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1. Introduction

Let R denote a commutative ring with 1 in the sequel. This article and the arti-
cles [3,4] are all inspired by the article [9] and the famous lemma of L.N. Vaserstein 
([9], Lemma 5.5), that

e1E2n(R) = e1{Sp2n(R) ∩ E2n(R)} = e1{Spϕ(R) ∩ E2n(R)},

where ϕ is an invertible alternating matrix of size 2n, and Spϕ(R) is the isotropy group 
of ϕ, i.e. Spϕ(R) = {α ∈ SL2n(R) | αtϕα = ϕ}.

This is the last in a series of 3 articles inspired by the above equality of L.N. Vaserstein, 
regarding the equality of elementary linear and symplectic orbits of a unimodular row. 
The first article appeared in the Journal of K-theory [3] and we showed that if v is a 
unimodular row of even length 2n, n ≥ 2, over a commutative ring R, then vE2n(R, I) =
vESp2n(R, I). The second article appeared in the Journal of Pure and Applied Algebra 
[4] and we showed that if (Q, 〈, 〉ψn

) is a symplectic module, and H(R) is the usual 
hyperbolic space, with rank (P ) ≥ 1, then for a unimodular element (a, b, p) ∈ H(R) ⊥ P

the elementary linear and symplectic transvection orbits coincide.
In this article, we touch upon the second equality of L.N. Vaserstein. Let (Q, 〈, 〉ϕ) be a 

symplectic module w.r.t. an invertible alternating form ϕ. L.N. Vaserstein gave examples 
of symplectic matrices w.r.t. an invertible alternating matrix in ([9], Lemma 5.4). We 
denoted by ESpϕ(R) the subgroup of Spϕ(R) generated by these matrices. This will be 
the elementary symplectic group w.r.t. an invertible alternating matrix ϕ, when we are 
dealing with the case where Q is a free module. In the general case, we will define the 
elementary symplectic group as follows:

Let (Q, 〈, 〉) be a symplectic R-module with Q finitely generated projective module of 
even rank. Recall that Sp(Q, 〈, 〉) is the group of isometries. We define V (Q, 〈, 〉) to be 
the collection of all

{α(1) : α(X) ∈ Sp(Q[X], 〈, 〉⊗R[X]), α(0) = id., and

α(X)p ∈ ESpϕ⊗Rp[X](Rp[X]), for all p ∈ Spec(R)},

where 〈, 〉 correspond to an alternating matrix ϕ (w.r.t. some basis) of Pfaffian 1 over 
the local ring Rp at the prime ideal p. For a relative version of this definition one can 
see Definition 6.2. This group can be considered as the generalisation of ESpϕ(R) in 
the case of projective modules. This realisation follows from Lemma 5.18 and Theo-
rem 6.4.

We have recalled the definition of Umn(R, I) and Um(Q, IQ) in the beginning of the 
next section. For definitions of En(R, I), ESp2n(R, I), ESpϕ(R, I), ETrans(Q, IQ), and 
ETransSp(Q, IQ, 〈, 〉) one can see Definitions 2.2, 2.7, 3.4, 5.4, and 5.13 respectively. Our 
main results regarding equality of orbit spaces in the case of free modules and in the 
case of projective modules are as follows:
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Theorem 1 (Theorem 7.2). Let R be a commutative ring with R = 2R, and let I be an 
ideal of R. Let n ≥ 2 and ϕ be an alternating matrix of size 2n of Pfaffian 1 such that 
ϕ ≡ ψn (mod I). Then the orbit spaces Um2n(R, I)/E2n(R, I), Um2n(R, I)/ESp2n(R, I), 
and Um2n(R, I)/ESpϕ(R, I) are bijective.

Theorem 2 (Theorem 7.3). Let R be a commutative ring with R = 2R, and let I be an 
ideal of R. Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective mod-
ule of rank 2n, n ≥ 1. Let Q = R2⊕P with induced form on (H(R) ⊕P ). We also assume 
for each maximal ideal m of R, the alternating form 〈, 〉 over the local ring Rm corre-
sponds to an alternating matrix ϕm (w.r.t. some basis), such that ϕm ≡ ψn(mod I). 
Then the orbit spaces Um(Q, IQ)/ETrans(Q, IQ), Um(Q, IQ)/ETransSp(Q, IQ, 〈, 〉), 
and Um(Q, IQ)/V (Q, IQ, 〈, 〉) are bijective.

2. Preliminaries

A row v = (v1, . . . , vn) ∈ Rn is said to be unimodular if there are elements w1, . . . , wn

in R such that v1w1 + · · · + vnwn = 1. Umn(R) will denote the set of all unimodular 
rows v ∈ Rn. Let I be an ideal in R. We denote by Umn(R, I) the set of all unimodular 
rows of length n which are congruent to e1 = (1, 0, . . . , 0) modulo I. (If I = R, then 
Umn(R, I) is Umn(R).)

Definition 2.1. Let P be a finitely generated projective R-module. An element p ∈ P is 
said to be unimodular if there exists a R-linear map φ : P → R such that φ(p) = 1. The 
collection of unimodular elements of P is denoted by Um(P ).

Let P be of the form R⊕Q and have an element of the form (1, 0) which correspond 
to the unimodular element. An element (a, q) ∈ P is said to be relative unimodular w.r.t. 
an ideal I of R if (a, q) is unimodular and (a, q) is congruent to (1, 0) modulo IP . The 
collection of all relative unimodular elements w.r.t. an ideal I is denoted by Um(P, IP ).

Let us recall that if M is a finitely presented R-module and S is a multiplicative set 
of R, then S−1HomR(M, R) ∼= HomRS

(MS , RS). Also recall that if f = (f1, . . . , fn) ∈
Rn := M , then ΘM (f) = {φ(f) : φ ∈ Hom(M, R)} =

∑n
i=1 Rfi. Therefore, if P is 

a finitely generated projective R-module of rank n, m is a maximal ideal of R and 
v ∈ Um(P ), then vm ∈ Umn(Rm). Similarly if v ∈ Um(P, IP ) then vm ∈ Umn(Rm, Im).

The group GLn(R) of invertible matrices acts on Rn in a natural way: v −→ vσ, if 
v ∈ Rn, σ ∈ GLn(R). This map preserves Umn(R), so GLn(R) acts on Umn(R). Note 
that any subgroup G of GLn(R) also acts on Umn(R). Let v, w ∈ Umn(R), we denote 
v ∼G w or v ∈ wG if there is a g ∈ G such that v = wg.

Let En(R) denote the subgroup of SLn(R) consisting of all elementary matrices, i.e. 
those matrices which are a finite product of the elementary generators Eij(λ) = In +
eij(λ), 1 ≤ i 
= j ≤ n, λ ∈ R, where eij(λ) ∈ Mn(R) has an entry λ in its (i, j)-th 
position and zeros elsewhere. Here In denote the n × n identity matrix.
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In the sequel, if α denotes an m × n matrix, then we let αt denote its transpose
matrix. This is of course an n × m matrix. However, we will mostly be working with 
square matrices, or rows and columns.

