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In a recent paper, [10], Gill, using methods of the modular 
representation theory of finite groups, describes some results 
on the tensor product of Young modules for symmetric groups. 
We here give an alternative approach using the polynomial 
representation theory of general linear groups and the Schur 
functor. The main result is a formula for the multiplicities of 
Young modules in a tensor product in terms of the characters 
of the simple polynomial modules for general linear groups. 
Our approach is also valid for Young modules for Hecke 
algebras of type A at roots of unity and here the formula 
involves the characters of the simple polynomial modules for 
quantised general linear groups.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In [10], Gill considers the coefficients obtained by expressing the tensor product of 
Young modules, for a symmetric group, as a direct sum of Young modules: Y (λ) ⊗Y (μ) =⊕

ν y
ν
λ,μY (ν). Working over a field of positive characteristic p, and using methods of the 

modular representation theory of finite groups, he shows in particular that ypνpλ,pμ = yνλ,μ, 
[10], Theorem 3.6. He also gives a lower bound for the Cartan invariant cλ,μ of the Schur 
algebra in terms of the base p expansions of λ and μ, [10] Theorem 4.1. We here adopt 
a different approach, by first considering the corresponding problems in the category of 
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polynomial representations and then applying the Schur functor, as in [11], Chapter 6, 
or [6], Section 2.1. Our main result, see Theorem 3.2, is a formula for the coefficients 
yνλ,μ in terms of what we call modular Kostka numbers, which describe the weight space 
multiplicities of the irreducible polynomial modules. From this we obtain the first of 
Gill’s results mentioned above. We also obtain the lower bound for the Cartan numbers.

It is no more difficult, from our point of view, to work with quantised general linear 
groups and Hecke algebras, so we adopt this point of view from the outset. However, 
there is one interesting difference in the quantum case. Whereas the tensor product 
Y (λ) ⊗ Y (μ) has a natural module structure in the classical case, we only assign the 
tensor product of Young modules for the Hecke algebra a meaning as a virtual module, 
and we give an example (in Section 6) to show that this is not represented by a direct 
sum of Young modules in general.

2. Preliminaries

2.1. We begin by introducing the usual notation for the combinatorics associated 
with polynomial representations, for the most part following Green, [11]. By a partition 
we mean an infinite sequence of weakly decreasing non-negative integers λ = (λ1, λ2, . . .)
with λi = 0 for i � 0. The length of the zero partition is 0 and a non-zero partition λ
has length l if λl = 0 and λi = 0 for i > l. We identify the partition λ = (λ1, λ2, . . .)
with the finite sequence (λ1, . . . , λn) if λn+1 = 0. By the degree of a finite sequence of 
non-negative integers we mean the sum of its terms.

Fix a positive integer n and a non-negative integer r. We denote by Λ(n) the set 
of n-tuples of non-negative integers. We denote by Λ(n, r) set of elements of Λ(n) of 
degree r. We denote by Λ+(n) the set of partitions of length at most n and denote by 
Λ+(n, r) the set of partitions of length at most n and degree r. We write P (r) for the 
set of all partitions of r (so P (r) = Λ+(n, r), for n ≥ r). Elements of Λ(n) will be called 
(polynomial) weights and elements of Λ+(n) called dominant (polynomial) weights. The 
set Λ(n, r) has a natural partial order, namely the dominance order: for α = (α1, . . . , αn), 
β = (β1, . . . , βn) we have α ≤ β if α and β have the same degree and 

∑i
j=1 αj ≤

∑i
j=1 βj , 

for all 1 ≤ i ≤ n.
We write Sym(r) for the group of symmetries of {1, . . . , r}. Then W = Sym(n) acts 

naturally on Λ(n) by place permutation. The integral monoid ring of Λ(n) will be iden-
tified with the polynomial ring Z[x1, . . . , xn]. The natural action of W on x1, . . . , xn ex-
tends to an action on Z[x1, . . . , xn] by ring automorphisms. For α = (α1, . . . , αn) ∈ Λ(n)
we set xα = xα1

1 . . . xαn
n and, as in [13], define the monomial symmetric function

mλ =
∑

α∈Wλ

xα

for λ ∈ Λ+(n).
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2.2. We now recall some facts about the representation theory of Hecke algebras 
of type A. Let r be a positive integer. We fix a field K and 0 �= q ∈ K. We write 
Hec(r) for the Hecke algebra of degree r over K with standard generators T1, . . . , Tr−1
and parameter q, as in [6]. For a partition λ = (λ1, . . . , λn), of degree r, we write 
Hec(λ) for the “Young Hecke subalgebra”, i.e., the algebra Hec(λ1) ⊗ · · · ⊗ Hec(λn)
regarded as a subalgebra of Hec(r) in the natural way. We write Sym(λ) for the group 
Sym(λ1) × · · · × Sym(λn) regarded as a subgroup of Sym(r) in the natural way.

