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Let ϕ : S = k[y0, ..., yn] → R = k[y0, ..., yn] be given by 
yi → fi where f0, ..., fn is an R-regular sequence of homoge-
neous elements of the same degree. A recent paper shows for 
ideals, IΔ ⊆ S, of matroids, Δ, that I(m)

Δ ⊆ Ir if and only 
if ϕ∗(IΔ)(m) ⊆ ϕ∗(IΔ)r where ϕ∗(IΔ) is the ideal generated 
in R by ϕ(IΔ). We prove this result for saturated homoge-
neous ideals I of configurations of points in Pn and use it to 
obtain many new counterexamples to I(rn−n+1) ⊆ Ir from 
previously known counterexamples.
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1. Introduction

Let R be a commutative Noetherian domain. Let I be an ideal in R. We define the 
mth symbolic power of I to be the ideal

I(m) = R ∩
⋂

P∈AssR(I)

ImRP ⊆ R(0).
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In this note we shall be interested in symbolic powers of homogeneous ideals of 0-dimen-
sional subschemes in Pn. In the case that the subscheme is reduced, the definition of the 
symbolic power takes a rather simple form by a theorem of Zariski and Nagata [11] and 
does not require passing to the localizations at various associated primes. Let I ⊆ k[Pn]
be a homogeneous ideal of reduced points, p1, ..., pl, in Pn with k a field of any character-
istic. Then I = I(p1) ∩ · · · ∩ I(pl) where I(pi) ⊆ k[Pn] is the ideal generated by all forms 
vanishing at pi, and the mth symbolic power of I is simply I(m) = I(p1)m ∩ · · · ∩ I(pl)m.

In [10], Ein, Lazarsfeld and Smith proved that if I ⊆ k[Pn] is the radical ideal of a 
0-dimensional subscheme of Pn, where k is an algebraically closed field of characteristic 0, 
then I(mr) ⊆ (I(r+1−n))m for all m ∈ N and r ≥ n. Letting r = n, we get that I(mn) ⊆ Im

for all m ∈ N. Hochster and Huneke in [15] extended this result to all ideals I ⊆ k[Pn]
over any field k of arbitrary characteristic.

In [5] Bocci and Harbourne introduced a quantity ρ(I), called the resurgence, associ-
ated to a nontrivial homogeneous ideal I in k[Pn], defined to be sup{s/t : I(s) � It}. It is 
seen immediately that if ρ(I) exists, then for s > ρ(I)t, I(s) ⊆ It. The results of [10,15]
guarantee that ρ(I) exists since I(mn) ⊆ Im implies that ρ(I) ≤ n for an ideal I in k[Pn]. 
For an ideal I of points in P2, I(mn) ⊆ Im gives I(4) ⊆ I2. According to [5] Huneke 
asked if I(3) ⊆ I2 for a homogeneous ideal I of points in P2. More generally Harbourne 
conjectured in [3] that if I ⊆ k[Pn] is a homogeneous ideal, then I(rn−(n−1)) ⊆ Ir for 
all r. This led to the conjectures by Harbourne and Huneke in [13] for ideals I of points 
that I(mn−n+1) ⊆ m(m−1)(n−1)Im and I(mn) ⊆ mm(n−1)Im for m ∈ N.

The second conjecture remains open. Cooper, Embree, Ha and Hoeful give a coun-
terexample in [7] to the first for n = 2 = m for a homogeneous ideal I ⊆ k[P2]. The 
ideal I in this case is I = (xy2, yz2, zx2, xyz) = (x2, y) ∩ (y2, z) ∩ (z2, x) whose zero locus 
in P2 is the 3 coordinate vertices of P2, [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0] together with 
3 infinitely near points, one at each of the vertices, for a total of 6 points. Clearly the 
monomial x2y2z2 ∈ (x2, y)3 ∩ (y2, z)3 ∩ (z2, x)3 so x2y2z2 is in I(3). Note xyz ∈ I so 
x2y2z2 ∈ I2, but x2y2z2 /∈ mI2.