Definition 2.2 (The relative groups En(I), En(R, I)). Let I be an ideal of R. The relative 
elementary group En(I) is the subgroup of En(R) generated as a group by the elements 
Eij(x), x ∈ I, 1 ≤ i 
= j ≤ n.

The relative elementary group En(R, I) is the normal closure of En(I) in En(R). 
(Equivalently, En(R, I) is generated as a group by Eij(a)Eji(x)Eij(−a), with a ∈ R, 
x ∈ I, i 
= j, provided n ≥ 3 (see [12], §2).)

Following is an important lemma of A.A. Suslin.

Lemma 2.3. (See [10], Corollary 1.2, Lemma 1.3.) Let v, w ∈ Rn, with n ≥ 3 and 
〈v, w〉 = v · wt = 0. Assume that v is unimodular and w ∈ I2n−1(⊆ R2n−1). Then 
In + vtw ∈ En(R, I).

As a consequence of the above lemma Suslin proved that En(R, I) is a normal subgroup 
of GLn(R), for n ≥ 3 (see [10], Corollary 1.4).

Remark 2.4. It is easy to check that if v ∈ Umn(R, I), where (R, m) is a local ring and 
I be an ideal of R, then v = e1β, for some β ∈ En(R, I).

Definition 2.5 (Symplectic group Sp2n(R)). The symplectic group Sp2n(R) = {α ∈
GL2n(R) | αtψnα = ψn}, where ψn =

n∑
i=1

e2i−1,2i −
n∑

i=1
e2i,2i−1, the standard symplectic 

form.

Let σ denote the permutation of the natural numbers given by σ(2i) = 2i − 1 and 
σ(2i − 1) = 2i.

Definition 2.6 (Elementary symplectic group ESp2n(R)). We define for z ∈ R, 1 ≤ i 
=
j ≤ 2n,

seij(z) =
{ 12n + eij(z) if i = σ(j),

12n + eij(z) − (−1)i+jeσ(j)σ(i)(z) if i 
= σ(j).

It is easy to check that all these elements belong to Sp2n(R). We call them elementary 
symplectic matrices over R and the subgroup of Sp2n(R) generated by them is called the 
elementary symplectic group ESp2n(R).

Definition 2.7 (The relative group ESp2n(I), ESp2n(R, I)). Let I be an ideal of R. The 
relative elementary group ESp2n(I) is the subgroup ESp2n(R) generated as a group by 
the elements seij(x), x ∈ I and 1 ≤ i 
= j ≤ 2n.
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The relative elementary group ESp2n(R, I) is the normal closure of ESp2n(I) in 
ESp2n(R).

Lemma 2.8. (See [6], Lemma 1.5.) Let n ≥ 2, and I be an ideal of R. Let a ∈ I, v ∈ R2n, 
or a ∈ R, v ∈ I2n (⊆ R2n). Then I2n + avtṽ ∈ ESp2n(R, I), where ṽ = vψn. �
Lemma 2.9. (See [6], Lemma 1.10.) Let n ≥ 2, and I be an ideal in R. Let w ∈ Um2n(R), 
and v ∈ I2n (⊆ R2n) be such that ṽwt = 0. Then I2n + vtw̃ + wtṽ ∈ ESp2n(R, I). �
3. Elementary symplectic group ESpϕ(R)

Definition 3.1 (Alternating matrix). A matrix from Mn(R) is said to be alternating if 
it has the form ν − νt, where ν ∈ Mn(R). (It follows that its diagonal elements are 
zeros.)

Definition 3.2. The group of all 2n × 2n matrices {α ∈ GL2n(R) | αtϕα = ϕ}, where ϕ
is an invertible alternating matrix is called symplectic group Spϕ(R) w.r.t. ϕ.

Definition 3.3. Let v ∈ R2n−1. Let ϕ be an invertible alternating matrix of size 2n of the 
form 

( 0 −c

ct ν

)
, and ϕ−1 be of the form 

( 0 d
−dt μ

)
, where c, d ∈ R2n−1. In ([9], Lemma 5.4) 

L.N. Vaserstein considered the matrices (related to ϕ and v ∈ R2n−1):

α := αϕ(v) := I2n−1 + dtvν,

β := βϕ(v) := I2n−1 + μvtc.

Note that αϕ(v), βϕ(v) ∈ E2n−1(R) via Lemma 2.3.
From these matrices he constructed in ([9], Lemma 5.4)

Cϕ(v) =
(

1 0
αvt α

)
=

(
1 0
vt α

)
and

Rϕ(v) =
(

1 v

0 β

)
.

(The notation Cϕ(v), Rϕ(v) is due to us.) In ([9], Lemma 5.4) it is mentioned that 
these matrices belong to Spϕ(R). We call the subgroup of Spϕ(R) generated by Cϕ(v)
and Rϕ(v), for v ∈ R2n−1 as the elementary symplectic group ESpϕ(R) with respect to 
the invertible alternating matrix ϕ.

Definition 3.4. Let I be an ideal of R. The relative elementary group ESpϕ(I) is a 
subgroup of ESpϕ(R) generated as a group by the elements Cϕ(v) and Rϕ(v), where 
v ∈ I2n−1.

The relative elementary group ESpϕ(R, I) is the normal closure of ESpϕ(I) in 
ESpϕ(R).
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Lemma 3.5. Let R be a ring with R = 2R and n ≥ 2. For the standard alternating matrix 
ψn we have,

ESpψn
(R) = ESp2n(R),

ESpψn
(R, I) = ESp2n(R, I).

Proof. For the standard alternating matrix ψn we have

Cψn
(v) =

(
1 0
0 α

)(
1 0
vt I

)
=

2n∏
i=2

sei1(ai−1), (1)

Rψn
(v) =

(
1 0
0 β

)(
1 v

0 I

)
=

2n∏
i=2

se1i(ai−1), (2)

where v = (a1, . . . , a2n−1) ∈ R2n−1. Therefore ESpψn
(R) ⊆ ESp2n(R).

Note that se1i(a), sej1(b) ∈ ESpψn
(R). For all integers i, j with i 
= j, σ(j), and for all 

a, b ∈ R we have the following commutator identities for the generators of the elementary 
symplectic group

[seiσ(i)(a), seσ(i)j(b)] = seij(ab)seσ(j)j((−1)i+jab2), (3)

[seik(a), sekj(b)] = seij(ab), if k 
= σ(i), σ(j), (4)

[seik(a), sekσ(i)(b)] = seiσ(i)(2ab), if k 
= i, σ(i). (5)

Using these identities we can show that seij(a), for i, j 
= 1 can be written as prod-
uct of elements of the form se1i(x) and sej1(y), for x, y ∈ R. Hence ESp2n(R) ⊆
ESpψn

(R).
For the second equality we first show that ESpψn

(R, I) ⊆ ESp2n(R, I). An element 
of ESpψn

(R, I) looks like γgψn
(w)γ−1, where γ ∈ ESpψn

(R), gψn
could be either Cψn

or Rψn
, and w ∈ I2n−1. By equations (1) and (2), gψn

(w) ∈ ESp2n(I). Note that 
γ ∈ ESpψn

(R) = ESp2n(R). Hence γgψn
(w)γ−1 ∈ ESp2n(R, I).