We write K also for the one dimensional Hec(λ)-module on which each standard gen-
erator Ti ∈ Hec(λ) act as multiplication by q. We write M(λ) for the “permutation 
module” Hec(r) ⊗Hec(λ) K. The Young modules Y (μ), μ a partition of r, are the inde-
composable Hec(r)-module summands, of the permutation modules. More precisely, we 
have

M(λ) = Y (λ) ⊕ Z

where Z is a direct sum of modules Y (μ) with μ bigger than λ in the dominance order, 
see [6], 2.1, (9) and 4.4, (1).

We write Rep(Hec(r)) for the Grothedieck group of the category mod(Hec(r)), of 
finite dimensional left Hec(r)-modules and write RepYoung(Hec(r)) for the subgroup of 
Rep(Hec(r)) generated by the classes of the Young modules. Thus we have

RepYoung(Hec(r)) =
⊕

λ∈P (r)

Z[Y (λ)] =
⊕

λ∈P (r)

Z[M(λ)] (1)

where [X] denotes the class in Rep(Hec(r)) of a finite dimensional Hec(r)-module X.
We write Ch(Sym(r)) for the group of generalised characters of the symmetric group 

Sym(r). Then Ch(Sym(r)) is free on the characters ηλ = 1 ↑Sym(r)
Sym(λ), as λ runs over 

partition of r. Thus we have an isomorphism

θ : RepYoung(Hec(r)) → Ch(Sym(r)) (2)

taking [M(λ)] to ηλ.
Note that in case K = C and q = 1 the map θ assigns to [M(λ)], the ordinary 

character of M(λ) and it follows by Z-linearity that θ([X]) is the ordinary character of 
X for any finite dimensional KSym(r)-module in this case.

For more on the assignment of ordinary characters of symmetric groups to modules 
for Hecke algebra, see [7].

2.3. In this section we take q = 1 so that Hec(r) = KSym(r). From Mackey’s tensor 
product theorem, for partitions λ, μ of r we have

M(λ) ⊗M(μ) =
⊕

K ↑Sym(r)
δSym(λ)δ−1∩Sμ
δ∈Δ



4 S. Donkin / Journal of Algebra 430 (2015) 1–14
where Δ is a set of (Sym(λ), Sym(μ)) double coset representatives in Sym(r). Thus we 
have

M(λ) ⊗M(μ) =
⊕

ν∈P (r)

mν
λ,μM(ν)

where mν
λ,μ is the number of δ ∈ Δ such that δSλδ

−1 ∩ Sμ is conjugate to Sν . This 
applies in particular when K has characteristic 0 so that the product of permutation 
characters is described in the same way, i.e.,

ηλ · ημ =
∑
ν

mν
λ,μην . (3)

If K has arbitrary characteristic (and q = 1) the group RepYoung(KSym(r)) has a natural 
ring structure (given by the tensor product) and it follows that the map (2) is then a 
ring isomorphism.

The integers mν
λ,μ have a simple combinatorial interpretation. By [12], 1.3.8, 1.3.9, we 

have that mν
λ,μ, is the cardinality of the set Z(ν, λ, μ) of sufficiently large matrices with 

non-negative entries that have row sums λ1, λ2, . . . and column sums μ1, μ2, . . . and such 
that listing all the entries in weakly descending order gives ν.

Let t be a positive integer. Let γ be a partition of r and let λ, μ be partitions of tr. 
If Z(tγ, tλ, tμ) is not empty then there is some matrix Q of non-negative integers with 
row sums λ1, λ2, . . . and column sums μ1, μ2, . . . such that the entries of Q, listed in 
descending order, gives tγ. Thus all entries in Q are divisible by t and the row sums 
and column sums are divisible by t. Thus we may write λ = tα, μ = tβ, for partitions 
λ, μ of r. Moreover, if P ∈ Z(ν, λ, μ) then tP ∈ Z(tν, tλ, tμ) and if Q ∈ Z(tλ, tμ, tν)
then 1

tQ ∈ Z(ν, λ, μ). In particular the sets Z(ν, α, β) and Z(tν, tα, tβ) are in bijective 
correspondence. So, for a partition γ of r and partitions λ, μ of tr we have:

mtγ
λ,μ =

{
mγ

α,β , if λ, μ are divisible by t with λ = tα, μ = tβ;
0, otherwise.

