(
y

x

)
+ 1

)
x

Trg(x)

)
= 1,

the assertion follows. �
6. Some explicit examples

In this section, K is the algebraic closure of the finite field Fq of order q where q ≥ 4
is a power of 2, and w a primitive element of Fq. We exhibit several curves with explicit 
equations that realize the cases in Theorem 1.2.

6.1. Case (ia)

In Section 5, an infinite family of curves Xk of type (ia) is constructed. Here we single 
out the case of g = 9, and illustrate some computational results for q = 16. Let X̄
be the elliptic curve of equation Y 2 + XY + X3 + μ = 0, and K(X ) = K(x, y) with 
y2 + xy + x3 + μ = 0 is its function field.

In the first construction, take μ a primitive element in F16, and k = 1 in (21). Then 
definition (22) reads e1 = (τ/ξ)y + (ω/ξ) with

τ = μx13 + μ2x11 + μ11x9 + μ13x7 + μ13x5 + μ5x3 + μ11x,

ξ = x16 + μ4x12 + μx8 + μ6x4 + μ4,

ω = μ4x16 + μx15 + μ11x14 + μ2x13 + μ7x12 + μ11x11 + μ5x10 + μ13x9

+ μ14x8 + μ13x7 + μ12x6 + μ5x5 + μ3x4 + μ11x3 + μ14x2 + μ8.

Let X1 be a non-singular model of the bielliptic function field which is the extension of 
K(X̄ ) by adjoining z where z2 + z + e1 = 0. Eliminating y from z2 + z + e1 = 0 and 
y2 + xy + x3 + μ = 0, gives an affine equation of a plane (singular) model of X :

F (X,Z) = Z4X28 + μZ4X26 + μ7Z4X24 + μ3Z4X22 + μ8Z4X20

+ μ7Z4X18 + μ4Z4X16 + μ8Z4X14 + μ6Z4X12 + μ13Z4X10 + Z4X8
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+ μ8Z4X6 + μ9Z4X4 + Z4X2 + μ11Z4 + Z2X28 + μ7Z2X24 + μ13Z2X22

+ μ11Z2X20 + μ12Z2X16 + μ4Z2X14 + μ11Z2X12 + μ10Z2X10 + μ3Z2X8

+ μ8Z2X6 + μ11Z2X4 + μ14Z2X2 + μ11Z2 + μZX26 + μ8ZX22 + μ7ZX20

+ μ7ZX18 + μ6ZX16 + μ5ZX14 + μZX12 + μ9ZX10 + μ14ZX8 + μ2ZX4

+ μ3ZX2 + μ8X28 + μ3X26 + μ13X24 + μ9X22 + μ13X18 + μ8X16

+ μ5X14 + μ5X12 + μ12X10 + μ10X8 + X6 + μ5X4 + μ4 = 0.

Obviously, X1 is defined over F16. According to the results in Section 5, it has genus and 
2-rank equal to 9 and a dihedral K-automorphism group S1 of order 32. Therefore X1 is 
an example of case (ia) of Theorem 1.2. A MAGMA aided computation shows that X1

has exactly 24 places over F16. Therefore, the two short orbits of S1 on X1 constitute 
the set X1(F16) of all F16-rational places of X1. Moreover, |X1(F162)| = 408.

In the second construction, e = (τ/ξ)y + (ω/ξ) with

τ = a8x6 + ax5 + a13x4 + a14x3 + a14x2 + a10x + a13;

ω = a2x8 + a13x7 + a6x6 + a13x5 + a10x4 + a10x3 + x2 + a4x + a12;

ξ = x8 + a2x6 + a8x4 + a3x2 + a2.

This time, we obtain an irreducible plane curve C with affine equation

F (X,Z) = X14Z4 + X14Z2 + μ4X14 + μ8X13Z4 + μ8X13Z + μ9X13

+ μ11X12Z4 + μ11X12Z2 + μ14X12 + μ9X11Z4

+ μ14X11Z2 + μ4X11Z + μ12X11 + μ4X10Z4 + μ13X10Z2

+ μ11X10Z + μ11X9Z4 + μ11X9Z + μ14X9 + μ2X8Z4

+ μ6X8Z2 + μ3X8Z + μ4X8 + μ4X7Z4 + μ2X7Z2 + μ10X7Z

+ μ10X7 + μ3X6Z4 + μ13X6Z2 + μ8X6Z + μ10X6

+ μ14X5Z4 + μ5X5Z2 + μ12X5Z + μ6X5 + X4Z4

+ μ9X4Z2 + μ7X4Z + μ5X4 + μ4X3Z4 + μ4X3Z2 + X3

+ μ12X2Z4 + μ13X2Z2 + μX2Z + μ10X2 + XZ4

+ μ7XZ2 + μ9XZ + μ13Z4 + μ13Z2 + μ2.