Shortly thereafter a counterexample to the containment I(3) � I2 was given by Dum-
nicki, Szemberg and Tutaj-Gasinska in [9]. In this case I is the ideal of the 12 points 
dual to the 12 lines of the Hesse configuration. The Hesse configuration consists of the 9
flex points of a smooth cubic and the 12 lines through pairs of flexes. Thus I defines 12
points lying on 9 lines. Each of the lines goes through 4 of the points, and each point has 
3 of the lines going through it. Specifically I is the saturated radical homogeneous ideal 
I = (x(y3−z3), y(x3−z3), z(x3−y3)) ⊂ C[P2]. Its zero locus is the 3 coordinate vertices 
of P2 together with the 9 intersection points of any 2 of the forms x3 − y3, x3 − z3 and 
y3 − z3. The form F = (x3 − y3)(x3 − z3)(y3 − z3) defining the 9 lines belongs to I(3)

since for each point in the configuration, 3 of the lines in the zero locus of F pass through 
the point, but F /∈ I2 and hence I(3) � I2. (Of course this also means that I(3) � mI2.) 
More generally, I = (x(yn− zn), y(xn− zn), z(xn− yn)) defines a configuration of n2 +3
points called a Fermat configuration [1]. For n ≥ 3, we again have I(3) � I2 [14,17] over 
any field of characteristic not 2 or 3 containing n distinct nth roots of 1.
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Subsequent counterexamples to I3 ⊆ I2 were given in [4], [2], [14], [8] and [17] including 
related counterexamples to I(nr−n+1) ⊆ Ir for ideals of points in Pn in positive charac-
teristic given in [14]. All of the counterexamples to I3 ⊆ I2 are ideals of points where the 
points are singular points of multiplicity at least 3 of a configuration of lines. By consid-
ering flat morphisms Pn → Pn, we obtain many new counterexamples to I(rn−n+1) ⊆ Ir, 
taking I to be the ideal of the fibers over the points of previously known counterexamples.

The idea for this comes from [12]. Suppose Δ is a matroid on [s] = {1, ..., s} of dimen-
sion s −1 − c and let f1, ..., fs ∈ R = k[y0, ..., yn] be homogeneous polynomials that form 
an R-regular sequence, n ≥ c. Suppose now that ϕ : S = k[y1, ..., ys] → R is a k-algebra 
map defined by yi → fi. Then [12] shows that if IΔ ⊆ S is the ideal of the matroid 
and m and r are positive integers, then I(m)

Δ ⊆ IrΔ if and only if ϕ∗(IΔ)(m) ⊆ ϕ∗(IΔ)r
where ϕ∗(IΔ) denotes the ideal generated by ϕ(IΔ) in R. Of course a natural question 
is whether I(m) ⊆ Ir if and only if ϕ∗(I)(m) ⊆ ϕ∗(I)r for any saturated homogeneous 
ideal. The current note answers this question in the affirmative for ideals I of points 
in Pn, relying on the ideas in [12].

I would like to thank Brian Harbourne, my adviser, for suggesting the idea of this 
note and providing guidance throughout its writing. I would like to thank Tom Marley, 
Alexandra Seceleanu and Mark Walker for helpful conversations.

2. Results

Throughout this note, let R = S = k[y0, ..., yn] and let {f0, ..., fn} ⊆ R be an R-regular 
sequence of homogeneous elements of R of the same degree. Let ϕ : S → R be the 
k-algebra map given by yi 	→ fi. For an ideal I ⊆ S, let ϕ∗(I) ⊆ R denote the ideal 
generated by ϕ(I).

Lemma 1. Let ϕ : S → R be as above. Then R is a free graded S-module, hence R is 
faithfully flat as an S-module.

Proof. It suffices to show that R is free over S since free modules are faithfully flat 
modules. Note that ϕ is injective since {f0, ..., fn} is a regular sequence. It follows that 
S ∼= k[f0, ..., fn] ⊆ R. So we identify S with k[f0, ..., fn] and show that R is free over 
k[f0, ..., fn]. Since {f0, ..., fn} is a maximal homogeneous R-regular sequence, it is a 
homogeneous system of parameters (sop). The reason is that every regular sequence is 
part of an sop and because R is Cohen–Macaulay (CM), every sop is a regular sequence 
(depthR = dimR) and so if {f0, ..., fn} is a maximal regular sequence, then it is an 
sop. Since R = k[Pn] is a positively graded affine k-algebra, the fact that {f0, ..., fn} is 
a homogeneous sop is equivalent to R being a finite S-module by [6, Theorem 1.5.17]. 
Since both R and S are CM, depthR = dimR = n + 1 = dimS = depthS. By the 
Auslander–Buchsbaum formula [11, Exercise 19.8] [16, Theorem 15.3], pdSR+depth R =
depth S. It follows that pdSR = 0. So looking at the minimal free resolution of R as an 
S-module, we see that R is a free S-module. Therefore R is a faithfully flat S-module. �
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Lemma 2. Let I ⊆ S be a homogeneous saturated ideal defining a 0-dimensional sub-
scheme of Pn. Then ϕ∗(I) ⊆ R also defines a 0-dimensional subscheme of Pn.

