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1. Introduction

The question of the existence of big Cohen–Macaulay modules has motivated many 
results in commutative algebra. While they are known to exist over rings of equal char-
acteristic [16] and rings of mixed characteristic and dimension at most 3 [7,20], it is 
not known whether they exist over mixed characteristic rings of higher dimension. The 
existence of big Cohen–Macaulay modules (or algebras) is also sufficient to imply a large 
group of equivalent conjectures, including the Direct Summand Conjecture [15], Mono-
mial Conjecture [15], and Canonical Element Conjecture [18]. The equal characteristic 
case of these results was achieved using tight closure methods. One obstruction to ex-
tending these techniques to rings of mixed characteristic is the lack of such a closure 
operation.

In [2], Dietz gave a list of axioms for a closure operation such that for a local domain R, 
the existence of a closure operation satisfying these properties (which we call a Dietz 
closure) is equivalent to the existence of a big Cohen–Macaulay module. The closure 
operation can be used to show that when module modifications (see Definition 2.12) are 
applied to R, the image of 1 in the resulting module is not contained in the image of the 
maximal ideal of R. When R is complete and has characteristic p > 0, tight closure is a 
Dietz closure, as are plus closure and solid closure [2]. However, Frobenius closure is not 
a Dietz closure [2].

In Section 3, we develop some basic properties of closure operations that are used 
throughout the paper, including properties of big Cohen–Macaulay module closures (see 
Definition 2.3). This is followed in Section 4 by a discussion of properties of closure 
operations for which there is a smallest closure satisfying the property. In particular, 
any ring that has a Dietz closure has a smallest Dietz closure, as well as a smallest 
big Cohen–Macaulay module closure. In certain rings of dimension 2, the smallest big 
Cohen–Macaulay module closure comes from the S2-ification of R. Studying the smallest 
Dietz closure or big Cohen–Macaulay module closure should provide information on the 
properties of R.

We prove:

Theorem 1 (Theorem 5.1). Let cl be a Dietz closure on a local domain (R, m). Then cl 
is contained in the module closure clB for some big Cohen–Macaulay module B, i.e., for 
any finitely-generated R-modules N ⊆ M , N cl

M ⊆ N clB
M .

Using this result, we prove:

Theorem 2 (Theorem 5.9, Theorem 5.10). Suppose that (R, m) is a local domain that has 
at least one Dietz closure (in particular, it suffices for R to have equal characteristic and 
any dimension, or mixed characteristic and dimension at most 3). Then R is regular if 
and only if all Dietz closures on R are trivial.
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In the proof of Theorem 5.10, we see that a particular module of syzygies gives a 
nontrivial closure operation, which we can compute explicitly. In Section 8, we use these 
results to compare Dietz closures to better understand closure operations such as integral 
closure.

In Theorem 6.1, we show that integral closure and regular closure are not Dietz 
closures using a criterion that can be applied more generally. As a corollary of the above 
theorems, we also conclude that solid closure is not always a Dietz closure for rings of 
equal characteristic 0. Studying the reasons why certain closure operations are or are 
not Dietz closures provides more information on the pieces that are needed to get a good 
enough closure operation in mixed characteristic.

We conclude with a list of further questions in Section 9. Interestingly, we do not 
know whether there is a largest big Cohen–Macaulay module closure, as discussed in 
Section 9.2.

2. Background

In this section we give the necessary definitions and some notation that will be used 
throughout the paper.

Definition 2.1. Let (R, m) be a local ring. An R-module B is a (balanced) big Cohen–
Macaulay module for R if every system of parameters for R is a regular sequence on B, 
and mB �= B. Note that B need not be finitely-generated. A big Cohen–Macaulay algebra
for R is a big Cohen–Macaulay module for R that is also an R-algebra.

Definition 2.2. A closure operation cl on a ring R is a map N → N cl
M of submodules 

N of finitely-generated R-modules M such that if N ⊆ N ′ ⊆ M are finitely-generated 
R-modules,

1. (Extension) N ⊆ N cl
M ,

2. (Idempotence) (N cl
M )clM = N cl

M , and
3. (Order-Preservation) N cl

M ⊆ (N ′)clM .

Definition 2.3. Suppose that S is an R-module (resp. R-algebra). We can define a closure 
operation clS on R by

u ∈ N clS
M if for all s ∈ S, s⊗ u ∈ im(S ⊗N → S ⊗M)

for any N ⊆ M finitely-generated R-modules and u ∈ M . This is called a module (resp. 
algebra) closure.

Remark 2.4. If S is an R-algebra, u ∈ N clS
M if and only if

1 ⊗ u ∈ im(S ⊗N → S ⊗M).
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Definition 2.5 ([2, Definition 2.2]). Let R be a ring with a closure operation cl, M a 
finitely-generated R-module, and α : R → M an injective map with cokernel Q. We have 
a short exact sequence

0 −−−−→ R
α−−−−→ M −−−−→ Q −−−−→ 0.

Let ε ∈ Ext1R(Q, R) be the element corresponding to this short exact sequence via the 
Yoneda correspondence. We say that α is a cl-phantom extension if a cocycle representing 
ε is in P∨

1 is in im(P∨
0 → P∨

1 )clP∨
1

, where P• is a projective resolution of Q and ∨ denotes 
HomR(−, R).

Remark 2.6. This definition is independent of the choice of P• [2, Discussion 2.3].
A split map α : R → M is cl-phantom for any closure operation cl: in this case, the 

cocycle representing ε is in im(P∨
0 → P∨

1 ). We can view cl-phantom extensions as maps 
that are “almost split” with respect to a particular closure operation.

Notation 2.7. We use some notation from [2]. Let R be a ring, M a finitely generated 
R-module, and α : R → M an injective map with cokernel Q. Let e1 = α(1), e2, . . . , en
be generators of M such that the images of e2, . . . , en in Q form a generating set for Q. 
We have a free presentation for Q,

Rm ν−−−−→ Rn−1 μ−−−−→ Q −−−−→ 0,

where μ sends the generators of Rn−1 to e2, . . . , en and ν has matrix (bij)2≤i≤n,1≤j≤m

with respect to some basis for Rm. We have a corresponding presentation for M ,

Rm ν1−−−−→ Rn μ1−−−−→ M −−−−→ 0,

where μ1 sends the generators of Rn to e1, . . . , en. Using the same basis for Rm as 
above, ν1 has matrix (bij)1≤i≤n,1≤j≤m where b1je1 + b2je2 + . . . + bnjen = 0 in M
[2, Discussion 2.4]. The top row of ν1 gives a matrix representation of the map φ :
Rm → R in the following diagram:

0 −−−−→ R
α−−−−→ M −−−−→ Q −−−−→ 0

φ

�⏐⏐ ψ

�⏐⏐ idQ

�⏐⏐ �⏐⏐
Rm ν−−−−→ Rn−1 μ−−−−→ Q −−−−→ 0

In [2, Discussion 2.4], Dietz gives an equivalent definition of a phantom extension using 
the free presentations M and Q given above. While he assumes that R is a complete 
local domain and that cl satisfies 2 additional properties, these are not needed for all of 
the results. We restate some of his results in greater generality below.



Rebecca R.G. / Journal of Algebra 467 (2016) 237–267 241
Lemma 2.8 ([2, Lemma 2.10]). Let R be a ring possessing a closure operation cl. Let M
be a finitely generated module, and let α : R → M be an injective map. Let notation be 
as above. Then α is a cl-phantom extension of R if and only if the vector (b11, . . . , b1m)tr
is in Bcl

Rm , where B is the R-span in Rm of the vectors (bi1, . . . , bim)tr for 2 ≤ i ≤ n.

Definition 2.9 ([2]). Let (R, m) be a fixed local domain and let N, M , and W be arbitrary 
finitely generated R-modules with N ⊆ M . A closure operation cl is called a Dietz closure
if the following axioms hold:

1. (Functoriality) Let f : M → W be a homomorphism. Then f(N cl
M ) ⊆ f(N)clW .

2. (Semi-residuality) If N cl
M = N , then 0cl

M/N = 0.
3. (Faithfulness) The ideal m is closed in R.
4. (Generalized Colon-Capturing) Let x1, . . . , xk+1 be a partial system of parameters 

for R, and let J = (x1, . . . , xk). Suppose that there exists a surjective homomorphism 
f : M → R/J and v ∈ M such that f(v) = xk+1 + J . Then (Rv)clM ∩ ker f ⊆ (Jv)clM .

Remark 2.10. The axioms originally included the assumption that 0cl
R = 0, but this is 

implied by the other axioms [3].
A closure operation on any ring R can satisfy the Functoriality Axiom, the Semi-

residuality Axiom, or both. A closure operation on any local ring R can satisfy the 
Faithfulness Axiom.

The proof of the next lemma requires Q to have a minimal generating set, so we 
assume that R is local for this generalization of [2, Lemma 2.11]:

Lemma 2.11. Let (R, m) be a local ring possessing a closure operation cl that satisfies the 
Functoriality Axiom, the Semi-residuality Axiom, and the Faithfulness Axiom. If M is 
a finitely generated R-module such that α : R → M is cl-phantom, then α(1) /∈ mM .

Definition 2.12 ([13, Discussion 5.15]). Let R be local and M an R-module. A parameter 
module modification of M is a map

M → M ′ = M ⊕Rf1 ⊕ . . .⊕Rfk
R(u⊕ x1f1 ⊕ . . .⊕ xkfk)

,

where x1, . . . , xk+1 is part of a system of parameters for R and u1, . . . , uk, u are elements 
of M such that

xk+1u = x1u1 + . . . + xkuk.