(4)

Theorem 3.5 of [10] may be regarded as an analogue of this for Young modules.

3. Modular Kostka numbers and tensor products of Young modules

Let K be a field. We regard the category of quantum groups as the opposite of the 
category of Hopf algebras over K. Less formally, we use the expression “G is a quantum 
group over K” to indicate that we in mind a Hopf algebra over K, which we call the 
coordinate algebra of G and denote K[G], cf. the approach of Parshall–Wang, [14]. Fix 
a positive integer n and 0 �= q ∈ K. We omit q from notation as much as possible. We 
write simply G(n) for the quantum general linear group as in [3]. We recall briefly the 
construction of G(n). The algebra A(n) is given by generators cij, 1 ≤ i, j ≤ n, subject to 
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certain relations, see [6], 0.20. Then A(n) has a bialgebra structure with comultiplication 
δ : A(n) → A(n) ⊗A(n) and evaluation ε : A(n) → K satisfying

δ(cij) =
n∑

h=1

cih ⊗ chj and ε(cij) = δij

for 1 ≤ i, j ≤ n, where δij is the Kronecker delta. We call the cij the coefficient ele-
ments. The K-algebra A(n) has a natural grading A(n) =

⊕
r≥0 A(n, r), in which each 

coefficient element has degree 1. Furthermore, each A(n, r) is a subcoalgebra.
The determinant element

d =
∑

π∈Sym(n)

sgn(π)c1,π(1) . . . cn,π(n)

of A(n) is group-like and the Ore localisation A(n)d is a Hopf algebra. The quantum gen-
eral linear group G(n) is the quantum group over K whose coordinate algebra K[G(n)]
is A(n)d.

Recall that, for a quantum group G over K, a (left) G-module is, by definition, a right 
K[G]-comodule. A G(n)-module V , with structure map τ : V ⊗A(n), is called polynomial 
(resp. polynomial of degree r) if τ(V ) ≤ V ⊗ A(n) (resp. τ(V ) ≤ A(n, r)). We regard a 
G(n)-module that is polynomial also as an A(n)-comodule and a G(n)-module that is 
polynomial of degree r also as an A(n, r)-comodule. The dual algebra S(n, r) = A(n, r)∗
is called the Schur algebra. The category of G(n)-modules that are polynomial of degree 
r is naturally equivalent to the category of A(n, r)-comodules and hence to the category 
of S(n, r)-modules. When we need background results on polynomial modules we shall 
ofter refer to [6], where the results are most often expressed in terms of S(n, r)-modules.

Recall that for a polynomial G(n)-module V and α ∈ Λ(n) we have the weight space 
V α and that V = ⊕α∈Λ(n)V

α. To a finite dimensional polynomial G(n)-module V we 
assign its character

chV =
∑

α∈Λ(n)

(dimV α)xα ∈ Z[x1, . . . , xn].

For each λ ∈ Λ(n) there is an irreducible G(n)-module L(λ) such that dimL(λ)λ = 1 and, 
for α ∈ Λ(n), we have dimL(λ)α = 0 unless α ≤ λ. The modules L(λ), λ ∈ Λ+(n) (resp. 
λ ∈ Λ+(n, r)), form a complete set of pairwise non-isomorphic irreducible G(n)-modules 
that are polynomial (resp. polynomial of degree r, for r ≥ 0). When we wish to emphasise 
the role of n we write Ln(λ), for L(λ), λ ∈ Λ+(n).

The classical case q = 1 is of course very important. In the classical case we write 
c̄ij for cij , 1 ≤ i, j ≤ n, write Ḡ(n) for G(n) and write L̄(λ) for L(λ), λ ∈ Λ+(n). If 
K is infinite then the polynomial representation theory as described above corresponds 
to the polynomial representation theory of GLn(K) as in [11], in the following way. We 
identify c̄ij with the K-valued function taking g ∈ GLn(K) to the (i, j)-coefficient of g
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and in this way identify A(n) with an algebra of K-valued functions on GLn(K). Given 
a finite dimensional polynomial GLn(K)-module (in the sense of Green, [11]) V with 
basis v1, . . . , vm we obtain coefficient functions fij ∈ A(n) defined by the equations

gvi =
m∑
j=1

fji(g)vj

for 1 ≤ i ≤ m and thereby identify V with the A(n)-comodule with structure map 
τ : V → V ⊗A(n) given by τ(vi) =

∑m
j=1 vj ⊗ fji for 1 ≤ i ≤ m.