To show the other inclusion we recall the equivalent definition of the relative group 
which says that ESp2n(R, I) is the smallest normal subgroup of ESp2n(R) containing 
se21(x), where x ∈ I (see [5], Lemma 2.2 for the proof in the linear case, the proof 
in the symplectic case is similar). We need to show gse21(x)g−1 ∈ ESpψn

(R, I), where 
g ∈ ESp2n(R) = ESpψn

(R). Hence gse21(x)g−1 ∈ ESpψn
(R, I) and ESp2n(R, I) ⊆

ESpψn
(R, I). Therefore the second equality is established. �

Lemma 3.6. Let ϕ and ϕ∗ be two invertible alternating matrices such that ϕ =
(1 ⊥ ε)t ϕ∗ (1 ⊥ ε), for some ε ∈ E2n−1(R). Then we have

Spϕ(R) = (1 ⊥ ε)−1 Spϕ∗(R) (1 ⊥ ε).
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Proof. Let η ∈ Spϕ∗(R). By definition ηtϕ∗η = ϕ∗. Note that

(
(1 ⊥ ε)−1η(1 ⊥ ε)

)t
ϕ
(
(1 ⊥ ε)−1η(1 ⊥ ε)

)
= (1 ⊥ ε)tηt

(
(1 ⊥ ε)−1)t ϕ (1 ⊥ ε)−1η(1 ⊥ ε)

= (1 ⊥ ε)tηt ϕ∗ η(1 ⊥ ε)

= (1 ⊥ ε)t ϕ∗ (1 ⊥ ε)

= ϕ

hence the equality follows. �
Lemma 3.7. Let ϕ and ϕ∗ be two invertible alternating matrices such that ϕ =
(1 ⊥ ε)t ϕ∗ (1 ⊥ ε), for some ε ∈ E2n−1(R). Then we have

ESpϕ(R) = (1 ⊥ ε)−1 ESpϕ∗(R) (1 ⊥ ε).

Proof. Note that if ϕ∗ is of the form 
( 0 −c

ct ν

)
, and ϕ∗−1 is of the form 

( 0 d
−dt μ

)
, where 

c, d ∈ R2n−1, then

ϕ =
(

0 −cε

εtct εtνε

)
and ϕ−1 =

(
0 d(εt)−1

−ε−1dt ε−1μ(εt)−1

)
.

We have

(1 ⊥ ε)−1 Cϕ∗(v) (1 ⊥ ε)

=
( 1 0

0 ε

)−1( 1 0
vt αϕ∗ (v)

)( 1 0
0 ε

)
=

( 1 0
ε−1vt ε−1αϕ∗ (v)ε

)
,

and

(1 ⊥ ε)−1 Rϕ∗(v) (1 ⊥ ε)

=
( 1 0

0 ε

)−1( 1 v
0 βϕ∗ (v)

)( 1 0
0 ε

)
=

( 1 vε
0 ε−1βϕ∗ (v)ε

)
.

Note that ε−1αϕ∗(v)ε = αϕ(v(ε−1)t) and ε−1βϕ∗(v)ε = βϕ(vε). Therefore, (1 ⊥
ε)−1 Cϕ∗(v) (1 ⊥ ε) = Cϕ(v(ε−1)t) and (1 ⊥ ε)−1 Rϕ∗(v) (1 ⊥ ε) = Rϕ(vε). Hence the 
equality follows. �
Lemma 3.8. Let ϕ and ϕ∗ be two invertible alternating matrices such that ϕ =
(1 ⊥ ε)t ϕ∗ (1 ⊥ ε), for some ε ∈ E2n−1(R, I). Then we have

ESpϕ(R, I) = (1 ⊥ ε)−1 ESpϕ∗(R, I) (1 ⊥ ε).
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Proof. The proof follows from the definition of ESpϕ(R, I) and the equalities
(1 ⊥ ε)−1 Cϕ∗(v) (1 ⊥ ε) = Cϕ(v(ε−1)t) and (1 ⊥ ε)−1 Rϕ∗(v) (1 ⊥ ε) = Rϕ(vε). �
4. Dilation and LG principle for ESpϕ⊗R[X](R[X])

Here we establish dilation principle and Local–Global principle for ESpϕ⊗R[X](R[X]). 
The following lemma is well known. We will use it in the proof of dilation principle.

Lemma 4.1. Let G be a group, and ai, bi ∈ G, for i = 1, . . . , n. Then 
∏n

i=1 aibi =∏n
i=1 ribir

−1
i

∏n
i=1 ai, where ri =

∏i
j=1 aj. �

Lemma 4.2 (Dilation principle). Let R be a ring with R = 2R. Let ϕ be an invertible 
alternating matrix of size 2n, with n ≥ 1. Let a ∈ R be a non-nilpotent element, and 
let ϕ = (1 ⊥ ε)t ψn (1 ⊥ ε), for some ε ∈ E2n−1(Ra) over the ring Ra. Let θ(X) ∈
ESpϕ⊗Ra[X](Ra[X]), with θ(0) = Id. Then there exists θ∗(X) ∈ ESpϕ⊗R[X](R[X]) such 
that θ∗(X) localises to θ(bX), for some b ∈ (ad), d � 0, and θ∗(0) = Id.

Proof. We are given that θ(X) ∈ ESpϕ⊗Ra[X](Ra[X]), where ϕ = (1 ⊥ ε)t ψn (1 ⊥ ε), 
for some ε ∈ E2n−1(Ra) over the ring Ra. Therefore by Lemma 3.5 and Lemma 3.7 we 
have θ(X) = (1 ⊥ ε)−1η(X)(1 ⊥ ε), for some η(X) ∈ ESp2n(Ra[X]). Since η(0) = Id.

we can write η(X) =
∏

γlseiljl(Xfl(X)) γ−1
l , where γl ∈ ESp2n(Ra), and fl(X) ∈

Ra[X] (see Lemma 4.1). Using commutator identities for the generators of the elementary 
symplectic group we get η(Y rX) =

∏
seikjk(Y hk(X, Y )/as), for large integer r. Here 

hk(X, Y ) ∈ R[X, Y ] and either ik = 1 or jk = 1. Let ei denote a row vector of length 
2n − 1 which has 1 in the ith position and zeros elsewhere. Using equations (1) and (2)
appearing in the Lemma 3.5 it is clear that η(Y rX) is product of the elements of the 
form Cψn

((Y hk(X, Y )/as).ei) or Rψn
((Y hk(X, Y )/as).ej), where 1 ≤ i, j ≤ 2n − 1.