Remark 2.13. Dietz proves in [2] that a local domain R has a Dietz closure if and 
only if it has a big Cohen–Macaulay module. In his proof that a Dietz closure can be 
used to construct a big Cohen–Macaulay module, one could replace the Generalized 
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Colon-Capturing Axiom with any axiom that implies that given a cl-phantom extension 
α : R → M and a parameter module modification M → M ′, the map R → M ′ is still 
a cl-phantom extension. However, we do not know of a good candidate to replace the 
Axiom.

3. Properties of closure operations

We list some properties of closure operations that will be needed later.

Lemma 3.1. Let R be a ring possessing a closure operation cl. In the following, N, N ′, 
and Ni ⊆ Mi are all R-submodules of the finitely generated R-module M .

(a) Suppose that cl satisfies the Functoriality Axiom and the Semi-residuality Axiom. 
Let N ′ ⊆ N ⊆ M . Then u ∈ N cl

M if and only if u + N ′ ∈ (N/N ′)clM/N ′ .
(b) Suppose that cl satisfies the Functoriality Axiom, I is a finite set, N =

⊕
i∈I Ni, 

and M =
⊕

i∈I Mi. Then N cl
M =

⊕
i∈I(Ni)clMi

.
(c) Let I be any set. If Ni ⊆ M for all i ∈ I, then 

(⋂
i∈I Ni

)cl
M

⊆
⋂

i∈I(Ni)clMi
.

(d) Let I be any set. If Ni is cl-closed in M for all i ∈ I, then 
⋂

i∈I Ni is cl-closed 
in M .

(e) (N1 + N2)clM =
(
(N1)clM + (N2)clM

)cl
M

.
(f) Suppose that cl satisfies the Functoriality Axiom. Let N ⊆ N ′ ⊆ M . Then 

N cl
N ′ ⊆ N cl

M .
(g) Suppose that R is a domain, cl satisfies the Functoriality Axiom, 0cl

R = 0, and M is 
a torsion-free R-module. Then 0cl

M = 0.
(h) Suppose that (R, m) is local and cl satisfies the Functoriality Axiom, the Semi-

residuality Axiom, and the Faithfulness Axiom. Then N cl
M ⊆ N + mM .

Proof. Parts (a) to (e) are proved in [2, Lemma 1.2].
For part (f), let f : N ′ → M be the inclusion map. Then by the Functoriality Axiom,

N cl
N ′ = f(N cl

N ′) ⊆ f(N)clM = N cl
M .

For part (g), notice that M ↪→ Rs for some s > 0. By part (f), 0cl
M ⊆ 0cl

Rs . By part (b), 
0cl
Rs =

⊕
0cl
R = 0.

For part (h), we first prove that for F a finitely-generated free module, (mF )clF = mF . 
By part (a), this is equivalent to 0cl

F/mF = 0. Let u ∈ 0cl
F/mF be nonzero. Then there exists 

a map φ : F/mF → R/m with φ(u) �= 0. By the Functoriality Axiom, φ(u) ∈ 0cl
R/m = 0

(since mcl
R = m), which is a contradiction. Hence 0cl

F/mF = 0.
By part (a), it suffices to show that 0cl

M ⊆ mM . Let

F1 −−−−→ F0
π−−−−→ M −−−−→ 0
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be part of a minimal free resolution of M . Then im(F1) ⊆ mF0. This implies that 
im(F1)clF0

⊆ (mF0)clF0
= mF0. By part (a), 0cl

M = π(im(F1)clF0
). We have

0cl
M = π(im(F1)clF0

) ⊆ π(mF0) = mπ(F0) = mM,

as desired. �
Lemma 3.2. Let R be a ring and S an R-module or R-algebra. Then clS satisfies the 
Functoriality Axiom and the Semi-residuality Axiom. Hence clS has properties (a)–(f) 
of Lemma 3.1. Further, for N ⊆ M finitely generated R-modules, clS satisfies

IclSN clS
M ⊆ (IN)clSM

for all I ⊆ R. In particular, yN clS
M ⊆ (yN)clSM for all y ∈ R.

Remark 3.3. If R is a domain, then this Lemma implies that clS is semi-prime as in [5].

Proof. First we show that clS satisfies the Functoriality Axiom and the Semi-residuality 
Axiom. Suppose that N ⊆ M and W are finitely generated R-modules, and f : M → W

is an R-module homomorphism. Let u ∈ N clS
M . We will show that f(u) ∈ f(N)clSW . For 

every s ∈ S, s ⊗ u ∈ im(S ⊗ N → S ⊗ M). Applying idS ⊗R f , we get s ⊗ f(u) ∈
im(S ⊗ f(N) → S ⊗W ) for every s ∈ S. So clS satisfies the Functoriality Axiom.

Suppose N clS
M = N . We will show that 0clS

M/N = 0. Let ū ∈ 0clS
M/N . Then for every 

s ∈ S, s ⊗ ū = 0 in S⊗M/N . Since S⊗_ is right exact, S⊗M/N ∼= (S⊗M)/(S⊗N). 
Thus s ⊗u ∈ im(S⊗N → S⊗M). Since this holds for every s ∈ S, u ∈ N clS

M = N . Thus 
ū = 0 in M/N . So clS satisfies the Semi-residuality Axiom.

Now we prove that

IclSN clS
M ⊆ (IN)clSM

for all I ⊆ R. Suppose that u ∈ N clS
M and y ∈ IclS . Then for every s ∈ S,

s⊗ u ∈ im(S ⊗N → S ⊗M),

and ys ∈ IS. In particular, for every s ∈ S,

s⊗ yu = ys⊗ u = i1(s1 ⊗ u) + i2(s2 ⊗ u) + . . . + in(sn ⊗ u)

for some i1, . . . , in ∈ I, s1, . . . , sn ∈ S. But each

ij(sj ⊗ u) = sj ⊗ iju ∈ im(S ⊗ IN → S ⊗M).

Hence yu ∈ (IN)clSM .
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The last statement follows, because

yN clS
M ⊆ (y)clSN clS

M ⊆ (yN)clSM

by the previous statement. �
The following lemma allows us to generalize the idea of an algebra closure.

Lemma 3.4. Let S be a directed family of R-algebras. We can define a closure operation 
clS by u ∈ N clS

M if for some S ∈ S, u ∈ N clS
M .

Proof. To see that N clS
M is a submodule of M , let u, v ∈ N clS

M . It is clear that for 
any r ∈ R, ru ∈ N clS

M . To see that u + v ∈ N clS
M , note that there is some S, S′ ∈ S

such that u ∈ N clS
M and v ∈ N

clS′
M . Since S is a directed family, there is some T ∈ S

such that S, S′ both map to T . We will have 1 ⊗ u, 1 ⊗ v ∈ im(T ⊗ N → T ⊗ M), so 
1 ⊗ (u + v) ∈ im(T ⊗N → T ⊗M). Hence u + v ∈ N clT

M ⊆ N clS
M .

The extension and order-preservation properties of a closure operation are not difficult 
to prove. We prove the idempotence property. Let u ∈ (N clS

M )clSM . Then for some S ∈ S, 
1 ⊗u ∈ im(S⊗N clS

M → S⊗M), say 1 ⊗u =
∑n

i=1 si⊗ui with the ui ∈ N clS
M . For each i, 

there is some Si ∈ S such that ui ∈ N
clSi

M . There is some T ∈ S such that each Si maps 
to T . Hence 1 ⊗ u ∈ im(T ⊗N → T ⊗M). �
Proposition 3.5. Let cl be a closure operation that commutes with finite direct sums (in 
particular, it is enough to assume that cl satisfies the Functoriality Axiom). Suppose the 
map R → M that sends 1 �→ u is cl-phantom, as is the map R → N that sends 1 �→ v. 
Then the map f : R → (M ⊕N)/(u ⊕−v) that sends 1 �→ (u, 0) = (0, v) is cl-phantom, 
too. Further, any phantom extension R → Q that factors through both M and N factors 
through (M ⊕N)/(u ⊕−v) as well.

Note: If f split, we would have M = R⊕M0, N = R⊕N0, and (M ⊕N)/(u ⊕−v) =
R⊕ (M0 ⊕N0).

Proof. The last statement is automatic from the definition of a push-out. The cokernel 
f is the direct sum of the cokernels of the maps R → M and R → N , and the direct sum 
of free resolutions P• and P ′

•, respectively, of these cokernels gives us a free resolution of 
the cokernel of f . If φ : P1 → R and φ′ : P ′

1 → R are maps induced by the identity map 
on the cokernels, then the hypothesis tells us that

φ ∈ (im(Hom(P0, R) → Hom(P1, R)))clHom(P1,R)

and

φ′ ∈ (im(Hom(P ′
0, R) → Hom(P ′

1, R)))clHom(P ′,R) .
1
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Since cl commutes with direct sums, we get

φ⊕ φ′ ∈ (im(Hom(P0 ⊕ P ′
0, R) → Hom(P1 ⊕ P ′

1, R)))clHom(P1⊕P ′
1,R) ,

as desired. �
Proposition 3.6. Let S and T be R-modules such that for each t ∈ T , there is a map 
S → T whose image contains t. Then clS ⊆ clT , i.e., for any finitely-generated R-modules 
N ⊆ M , N clS

M ⊆ N clT
M .