A non-singular model X2 of C has genus and 2-rank equal to 9 with a dihedral group 
S2 of automorphisms of order 32. Therefore, it provides another example of case (ia) of 
Theorem 1.2.
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A MAGMA aided computation shows that X2(F16) has the same behavior as X1 does, 
as the two short orbits of S2 on X2 constitute X2(F16). However, |X2(F162)| = 472 which 
shows that X1 and X2 are not isomorphic over F16. It seems plausible that this holds 
true over K.

6.2. Case (ib)

Let q = 16. For a primitive element μ of F16, let X be the curve which is the non-
singular model of the irreducible plane curve C with affine equation

F (X,Y ) = Y 4X7 + μ5Y 4X5 + μ13Y 4X3 + μ9Y 4X + Y X7μ5Y X5

+ μ13Y X3 + μ9Y X + X8 + μ2X6 + μ8X4 + μ3X2 + μ2 = 0.

From a computer aided computation performed by MAGMA, X has genus 9 and Aut(X )
has a subgroup S of order 32 such that S ∼= D8×C2. Furthermore, X̄ = X/C2 has genus 
5 and Aut(X̄ ) has a dihedral subgroup of order 8. Therefore, X̄ is a curve of type (ib).

6.3. Case (ii)

Let X be the hyperelliptic curve which is the non-singular model of the projective 
irreducible plane curve C of degree q + 2 with affine equation

(
Y 2 + Y + X

)(
Xq + X

)
+

∑
α∈Fq

Xq + X

X + α
= 0.

It is easily seen that C has exactly two points at infinity, namely X∞ = (1, 0, 0) and 
Y∞ = (0, 1, 0). Both are ordinary singularities. More precisely, X∞ and Y∞ are singular 
points of C with multiplicity q and 2, respectively. No affine point of C is singular. 
Therefore, X has genus

g = 1
2(q + 1)q − 1 − 1

2q(q − 1) = q − 1,

see [8, Theorem 5.57]. For β ∈ Fq, let μ ∈ K be such that μ2 + μ = β. Then the map

ϕμ : (x, y) → (x + β, y + μ)

preserves C and hence it is K-automorphism of X . These maps form a K-automorphism 
group S of X . Obviously, S is an elementary abelian group of order 2q.

Since 2q = 2g + 2, X provides an example for case (ii) of Theorem 1.2.
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6.4. Case (iii)

Let X be the non-singular model of the projective irreducible plane curve C of degree 
2q with affine equation

(
Y q − Y

)(
Xq −X

)
+ 1 = 0. (27)

As in the preceding example, C has exactly two points at infinity, namely X∞ =
(1, 0, 0) and Y∞ = (0, 1, 0); both are ordinary singularities of multiplicity q. The tangents 
to C at X∞ are the lines vμ with equation Y − μ = 0 with μ ∈ Fq. Similarly for Y∞ and 
the lines hμ of equation X − μ = 0. No affine point of C is singular. Therefore X has 
genus

g = 1
2(2q − 1)(2q − 2) − q(q − 1) = (q − 1)2,

see [8, Theorem 5.57]. For α, β ∈ Fq the map

ϕα,β : (X,Y ) → (X + α, Y + β)

preserves C and so it is a K-automorphism of X . Here, E = {ϕα,β |α, β ∈ Fq} is an 
elementary abelian group of order q2. Also, the map

ρ : (X,Y ) → (Y,X)

preserves C and hence it is a further K-automorphism of X . The group generated by 
E together with ρ is the semidirect product E � 〈ρ〉 and it has order 2q2. Since 2q2 >

2((q−1)2−1) = 2(g −1), Nakajima’s bound implies that E�〈ρ〉 is not properly contained 
in a 2-subgroup of Aut(X ). Let S = E� 〈ρ〉. It is easily seen that the central involutions 
of S are the maps ϕα,α with α ∈ Fq and α 	= 0.

We show that no non-trivial element in S fixes a point of X . Obviously, no non-trivial 
element in S fixes an affine point. Since the point U = (1, 1, 0) is not in C and ρ inter-
changes the points X∞ and Y∞, no point in X is fixed by an element in the coset of E
containing ρ. This holds true for any non-trivial element in E, since ϕα,β preserves no 
line of type hμ or vμ, and hence it preserves no branch centered either at X∞ or Y∞.