Note that Cψn
((Y hk(X, Y )/as).ei) = (1 ⊥ ε)Cϕ((Y hk(X, Y )/as).ei(ε−1)t)(1 ⊥ ε)−1

and Rψn
((Y hk(X, Y )/as).ej) = (1 ⊥ ε)Rϕ((Y hk(X, Y )/as).ejε)(1 ⊥ ε)−1. There-

fore θ(Y rX) is product of elements of the form Cϕ((Y hk(X, Y )/as).ei(εt)−1) or 
Rϕ((Y hk(X, Y )/as).ejε). Let t be the maximum power of a appearing in the denom-
inators of ε and (εt)−1. Set d = s + t. Define θ∗(X, Y ) as product of elements of the 
form Cϕ(Y hk(X, adY ).atei(εt)−1) and Rϕ(Y hk(X, adY )at.ejε). Note that θ∗(X, Y ) ∈
Eϕ⊗R[X,Y ](R[X, Y ]). We obtain θ∗(X) substituting Y = 1 in θ∗(X, Y ). Clearly θ∗(X)
localises to θ(bX) for some b ∈ (ad), and θ∗(0) = Id. �
Remark 4.3. Let (R, m) be a local ring and ϕ be an alternating matrix of Pfaffian 1 over 
R of size 2n. Then ϕ = εtψnε, for some ε ∈ E2n(R).

We recollect an observation of Rao–Swan stated in the introduction of [8]. We make 
a contextual observation which the proof shows and include it for completeness.
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Lemma 4.4 (Rao–Swan). Let n ≥ 2 and ε ∈ E2n(R). Then there exists ρ ∈ E2n−1(R)
such that (1 ⊥ ρ)ε ∈ ESp2n(R).

Proof. Let ε = εr . . . ε1, where each εi is of the form 
( 1 v

0 I

)
or 

( 1 0
vt I

)
, where v =

(a1, . . . , a2n−1) ∈ R2n−1 (see [9], Lemma 2.7). We prove the result using induction on r. 
It is clear when r = 0. Let r ≥ 1. Let us assume the result is true for r − 1, i.e., when 
ε = εr−1 . . . ε1, then there exists a δ ∈ E2n−1(R) such that (1 ⊥ δ)ε ∈ ESp2n(R). We 
will prove the result when number of generators of ε is r. We have

Cψn
(v) =

(
1 0
0 α

)(
1 0
vt I2n−1

)
=

2n∏
i=2

sei1(ai−1),

Rψn
(v) =

(
1 0
0 β

)(
1 v

0 I2n−1

)
=

2n∏
i=2

se1i(ai−1).

Note that α = αψn
(v), β = βψn

(v) ∈ E2n−1(R). Let us set γ equal to either α or β
depending on the form of ε1. Now, 

( 1 0
0 γ

)
ε1 ∈ ESp2n(R), and each ηi =

( 1 0
0 γ

)
εi
( 1 0

0 γ−1
)

is of the form 
( 1 v

0 I

)
or 

( 1 0
vt I

)
. Now we have

ε =
(

1 0
0 γ−1

)
ηr . . . η2

(
1 0
0 γ

)
ε1.

By induction hypothesis (1 ⊥ δ)ηr . . . η2 ∈ ESp2n(R), for some δ ∈ E2n−1(R). Hence 
(1 ⊥ ρ)ε ∈ ESp2n(R), where ρ = δ−1γ ∈ E2n−1(R). �
Corollary 4.5 (Rao–Swan). For n ≥ 2 and ε ∈ E2n(R), we have an ε0 ∈ E2n−1(R) such 
that εtψnε = (1 ⊥ ε0)tψn(1 ⊥ ε0).

Proof. Using Lemma 4.4 we get ε0 ∈ E2n−1(R) such that (1 ⊥ ε0)ε−1 ∈ ESp2n(R), and 
hence ε−1t(1 ⊥ ε0)t ψn (1 ⊥ ε0)ε−1 = ψn.

Therefore we have

εtψnε = εt {ε−1t(1 ⊥ ε0)t} ψn {(1 ⊥ ε0)ε−1} ε

= (1 ⊥ ε0)tψn(1 ⊥ ε0). �
Using dilation principle we prove the following variant of D. Quillen’s Local–Global 

principle (see [7]). The argument is standard. We include the proof for completeness.

Theorem 4.6 (Local–Global principle). Let ϕ be an alternating matrix of Pfaffian 1
of size 2n, with n ≥ 2. Let θ(X) ∈ Spϕ⊗R[X](R[X]), with θ(0) = Id. If θ(X)m ∈
ESpϕ⊗R [X](Rm[X]), for all maximal ideal m of R, then θ(X) ∈ ESpϕ⊗R[X](R[X]).
m
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Proof. For each maximal ideal m of R one can suitably choose an element am from R\m
such that θ(X)am

∈ ESpϕ⊗Ram [X](Ram
[X]). Note that over the local ring Rm one has 

ϕ = (1 ⊥ ε)t ψn (1 ⊥ ε), for some ε ∈ E2n−1(Ram
) (see Remark 4.3 and Corollary 4.5). 

Define γ(X, Y ) = θ(X + Y )am
θ(Y )−1

am
. It is clear that

γ(X,Y ) ∈ ESpϕ⊗Ram [X,Y ](Ram
[X,Y ])

and γ(0, Y ) = Id. Therefore γ(bmX, Y ) ∈ ESpϕ⊗R[X,Y ](R[X, Y ]), where bm ∈ (adm) for 
d � 0 (see Lemma 4.2). Note that the ideal generated by adm’s is the whole ring R. 
Therefore, c1adm1

+ · · ·+ cka
d
mk

= 1, for some ci ∈ R. Let bmi
= cia

d
mi

∈ (admi
). It is easy 

to see that θ(X) =
∏k−1

i=1 γ(bmi
X, Ti)γ(bmk

X, 0), where Ti = bmi+1X+ · · ·+bmk
X. Each 

term in the right hand side of this expression belongs to ESpϕ⊗R[X](R[X]), and hence 
θ(X) ∈ ESpϕ⊗R[X](R[X]). �
Theorem 4.7 (Action version of Local–Global principle). Let ϕ be an alternating ma-
trix of Pfaffian 1 of size 2n, with n ≥ 2. Let v(X) ∈ Um2n(R[X]). If v(X) ∈
v(0)ESpϕ⊗Rm[X](Rm[X]), for all maximal ideal m of R, then we show v(X) ∈
v(0)ESpϕ⊗R[X](R[X]).

Proof. For each maximal ideal m of R, we get β(m)(X) in ESpϕ⊗Rm[X](Rm[X]) such 
that v(X)β(m)(X) = v(0). Let us set γ(X, Y ) = β(m)(X + Y )β(m)(X)−1. Clearly 
γ(X, Y ) ∈ ESpϕ⊗Rm[X,Y ](Rm[X, Y ]). Since there are only finitely many denominators 
involved in the expression of γ(X, Y ), there exists am ∈ R \ m such that γ(X, Y )
belongs to ESpϕ⊗Ram [X,Y ](Ram

[X, Y ]) and γ(X, 0) = Id. Using Lemma 4.2 it fol-
lows that γ(X, bmY ) ∈ ESpϕ⊗R[X,Y ](R[X, Y ]) for bm ∈ (adm), d � 0. We have 
v(X+bmY )γ(X, bmY ) = v(X+bmY )β(m)(X+bmY )β(m)(X)−1 = v(0)β(m)(X)−1 = v(X).