Proof. Suppose that N ⊆ M are finitely-generated R-modules, and that u ∈ N clS
M . We 

will show that u ∈ N clT
M . Since u ∈ N clS

M , for each s ∈ S, s ⊗ u ∈ im(S ⊗N → S ⊗M). 
Let t ∈ T . Then there is some map f : S → T whose image contains t, say s′ �→ t. There 
is some element y of S ⊗N that maps to s′ ⊗ u in S ⊗M . The image (f ⊗ id)(y) of y in 
T ⊗N maps to t ⊗ u in T ⊗M , by the commutativity of the following diagram:

S ⊗N −−−−→ S ⊗M

f⊗id
⏐⏐	 f⊗id

⏐⏐	
T ⊗N −−−−→ T ⊗M

Hence t ⊗ u ∈ im(T ⊗N → T ⊗M) for every t ∈ T , which implies that u ∈ N clT
M . �

Notation 3.7. We refer to the intersection of two closure operations cl and cl′, as defined 
in [5]. Let N ⊆ M be finitely-generated R-modules. We say that

u ∈ N cl∩cl′
M if u ∈ N cl

M ∩N cl′
M .

Proposition 3.8. Let S and T be R-modules. Then clS⊕T = clS ∩ clT .

Proof. Suppose that N ⊆ M are finitely-generated R-modules, and u ∈ N
clS⊕T

M . Then 
for each (s, t) ∈ S ⊕ T ,

(s, t) ⊗ u ∈ im((S ⊕ T ) ⊗N → (S ⊕ T ) ⊗M)

= im(S ⊗N → S ⊗M) ⊕ im(T ⊗N → T ⊗M).

So s ⊗ u is in the first image, and t ⊗ u is in the second. Thus u ∈ N clS
M ∩ N clT

M . If 
u ∈ N clS

M ∩N clT
M , then for each s ∈ S, s ⊗ u ∈ im(S ⊗N → S ⊗M) and for each t ∈ T , 

t ⊗ u ∈ im(T ⊗N → T ⊗M). Hence (s, t) ⊗ u ∈ im((S ⊕ T ) ⊗N → (S ⊕ T ) ⊗M). �
3.1. Properties of big Cohen–Macaulay module closures

We give several useful properties of big Cohen–Macaulay module closures.
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Definition 3.9. Let cl be a closure operation on a ring R.

1. We say that cl satisfies colon-capturing if for every partial system of parameters 
x1, . . . , xk+1 on R,

(x1, . . . , xk) : xk+1 ⊆ (x1, . . . , xk)cl.

2. We say that cl satisfies strong colon-capturing, version A, if for every partial system 
of parameters x1, . . . , xk on R,

(xt
1, x2, . . . , xk)cl : xa

1 ⊆ (xt−a
1 , x2, . . . , xk)cl

for all a < t.
3. We say that cl satisfies strong colon-capturing, version B, if for every partial system 

of parameters x1, . . . , xk+1 on R,

(x1, . . . , xk)cl : xk+1 ⊆ (x1, . . . , xk)cl.

This is a stronger condition than colon-capturing.

Proposition 3.10. Let B be a big Cohen–Macaulay module over a local domain R. Then 
the module closure clB satisfies strong colon-capturing, version A.

Proof. Let x1, . . . , xk be a partial system of parameters on R. Suppose that a < t, and 
that u ∈ (xt

1, x2, . . . , xk)cl : xa
1 . In other words, for each b ∈ B,

uxa
1b ∈ (xt

1, . . . , xk)B,

say uxa
1b = xt

1b1 + x2b2 + . . . + xkbk. Then xa
1(ub − xt−a

1 b1) ∈ (x2, . . . , xk)B. Since B
is a big Cohen–Macaulay module, this implies that ub − xt−a

1 b1 ∈ (x2, . . . , xk)B. Hence 
ub ∈ (xt−a

1 , x2, . . . , xk)B. Since this holds for each b ∈ B, u ∈ (xt−a
1 , x2, . . . , xk)clB . �

Proposition 3.11. Let B be a big Cohen–Macaulay module over a local domain R. Then 
clB satisfies strong colon-capturing, version B. As a consequence, clB satisfies colon-
capturing.

Proof. Let x1, . . . , xk+1 be a partial system of parameters on R. Suppose that v ∈ R such 
that vxk+1 ∈ (x1, . . . , xk)clB . Then for each b ∈ B, vxk+1b ∈ (x1, . . . , xk)B. Equivalently, 
xk+1(vb) ∈ (x1, . . . , xk)B. Since x1, . . . , xk+1 form part of a system of parameters on R, 
they form a regular sequence on B. Hence vb ∈ (x1, . . . , xk)B. As we proved this for an 
arbitrary b ∈ B, v ∈ (x1, . . . , xk)clB , as desired. �
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4. Smallest closures

4.1. Intersection stable properties

Given a set {clλ}λ∈Λ of closure operations, their intersection 
⋂

λ∈λ clλ is also a closure 
operation [5, Construction 3.1.3].

Definition 4.1. Given a property P of a closure operation, we call P intersection stable if 
whenever clλ satisfies P for every λ ∈ Λ, 

⋂
λ∈Λ clλ also satisfies P.

The following lemma is immediate:

Lemma 4.2. Suppose that P is an intersection stable property of a closure operation and 
that R has a closure operation satisfying P. Then R has a smallest closure operation 
satisfying P.

Theorem 4.3. The Functoriality Axiom is intersection stable. The Semi-residuality Ax-
iom is intersection stable on sets of closures that satisfy the Functoriality Axiom. When 
R is local, the Faithfulness Axiom and the Generalized Colon-Capturing Axiom are in-
tersection stable.

Proof. Let {clλ}λ∈Λ be a family of closure operations, and

cl =
⋂
λ∈Λ

clλ.

If each clλ satisfies the Functoriality Axiom, f : M → W is an R-module map, and 
N ⊆ M is a submodule, then f(N cl

M ) ⊆ f(N clλ
M ) ⊆ f(N)clλW for each λ. Thus f(N cl

M ) ⊆⋂
λ f(N)clλW = f(N)clW , as desired.
Suppose that N cl

M = N , and that for each λ, clλ satisfies the Functoriality Axiom 
and the Semi-residuality Axiom. We will show that 0cl

M/N = 0. Suppose that ū ∈ 0cl
M/N . 

Then for each λ, ū ∈ 0clλ
M/N . By Lemma 3.1, u ∈ N clλ

M if and only if ū ∈ 0clλ
M/N . Hence 

u ∈ N clλ
M for each λ, which implies that u ∈ N cl

M = N . Thus ū = 0, and so cl satisfies 
the Semi-residuality Axiom.

It is clear that the Faithfulness Axiom is intersection stable.
Suppose that clλ satisfies the Generalized Colon-Capturing Axiom for each λ and 

that x1, . . . , xk+1 is part of a system of parameters for R, J = (x1, . . . , xk), and f :
M � R/J such that there is some v ∈ M with f(v) = xk+1 + J . We need to show that 
(Rv)clM ∩ ker(f) ⊆ (Jv)clM . Since (Rv)clM ∩ ker(f) ⊆ (Rv)clλM ∩ ker(f) ⊆ (Jv)clλM for each λ, 
the Generalized Colon-Capturing Axiom holds for cl. �
Corollary 4.4. If a local domain R has a Dietz closure, then it has a smallest Dietz 
closure.
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In the case of a Cohen–Macaulay ring, the smallest Dietz closure is the trivial closure. 
However, we do not know what it looks like in more generality.

Remark 4.5. Colon-capturing is a useful property for a closure operation to have, but it 
is not enough on its own for our purposes. For example, the closure N cl

M = M captures 
colons, but is too large to be useful.

Lemma 4.6. Colon-capturing is an intersection stable property.

Proof. This is immediate from Definition 3.9. �
Lemma 4.7. Strong colon-capturing, version A, as in Definition 3.9 is intersection stable.

Proof. To see this, notice that if x1, . . . , xk, t, and a are as in the definition of strong 
colon-capturing, version A, then

(xt
1, x2, . . . , xk)cl :R xa

1 ⊆ (xt
1, x2, . . . , xk)clλ :R xa

1 ⊆ (xt−a
1 , x2, . . . , xk)clλ

for each λ. Hence (xt
1, x2, . . . , xk)cl :R xa

1 ⊆ (xt−a
1 , x2, . . . , xk)cl. �

Remark 4.8. A similar proof works for strong colon-capturing, version B.

If cl is defined on a category of rings, then we would like to find the smallest closure 
operation as above (if any such exist) that captures colons and also satisfies the following 
property:

Definition 4.9. A closure operation satisfies persistence for change of rings if whenever 
R → S is a morphism in this category, and N ⊆ M are finitely generated R-modules, 
then im(S ⊗R N cl

M → S ⊗R M) ⊆ (im(S ⊗R N → S ⊗R M))clS⊗RM .

Remark 4.10. Tight closure satisfies both persistence for change of rings and colon-
capturing when R is a complete local domain [11].

The trivial closure always satisfies persistence for change of rings, but in the local 
case, it captures colons if and only if R is Cohen–Macaulay.

Proposition 4.11. Persistence for change of rings is an intersection stable property.

Proof. Suppose that clλ are closure operations, each defined on all rings in the category, 
that are persistent for change of rings. Let cl =

⋂
λ∈Λ clλ. We will show that cl is 

persistent for change of rings. Let R → S be a morphism in the category, and suppose 
that u ∈ N cl

M . Our goal is to show that 1 ⊗ u ∈ (im(S ⊗R N → S ⊗R M))clS⊗RM . By 
definition of cl, u ∈ N clλ

M for every λ ∈ Λ. Since each clλ is persistent with change of 
rings, this implies that
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1 ⊗ u ∈ (im(S ⊗R N → S ⊗R M))clλS⊗RM

for every λ ∈ Λ. Hence 1 ⊗ u ∈ (im(S ⊗R N → S ⊗R M))clS⊗RM . �
Corollary 4.12. The category of all complete local domains has a smallest persistent 
closure operation that captures colons.