Proof. We start by showing that R/ϕ∗(I) has the same Krull dimension as S/I. By the 
graded Auslander–Buchsbaum formula, pdS(R/ϕ∗(I)) + depth(R/ϕ∗(I)) = depth(S) =
pdS(S/I) + depth(S/I). By 3.1 in [12], S/I and R/ϕ∗(I) have the same graded Betti 
numbers so pdS(S/I) = pdS(R/ϕ∗(I)). Therefore depth(S/I) = depth(R/ϕ∗(I)). By 3.1 
in [12] again, S/I is Cohen–Macaulay (CM) if and only if R/ϕ∗(I) is CM. Since I defines 
an ideal of points and is saturated, we have that S/I is CM. It follows that R/ϕ∗(I)
is CM. For CM modules, the depth is the dimension so that dimS/I = dimR/ϕ∗(I). 
Now since S/I and R/ϕ∗(I) are both CM, Ass(R/ϕ∗(I)) and Ass(S/I) are both unmixed 
with their elements having height ht(ϕ∗(I)) and ht(I) respectively. But ht(ϕ∗(I)) = ht(I)
since dimS/I = dimR/ϕ∗(I). It follows that the elements of Ass(R/ϕ∗(I)) are all ideals 
of points. It follows that ϕ∗(I) defines a 0-dimensional subscheme of Pn. �
Lemma 3. Let I ⊆ S be a saturated homogeneous ideal such that the zero locus of I in Pn

is 0-dimensional. Let ϕ : S → R be as above. Then ϕ∗(I(m)) = ϕ∗(I)(m).

Proof. By Lemma 2, ϕ∗(I) is the defining ideal of a 0-dimensional subscheme so that 
(ϕ∗(I))(m) = Sat((ϕ∗(I))m) where Sat((ϕ∗(I))m) denotes the saturation of the ideal 
(ϕ∗(I))m. An ideal and its saturation have the same graded homogeneous components 
for high enough degree so that for t � 0, ((ϕ∗(I))(m))t = ((ϕ∗(I))m)t.

Using again that the symbolic power of an ideal of a 0-dimensional subscheme in Pn

is the saturation of the ordinary power, I(m) = Sat(Im), we have that (I(m))t = (Im)t
for t � 0. Therefore (ϕ∗(I(m)))t = (I(m) ⊗S R)t = (Im ⊗S R)t = (ϕ∗(Im))t for t � 0. 
Since ϕ is a ring map, ϕ∗(Im) = (ϕ∗(I))m. This gives that (ϕ∗(I(m)))t = ((ϕ∗(I))m)t
for t � 0.

The last two paragraphs imply that ((ϕ∗(I))(m))t = ϕ∗(I(m))t for t � 0. Recall that 
(ϕ∗(I))(m) is saturated since it is the saturation of (ϕ∗(I))m and ϕ∗(I(m)) is saturated 
by Lemma 3.1 in [12]. Two saturated graded homogeneous ideals that agree in degree t
for t � 0, agree in all degrees. Hence (ϕ∗(I))(m) = ϕ∗(I(m)). �
Theorem 4. Let I ⊆ S be a saturated homogeneous ideal such that V (I) ⊆ Pn is a 
0-dimensional subscheme. Let ϕ : S → R be given by yi → fi, 0 ≤ i ≤ n, where 
{f0, ..., fn} is an R-regular sequence of homogeneous elements of R of the same de-
gree. Let ϕ∗(I) denote the ideal in R generated by ϕ(I). Then I(m) ⊆ Ir if and only if 
(ϕ∗(I))(m) ⊆ (ϕ∗(I))r.

Proof. ( =⇒ ) Suppose that I(m) ⊆ Ir. Then ϕ(I(m)) ⊆ ϕ(Ir) and so ϕ∗(I(m)) ⊆ ϕ∗(Ir). 
Since ϕ is a homomorphism, ϕ(Ir) = (ϕ(I))r. Note that ϕ(Ir) generates ϕ∗(Ir) in R
and (ϕ(I))r generates (ϕ∗(I))r in R. It follows that ϕ∗(Ir) = (ϕ∗(I))r since they have 
the same generating set. Now applying Lemma 3 we have that (ϕ∗(I))(m) = ϕ∗(I(m)) ⊆
ϕ∗(Ir) = ϕ∗(I)r concluding the forward direction.
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(⇐=) Suppose now that for some homogeneous ideals I and J of S, I � J but 
ϕ∗(I) ⊆ ϕ∗(J). Then there is a homogeneous element f ∈ I\J such that ϕ(f) ∈ ϕ∗(J). 
We may assume with no loss in generality that I = (f). We have the sequence

0 → I ∩ J → I ⊕ J → I + J → 0

with the first map given by g 	→ (g, −g) and the second map given by (h, r) 	→ h + r. It 
is clear that the sequence is exact. Since ϕ is faithfully flat, we get an exact sequence

0 → ϕ∗(I ∩ J) → ϕ∗(I) ⊕ ϕ∗(J) → ϕ∗(I + J) → 0.