Note that the ideal generated by adm’s is the whole ring R. Therefore c1adm1
+ · · · +

cka
d
mk

= 1, for some ci ∈ R. Let bmi
= cia

d
mi

∈ (admi
). In the above equation replacing 

X by bm2X + · · · + bmk
X and replacing bmY by bm1X we get,

v(X) = v(bm1X + bm2X + · · · + bmk
X) ∈ v(bm2X + · · · + bmk

X) ESpϕ⊗R[X](R[X]).

Again, in the above equation replacing X by bm3X+ · · ·+bmk
X and replacing bmY by 

bm2X we get, v(bm2X+· · ·+bmk
X) ∈ v(bm3X+· · ·+bmk

X)ESpϕ⊗R[X](R[X]). Continuing 
in this way we get v(bmk

X + 0) ∈ v(0)ESpϕ⊗R[X](R[X]). Combining all these we get 
v(X) 

∏k−1
i=1 γ(bmi+1X + · · · + bmk

X, bmi
X)γ(0, bmk

X) = v(0), where 
∏k−1

i=1 γ(bmi+1X +
· · · + bmk

X, bmi
X)γ(0, bmk

X) ∈ ESpϕ⊗R[X](R[X]). �
We recall Swan–Weibel’s trick to establish the Local–Global principle in the graded 

case.

Theorem 4.8 (Graded case of action version of Local–Global principle). Let ϕ be an 
alternating matrix of Pfaffian 1 of size 2n, with n ≥ 2. Let us set X = (X1, . . . , Xt)
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and 0 = (0, . . . , 0). Let v(X) ∈ Um2n(R[X]). If v(X) ∈ v(0)ESpϕ⊗Rm[X](Rm[X]), for all 
maximal ideal m of R, then v(X) ∈ v(0)ESpϕ⊗R[X](R[X]).

Proof. Let us denote S = R[X1, . . . , Xt]. Note that S is a graded ring with the grading 
S = S0 ⊕ S1 ⊕ S2 ⊕ · · ·, and S0 = R. Consider the ring homomorphism f : S −→ S[T ]
given by f(a0 + a1 + a2 + · · ·) = a0 + a1T + a2T

2 + · · ·, where each ai is a homogeneous 
component belongs to Si. Let us denote v(X1, . . . , Xt) = (v1, . . . , v2n), where vi ∈ S. 
We set ṽ(T ) = (f(v1), . . . , f(v2n)). Note that ṽ(1) = (v1, . . . , v2n) = v(X1, . . . , Xt), and 
ṽ(0) = v(0, . . . , 0).

Let m0 be a maximal ideal of R and let M0 = R \ m0. Since v(X1, . . . , Xt) ∈
v(0, . . . , 0)ESpϕ(SM0), we have ṽ(T ) ∈ ṽ(0)ESpϕ⊗SM0 [T ](SM0 [T ]). Therefore, there is 
a sm0 ∈ M0 such that ṽ(T ) ∈ ṽ(0)ESpϕ⊗Ssm0

[T ](Ssm0
[T ]). If m is a maximal ideal of S

then sm0 /∈ m for some m0. Therefore, ṽ(T ) ∈ ṽ(0)ESpϕ⊗Sm[T ](Sm[T ]), for all maximal 
ideals m of S. Moreover, the ideal generated by all sm0 , for all maximal ideals m0 of 
R, is the whole ring R. Hence, ṽ(T ) ∈ ṽ(0)ESpϕ⊗S[T ](S[T ]). Substituting T = 1 we get 
ṽ(1) = (v1, . . . , v2n) = v(X1, . . . , Xt) ∈ v(0, . . . , 0)ESpϕ⊗R[X1,...,Xt](R[X1, . . . , Xt]). �
5. Transvection groups

Following H. Bass in [1] one defines a transvection of a finitely generated R-module 
as follows:

Definition 5.1. Let M be a finitely generated R-module. Let q ∈ M and π ∈ M∗ =
Hom(M, R), with π(q) = 0. Let πq(p) := π(p)q. An automorphism of the form 
1 + πq is called a transvection of M , if either q ∈ Um(M) or π ∈ Um(M∗). Col-
lection of transvections of M is denoted by Trans(M). This forms a subgroup of 
Aut(M).

Definition 5.2. Let M be a finitely generated R module. The automorphisms of N =
(R⊕M) of the form

(a, p) �→ (a, p + ax),

or of the form

(a, p) �→ (a + τ(p), p),

where x ∈ M and τ ∈ M∗ are called elementary transvections of N . Let us denote the 
first automorphism by Ex and the second one by E∗

τ . It can be verified that these are 
transvections of N . Indeed, let us consider π(t, y) = t, q = (0, x) to get Ex, and consider 
π(a, p) = τ(p), where τ ∈ M∗, q = (1, 0) to get E∗

τ . The subgroup of Trans(N) generated 
by elementary transvections is denoted by ETrans(N).
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Definition 5.3. Let I be an ideal of R. The group of relative transvections w.r.t. an ideal 
I is generated by the transvections of the form 1 +πq, where either q ∈ IM or π ∈ IM∗. 
The group generated by relative transvections is denoted by Trans(M, IM).

Definition 5.4. Let I be an ideal of R. The elementary transvections of N = (R⊕M) of the 
form Ex, E∗

τ , where x ∈ IM and τ ∈ IM∗ are called relative elementary transvections
w.r.t. an ideal I, and the group generated by them is denoted by ETrans(IN). The 
normal closure of ETrans(IN) in ETrans(N) is denoted by ETrans(N, IN).

Lemma 5.5. Let M be a free R module of rank n ≥ 2, and N = (R ⊕ M). Then 
ETrans(N) = Trans(N) = En+1(R).

Proof. Let In+1 denote the identity matrix of size n + 1. Note that when M is a free R
module, an element of Trans(N) looks like In+1 + vtw, for some v, w ∈ Rn+1 and one of 
v or w is unimodular. Also, note that 〈v, w〉 = v ·wt = 0. Therefore Trans(N) ⊆ En+1(R)
(see Lemma 2.3).

Given that N is free R-module. Ex and E∗
τ , the generators of ETrans(N), are of the 

form 
( 1 x

0 In

)
, and 

( 1 0
yt In

)
, respectively for some x, y ∈ Rn. Hence ETrans(N) ⊆ En+1(R). 

By ([9], Lemma 2.7(a)) En+1(R) is generated by elements of the for E1i(a) and Ej1(b), 
for a, b ∈ R and 2 ≤ i, j ≤ n +1. Therefore, En+1(R) ⊆ ETrans(N), hence ETrans(N) =
En+1(R).

By definition ETrans(N) ⊆ Trans(N). Therefore, ETrans(N) ⊆ Trans(N) ⊆
En+1(R) = ETrans(N), and hence the result follows. �
Remark 5.6. A relative version of the above result w.r.t. an ideal I of the ring R is 
also true, i.e., ETrans(N, IN) = Trans(N, IN) = En+1(R, I). For details one can see 
([4], Lemma 4.5).