Proof. This follows immediately from Lemma 4.6, Remark 4.10, and Proposition 4.11. �
Question 4.13. When R is a complete local domain that is not Cohen–Macaulay, what 
is the smallest persistent closure operation that captures colons?

4.2. Smallest big Cohen–Macaulay module closure

Given a big Cohen–Macaulay module B over a local domain R, we get a module 
closure clB . In [2], Dietz proves that clB is a Dietz closure. We can define a new closure 
operation by intersecting all of these closures. Since the property of being a Dietz closure 
is intersection stable, this is also a Dietz closure. As we prove below, it is also a big 
Cohen–Macaulay module closure.

Proposition 4.14. Let R be a local domain, and let B be a big Cohen–Macaulay mod-
ule constructed using the method of [2]. If B′ is any big Cohen–Macaulay R-module, 
clB ⊆ clB′ . As a consequence, clB is the smallest big Cohen–Macaulay module closure 
on R.

Proof. Let B be a big Cohen–Macaulay module constructed as above, and B′ an ar-
bitrary big Cohen–Macaulay module. Then for each map R → B′, we can construct a 
map B → B′ that takes the image of 1 in B to the image of 1 in B′ via the given map 
R → B′. To get this map, we start with the map R → B′. If we already have maps from 
M0 = R, M1, . . . , Mt to B′, we extend the map to Mt+1 as follows:

Mt+1 = (M ⊕Rf1 ⊕ . . .⊕Rfk)/(u⊕ x1f1 ⊕ . . . xkfk)

for some u ∈ Mt and partial system of parameters x1, . . . , xk for R such that

xk+1u = x1m1 + . . . + xkmk

is a bad relation in Mt. Since B′ is a big Cohen–Macaulay module, the image of u in 
B′ under the map already constructed is in (x1, . . . , xk)B′, say u = x1b1 + . . . + xkbk
with b1, . . . , bk ∈ B′. We extend our map Mt → B′ to a map from Mt+1 to B′ by 
sending fi �→ bi. Take the direct limit of this system of maps Mt → B′ as t → ∞ to 
get the desired map B → B′. Since we can start with any map R → B′, every element 
of B′ is in the image of a map constructed this way. Hence Proposition 3.6 implies that 
clB ⊆ clB′ . �
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In certain rings of dimension 2, we know more about the smallest big Cohen–Macaulay 
module closure.

Definition 4.15 ([12]). For R a local domain, the S2-ification of R is the unique smallest 
extension of R in its fraction field that satisfies Serre’s condition S2, if such a ring exists. 
When it exists, it can be constructed by adding to R all elements f ∈ Frac(R) such that 
some height 2 ideal of R multiplies f into R.

Proposition 4.16. Let R be a local domain of dimension 2 that has an S2-ification S. 
Then the module closure clS is the smallest big Cohen–Macaulay module closure on R.

Proof. Let B be a big Cohen–Macaulay module constructed by the method of [2], so that 
clB is the smallest big Cohen–Macaulay module closure on R. Since S is Cohen–Macaulay 
when R has dimension 2, we know that clB ⊆ clS . By Proposition 3.6, it is enough to 
show that for any map R → B, 1 �→ u, we have a map S → B whose image contains u. To 
do this, we need to extend the map from R to S by defining it on elements f ∈ Frac(R)
such that some height 2 ideal of R multiplies f into R. Let f be such an element. Since 
dim(R) = 2, there is some system of parameters x, y for R such that xf, yf ∈ R. Then 
the map is already defined on xf, yf , say xf �→ v, yf �→ w. The element xyf must map 
to yv, but also must map to xw, so yv = xw. Since x, y is a regular sequence on B, 
v = xv0 and w = yw0 for some v0, w0 ∈ B. Then xyv0 = yv = xw, so w = yv0. Hence 
yv0 = yw0, which implies that v0 = w0. Thus f �→ v0 is a well-defined extension of the 
map R → B. Further, 1S maps to u, so this is the map we need to see that clS ⊆ clB . �
Example 4.17. Let R = k[[x4, x3y, xy3, y4]]. The S2-ification S of R must contain x2y2, 
since x4(x2y2) = (x3y)2 ∈ R and y4(x2y2) = (xy3)2 ∈ R. In fact, S is the subring 
k[[x4, x3y, x2y2, xy3, y4]] of k[[x, y]]. Since (x3y)2 = x4(x2y2) in S, (x3y)2 ∈ (x4)clSR . 
Similarly, (xy3)2 ∈ (y4)clSR . Hence (x3y)2 ∈ (x4)clR and (xy3)2 ∈ (y4)clR for every Dietz 
closure cl on R.

4.3. Smallest module closure containing another closure

Given a closure operation cl on R, we can construct the smallest module closure 
containing cl. This will be used later on to prove that every Dietz closure is contained 
in a big Cohen–Macaulay module closure. To construct the smallest module closure 
containing a given closure, we use a second type of module modification.

Definition 4.18. Let cl be a closure operation on R, G ⊆ Rs a submodule of a finitely-
generated free R-module generated by

e1 = (e11, . . . , e1s), . . . , ek = (ek1, . . . , eks),
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and let v = (v1, . . . , vs) ∈ Gcl
Rs −G. A containment module modification of an R-module 

M relative to an element x ∈ M is a map

M → M ′ = M ⊕Rf1 ⊕ . . .⊕Rfk
R(v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)

.

Proposition 4.19. Let R be a ring, W an R-module, and cl a closure operation on R
satisfying the Functoriality Axiom and the Semi-residuality Axiom. Then there is an 
R-module S with a map φ : W → S such that cl ⊆ clS, and for any R-module T such 
that cl ⊆ clT and any map ψ : W → T , we have a map γ : S → T such that ψ = γ ◦ φ.

Proof. To create such an S, we apply containment module modifications to finitely-
generated submodules of W . First, we show that we have a direct limit system of con-
tainment module modifications. Given a finite set of modules G1, . . . , Gt with Gi ⊆ Rsi , 
and for each i, a finite set of elements vi1, vi2, . . . , vi�i ∈ (Gi)clRsi−Gi, we can apply finitely 
many containment module modifications to a finitely-generated submodule W0 ⊆ W to 
get a module W1 such that for each 1 ≤ i ≤ t and 1 ≤ j ≤ �i,

im(vij ⊗W0 → Rsi ⊗W1) ⊆ im(Gi ⊗W1 → Rsi ⊗W1).

Then we apply finitely many containment module modifications to W1, forcing

im(vij ⊗W1 → Rsi ⊗W2) ⊆ im(Gi ⊗W2 → Rsi ⊗W2)

for all i, j. Repeating this process infinitely many times, we get a module W∞ that is 
the direct limit of the Wr and such that

im(vij ⊗W∞ → Rs ⊗W∞) ⊆ im(Gi ⊗W∞ → Rs ⊗W∞)

for all i, j. We have a map W0 → W∞ since each containment module modification comes 
with a map from W0.

Consider all finite sets G = {G1, . . . , Gt, v11, v12, . . . , v1�1 , v21, v22, . . . , vt�t} with 
Gi ⊆ Rsi and finitely many elements vi1, . . . , vi�i ∈ (Gi)clRs − Gi for each 1 ≤ i ≤ t, 
and also all finitely-generated submodules W0 of W . Suppose that G ⊆ G′ are two such 
sets, that W0 ⊆ W ′

0 are finitely-generated submodules of W , and that W∞ and W ′
∞ are 

corresponding direct limit modules constructed from W0 using G and from W ′
0 using G′, 

respectively. We build a map W∞ → W ′
∞, starting with the map W0 ⊆ W ′

0 → W ′
∞.

It suffices to demonstrate that the map can be extended to a single containment 
module modification. Let P be an intermediate module in the direct limit system of W∞
with a map P → W ′

∞, v = vij ∈ G for some i, j, e1, . . . , ek be the generators of G = Gi, 
and x ∈ Q as in Definition 4.18. We need to specify the images of f1, . . . , fk in W ′

∞. Since 
v ⊗W ′

∞ ⊆ G ⊗W ′
∞, vx = e1w1 + e2w2 + . . . + ekwk for some w1, . . . , wk ∈ W ′

∞. Then 
the map that sends fi �→ wi is a well-defined extension of the map P → W ′

∞. Hence we 
have a map W∞ → W ′

∞ for any G ⊆ G′.
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The W∞ form a partially ordered set via W∞ ≤ W ′
∞ if the corresponding finite sets 

satisfy G ⊆ G′ and W0 ⊆ W ′
0. This is a directed set, using the maps W∞ → W ′

∞ we 
constructed above. Let S be the direct limit. By the set-up above, we have a well-defined 
map φ : W → S. We are now done proving that for submodules G of finitely-generated 
free R-modules Rs, Gcl

Rs ⊆ GclS
Rs .

Suppose that N ⊆ M are arbitrary finitely-generated R-modules. We will show that 
N cl

M ⊆ N clS
M . There is some s for which M/N ∼= Rs/G, where G is a submodule of Rs. 

Let u ∈ N cl
M . By Lemma 3.1, part (a), ū ∈ 0cl

M/N
∼= 0cl

Rs/G. Applying the Lemma again, 
any lift v of im(ū) to Rs is in Gcl

Rs , which is contained in GclS
Rs by the previous paragraph. 

Applying the Lemma twice more, we get ū ∈ 0clS
M/N , which implies that u ∈ N clS

M .
Now suppose that T is an R-module such that cl ⊆ clT , and we have a map ψ : W → T . 