For λ, μ ∈ Λ+(n) we define a(n)
λ,μ = dimLn(λ)μ. We call the integers a(n)

λ,μ the modular 
Kostka numbers. Note that it follows from [11], (6.5f), that, regarding λ, μ as elements 
of Λ+(N, r), for N ≥ n, we have a(N)

λ,μ = a
(n)
λ,μ. Therefore, for partitions λ, μ of the same 

degree write simply aλ,μ for a(n)
λ,μ, if λ and μ have at most n parts.

Since we will be comparing the case of arbitrary q with the classical situation it is 
useful to have a different notation in that case, so we write āλ,μ for aλ,μ when q = 1. 
For a finite dimensional polynomial G(n)-module V and α ∈ Λ(n), w ∈ W , we have 
dimV wα = dimV α. It follows that, for λ ∈ Λ+(n, r), we have

chL(λ) =
∑

μ∈Λ+(n,r)

aλ,μmμ (5)

(with mμ is as in Section 2.1).
If K has characteristic 0 and q = 1 then the character of L(λ) is Schur’s symmetric 

function sλ, see [11], Section 3.5, and so aλ,μ is the Kostka number Kλ,μ, as in [13]. In 
general the matrix (aλ,μ), with rows ordered consistently with the dominance order, is 
unitriangular so there exist uniquely determined integers bλ,μ, for λ, μ ∈ Λ+(n, r), such 
that

mλ =
∑

μ∈Λ+(n,r)

bλ,μ chL(μ) (6)

with bλ,λ = 1 and bλ,μ = 0 for λ � μ. The matrices (aλ,μ)λ,μ∈Λ+(n,r) and (bλ,μ)λ,μ∈Λ+(n,r)
are inverse to each other. We call the bλ,μ the inverse modular Kostka numbers. We write 
b̄λ,μ for bλ,μ when q = 1.

Note that the expression “modular Kostka number” is used for something different in 
[9] and related papers.

We shall need another interpretation of the modular Kostka numbers. We denote by 
E the natural G(n)-module, i.e., the K-vector space on basis e1, . . . , en regarded as a 
G(n)-module via the comodule structure map τ : E → E ⊗ A(n) given by τ(ei) =∑n

j=1 ej ⊗ cji for 1 ≤ i ≤ n. For r ≥ 0, the rth symmetric power SrE is naturally a 
G(n)-module and for α = (α1, . . . , αn) ∈ Λ(n, r) we write SαE for the G(n)-module 
Sα1E⊗· · ·⊗SαnE. The module SαE is polynomial of degree r. For λ ∈ Λ+(n) we write 
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I(λ) for the injective hull of L(λ) in the category of polynomial G(n)-module (i.e., I(λ)
is the injective hull of L(λ) as an A(n)-comodule).

By [6], 2.1, (9), for any G(n)-module X which is polynomial of degree r we have that 
HomG(n)(X, SαE) is isomorphic to Xα. In particular the functor HomG(n)(−, SαE) is 
exact on finite dimensional polynomial modules of degree r and SαE is injective in the 
polynomial category. Thus, for λ ∈ Λ+(n, r), we write

SλE =
⊕

μ∈Λ+(n,r)

hμI(μ)

for certain non-negative integers hμ. Applying HomG(n)(L(μ), −) we find that

hμ = dim HomG(n)(L(μ), SλE) = dimL(μ)λ = aμ,λ

for μ ∈ Λ+(n, r). Hence we have

SλE =
⊕

μ∈Λ+(n,r)

aμ,λI(μ). (7)

Now assume that n ≥ r. Then we have the Schur functor f : M(n, r) → mod(Hec(r)), 
where M(n, r) is the category of finite dimensional G(n)-modules which are polynomial 
of degree r. The functor f is exact and takes SλE to M(λ) and takes I(λ) to Y (λ), for 
λ ∈ Λ+(n, r), by [6], Section 2.1, (20)(i) and Section 4.4, (1). Applying f to (7) gives

M(λ) =
⊕

μ∈P (r)

aμ,λY (μ) (8)

for λ ∈ Λ+(n, r). Interpreting this as an equation in Rep(Hec(r)) and inverting we thus 
get