Definition 5.7. A symplectic R-module is a pair (P, 〈, 〉), where P is a finitely generated 
projective R-module of even rank and 〈, 〉 : P×P −→ R is a non-degenerate (i.e., P ∼= P ∗

by x −→ 〈x, −〉) alternating bilinear form.

Definition 5.8. Let (P1, 〈, 〉1) and (P2, 〈, 〉2) be two symplectic R-modules. Their orthog-
onal sum is the pair (P, 〈, 〉), where P = P1 ⊕ P2 and the inner product is defined by 
〈(p1, p2), (q1, q2)〉 = 〈p1, q1〉1 + 〈p2, q2〉2.

There is a non-degenerate bilinear form 〈, 〉 on the R-module H(R) = R⊕R∗, namely 
〈(a1, f1), (a2, f2)〉 = f2(a1) − f1(a2).

Definition 5.9. An isometry of a symplectic module (P, 〈, 〉) is an automorphism of P
which fixes the bilinear form. The group of isometries of (P, 〈, 〉) is denoted by Sp(P, 〈, 〉).

Definition 5.10. In [2] Bass has defined a symplectic transvection of a symplectic module 
P to be an automorphism of the form
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σ(p) := p + 〈u, p〉v + 〈v, p〉u + α〈u, p〉u,

where α ∈ R, u, v ∈ P are fixed elements with 〈u, v〉 = 0, and either u or v is unimodular. 
It is easy to check that 〈σ(p), σ(q)〉 = 〈p, q〉 and σ has an inverse τ(p) = p − 〈u, p〉v −
〈v, p〉u − α〈u, p〉u.

The subgroup of Sp(P, 〈, 〉) generated by the symplectic transvections is denoted by 
TransSp(P, 〈, 〉) (see [11], page 35).

Now onwards Q will denote (R2 ⊕ P ) with induced form on (H(R) ⊕ P ), and Q[X]
will denote (R[X]2 ⊕ P [X]) with induced form on (H(R[X]) ⊕ P [X]).

Definition 5.11. The symplectic transvections of Q = (R2 ⊕ P ) of the form

(a, b, p) �→ (a, b + 〈p, q〉 + αa, p + aq),

or of the form

(a, b, p) �→ (a− 〈p, q〉 + βb, b, p + bq),

where α, β ∈ R and q ∈ P , are called elementary symplectic transvections. Let us denote 
the first isometry by ρ(q, α) and the second one by μ(q, β). It can be verified that the 
elementary symplectic transvections are symplectic transvections on Q. Indeed, consider 
(u, v) = ((0, −1, 0), (0, 0, q)) to get ρ(q, −α) and consider (u, v) = ((−1, 0, 0), (0, 0, −q))
to get μ(q, β).

The subgroup of TransSp(Q, 〈, 〉) generated by elementary symplectic transvections is 
denoted by ETransSp(Q, 〈, 〉).

Definition 5.12. Let I be an ideal of R. The group of relative symplectic transvec-
tions w.r.t. an ideal I is generated by the symplectic transvections of the form σ(p) =
p + 〈u, p〉v + 〈v, p〉u + α〈u, p〉u, where α ∈ I and u ∈ P , v ∈ IP are fixed elements 
with 〈u, v〉 = 0. The group generated by relative symplectic transvections is denoted by 
TransSp(P, IP, 〈, 〉).

Definition 5.13. Let I be an ideal of R. The elementary symplectic transactions of Q
of the form ρ(q, α), μ(q, β), where q ∈ IP and α, β ∈ I are called relative elementary 
symplectic transvections w.r.t. an ideal I.

The subgroup of ETransSp(Q, 〈, 〉) generated by relative elementary symplectic 
transvections is denoted by ETransSp(IQ, 〈, 〉). The normal closure of ETransSp(IQ, 〈, 〉)
in ETransSp(Q, 〈, 〉) is denoted by ETransSp(Q, IQ, 〈, 〉).

Remark 5.14. Let P = ⊕2n
i=1Rei be a free R-module. The non-degenerate alternating 

bilinear form 〈, 〉 on P corresponds to an alternating matrix ϕ with Pfaffian 1 with 
respect to the basis {e1, e2, . . . , e2n} of P and we write 〈p, q〉 = pϕqt.
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In this case the symplectic transvection σ(p) = p + 〈u, p〉v + 〈v, p〉u + α〈u, p〉u cor-
responds to the matrix (I2n + vtuϕ + utvϕ)(I2n + αutuϕ) and the group generated by 
them is denoted by TransSp(P, 〈, 〉ϕ).

Also, in this case ETransSp(Q, 〈, 〉ψ1⊥ϕ) will be generated by the matrices of the form 

ρψ1⊥ϕ(q, a) :=
( 1 0 0

a 1 −qϕ

qt 0 I2n

)
, and μψ1⊥ϕ(q, b) :=

( 1 b qϕ
0 1 0
0 qt I2n

)
.

Note that for q = (q1, . . . , q2n) ∈ R2n, and for the standard alternating matrix ψn, we 
have

ρψn+1(q, a) = se21(a)
2n+2∏
i=3

sei1(qi−2), (6)

μψn+1(q, b) = se12(b)
2n+2∏
i=3

se1i((−1)i+1qσ(i−2)). (7)

The following has been stated by L.N. Vaserstein (see pg. 650 of [13]). We prove it for 
the sake of completeness.

Lemma 5.15. Let (P, 〈, 〉) be a symplectic R-module with P be a free module of rank 2n, 
n ≥ 2. Let us assume that the bilinear form 〈, 〉 corresponds to the alternating matrix ϕ
(w.r.t. some basis). If ϕ = ψn, the standard alternating matrix, then TransSp(P, 〈, 〉ψn

) =
ESp2n(R).

Proof. When P is a free module and ϕ = ψn, an element of TransSp(P, 〈, 〉ψn
) looks like 

(I2n + vtuψn+1 + utvψn+1)(I2n+2 + αutuψn+1), for some u, v ∈ R2n, and one of u or v
is unimodular. Also, 〈u, v〉 = uψnv

t = 0. Hence using Lemma 2.8 and Lemma 2.9 we get 
TransSp(P, 〈, 〉ψn

) ⊆ ESp2n(R).
Generators of ESp2n(R) can be expressed as

seiσ(i)(a) = I + (−1)i+1aetieiψn+1,

seij(b) = I + (−1)jbetieσ(j)ψn+1 + (−1)jbetσ(j)eiψn+1, j 
= σ(i)

and hence ESp2n(R) ⊆ TransSp(P, 〈, 〉ψn
). Therefore, the equality follows. �

Lemma 5.16. Let (P, 〈, 〉) be a symplectic R-module with P be a free module of rank 2n, 
n ≥ 1. Let Q denote (R2 ⊕ P ) with the induced form on (H(R) ⊕ P ). Let us assume 
that the bilinear form 〈, 〉 corresponds to the alternating matrix ϕ (w.r.t. some basis). If 
ϕ = ψn, the standard alternating matrix, then ETransSp(Q, 〈, 〉ψn+1) = ESp2n+2(R).