Therefore, every central involution of S is inductive, and hence X is an example for 
case (iii) in Theorem 1.2 with

|S| = 2(g− 1) + 4q − 2 with g = (q − 1)2 and q = 2h ≥ 4. (28)

Here, Nakajima’s bound is only attained for q = 4.
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6.5. Example of an inductive sequence of curves

The procedure described in Introduction starting with X as in Subsection 6.4 and 
ending with a curve free from inductive central involutions is now illustrated in the 
smallest case, q = 4. With the above notation, g = 9 and |S| = 4(g −1) = 32. As we have 
pointed out, u = ϕ1,1 is an inductive central involution of S. From (1) applied to 〈u〉,

16 = 2g− 2 = 2(2ḡ− 2),

where ḡ is the genus of the quotient curve X̄ = X/〈u〉. Hence ḡ = 5. Similarly, X̄ has 
2-rank 5. The factor group S̄ = S/〈u〉 is a subgroup of X̄ of order 16. Thus |S̄| = 16 =
4(ḡ−1). So, Nakajima’s bound is attained by X̄ . Since the function field K(X ) is K(x, y)
with (x4 + x)(y4 + y) + 1 = 0, its subfield generated by t = x + y and z = y2 + y is the 
function field K(X̄ ). It is easily seen that (z2 + z)(t4 + t + z2 + z) + 1 = 0, that is, X̄ is 
the non-singular model of the projective irreducible plane curve C̄ with equation

(
X2 + XZ

)(
Y 4 + Y Z3 + X2Z2 + XZ3) + Z4 = 0.

From computations performed by MAGMA, X̄ has exactly 28 F16-rational points. 
Since X̄ has genus 5, Nakajima’s bound yields that |S̄| ≤ 16. Actually, the bound 
is attained as MAGMA computations show that Aut(X̄ ) contains the following three 
K-automorphisms, where μ is a primitive element of F16:

ψ1 = (X,Y, Z) →
(
XY 2 + X2Z + XY Z + μ10Y 2Z + XZ2 + μ5Y Z2 + μ5Z3,

XY 2 + X2Z + XY Z + μ10Y 2Z + μ10Y Z2 + μ5Z3, Y 2Z + Y Z2 + Z3);
ψ2 = (X,Y, Z) → (X,Y + Z,Z);

ψ3 = (X,Y, Z) → (X + Z, Y + Z,Z).

They generate indeed a subgroup S̄ of order 16. More precisely, 〈ψ1, ψ2〉 is a dihedral 
group D4 of order 8 and ψ3 generates a cyclic group C2 of order 2 so that S̄ = D4 ×C2. 
The central involutions in S̄ are three, namely ψ3,

ψ4 = (X,Y, Z) →
(
Y 2 + XZ + Y Z + Z2, Y Z + Z2, Z2)

and

ψ5 = (X,Y, Z) →
(
Y 2 + XZ + Y Z, Y Z,Z2).

Neither ψ3 nor ψ4 have fixed point on X while ψ5 does have four, namely

P1 =
(
μ5, 1, 1

)
, P2 =

(
μ10, 1, 1

)
, P3 = (μ, 0, 1), P4 =

(
μ10, 0, 1

)
.
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Furthermore, S̄ has two orbits on the set of F16-rational points of X̄ , of sizes �1 = 8 and 
�2 = 4. From Lemma 3.6, both ψ3 and ψ4 are inductive involutions of S̄.

The quotient curve ¯̄X 3 = X̄/〈ψ5〉 is an elliptic curve. This follows from (3) applied to 
X̄ and its K-automorphism group 〈ψ5〉.

Therefore, the central involution ψ5 of S̄ is not inductive, and X̄ provides an example 
for case (ib) of Theorem 1.2.

The quotient curve ¯̄X 1 = X̄/〈ψ3〉 has genus and 2-rank 3, and equation

X4 + X2Y 2 + Y 4 + X2Y Z + XY 2Z + X2Z2 + XY Z2 + Y Z3 = 0.

Hence ¯̄X 1 is a non-singular plane quartic. Also, ¯̄S1 = S̄/〈ψ3〉 is a dihedral group of 
order 8. This shows that Nakajima’s bound is attained by ¯̄X 1. As we have already 
pointed out, ψ3 is an inductive central involution of S̄ as it fixes no point of X . This 
can also be shown using the fact that Aut( ¯̄X 1) is the projective group PSL(2, 7) and 
that a dihedral subgroup of PSL(2, 7) of order 8 is known to fix no point in the plane. 
Therefore X̄ is an example for case (iii) in Theorem 1.2, and also illustrates Remark 4.2
with a dihedral group.