[Y (λ)] =
∑

μ∈P (r)

bμ,λ[M(μ)] (9)

for λ ∈ Λ+(n, r).
In general we give RepYoung(Hec(r)) a ring structure using the group isomorphism 

θ : RepYoung(Hec(r)) → Ch(Sym(r)) of (2) above. As remarked in Section 2.3 this agrees 
with the natural structure given by the tensor product in the classical case. We have

[M(λ)].[M(μ)] =
∑

ν∈P (r)

mν
λ,μ[M(ν)]

by (3). Thus, from (9), for λ, μ ∈ P (r), we have

[Y (λ)].[Y (μ)] =
∑

α,β∈P (r)

bα,λbβ,μ[M(α)].[M(β)].

Now from (8) we obtain one of our main results.
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Theorem 3.1. For λ, μ ∈ P (r) we have

[Y (λ)].[Y (μ)] =
∑

ν∈P (r)

yνλ,μ[Y (ν)]

where yνλ,μ =
∑

α,β,γ∈P (r) bα,λbβ,μm
γ
α,βaν,γ.

In the case q = 1, we may replace the product of classes in RepYoung(Hec(r)) by the 
tensor product so we have the following.

Theorem 3.2. For λ, μ ∈ P (r) the tensor product of the Young modules Y (λ), Y (μ) for 
the symmetric group Sym(r) is given by

Y (λ) ⊗ Y (μ) =
⊕

ν∈P (r)

yνλ,μY (ν)

where yνλ,μ =
∑

α,β,γ∈P (r) bα,λbβ,μm
γ
α,βaν,γ.

4. The influence of Steinberg’s tensor product theorem

If q is not a root of unity then Hec(λ) is semisimple, see for example [6], Section 2.1, 
Remark (iii). In that case the Young modules are the irreducible modules and the map 
θ : RepYoung(Hec(r)) → Ch(Sym(r)) takes [Y (λ)] to the irreducible character χλ labelled 
by λ, for λ ∈ Λ+(n, r). The problem of describing the yνλ,μ is then equivalent to that of 
describing the well known problem of decomposing the product of characters χλχμ. For 
a recent contribution to this difficult problem see [1].

We therefore assume from now on that q is a root of unity. Let l be the smallest 
positive integer such that 1 + q + · · · + ql−1 = 0.

We have, as in [6], Section 3.2, the Frobenius morphism F : G(n) → Ḡ(n), whose 
comorphism F 	 : K[Ḡ(n)] → K(G(n)] satisfies F 	(c̄ij) = clij , for 1 ≤ i, j ≤ n. For a 
Ḡ(n)-module V we write V F for the corresponding G(n)-module. Thus, if V has structure 
map τ : V → V ⊗ K[Ḡ(n)] then V F is the K-space V regarded as a G(n)-module via 
the structure map (idV ⊗F 	) ◦ τ : V → V ⊗K[G(n)], where idV : V → V is the identity 
map.

For λ ∈ Λ+(n) we write L̄(λ) for the irreducible Ḡ(n)-module of high weight λ. We 
write X0(n) for the set of all λ ∈ Λ+(n) such that 0 ≤ λ1 − λ2, . . . , λn−1 − λn, λn < l. 
Then an element λ ∈ Λ+(n) may be uniquely expressed λ = λ0 + lλ̄, with λ0 ∈ X0(n), 
λ̄ ∈ Λ+(n).

Theorem 4.1 (Steinberg’s tensor product theorem). Let λ0 ∈ X0(n), λ̄ ∈ Λ+(n) and 
λ = λ0 + lλ̄. Then we have

L(λ) = L(λ0) ⊗ L̄(λ̄)F .
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See e.g., [6], Section 3.2(5).
We also define the Frobenius twist of an element of Z[x1, . . . , xn]. For θ =∑
α∈Λ(n) cαx

α we set θF =
∑

α∈Λ(n) cαx
lα. Then it is easy to check that, for a fi-

nite dimensional polynomial G(n)-module V , we have chV F = (chV )F . Hence we 
have

chL(λ0 + lλ̄) = chL(λ0).(ch L̄(λ̄))F (10)

for λ0 ∈ X0(n), λ̄ ∈ Λ+(n) and in particular

chL(lλ̄) = (ch L̄(λ̄))F . (11)

In view of (11), for λ ∈ Λ+(n) divisible by l with λ = lα, α ∈ Λ+(n), we have

aλ,μ =
{
āα,β , if μ = lβ for some β ∈ Λ+(n);
0, otherwise.