Let φ : W → S be as above. For any intermediate module P in the direct limit system 
of S, let φP be the corresponding map W → P . Suppose that we have a map γP : P → T

such that ψ = γP ◦ φP . We demonstrate how to extend the map to a map γP ′ : P ′ → T

such that ψ = γP ′ ◦ φP ′ when P ′ is a containment module modification of P . We have:

P → P ′ = P ⊕Rf1 ⊕ . . .⊕Rfk
R(v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)

,

where x ∈ P , and v, e1, . . . , ek are as in Definition 4.18. We need to specify the images 
of the fi. Since cl ⊆ clT , vx ∈ (e1, . . . , ek)T , say vx = e1t1 + . . . + ektk. Then sending 
fi �→ ti gives us a well-defined extension of γP such that ψ = γP ′ ◦ φP ′ . Since S is a 
direct limit of such containment module modifications, we get a map γ : S → T such 
that ψ = γ ◦ φ. �
Theorem 4.20. Let R be a ring and cl a closure operation on R satisfying the Functoriality 
Axiom and the Semi-residuality Axiom. Then if we set W = R and construct a module S
as in Proposition 4.19, clS is the smallest module closure containing cl, i.e., if T is any 
R-module such that cl ⊆ clT , we have clS ⊆ clT . In particular, if cl is a module closure, 
then cl = clS (conversely, if cl is not a module closure, then cl � clS).

Proof. By Proposition 4.19, for every R-module map R → T , we have a map S → T that 
agrees with the original map on the image of R. So for every element t ∈ T , we have a 
map S → T whose image contains t. By Proposition 3.6, this implies that clS ⊆ clT . �
5. A connection between Dietz closures and singularities

In this section, we show that for any local domain R that has a Dietz closure, R is 
regular if and only if all Dietz closures on R are trivial. First, we prove a result on the 
relationship between general Dietz closures and big Cohen–Macaulay module closures.

Theorem 5.1. Let cl be a Dietz closure on a local domain (R, m). Then cl is contained 
in clB for some big Cohen–Macaulay module B.
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Proof. Let cl be a Dietz closure on R. To construct B, we use both parameter mod-
ule modifications and containment module modifications. First, we construct a big 
Cohen–Macaulay module S1 using parameter module modifications as in [2]. We ap-
ply containment module modifications to S1 as in Proposition 4.19 to get a module S2
such that cl ⊆ clS2 and a map S1 → S2, and then we use parameter module modifications 
to construct an R-module S3 such that every system of parameters on R is a regular 
sequence on S3 and a map S2 → S3. We repeat these two constructions countably many 
times, getting maps

R = S0 → S1 → S2 → S3 → . . .

The direct limit B is an R-module such that cl ⊆ clB and every system of parameters 
on R is a regular sequence on B. We need to show that im(1) /∈ mB when we apply the 
map R → B that is the direct limit of the maps R → Si.

We follow the proof of [14, Proposition 3.7]. If im(1) ∈ mB, then there is a finitely-
generated R-module P with 1 ∈ mP such that P maps to B.

Claim: There is an R-module W constructed from R by taking finitely many module 
modifications (of either or both types) such that the map P → B passes through W .

Proof of Claim. Given any finitely-generated R-module P with a map P → B, there is 
some i > 0 for which im(P ) ⊆ Si. Then there is also a finite sequence of containment 
module modifications and parameter module modifications of Si−1 giving a module Wi−1
such that the map P → B passes through Wi−1. We use induction on the value of i. If 
i = 1, then the result is immediate. Suppose the result holds for i = 1, 2, . . . , k−1, and let 
S be a module gotten from Sk−1 by applying a finite sequence of module modifications, 
such that im(P ) ⊆ S. By induction, there is an R-module Wk−1 that is constructed from 
R by taking finitely many module modifications, and such that im(P ∩ Sk−1) ⊆ Wk−1. 
Any element of P not in Sk−1 must come from one of the module modifications applied to 
Si−1 to get S. So when we apply the same sequence of module modifications to Wk−1, we 
get an R-module Wk that is constructed by applying finitely many module modifications 
to R and such that im(P ) ⊆ Wk. �

Further, if we apply any finite sequence of module modifications to R to get a mod-
ule W , we have a map W → B, constructed in the same way as the maps W∞ → W ′

∞
in the proof of Proposition 4.19 and the maps Mt → B′ in the proof of Proposition 4.14. 
Therefore, im(1) ∈ mB if and only if im(1) ∈ mW , where W is an R-module obtained 
by applying finitely many module modifications to R. We will show that we cannot have 
im(1) ∈ mW . To do this, we show that if we have a cl-phantom map R → M , and 
we apply a single module modification to M to get M ′, the resulting map R → M ′ is 
cl-phantom. Hence im(1) /∈ mM ′.

Assume α : R → M is a phantom extension of R. If we apply a parameter module 
modification to M , we know that the resulting map α′ : R → M ′ is phantom by [2]. In the 
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following Lemma, we show that α′ : R → M ′ is phantom when we apply a containment 
module modification to M . Hence by Lemma 2.11, α′(1) /∈ mM ′. This guarantees that 
in the limit, mB �= B. �
Lemma 5.2. Suppose that (R, m) is a local domain and cl is a Dietz closure on R that 
satisfies the Functoriality Axiom and the Semi-residuality Axiom, and such that 0cl

R = 0. 
Suppose that α : R → M is a cl-phantom extension, and let M ′ be a containment module 
modification of M . Then α′ : R → M ′ is a cl-phantom extension.

Proof. Let v = (v1, . . . , vs) ∈ Gcl
Rs −G for some nonzero submodule G ⊆ Rs (as 0cl

Rs = 0
by assumption), and let x ∈ M . Let u be the image of 1 in M . Taking a single module 
modification, we get

M ′ = M ⊕Rf1 ⊕ . . .⊕Rfk
R (v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)

.

First, we need to show that the composite map α′ : R → M → M ′ is injective. Let 
F = Frac(R). Then F → F ⊗R M is injective, and it suffices to show that F → F ⊗M ′

is injective, i.e. that it is nonzero (if R → M ′ were not injective, applying F⊗ would 
preserve this). We claim that v ∈ im(F ⊗G → F s). To see that this is true, notice that 
by Lemma 3.1, 0cl

Rs/G is contained in the torsion part of Rs/G. Hence v ∈ Gcl
Rs implies 

that v̄ is a torsion element of Rs/G. Hence v̄ = 0 in F s/(F ⊗ G), which implies that 
v ∈ im(F ⊗G → F s). Then the relations we kill to get F ⊗M ′ already hold in F ⊗M , so 
there is a retraction F ⊗M ′ → F ⊗M . This implies that F ⊗M → F ⊗M ′ is injective, 
and so F → F ⊗M ′ is injective, as desired.

Remark 5.3. In the special case s = 1, we can show that the map M → M ′ sending each 
element y �→ y⊕0 ⊕. . .⊕0 is injective. If y �→ 0, then y⊕0 ⊕. . .⊕0 = r(vx ⊕r1f1⊕. . .⊕rkfk)
in M ⊕Rf1 ⊕ . . .⊕Rfk, for some r ∈ R. We may assume without loss of generality that 
some ri is nonzero, say r1. Then rr1f1 = 0, so rr1 = 0. Since R is a domain, r = 0. So 
y = rvx = 0.

Following Notation 2.7 and [2, Discussion 2.4], pick a generating set w1, . . . , wn for 
M such that w1 = u and wn = x. Then the images of w2, . . . , wn form a generating set 
for Q. Let

Rm ν−−−−→ Rn−1 μ−−−−→ Q −−−−→ 0

be a free presentation of Q, where μ sends the generators of Rn−1 to w2, . . . , wn, respec-
tively. We can choose a basis for Rm such that ν is given by the (n − 1) × m matrix 
(bij)2≤i≤n,1≤j≤m. As in [2], we construct the diagram
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Rm ν1−−−−→ Rn μ1−−−−→ M −−−−→ 0⏐⏐	id
⏐⏐	π

⏐⏐	
Rm ν−−−−→ Rn−1 μ−−−−→ Q −−−−→ 0,

where π kills the first generator of Rn and the rows are exact. The map μ1 sends the 
generators of Rn to w1, . . . , wn, respectively, and ν1 has matrix (bij)1≤i≤n,1≤j≤m with 
respect to the same basis for Rm used to give ν.

Now we construct corresponding resolutions for M ′ and Q′. M ′ has k new generators 
and s new relations, as does Q′, so we get the following diagram:

Rm+s ν′
1−−−−→ Rn+k μ′

1−−−−→ M ′ −−−−→ 0⏐⏐	id
⏐⏐	π

⏐⏐	
Rm+s ν′

−−−−→ Rn−1+k μ′

−−−−→ Q′ −−−−→ 0

The maps μ′ and μ′
1 take the generators of Q′ and M ′ to w2, . . . , wn, f1, . . . , fk and 

w1, . . . , wn, f1, . . . , fk, respectively. The map π kills the first generator of Rn+k. The map 
ν′1 can be given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ν1
...
0
v

e1

0 ...
ek

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and ν′ is this matrix with the top row removed.
The rows of this diagram are exact. We demonstrate the exactness at Rn+k. To see 

that μ′
1 ◦ ν′1 = 0, we observe that μ1 ◦ ν1 = 0, and for all i, vix + e1if1 + . . . + ekifk = 0

in M ′. To see that ker(μ′
1) ⊆ im(ν′1), suppose that μ′

1(a1, . . . , an+k)tr = 0. Then

a1w1 + . . . + anwn + an+1f1 + . . . + an+kfk = r1(v1x + e11f1 + . . . + ek1fk)

+ r2(v2x + e12f1 + . . . + ek2fk)

+ . . . + rs(vsx + e1sf1 + . . . + eksfk)

in M ⊕Rf1 ⊕ . . .⊕Rfk, for some r1, . . . , rs ∈ R. So

a1w1 + . . . + an−1wn−1 + (an −
s∑

rsv)x = 0,

i=1
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and

an+i =
s∑

j=1
rjeij

for 1 ≤ i ≤ k. This implies that (a1, . . . , an−1, an −
∑s

i=1 rsv, 0, . . . , 0)tr is in the image 
of the first m columns of ν′1, and (0, . . . , 0, 

∑s
i=1 rsv, an+1, . . . , ank

)tr is in the image of 
the last s columns of ν′1. Hence (a1, . . . , an+k)tr is in the image of ν′1, as desired.