Proof. Using equations (6) and (7) we get ETransSp(Q, 〈, 〉ψn+1) ⊆ ESp2n+2(R). Note 
that using equations (3), (4), and (5) we can show that ESp2n(R) is generated by elements 
of the form se1i(a) and sej1(b), for a, b ∈ R. Hence ESp2n(R) ⊆ ETransSp(Q, 〈, 〉ψn+1). 
Therefore, the equality follows. �
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Remark 5.17. A relative version of the above result w.r.t. an ideal I of the ring R is 
also true, i.e., TransSp(Q, IQ, 〈, 〉ψn+1) = ESp2n+2(R, I) and ETransSp(Q, IQ, 〈, 〉ψn+1) =
ESp2n+2(R, I). For details one can see ([4], Lemma 5.13 and Lemma 5.14).

Lemma 5.18. Let (P, 〈, 〉) be a symplectic R-module with P be a free module of rank 2n, 
n ≥ 1. Let Q denote (R2 ⊕P ) with the induced form on (H(R) ⊕P ). Let us assume that 
the bilinear form 〈, 〉 corresponds to the alternating matrix ϕ (w.r.t. some basis). Then 
ETransSp(Q, 〈, 〉ψ1⊥ϕ) = ESpψ1⊥ϕ(R).

Proof. Let us fix ϕ′ = ψ1 ⊥ ϕ. Note that ϕ′ =
( 0 1 0

−1 0 0
0 0 ϕ

)
, and ϕ′−1 =

( 0 −1 0
1 0 0
0 0 ϕ−1

)
. Set 

v = (a, q) where a ∈ R and q = (q1, . . . , q2n) ∈ R2n. We have Cϕ′(v) =
(

1 0
vt αϕ′ (v)

)
, 

where αϕ′(v) =
(

1 −qϕ
0 I2n

)
. Therefore,

Cϕ′(v) =

⎛
⎝ 1 0 0

a 1 −qϕ

qt 0 I2n

⎞
⎠ = ρϕ′(q, a). (8)

Now we set w = (b, qϕ). We have Rϕ′(w) =
(

1 w
0 βϕ′ (w)

)
, where βϕ′(w) =

(
1 0
qt I2n

)
. 

Therefore,

Rϕ′(w) =

⎛
⎝ 1 b qϕ

0 1 0
0 qt I2n

⎞
⎠ = μϕ′(q, b), (9)

and hence the equality follows. �
Lemma 5.19. Let (P, 〈, 〉) be a symplectic R-module with P be a free module of rank 2n, 
n ≥ 1. Let I be an ideal of R. Let Q denote (R2⊕P ) with the induced form on (H(R) ⊕P ). 
Let us assume that the bilinear form 〈, 〉 corresponds to the alternating matrix ϕ (w.r.t. 
some basis). Then ETransSp(Q, IQ, 〈, 〉ψ1⊥ϕ) = ESpψ1⊥ϕ(R, I).

Proof. Follows from the definitions of ETransSp(Q, IQ, 〈, 〉ψ1⊥ϕ), ESpψ1⊥ϕ(R, I), and 
equations (8), (9). �
6. ESpϕ(R) in the non-free case

We have recalled definitions of elementary linear group En(R), elementary symplectic 
group ESp2n(R), transvection group of a finitely generated R-module Trans(M), and 
symplectic transvection group of a symplectic R-module of even rank TransSp(P, 〈, 〉). 
Note that when P is a free module, the bilinear form 〈, 〉 corresponds to an invertible 
alternating matrix, say ϕ (w.r.t. some basis). In this case we denote the symplectic 
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transvection group as TransSp(P, 〈, 〉ϕ). In [4] we have observed that when M is a free 
R-module of rank bigger than or equal to 3, the transvection group Trans(M) coincide 
with the elementary linear group En(R) (see Lemma 5.5). We have also observed when 
P is a free R-module of rank 2n, where n is bigger than or equal to 2, and when the 
bilinear form corresponds to the standard alternating matrix ψn of size 2n, then the 
symplectic transvection group TransSp(P, 〈, 〉ψn

) coincide with the elementary symplectic 
group ESp2n(R) (see Lemma 5.15). A relative version of these two results with respect 
to an ideal of the ring R have also been established.

Due to the above mentioned results Trans(M) and TransSp(P, 〈, 〉) can be considered 
as generalisation of En(R) and ESp2n(R) respectively in the case of projective modules. 
Here we define a group which can be considered as generalisation of ESpϕ(R) in the case 
of projective modules.

Definition 6.1. Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective 
module of even rank. Recall that Sp(P, 〈, 〉) is the group of isometries. We define V (P, 〈, 〉)
to be the collection of all

{α(1) : α(X) ∈ Sp(P [X], 〈, 〉⊗R[X]), α(0) = id., and

α(X)p ∈ ESpϕ⊗Rp[X](Rp[X]), for all p ∈ Spec(R)},

where 〈, 〉 corresponds to an alternating matrix ϕ (w.r.t. some basis) of Pfaffian 1 over 
the local ring Rp at the prime ideal p. Note that this is independent of the choice of local 
basis chosen in view of the normality results proved in [6] and Lemma 3.7.

Definition 6.2. Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective 
module of even rank. Let I be an ideal of R. We define V (P, IP, 〈, 〉) to be the collection 
of all

{α(1) : α(X) ∈ Sp(P [X], 〈, 〉⊗R[X]), α(0) = id., and

α(X)p ∈ ESpϕ⊗Rp[X](Rp[X], Ip[X]), for all p ∈ Spec(R)},

where 〈, 〉 correspond to an alternating matrix ϕ (w.r.t. some basis) of Pfaffian 1 over 
the local ring Rp at the prime ideal p and ϕ ≡ ψn(mod I). Note that this is independent 
of the choice of local basis chosen in view of the normality results proved in [6] and 
Lemma 3.8.

Remark 6.3. Let P = ⊕2n
i=1Rei be a free R-module. The non-degenerate alternating 

bilinear form 〈, 〉 on P corresponds to an alternating matrix ϕ with Pfaffian 1 with 
respect to the basis {e1, e2, . . . , e2n} of P and we write 〈p, q〉 = pϕqt. In this case the 
above two groups are denoted by V (P, 〈, 〉ϕ) and V (P, IP, 〈, 〉ϕ) respectively.

Next we will prove that the above defined group is same as the group of elementary 
symplectic transvections defined by Bass.
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Theorem 6.4. Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective 
module of even rank 2n, n ≥ 1. Let Q denote (R2 ⊕ P ) with the induced form on 
(H(R) ⊕ P ). Then V (Q, 〈, 〉) = ETransSp(Q, 〈, 〉).

Next theorem is a relative version of the above theorem w.r.t. an ideal I of the ring R. 
The above theorem can be deduced as a particular case of the below when I = R.