(12)

Equally, we observe that, for λ ∈ Λ+(n), we have mF
λ = mlλ so we that for λ ∈ Λ+(n)

divisible by l with λ = lα, α ∈ Λ+(n), we have

bλ,μ =
{
b̄α,β , if μ = lβ for some β ∈ Λ+(n);
0, otherwise.

(13)

We now obtain our version of Gill’s Theorem, [10], Theorem 3.6, on the Young module 
multiplicities.

Theorem 4.2. Let λ, μ, ν be partitions of r. Then we have

ylνlλ,lμ = ȳνλ,μ.

Proof. We fix n ≥ lr. By Theorem 3.1, we have

ylνlλ,lμ =
∑

α,β,γ∈Λ+(n,lr)

bα,lλbβ,lμm
γ
α,βalν,γ .

Now from (12) we get

ylνlλ,lμ =
∑

α,β∈Λ+(n,lr),γ∈Λ+(n,r)

bα,lλbβ,lμm
lγ
α,β āν,γ ,

and so by (4) and (13) we have

ylνlλ,lμ =
∑

+

b̄α,λb̄β,μm
γ
α,β āν,γ
α,β,γ∈Λ (n,r)
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and from Theorem 3.1 we get

ylνlλ,lμ = ȳνλ,μ

as required. �
Remark 1. In the classical case q = 1 with K a field of characteristic p > 0 this says 
(Y (pλ) ⊗Y (pμ) | Y (pν)) = (Y (λ) ⊗Y (ν) | Y (ν)). (Here, for finite dimensional modules X, 
Y over KSym(r) with Y indecomposable we are writing (X | Y ) for the number of com-
ponents of X isomorphic to Y in a decomposition of X as a direct sum of indecomposable 
modules.)

Remark 2. Note that actually the only thing we have used from Steinberg’s tensor prod-
uct is the trivial special case: L(lλ̄) = L̄(λ̄)F , for λ̄ ∈ Λ+(n). For general λ, μ ∈ Λ+(n)
one could write λ = λ0 + lλ̄, μ = μ0 + lμ̄ (with λ0, μ0 restricted, λ̄, μ̄ ∈ Λ+(n)) and carry 
through the above analysis using the full force of Steinberg’s tensor product theorem 
and Theorem 3.1 to give a reduction formula for yνλ,μ generalising Theorem 4.2. The 
result would be rather complicated and, in the absence of obvious applications, we do 
not pursue this line of argument here.

5. Cartan invariants

We give a formula for the Cartan invariants, similar to our formula for Young module 
multiplicities, Theorem 3.1. Let n be a positive integer. Let λ ∈ Λ+(n). Then we have the 
induced module ∇(λ) and the character of ∇(λ) is given by Weyl’s character formula, 
see [6], 0.16. A filtration 0 = V0 ≤ V1 ≤ · · · ≤ Vm = V of a finite dimensional polynomial 
G(n)-module V is called good if for each 0 < i ≤ m, the section Vi/Vi−1 is isomorphic to 
∇(λ) for some λ ∈ Λ+(n) (which may depend on i). For a finite dimensional polynomial 
module V admitting a good filtration and λ ∈ Λ+(n) the number of sections in a good 
filtration is independent of the good filtration (it is determined by the character of V ) 
and will be denoted (V : ∇(λ)).

Let λ, μ ∈ Λ+(n, r), for some r ≥ 0. The Cartan number cλ,μ is the multiplicity 
of L(μ) as a composition factor of I(λ) and from Schur’s Lemma one has also cλ,μ =
dim HomG(n)(I(λ), I(μ)). We shall write c(n)

λ,μ for the Cartan integer, ∇n(λ), for the 
induced module and In(λ) the polynomial injective module and Ln(λ) for the simple 
module corresponding to λ, for the moment, to emphasise dependence on n, for λ ∈
Λ+(n, r). Let N ≥ n. The injective module IN (λ) has a filtration with sections ∇N (ξ), 
ξ ∈ Λ+(N, r), and the multiplicity of ∇N (ξ) in such a filtration is equal to the multiplicity 
[∇N (ξ) : LN (λ)], of LN (λ) as a composition factor of ∇N(λ), [5], Section 4, (6). Hence 
we have

c
(N)
λ.μ = [IN (λ) : LN (μ)] =

∑
+

(IN ((λ) : ∇N (ξ)).[∇N (ξ) : LN (μ)].