The quotient curve ¯̄X 2 = X̄/〈ψ4〉 is a hyperelliptic curve of genus 3 and 2-rank 3, 
defined by the affine equation

Y 2 +
(
μ10X4 + X3 + 1

)
Y = μ13X8 + μ5X7 + μ3X6

+ μ3X5 + μ14X4 + μ7X3 + μ11X2 + X + 1,

and ¯̄S2 = S̄/〈ψ4〉 is an elementary abelian group of order 8. As we have already observed, 
ψ4 is an inductive central involution. This can also be shown ruling out the possibility 
that ¯̄S2 fixes a point of ¯̄X 1. For this purpose, assume on the contrary the existence of 
a point P ∈ ¯̄X 2 fixed by ¯̄S2. We show that there exists another fixed point P ′ ∈ ¯̄X 1

of ¯̄S2. Observe that ¯̄X 2 is defined over F16. Furthermore, it has exactly 30 F16-rational 
points. So, if P is an F16-rational point, ¯̄S2 induces a permutation group on the set of 
the remaining 29 F16-rational points. As 29 is an odd number, ¯̄S2 must fix some of those 
points, and P ′ may be any of them. If P is not defined over F16, the Frobenius image 
of P can be taken for P ′. Now, (3) applied to ¯̄S2 gives 2 ≥ 8(−1) + 14, a contradic-
tion. Therefore X̄2 is another example for case (iii) in Theorem 1.2, and also illustrates 
Remark 4.2 with an elementary abelian group.

6.6. Example of a curve of genus g with a semi-dihedral K-automorphism group of 
order 2(g − 1)

For a primitive element μ of F16, let X be a non-singular model of the irreducible plane 
curve defined with an affine equation F (X, Y ) = f1(X)Y 4 +f2(X)Y 2 +f3(X)Y +f4(X)
where
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f1(X) = X70 + μ14X66 + μ9X62 + μ10X58 + μ12X54 + μ5X46 + μ7X42 + μ13X38

+ μ2X30 + μ9X26 + μ10X22 + X18 + μ11X10 + μ6X6;

f2(X) = X72 + X70 + μ14X68 + μ13X66 + μX64 + μ14X62 + X60 + μ13X58

+ X56 + μ5X54 + μX52 + X50 + μ5X48 + μ5X46 + μ11X44 + μ13X42

+ μ9X40 + X38 + μ8X36 + μ3X34 + μ12X32 + μ7X30 + μ9X28 + μ8X26

+ μ10X24 + μ9X22 + μ5X20 + μ2X18 + μ3X16 + μ2X14 + μ5X12

+ μ8X10 + μ11X8 + μ6X6 + μ7X4

f3(X) = X72 + μ14X68 + μ2X66 + μX64 + μ4X62 + X60 + μ9X58 + X56 + μ14X54

+ μX52 + X50 + μ5X48 + μ11X44 + μ5X42 + μ9X40 + μ6X38 + μ8X36

+ μ3X34 + μ12X32 + μ12X30 + μ9X28 + μ12X26 + μ10X24 + μ13X22

+ μ5X20 + μ8X18 + μ3X16 + μ2X14 + μ5X12 + μ7X10 + μ11X8 + μ7X4;

f4(X) = X76 + μ5X74 + μ7X72 + μ3X70 + μ9X68 + μ12X66 + μ6X64 + μ12X62

+ μ3X60 + μ9X58 + μ10X56 + μ12X54 + μ12X52 + μ10X50 + μX48

+ μ6X46 + μ5X44 + μ3X42 + μ12X40 + μ14X38 + μ13X36 + μ14X34

+ μ3X32 + μ6X30 + μ4X28 + μ13X26 + μ6X24 + X22 + μ12X20 + μ2X18

+ μ3X16 + μ10X14 + μ6X12 + X10 + μ12X6 + μ6X4 + μ13X2 + μ9.

From MAGMA computation, X has genus 17 and its 2-rank equals 9. Further, X (F16), 
the set of all F16-rational points of X , has size 8: all of them are branches centered at 
Y∞, while the F16-automorphism group G of X is a semi-dihedral group of order 32 with 
the unique central involution u : (X, Y ) → (X, Y + 1). In particular, u is the unique 
involution of the cyclic subgroup of G of order 16 and fixes X (F16) pointwise. From (3), 
u fixes no more points on X .

The function field of the quotient curve X̄ = X/〈u〉 is the subfield K(X̄ ) = K(x,
z = y2 + y) of K(X ) and hence X̄ is a non-singular model of the plane algebraic curve 
with affine equation

Z2 +
(
f1(X) + f2(X)

)
Z + f4(X) = 0.

Actually, X̄ is an elliptic curve. Therefore, the central involution e is not inductive.
Finally, comparison with Nakajima’s bound | Aut(X )| ≤ 4(γ − 1) ≤ 32 shows that 

G = Aut(X ).
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