Since ϕ∗(I) ⊆ ϕ∗(J), ϕ∗(I + J) = ϕ∗(J). Then the map ϕ∗(I) ⊕ ϕ∗(J) → ϕ∗(J) has 
kernel ϕ∗(I). It follows that ϕ∗(I ∩ J) = ϕ∗(I). This is impossible since the generators 
of ϕ∗(I ∩ J) are the images of the generators of I ∩ J and thus have degree greater than 
degree f and hence greater than degree of ϕ(f) which generates ϕ∗(I) = I ⊗S R �= 0.

So it is the case that ϕ(f) /∈ ϕ∗(J). Hence ϕ∗(I) � ϕ∗(J). Therefore if I(m) � Ir, 
then by Lemma 3, (ϕ∗(I))(m) = ϕ∗(I(m)) � (ϕ∗(I))r. Hence (ϕ∗(I))(m) ⊆ (ϕ∗(I))r if 
and only if I(m) ⊆ Ir. �
3. Examples

Using the above result, we obtain many new counterexamples to the containment 
I(3) ⊆ I2 of ideals in k[P2] and more generally counterexamples to the containment

I(nr−n+1) ⊆ Ir (�)

in Pn. In particular if I ⊆ k[Pn] gives a counterexample to (�), then ϕ∗(I) is a coun-
terexample for any choice of homogeneous regular sequence {f0, ..., fn} of elements of 
the same degree. We illustrate this below with a few examples.

Example 1. In this example, we work over C. In [9], the Fermat configuration, for n = 3, 
was considered and its ideal I = (x(y3−z3), y(x3−z3), z(x3−y3)) ⊆ C[x, y, z] was found 
to be a counterexample to the containment I(3) ⊆ I2. Recall the configuration consists 
of the 3 coordinate vertices and the 9 intersection points of y3 − z3 and x3 − z3. The 
ideal I is radical and all of the points in the configuration are reduced points. Now let 
ϕ : C[P2] → C[P2] by x → f = x2 +y2, y → g = y2 + z2 and z → h = x2 + z2. One easily 
checks that {x2+y2, y2+z2, x2+z2} is a C[P2]-regular sequence. Then ϕ induces a map of 
schemes ϕ# : P2 → P2 which is faithfully flat. Consider the scheme-theoretic fibers of ϕ#

over the Fermat configuration and call it the fibered Fermat configuration. Note that the 
fibered Fermat configuration is 0-dimensional. Since ϕ# has degree 4, the fibers consist 
of 48 points of P2 where we count with multiplicity. The fibered Fermat configuration 
gives rise to the radical ideal ϕ∗(I) = (f(g3 − h3), g(f3 − h3), h(f3 − g3)) ⊆ C[P2] and 
by analyzing the ideal we see that the configuration consists of 4 multiplicity 1 points 
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over each of the 3 coordinate vertices, given by f = 0 = g, f = 0 = h and g = 0 = h. 
The remaining 36 points, each of multiplicity 1, in the configuration are the zero locus 
of f3 − h3 and f3 − g3. Since I(3) � I2, we have by Theorem 4 that ϕ∗(I)(3) � ϕ∗(I)2.

Example 2. We give another example of a fibered Fermat configuration whose ideal also 
gives a counterexample to the containment I(3) ⊆ I2. The difference here is that 36 of 
the points in the configuration have multiplicity 1 while the remaining 3 points each has 
multiplicity 4. So there are still 48 points counting with multiplicity. Let ϕ : C[P2] →
C[P2] by x → f = x2, y → g = y2 and z → h = z2. This faithfully flat ring map 
induces a morphism of schemes ϕ# : P2 → P2 that is also flat. The fibers of ϕ# over 
the Fermat configuration gives the fibered Fermat configuration that consists of the 36
points, each of multiplicity 1, of intersection of the degree 6 forms f3 − g3 and g3 − h3. 
The configuration has 3 more points each of multiplicity 4 over the 3 coordinate points. 
They are the zero loci of f = 0 = g, f = 0 = h and g = 0 = h. So the fibered Fermat 
configuration here has points that are not all reduced. By Theorem 4, its nonradical 
ideal ϕ∗(I) is a counterexample to the containment ϕ∗(I)(3) ⊆ ϕ∗(I)2.