μ∈Λ (N,r)
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By reciprocity, [5], Section 4, (6), we have (IN ((λ) : ∇N (ξ) = [∇N (ξ) : LN (λ)] and 
moreover, if [∇N (ξ) : LN (μ)] �= 0 then ξ ≥ μ, which implies that ξ has at most n parts. 
Hence we have

c
(N)
λ.μ =

∑
μ∈Λ+(n,r)

[∇N (ξ) : LN (λ)]).[∇N (ξ) : LN (μ)].

Furthermore, we have [∇N (ξ) : LN (ν)] = [∇n(ξ) : Ln(ν)], for ν ∈ Λ+(n, r), by [6], 4.2, 
(6) (and [11], (6.6e) Theorem, in the classical case). Hence we have

c
(N)
λ.μ =

∑
μ∈Λ+(n,r)

[∇n(ξ) : Ln(λ)]).[∇n(ξ) : Ln(μ)]

which is c(n)
λ,μ. Thus, for λ, μ ∈ Λ+(n, r) and N ≥ n we have

c
(N)
λ.μ = c

(n)
λ,μ. (14)

From now on for partitions λ, μ of the same degree we write cλ,μ for the stable value 
c
(n)
λ,μ, where n is such that λ and μ have at most n parts.

Remark 5.1. Suppose λ, μ ∈ Λ+(n, r) and suppose that n ≥ r. It follows from 
[6], 2.1, (8) that SλE is a polynomially injective module with has I(λ) as a com-
ponent and so by [6], (2.1), (16)(ii) and (i), (ii) we have that the Schur functor f
induces an isomorphism HomG(n)(I(λ), I(μ)) → HomHec(r)(Y (λ), Y (μ)) so that cλ,μ =
dim HomHec(r)(Y (λ), Y (μ)).

We now describe the Cartan numbers in terms of the inverse modular Kostka numbers.

Proposition 5.2. For partitions λ and μ of the same degree r, say, we have

cλ,μ =
∑
ν,α,β

mν
α,βbα,λbβ,μ,

where ν, α, β range over all partitions of degree r.

Proof. We fix n ≥ r. Let λ, μ be partitions of degree r. We claim that

dim HomG(n)(SλE,SμE) =
∑
ν

mν
λ,μ. (15)

The dimension of HomG(n)(SλE, SμE) is the dimension of the μ-weight space of SλE, 
by [6], 2.1, (8) and this is easily seen to be independent of K and q. Thus, in checking 
(15), we may (and do) take K to be the field of complex numbers and q = 1. But then, 
applying the Schur functor to SλE, SμE and using [6], 2.1, (16)(ii), we get
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dim HomG(n)(SλE,SμE) = dim HomSym(r)(M(λ),M(μ) = (ηλ, ημ)

and

(ηλ, ημ) = (ηλ · ημ, 1) =
∑
ν

(mν
λ,μην , 1) =

∑
ν

mν
λ,μ

(with the sum over partitions of r) as required.
We suppose once more that K is an arbitrary field and q is an arbitrary non-zero 

element of K. By (7) we have

dim HomG(n)(SλE,SμE) =
∑
α,β

aα,λaβ,μ dim HomG(n)(I(α), I(β))

i.e.,

∑
α,β∈Λ+(n,r)

aα,λaβ,μcα,β =
∑

ν∈Λ+(n,r)

mν
λ,μ.

Let θ, η ∈ Λ+(n, r). Multiplying by bλ,θbμ,η and summing over λ, μ we get cθ,η =∑
mν

λ,βbα,λbβ,μ and hence

cλ,μ =
∑

ν,α,β∈Λ+(n,r)

mν
α,βbα,λbβ,μ

as required. �
Remark. We discuss the observation of Gill, [10], Theorem 4.1, giving a lower bound for 
the Cartan integer cλ,μ in terms of the base p-expansion of λ, μ ∈ Λ+(n). In our context 
this is explained as follows. We write λ = λ0 + lλ̄, μ = μ0 + lμ̄, with λ0, μ0, ̄λ, μ̄ ∈ Λ+(n)
and λ0, μ0 being l-restricted. The according to [8], Lemma 3.2(i), (and [8], Section 5), 
the module I(λ0) ⊗ Ī(λ̄)F embeds in I(λ). Here Ī(λ̄) denotes the injective envelope of 
L̄(λ̄) (as a polynomial Ḡ(n)-module).