By Lemma 2.8, α′ is phantom if and only if the top row of ν′1 is in the cl-closure of 
the span of the other rows. Denote the top row of ν1 by x, the bottom row by y, and 
the span of the middle rows by H. Then α′ is phantom if and only if

x⊕ 0 ∈ (R(y ⊕ v) + (H ⊕ 0) + (0 ⊕G))clRm+s .

But since α is phantom, x ∈ (Ry+H)clRm . Hence x⊕0 ∈ (Ry+H)clRm ⊕0, and we have

(Ry + H)clRm ⊕ 0 = (Ry + H)clRm ⊕ 0cl
Rs

= ((Ry + H) ⊕ 0)clRm+s

= ((Ry ⊕ 0) + (H ⊕ 0))clRm+s

We want to show that this is contained in (R(y⊕ v) +(H ⊕0) +(0 ⊕G))clRm+s . We have

(Ry ⊕ 0) + (H ⊕ 0) ⊆ R(y ⊕ v) + (H ⊕ 0) + (0 ⊕Gcl
Rs)

= (Ry ⊕ v) + (H ⊕ 0) + ((0 ⊕G))clRm+s

⊆ (R(y ⊕ v) + (H ⊕ 0))clRm+s + (0 ⊕G)clRm+s .

Thus

((Ry ⊕ 0) + (H ⊕ 0))clRm+s ⊆
(
(R(y ⊕ v) + (H ⊕ 0))clRm+s + (0 ⊕G)clRm+s

)cl

Rm+s

= (R(y ⊕ v) + (H ⊕ 0) + (0 ⊕G))clRm+s

by Lemma 3.1. Therefore, α′ is phantom. �
It turns out that the closure operation clB from Theorem 5.1 is the smallest big 

Cohen–Macaulay-module closure containing cl, the initial Dietz closure.

Lemma 5.4. Let notation be as in Theorem 5.1. Given a big Cohen–Macaulay-module B′

such that cl ⊆ clB′ , clB ⊆ clB′ .

Proof. For any map R → B′, we construct a map B → B′. We already know from the 
proof of Proposition 4.14 how to extend the map M → B′ to a map M ′ → B′, where 
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M ′ is a parameter module modification of M . We need to know how to extend the map 
when

M ′ = M ⊕Rf1 ⊕ . . .⊕Rfk
R (v1x⊕ e11f1 ⊕ . . .⊕ ek1fk, . . . , vsx⊕ e1sf1 ⊕ . . .⊕ eksfk)

is a containment module modification of M . Since (v1, . . . , vs) ∈ Gcl
Rs , for each b′ ∈ B′, 

(v1, . . . , vs) ⊗ b′ ∈ im(G ⊗ B′ → Rs ⊗ B′). In particular, for each 1 ≤ i ≤ s, vix =
e1ib1 + e2ib2 + . . . + ekibk where b1, . . . , bk ∈ B′. Define the map M ′ → B′ by sending 
fi �→ bi.

Now for every map R → B′ sending 1 �→ u, we have a map B → B′ whose image 
contains u. So by Proposition 3.6, clB ⊆ clB′ . �
Question 5.5.

1. Are all Dietz closures big Cohen–Macaulay module closures, or any kind of module 
closure? If not, is there a nice way of characterizing the difference between Dietz 
closures that are big Cohen–Macaulay module closures and those that are not?

2. If we use only containment module modifications as in Proposition 4.19, are there 
useful hypotheses that guarantee that the constructed module S is a big Cohen–
Macaulay module?

We use the following definition in our proof that Dietz closures are trivial on regular 
rings.

Definition 5.6. Given a closure operation cl, a ring R is weakly cl-regular if for N ⊆ M

finitely generated R-modules, N cl
M = N .

Remark 5.7. It is equivalent to say that Icl
R = I for all ideals I of R. This follows from 

an argument in [8].

Proposition 5.8. Let cl be a closure operation on a regular local ring (R, m) that satisfies

1. strong colon-capturing, version A,
2. mcl = m, and
3. if N ′ ⊆ N ⊆ M are finitely-generated R-modules, then (N ′)clN ⊆ (N ′)clM .

Then R is weakly cl-regular.

Proof. Let N ⊆ M be finitely-generated R-modules, and let x1, . . . , xd be regular pa-
rameters for R (i.e., (x1, . . . , xd) = m). Since N =

⋂
s(N + msM), by Lemma 3.1 it 

suffices to show that N + msM is cl-closed in M for each s. Fix a value of s. By the 
same Lemma, we may replace M by M/(N +msM) and show that 0 is cl-closed in this 
module instead. Since M now has finite length, for some t, It = (xt+1

1 , xt+1
2 , . . . , xt+1

d )
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kills M , and so M is an R/It-module. Now It is m-primary, so R/It is 0-dimensional. 
Additionally, R is regular and x1, . . . , xd form a system of parameters, so R/It is Goren-
stein. Hence R/It is injective as a module over itself and is also the only indecomposable 
injective R/It-module. This implies that M ↪→ (R/It)h for some h ≥ 0. Now it suffices to 
show that It is cl-closed in R, as then 0 is cl-closed in (R/It)h. Since 0 ⊆ M ⊆ (R/It)h, 
this implies that 0cl

M ⊆ 0cl
(R/It)h = 0.

We show that It is cl-closed in R for all t. Let x = x1x2 · · ·xd. Since (x1, . . . , xd) = m, 
1 generates the socle in R/I0 = R/m. Then xt generates the socle in R/It for t ≥ 1. So 
if It is not cl-closed, we must have xt ∈ (It)clR. Thus it suffices to show that xt /∈ (It)clR.

Suppose that xt ∈ (It)clR. Then

xt
1(xt

2 · · ·xt
d) ∈ (xt+1

1 , . . . , xt+1
d )clR.

By hypothesis (1) on cl,

xt
2 · · ·xt

d ∈ (x1, x
t+1
2 , . . . , xt+1

d )clR.

Using this hypothesis again,

xt
3 · · ·xt

d ∈ (x1, x2, x
t+1
3 , . . . , xt+1

d )clR.

Continuing in this manner, we see that

xt
d ∈ (x1, x2, . . . , xd−1, x

t+1
d )clR,

and taking one more step, 1 ∈ (x1, . . . , xd)clR. However, mcl
R = m, so this is a contradiction. 

Therefore, (It)clR = It for all t, which finishes the proof that N cl
M = N for all submodules 

N of finitely-generated R-modules M . �
Theorem 5.9. Dietz closures are trivial on regular local rings.

Proof. Earlier, we showed that any Dietz closure is contained in a big Cohen–Macaulay 
module closure and that big Cohen–Macaulay module closures satisfy strong colon-
capturing. Since they are Dietz closures, they satisfy the other two properties required 
to use Proposition 5.8. Therefore, Dietz closures are trivial on regular rings. �

It is also possible to show that big Cohen–Macaulay module closures are trivial on 
regular rings by noting that a big Cohen–Macaulay module B over a regular ring is 
faithfully flat [9], so that ideals and submodules of finitely-generated modules are “con-
tracted” from B.

Theorem 5.10. Suppose that (R, m, K) is a local domain that has at least one Dietz 
closure (in particular, it suffices for R to have equal characteristic and any dimension, 
or mixed characteristic and dimension at most 3), and that all Dietz closures on R are 
trivial. Then R is regular.
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Proof. Since R has a big Cohen–Macaulay module B that gives a trivial Dietz closure clB , 
R is Cohen–Macaulay. We show that R is also approximately Gorenstein. If dim(R) ≥ 2, 
then depth(R) ≥ 2, so this follows from [17]. If dim(R) = 0, then R is a field, which 
is approximately Gorenstein. If dim(R) = 1, then the integral closure S of R is a big 
Cohen–Macaulay algebra for R. Let b/a ∈ S. We have b ∈ (a)clS , but clS must be 
trivial on R, so b ∈ (a). Hence S = R, and so R is normal. By [17], R is approximately 
Gorenstein.

Let I1 ⊇ I2 ⊇ . . . ⊇ It ⊇ . . . be a sequence of m-primary ideals such that each R/It
is Gorenstein and the It are cofinal with the powers of m. Let E = ER(K), the injective 
hull of K over R. Then E is equal to the increasing union 

⋃
t AnnE(It). Further, each 

AnnE(It) is isomorphic to ER/It(K) ∼= R/It, so we have injective maps R/It → R/It+1
for each t ≥ 1. Let u1 be a generator of the socle in R/I1. For t ≥ 1, let ut+1 be the 
image of ut in R/It+1, which will generate the socle in R/It+1.