Example 3. Similarly for the Fermat configurations considered in [14] for n ≥ 3, we can 
construct new configurations of points, that may or may not be reduced in P2, that are 
the fibers of a morphism of schemes ϕ# : P2 → P2. The morphism ϕ# is induced by 
the ring map ϕ : C[P2] → C[P2] given by x → f , y → g and z → h where {f, g, h}
is a homogeneous C[P2]-regular sequence of the same degree. The Fermat configuration 
gives rise to a radical ideal I = (x(yj − zj), y(xj − zj), z(xj − yj)) ⊆ C[P2], j ≥ 3, 
and for a choice of {f, g, h}, the fibered Fermat configuration gives rise to an ideal 
ϕ∗(I) = (f(gj − hj), g(f j − hj), h(f j − gj)), j ≥ 3, not necessarily radical, that is also 
a counterexample to ϕ∗(I)(3) ⊆ ϕ∗(I)2. Here the Fermat configuration consists of the 
reduced j2 points of intersection of yj − zj and xj − yj together with the 3 coordinate 
vertices for a total of j2 +3 points. If the degree of the homogeneous elements in {f, g, h}
is d, then the fibered configuration consists of the d2j2 points of intersection of gj − hj

and f j −hj together with the 3d2 fiber points over the three coordinate vertices that are 
the solutions of the three equations f = 0 = g, f = 0 = h and g = 0 = h, counted with 
multiplicity. Again the points in the fibered configuration may or may not be reduced.

Example 4. Now we consider an example given in [4] that is inspired by the example 
of the Fermat configuration. Let k = Z/3Z and let K be an algebraically closed field 
containing k. Note that P2

K has 13 k-points and 13 k-lines such that each line contains 
4 of the points and each point is incident to 4 of the lines. The forms xy(x2 − y2), 
xz(x2−z2) and yz(y2−z2) vanish at all 13 points of P2

k but the form x(x2−y2)(x2−z2)
does not vanish at the point [1 : 0 : 0]. One checks easily that the ideal I = (xy(x2 − y2),
xz(x2 − z2), yz(y2 − z2), x(x2 − y2)(x2 − z2)) ⊆ k[P2

K ] is radical and its zero locus is the 
13 k-points of P2

K . Then F = x(x − z)(x + z)(x2 − y2)((x − z)2 − y2)((x + z)2 − y2)
defines 9 lines meeting at 12 points with each point incident to 3 of the lines. It is not 
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hard to see that F ∈ I(3) but F /∈ I2. So the reduced configuration that comes from P2
k

with the point [1 : 0 : 0] removed together with all its incident lines gives rise to an ideal 
that is a counterexample to the containment I(3) ⊆ I2. Let ϕ : k[P2

K ] → k[P2
K ] be the 

ring map x → f = x2, y → g = y2 and z → h = z2. Applying the degree 4 morphism of 
schemes ϕ# : P2

K → P2
K , induced by ϕ, and taking its fibers over the k-points, we get a 

configuration of 48 points. For each point in the original configuration, we get 4 points 
in the fibered configuration. The points in this new configuration are not all reduced. 
For instance over the point [0 : 0 : 1], the fiber of ϕ# is a point of multiplicity 4 in P2

K

given by the vanishing of y2 and x2. The ideal of the fibered configuration as schemes is 
the ideal ϕ∗(I) = (fg(f2 − g2), fh(f2 −h2), gh(g2 −h2), f(f2 − g2)(f2 −h2)). This ideal 
is not radical and since {f, g, h} ⊂ P2

K is a regular sequence, we have by Theorem 4 that 
ϕ∗(I)(3) � ϕ∗(I)2. If instead we take f = x2 + y2, g = y2 + z2 and h = x2 + z2 in the 
above example, then the fibered configuration we obtain is a reduced configuration and 
the ideal ϕ∗(I) is a radical ideal satisfying ϕ∗(I)(3) � ϕ∗(I)2.

Variations of the above example are considered in Pn for various n in [14], giving 
counterexamples for the more general conjecture I(nr−n+1) ⊆ Ir. We can apply our 
result to these to obtain new counterexamples to the more general containment.
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