From this it is clear that the multiplicity of L(μ) = L(μ0) ⊗ L̄(μ̄)F as a composition 
factor is at least the product of the multiplicity of L(μ0) as a composition factor of I(λ0)
and the multiplicity of L̄(μ̄) as a composition factor of Ī(λ̄) i.e., that

cλ,μ ≥ cλ0,μ0 .cλ̄,μ̄. (16)

Iterating we get (the q-analogue of) [10], Theorem 4.1 and the special case λ0 = μ0 = 0
gives (the q-analogue of) [10], Theorem 4.3.
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6. An example

In the classical situation we have yνλ,μ = (Y (λ) ⊗ Y (μ) | Y (ν)), in particular each 
coefficient yνλ,μ is non-negative (for partitions λ, μ, ν of the same degree). We give an 
example to show that this is not always so in the quantised case.

Assume n ≥ r. We use the general fact that if I is a finite dimensional G(n)-module 
that is polynomial of degree r and ch I =

∑
μ∈P (r) cμsμ then θ([fI]) =

∑
μ∈P (r) cμχ

μ. 
By additivity it is enough to prove for I = I(λ), λ ∈ P (r). Since the modules SλE, 
λ ∈ P (r), and I(λ), λ ∈ P (r) are related by a unitriangular matrix (see (7)) it is 
enough to prove for I = SλE, λ ∈ P (r). However the character of SλE is independent 
of characteristic, and θ(f [SλE]) = θ(M(λ)) so it is enough to prove the result in the 
case K = C and q = 1. In that case I(λ) is the irreducible polynomial module labelled 
by λ and fI(λ) = Y (λ) is the irreducible KSym(r)-module labelled by λ and the result 
is clear.

We now take r = 4 and l = 4 and note that [Y (2, 2)].[Y (2, 2)] is not a sum of 
terms [Y (ν)], with ν a partition of 4. We choose n ≥ 4. Then (2, 2) is the unique 
element of Λ+(n, 4) in the block of (2, 2), see e.g., [2], Theorem 5.3. We therefore have 
I(2, 2) = L(2, 2) = ∇(2, 2). For λ ∈ Λ+(n) we have (I(λ) : ∇(λ)) = 1 and (I(λ) :
∇(μ)) = 0 for � λ. In particular we have I(4) = S4E. Also, it follows, for example from 
Cox’s description of the blocks, [2], Theorem 5.3, that I(λ) = ∇(λ) for λ a partition 
of degree at most 3. Also, from [6], 2.1, (i), it follows that I(λ) ⊗ I(μ) = ∇(λ) ⊗ ∇(μ)
is injective for non-zero partitions λ and μ with deg(λ) + deg(μ) = 4. Now we have 
L(4) = L(1)F = EF , by Steinberg’s tensor product theorem. Thus ∇(4)/L(4) has highest 
weight (3, 1), and this weight occurs with multiplicity one, so that [∇(4) : L(3, 1)] = 1
and so, by reciprocity, [5], Section 4, (6), we have (I(3, 1) : ∇(4)) = 1. It follows that 
I(3, 1) = E ⊗ S3E and so has character s3,1 + s4. Now 

∧2
E ⊗ S2E is injective and has 

character s3,1+s2,1,1. By the character calculation for I(3, 1) just done we see that I(3, 1)
does not occurs as a component of 

∧2
E⊗S2E and hence we have I(2, 1, 1) =

∧2
E⊗S2E. 

Finally, by a similar observation, we have I(14) = E⊗
∧3

E. Applying the Schur functor 
we get chY (4) = χ4, chY (3, 1) = χ3,1+χ4, chY (2, 2) = χ2,2, chY (2, 1, 1) = χ2,1,1 +χ3,1

and chY (14) = χ2,1,1 + χ14 .
Now we have ch[Y (2, 2)]2 = (χ2,2)2 = χ4 + χ2,2 + χ14 and so

[Y (2, 2)]2 = [Y (14)] − [Y (2, 1, 1)] + [Y (3, 1)] + [Y (2, 2)].

Our approach in this example is, in keeping with the spirit of the paper, to work 
from the quantum general linear group to the Hecke algebra. Some readers may prefer a 
more direct approach via the work of Dipper and Du, [4]. One has in particular, that the 
Young modules labelled by l-restricted partitions are projective, see [3], 5.8 Theorem. 
Using this and the fact and that there is only one non-trivial l-block of degree 4, and its 
composition multiplicities are well known, one quickly obtains the above.
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