Suppose that M is a finitely-generated Cohen–Macaulay module with no free sum-
mand. We will show that M is equal to the increasing union of ItM : ut, so that 
utM ⊆ ItM for t � 1. This will imply that clM is a nontrivial Dietz closure. To see that 
the union is increasing, suppose that v ∈ ItM : ut. Then utv ∈ ItM . Applying the map 
ItM → It+1M induced by the map R/It → R/It+1, we see that ut+1v ∈ It+1M .

Suppose that M �=
⋃

t ItM : ut. Then we can pick v ∈ M −
⋃

t ItM : ut. For every 
t ≥ 1, utv /∈ ItM . Consider the map R → M given by multiplication by v. Since R is local 
and M is finitely-generated, this splits if and only if E → E⊗M is injective. But this is 
true if and only if R/It → M/ItM is injective for all t � 1. For any t, ut �→ utv /∈ It+1M , 
so the socle of R/It is not contained in the kernel of the map R/It → M/ItM . Hence 
R/It → M/ItM is injective, which implies that R → M splits. This contradicts our 
assumption that M had no free summand.

If R is not regular, then since R is Cohen–Macaulay, syzd(k) is a finitely-generated 
Cohen–Macaulay module that is not free. Then it has some minimal direct summand 
(that can’t be written as a nontrivial direct sum) that is not free. This gives us a nontrivial 
Dietz closure on R. Therefore, R must be regular. �
Remark 5.11. By a result of [4], syzd(k) has no free summand when R is not regular, so 
we can use syzd(k) instead of a minimal direct summand of it.

The following is a corollary to the proof of Theorem 5.10.

Corollary 5.12. Let R be a local domain with at least one Dietz closure. Suppose that R
has a finitely-generated Cohen–Macaulay module B with no free summands and that R
is approximately Gorenstein but not regular. Then R has a nontrivial Dietz closure, clB.

R satisfies these hypotheses when it is Cohen–Macaulay, dim(R) �= 1, and R is not 
regular. Alternatively, it suffices for R to be complete but not regular. If R is Cohen–
Macaulay of dimension not equal to 1 but is not regular, syzd(k) gives a nontrivial closure 
on R. In particular, if R has equal characteristic and is weakly F-regular (or F-regular 
or strongly F-regular) but not regular, clsyzd(k) is nontrivial on R.
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6. Proofs that certain closures are not Dietz closures

Dietz gives some examples of Dietz closures, as well as some closures that fail to be 
Dietz closures. Understanding why certain closure operations fail to be Dietz closures 
adds to our understanding of Dietz closures, and may help us find a good closure oper-
ation for rings of mixed characteristic. The following result gives one way for a closure 
operation to be “too big” to be a Dietz closure.

Theorem 6.1. Let R be a local domain with x1, . . . , xk part of a system of parameters 
for R and (x1 · · ·xk)t ∈ (xt+1

1 , xt+1
2 , . . . , xt+1

k )cl for some t ≥ 0 and closure operation cl. 
Then cl is not a Dietz closure.

Proof. Suppose that cl is a Dietz closure. Then by Theorem 5.1, there is a big Cohen–
Macaulay module B such that cl ⊆ clB . Then we have

(x1 · · ·xk)t ∈ (xt+1
1 , . . . , xt+1

k )cl ⊆ (xt+1
1 , . . . , xt+1

k )clB .

By Proposition 3.10, this implies that

(x2 · · ·xk)t ∈ (x1, x
t+1
2 , . . . , xt+1

k )clB ,

which implies that

(x3 · · ·xk)t ∈ (x1, x2, x
t+1
3 , . . . , xt+1

k )clB ,

and so on until

1 ∈ (x1, . . . , xk)clB .

But (x1, . . . , xk)clB ⊆ mclB = m, which is a contradiction. Therefore, cl is not a Dietz 
closure. �
Corollary 6.2. Integral closure is not a Dietz closure on R if dim(R) ≥ 2.

Proof. Let x, y be part of a system of parameters for R. We always have xy ∈ (x2, y2), 
so by Theorem 6.1, integral closure is not a Dietz closure. �
Definition 6.3 ([22]). We define regular closure on a ring R by u ∈ N reg

M if for every 
regular R-algebra S, u ∈ N clS

M , where N ⊆ M are finitely-generated R-modules and 
u ∈ M .

Lemma 6.4. Let R = k[[x, y, z]]/(x3 + y3 + z3), where char(k) �= 3. Then (x, y)t ⊆
(xt, yt)reg.
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Proof. In [10], Hochster and Huneke show that z ∈ (x, y)reg but z /∈ (x, y)∗, where * 
denotes tight closure. To do this, they reduce to the case of maps to complete regular 
local rings with algebraically closed residue field and show that any solution (a, b, c) of 
u3 + v3 + w3 = 0 in S has the form (αd, βd, γd), where d ∈ S and (α, β, γ) is a solution 
of the same equation such that either at least two of α, β, and γ are units, or all three 
are 0.

If all three are 0, then clearly (x, y)tS ⊆ (xt, yt)S. If at least one of α or β is a unit, 
then (xt, yt)S = (dt), which must contain (x, y)tS. Since these are the only possible cases, 
we have (x, y)tS ⊆ (xt, yt)S for any regular R-algebra S. Hence (x, y)t ⊆ (xt, yt)reg. �
Corollary 6.5. Regular closure may fail to be a Dietz closure.

Proof. Consider the ring R = k[[x, y, z]]/(x3 + y3 + z3), where char(k) �= 3. In this ring, 
xy ∈ (x2, y2)reg by Lemma 6.4. �
Remark 6.6. By the exact argument used in Lemma 6.4, UFD closure (consider all 
R-algebras that are UFD’s, rather than the regular R-algebras) may fail to be a Dietz 
closure.

Theorem 6.7. For rings of equal characteristic 0, solid closure is not always a Dietz 
closure. In particular, solid closure is not a Dietz closure on regular local rings containing 
the rationals with dimension at least 3.

Proof. By Theorem 5.9, Dietz closures are trivial on regular rings. By [19, Corollary 7.24]
and [23], if R is a regular local ring containing the rationals with dimension at least 3, 
then solid closure is not trivial on R. Hence solid closure is not a Dietz closure on these 
rings. �
7. Full extended plus closure

We do not know whether Heitmann’s mixed characteristic plus closure, full extended 
plus closure, and full rank one closure [7] are Dietz closures, even in dimension 3. To 
discuss this question, we first extend the definition of full extended plus closure (epf) to 
finitely generated modules. The other definitions can be extended similarly.

Definition 7.1. Let R be a mixed characteristic local domain, whose residue field has 
characteristic p. Let N ⊆ M be finitely generated modules over R. We define the full 
extended plus closure of N in M by u ∈ M is in N epf

M if there is some c �= 0 ∈ R such 
that for all n ∈ Z+,

c1/n ⊗ u ∈ im(R+ ⊗N + R+ ⊗ pnM → R+ ⊗M).
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Proposition 7.2. For R a local domain of mixed characteristic p, full extended plus closure 
is a closure operation that satisfies the Functoriality Axiom, the Semi-residuality Axiom, 
and the Faithfulness Axiom, and 0epf

R = 0.

Proof. It is easy to prove the extension and order-preservation properties. To see that 
epf is idempotent, making it a closure operation, let u ∈ (N epf

M )epf
M . Then there is some 

c �= 0 in R such that

c1/n ⊗ u ∈ im(R+ ⊗N epf
M + R+ ⊗ pnM → R+ ⊗M)

for all n, say

c1/n ⊗ u =
∑
i

ri ⊗ yi +
∑
j

sj ⊗ pnmj ,

with ri, sj ∈ R+, yi ∈ N epf
M , and mj ∈ M . For each i, there is some nonzero di ∈ R such 

that

d
1/n
i ⊗ yi ∈ im(R+ ⊗N + R+ ⊗ pnM → R+ ⊗M).

Then

c1/n · Πid
1/n
i ⊗ u = Πid

1/n
i

⎛
⎝∑

i

ri ⊗ yi +
∑
j

sj ⊗ pnmj

⎞
⎠

∈ im(R+ ⊗N + R+ ⊗ pnM → R+ ⊗M).

Since c · Πidi is a nonzero element of R, this proves that u ∈ N epf
M .

For the Functoriality Axiom, let f : M → W be an R-module homomorphism and 
N ⊆ M . Let u ∈ N epf

M . Then there is some nonzero c ∈ R such that

c1/n ⊗ u ∈ im(R+ ⊗N + R+ ⊗ pnM → R+ ⊗M)

for every n > 0. Apply f . This tells us that

c1/n ⊗ f(u) ∈ im(R+ ⊗ f(N) + R+ ⊗ pnW → R+ ⊗W )

for every n > 0, which implies that f(u) ∈ f(N)epf
W .

Next, suppose that N epf
M = N . We will show that 0epf

M/N = 0. Let ū ∈ 0epf
M/N , where 

u ∈ M . Then there is some nonzero c ∈ R with

c1/n ⊗ ū ∈ im(R+ ⊗ pn(M/N) → R+ ⊗M).

But R+ ⊗ pn(M/N) is isomorphic to pn(R+ ⊗M)/(R+ ⊗N), which tells us that
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c1/n ⊗ u ∈ im(R+ ⊗ pnM + R+ ⊗N → R+ ⊗M).

This implies that u ∈ N epf
M = N , so ū = 0 in M/N .