Theorem 6.5. Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective 
module of even rank 2n, n ≥ 1. Let I be an ideal of R. Let Q denote (R2 ⊕ P ) with the 
induced form on (H(R) ⊕ P ). Then V (Q, IQ, 〈, 〉) = ETransSp(Q, IQ, 〈, 〉).

Proof. Let us choose a θ ∈ V (Q, IQ, 〈, 〉). By definition there exists a θ(X) in 
Sp(Q[X], 〈, 〉⊗R[X]) such that θ(1) = θ. Also, θ(0) = id., and for all p ∈ Spec(R) we 
have θ(X)p ∈ ESp(ψ1⊥ϕ)⊗Rp[X](Rp[X], Ip[X]). Note ESp(ψ1⊥ϕ)⊗Rp[X](Rp[X], Ip[X]) =
ETransSp(Q[X], IQ[X], 〈, 〉(ψ1⊥ϕ)⊗Rp[X]) by Lemma 5.19. Hence for all p ∈ Spec(R), 
θ(X)p ∈ ETransSp(Q[X], IQ[X], 〈, 〉(ψ1⊥ϕ)⊗Rp[X]). Therefore, by the local–global prin-
ciple θ(X) belongs to ETransSp(Q[X], IQ[X], 〈, 〉) (see [4], Lemma 5.20). Substi-
tuting X = 1 we get θ = θ(1) ∈ ETransSp(Q, IQ, 〈, 〉), hence V (Q, IQ, 〈, 〉) ⊆
ETransSp(Q, 〈, 〉).

To show the other inclusion let us choose a δ from ETransSp(Q, IQ, 〈, 〉). We can find 
an element δ(X) ∈ ETransSp(Q[X], IQ[X], 〈, 〉⊗R[X]) such that δ = δ(1) and δ(0) =
id. (see [4], Lemma 5.22). Note that Rp is a local ring for each p ∈ Spec(R). Over 
the local ring Qp

∼= R2n+2
p and the bilinear form 〈, 〉 correspond to ψ1 ⊥ ϕ (w.r.t. 

some basis) of Pfaffian 1. Hence, δ(X)p ∈ ETransSp(Qp[X], IQ[X], 〈, 〉(ψ1⊥ϕ)⊗Rp[X]) =
ESp(ψ1⊥ϕ)⊗Rp[X](Rp[X], Ip[X]), for all p ∈ Spec(R). Therefore, by definition δ(X) ∈
V (Q[X], IQ[X], 〈, 〉). Substituting X = 1 we get, δ = δ(1) ∈ V (Q, IQ, 〈, 〉), and the 
equality follows. �
7. Equality of orbits

Theorem 7.1. Let n ≥ 2 and ϕ be an alternating matrix of size 2n of Pfaffian 1. Then 
the orbit spaces Um2n(R)/E2n(R), Um2n(R)/ESp2n(R), and Um2n(R)/ESpϕ(R) are bi-
jective.

Next we will prove a relative version of the above theorem w.r.t. an ideal I of the 
ring R. The above theorem can be deduced as a particular case of the below.

Theorem 7.2. Let R be a commutative ring with R = 2R, and let I be an ideal 
of R. Let n ≥ 2 and ϕ be an alternating matrix of size 2n of Pfaffian 1 such that 
ϕ ≡ ψn (mod I). Then the orbit spaces Um2n(R, I)/E2n(R, I), Um2n(R, I)/ESp2n(R, I), 
and Um2n(R, I)/ESpϕ(R, I) are bijective.
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Proof. In ([3], Theorem 5.6) it is shown that the natural map between the orbit spaces 
Um2n(R, I)/ESp2n(R, I) −→ Um2n(R, I)/E2n(R, I) is bijective, for n ≥ 3. The case 
when n = 2 was done in ([4], Theorem 7.11).

We will show the natural map Um2n(R, I)/ESpϕ(R, I) −→ Um2n(R, I)/E2n(R, I) is 
bijective. It is easy to see that the map is surjective. Let us choose v, w ∈ Um2n(R, I)
and g ∈ E2n(R, I) such that vg = w, i.e., w is in the same E2n(R, I)-orbit of v. To show 
injectivity of the map we need to show that w is in the same ESpϕ(R, I)-orbit of v.

Let m be a maximal ideal on R and Rm be the local ring at m. Given that 
ϕ ≡ ψn (mod I). Hence over the local ring Rm we have ϕ = (1 ⊥ ε)tψn(1 ⊥ ε), 
for some ε ∈ E2n−1(Rm, Im) (see [4], Lemma 5.2). Therefore, ESpϕ(Rm, Im) = (1 ⊥
ε)−1ESp2n(Rm, Im)(1 ⊥ ε) (see Lemma 3.5 and Lemma 3.7) Note that g ∈ E2n(R, I). 
Therefore, we can write g =

∏t
k=1 γkEikjk(ak)γ−1

k , where γk ∈ E2n(R) and ak ∈ I. Let us 
set V (X1, . . . , Xt) = v

∏t
k=1 γkEikjk(Xk)γ−1

k and W (X1, . . . , Xt) = V (X1, . . . , Xt)(1 ⊥
ε)−1. Note that

W (X1, . . . , Xt) ∈ W (0, . . . , 0) E2n(Rm[X1, . . . , Xt], Im[X1, . . . , Xt])

= W (0, . . . , 0) ESp2n(Rm[X1, . . . , Xt], Im[X1, . . . , Xt]),

for all maximal ideals m of R (see [3], Theorem 5.5). This implies

V (X1, . . . , Xt) ∈ V (0, . . . , 0)(1 ⊥ ε)−1ESp2n(Rm[X1, . . . , Xt], Im[X1, . . . , Xt])(1 ⊥ ε)

= V (0, . . . , 0)ESpϕ(Rm[X1, . . . , Xt], Im[X1, . . . , Xt]),

for all maximal ideals m of R (see Lemma 3.8). Therefore,

V (X1, . . . , Xt) ∈ V (0, . . . , 0)ESpϕ(R[X1, . . . , Xt], I[X1, . . . , Xt]),

by Lemma 4.8. Substituting (X1, . . . , Xt) = (a1, . . . , at) we get vg ∈ vESpϕ(R, I), and 
hence w belongs to the same ESpϕ(R, I)-orbit of v. �

Next theorem is an analogue of the above theorem in the case of projective mod-
ules.

Theorem 7.3. Let R be a commutative ring with R = 2R, and let I be an ideal of R. 
Let (P, 〈, 〉) be a symplectic R-module with P finitely generated projective module of 
rank 2n, n ≥ 1. Let Q = R2 ⊕ P with induced form on (H(R) ⊕ P ). We also assume 
for each maximal ideal m of R, the alternating form 〈, 〉 over the local ring Rm corre-
sponds to an alternating matrix ϕm (w.r.t. some basis), such that ϕm ≡ ψn(mod I). 
Then the orbit spaces Um(Q, IQ)/ETrans(Q, IQ), Um(Q, IQ)/ETransSp(Q, IQ, 〈, 〉), 
and Um(Q, IQ)/V (Q, IQ, 〈, 〉) are bijective.

Proof. Follows from ([4], Theorem 6.1) and Theorem 6.5. �
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