To see that mepf
R = m, let u ∈ mepf

R . Then

c1/nu ∈ (m, pn)R+

for some nonzero c ∈ R (using the ideal version of the definition of epf) and for all n. 
Since pn ∈ m, c1/nu ∈ mR+ for all n. If u /∈ m, then c1/n ∈ mR+ for all n. But we can 
extend the m-adic valuation on R to a Q-valued valuation on R+. The order of c1/n will 
be 1

nord(c). So this is impossible.
Now let u ∈ 0epf

R . Then c1/nu ∈ pnR+ for some c �= 0 in R and for all n. Let ord denote 
a Q-valued valuation on R+ that extends the m-adic valuation on R. Let s = ord(c) and 
t = ord(p). Then we must have s/n + ord(u) ≥ nt for all n. This implies that u = 0. �

A similar argument works for mixed characteristic plus closure and for full rank one 
closure.

If at least one of these closures is a Dietz closure in dimension 3, this would tie the 
results of [7,20] in to the results of this paper. If they are not Dietz closures in dimension 
3, this would imply that the Dietz axioms are stronger than they need to be–there could 
be a weaker set of axioms that would be sufficient for the proof of the Direct Summand 
Conjecture in mixed characteristic rings.

8. Connections between Dietz closures and other closure operations

We show that Dietz closures are contained in (liftable) integral closure. This is proved 
for ideals in [1] with the added assumption that the closures are persistent for change of 
rings, but we do not need this assumption here.

Theorem 8.1. Let R be a domain and cl = clM where M is a solid module over R. Then 
Icl ⊆ Ī for every ideal I of R.

Proof. Since M is solid, there is some nonzero map f : M → R, with image a, a nonzero 
ideal of R. Suppose that I ⊆ J ⊆ Icl. Then JM = IM . Applying f , we get Ja = Ia. 
Since R is a domain, a is a finitely-generated, torsion-free R-module. By the lemma 
below, J ⊆ Ī. �
Lemma 8.2 ([21]). Suppose that I ⊆ J are ideals of a domain R such that IM = JM

for some finitely-generated, torsion-free R-module M . Then J ⊆ Ī.

Corollary 8.3. Let R be a complete local domain and B a big Cohen–Macaulay module 
over R. Then IclB ⊆ Ī for all ideals I of R.
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Proof. By [19, Proposition 10.5], B is a solid module over R. Hence by Theorem 8.1, 
IclB ⊆ Ī for every ideal I of R. �

There are several ways to extend integral closure to modules. Here we use liftable 
integral closure, denoted �, as defined by Epstein and Ulrich.

Definition 8.4 ([6]). Let G be a submodule of a finitely-generated free R-module Rs, let 
S be the symmetric algebra over R defined by Rs, and let T be the subring of S induced 
by the inclusion G ⊆ Rs. Observe that S is N-graded and generated in degree 1 over R, 
and that T is an N-graded subring of S, also generated in degree 1 over R. We define 
the integral closure G−

Rs of G in Rs to be the degree 1 part of the integral closure of the 
subring T of S.

Now let N ⊆ M be finitely-generated R-modules. Take a free module Rs and a 
surjection π : Rs → M , and let G = π−1(N). We define the liftable integral closure of N
in M by

N�
M = π(G−

Rs).

Proposition 8.5. Let R be a domain and cl = clM where M is a solid R-module. Then 
for all finitely-generated free modules F over R and all submodules G of F , Gcl

F ⊆ G�
F .

Proof. Let F be a free module of rank h over R and G ⊆ F . Let S = Sym(F ) ∼=
R[x1, . . . , xh], I the ideal generated by the image of G in S, and M̃ = S ⊗R M . We will 
show that Gcl

F is contained in the degree one piece of Icl
M̃

S .
Suppose that u ∈ Gcl

F . Then for every m ∈ M , m ⊗u ∈ im(M⊗G → Mh). This implies 
that m ⊗u ⊗ 1 ∈ im(M ⊗R G ⊗R S → Mh⊗R S). By associativity and commutativity of 
tensor, M ⊗R G ⊗R S ∼= M̃ ⊗S I ∼= IM̃ . This isomorphism takes m ⊗ u ⊗ 1 �→ u(1 ⊗m). 
Then u(s ⊗m) ∈ IM̃ for all s ∈ S, m ∈ M , which implies that u ∈ I

cl
M̃

S . Since u ∈ G, 
its image in S is of degree 1.

Since S is a domain and M̃ is solid over S, Icl
M̃ ⊆ Ī for all ideals I of S. This implies 

that u is contained in the degree 1 piece of Ī, and hence u ∈ G�
F . �

Theorem 8.6. Let R be a domain and cl = clM where M is a solid module over R. Then 
cl is contained in liftable integral closure. In particular, if R is a complete local domain, 
all big Cohen–Macaulay modules closures on R are contained in liftable integral closure. 
This implies that all Dietz closures on R are contained in liftable integral closure.

Proof. Let L ⊆ N be finitely-generated modules over R, and let π : F → N be a 
surjection of a finitely-generated free module F onto M . Let K = π−1(L). Let u ∈ Lcl

N . 
Then by Lemma 3.1, any lift ũ of u to F is contained in Kcl

F . By Proposition 8.5, ũ ∈ K�
F . 

Hence u ∈ L�
N . �
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Recall that a family of closure operations cl on a class of rings and maps between 
them is persistent for change of rings if given any R → S in the class, and N ⊆ M

finitely-generated R-modules,

S ⊗R N cl
M ⊆ (S ⊗R N)clS⊗RM .

Proposition 8.7. Any persistent family of Dietz closures is contained in regular closure.

Proof. Suppose that u ∈ Icl. Then in any map to a regular ring S, u ∈ (IS)cl = IS by 
persistence. So u ∈ Ireg. �
9. Further questions

9.1. Examples of Cohen–Macaulay module closures

In the proof of Theorem 5.10, we showed that if a local domain (R, m, k) is Cohen–
Macaulay of dimension not equal to 1 but is not regular, clsyzd(k) is a non-trivial Dietz 
closure for R. We give another class of non-trivial Dietz closures, which can only occur 
when R is not regular.

Example 9.1. Let R = k[[x2, xy, y2]]. Then M = (x2, xy) is a non-maximal Cohen–
Macaulay module over R (it has height=depth=1). Let I = (x4, x3y, xy3, y4) and 
J = (x4, x3y, x2y2, xy3, y4). Then I � J , but

I(x2, xy) = (x6, x5y, x3y3, x2y4, x5y, x4y2, x2y4, xy5) = J(x2, xy).

So IclM = JclM .

Example 9.2. Let R = k[[x, y, u, v]]/(xy − uv). Then M = (x, u) is a non-maximal 
Cohen–Macaulay module over R. Let I = (y2, v2) and J = (yv). Then I �= J , but 
IM = JM = (xyv, yuv), so IclM = JclM .

In addition, if we let I = (x2, u2) and J = (x2, xu, u2), then IM = JM =
(x3, x2u, xu2, u3), even though I �= J .

This gives rise to a more general class of examples: suppose that (x, u) is a non-
principal ideal that is a Cohen–Macaulay module (height 1, depth 1), and xu /∈ (x2, u2). 
Then (x2, u2)(x, u) = (x2, xu, u2)(x, u).

Example 9.3. Let R = k[[x, y, z]]/(x3 + y3 + z3), with the characteristic of k not equal 
to 3. Then (x, y + z) is a height 1 prime of depth 1. Since x(y + z) /∈ (x, y + z)2, we are 
in the case above.

All of these examples are Gorenstein rings, so in each case the canonical module (a 
maximal Cohen–Macaulay module) is equal to the ring.
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Question 9.4. If R is not Gorenstein and has a canonical module ω, then ω is a Cohen–
Macaulay module for R with no free summand. Hence by the proof of Theorem 5.10, clω
is a nontrivial closure operation on R. How else might we characterize this closure?

9.2. Largest big Cohen–Macaulay module closure

We do not know whether there is a largest Dietz closure. If there is one, then by 
Theorem 5.1 it will also be the largest big Cohen–Macaulay module closure. Hence there 
is a largest big Cohen–Macaulay module closure if and only if there is a largest Dietz 
closure.

Proposition 9.5. If Dietz closures on a local domain R form a directed set, then the sum 
of all Dietz closures is equal to the largest Dietz closure.

Proof. Let D denote the sum of all Dietz closures. To see that it is a Dietz closure (it will 
be a closure operation, by [5]), we use the fact [5] that since R is Noetherian, for any 
particular N ⊆ M finitely-generated R-modules, there is some Dietz closure cl such that 
N cl

M = ND
M .

Functoriality Axiom: Let f : M → W be a map of R-modules, and N ⊆ M . Let cl be 
a Dietz closure such that N cl

M = ND
M . Then f(ND

M ) = f(N cl
M ) ⊆ f(N)clW ⊆ f(N)DW .

Semi-residuality Axiom: Suppose that ND
M = N . Then N cl

M = N for every Dietz 
closure cl. Hence 0cl

M/N = 0 for every Dietz closure cl, which implies that 0D
M/N = 0.

Faithfulness Axiom: We must have mD = m, since m is cl-closed for any Dietz clo-
sure cl.

Generalized Colon-Capturing Axiom: With R, v, and J as in the statement of Axiom 4, 
let cl be a Dietz closure such that (Rv)DM = (Rv)clM . Then (Rv)DM ∩ ker(f) = (Rv)clM ∩
ker(f) ⊆ (Jv)clM ⊆ (Jv)DM . �

So to prove that there is a largest Dietz closure, it suffices to show that Dietz closures 
form a directed set. To do this, it would be enough to show that given 2 Dietz closures 
cl and cl′, we can construct a big Cohen–Macaulay module B such that cl, cl′ ⊆ clB . 
It is not clear that if we perform a modification that is cl-phantom, then one that is 
cl′-phantom, that im(1) stays out of the image of m, so we do not know of a way to 
construct such a big Cohen–Macaulay module.
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