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1. Introduction

This article is a contribution to the following question: does there exist a Polish 
non-archimedean group, i.e., a Polish group with a neighborhood basis at the identity 
consisting of open subgroups, that simultaneously satisfies two frequently studied prop-
erties: it is extremely amenable, and it has ample generics.

A Polish group G is extremely amenable if every continuous action of G on a compact 
space has a fixed point. The group G has ample generics if, for every n ≥ 1, there exists 
an n-dimensional diagonal conjugacy class in G, i.e., a set of the form

{(gg1g
−1, . . . , ggng

−1) ∈ Gn : g ∈ G},

for some g1, . . . , gn ∈ G, which is comeager in Gn. Such a group admits only one Pol-
ish group topology, and all of its (abstract) homomorphisms into separable groups are 
continuous (Kechris-Rosendal [8]). In particular, every action by homeomorphisms of an 
extremely amenable group with ample generics on a compact separable space has a fixed 
point.

It is known that there exist Polish groups sharing both of these features. Pestov-
Schneider [15] proved that, for any Polish group G, the group L0(G), i.e., the group 
of measurable functions with values in G, is extremely amenable, provided that G is 
amenable, while Kaïchouh-Le Maître [9] proved that L0(G) has ample generics whenever 
G does. As S∞, i.e., the group of all permutations of natural numbers, is amenable, and 
has ample generics, L0(S∞) is extremely amenable and it has ample generics. However, 
it is still an open problem whether there are such groups in the non-archimedean realm.

It is well known that every Polish non-archimedean group is isomorphic to the au-
tomorphism group Aut(M) of a structure M (i.e., a set equipped with relations and 
functions) equal to the Fraïssé limit of a Fraïssé class F of finite structures (see the next 
section for precise definitions of notions used in the introduction). The group Aut(M)
naturally acts on the compact space of linear orderings of M , viewed as a subspace of 
{0, 1}M×M . This implies that when Aut(M) is extremely amenable, then there is a lin-
ear ordering of M preserved by Aut(M), see also [11]. Therefore if Aut(M) is extremely 
amenable, we can actually assume that F is an order class, i.e., that each structure in F
is equipped with a linear ordering < of its elements. Thus, we can pose a more general 
question: does there exist a Fraïssé limit M of an order class F such that the automor-
phism group Aut(M) has ample generics. This article gives some partial answers as to 
when such a situation cannot happen.

Curiously enough, there are no known examples of Polish groups that do not have 
ample generics but they have a comeager diagonal conjugacy class for some n ≥ 2. In 
other words, our article can be also viewed as a study of the question whether comeager 
diagonal conjugacy classes resemble weak mixing in topological dynamics, which implies 
weak mixing of all orders (see [4]).
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One of our main tools is a theorem of Kechris-Rosendal, connecting the structure of 
diagonal conjugacy classes in the automorphism group of the Fraïssé limit M of a Fraïssé 
class F with the joint embedding property (JEP), and the weak amalgamation property 
(WAP) in classes Fn of n-tuples of partial automorphisms of elements of F . They prove 
(see also [5]) that Aut(M) has a comeager n-dimensional diagonal conjugacy class if and 
only if Fn has JEP and WAP. Thus, showing that Aut(M) does not have a comeager 
n-dimensional diagonal conjugacy class reduces to verifying that Fn has no JEP or WAP.

First, we study the one-dimensional case. A class of structures F has the 1-Hrushovski 
property if every partial automorphism of an A ∈ F can be extended to an automorphism 
of some B ∈ F . Clearly, if F is an order class of finite structures, then F does not have 
the 1-Hrushovski property because in this case non-trivial orbits are necessarily infinite. 
We introduce the notions of strong splitting and always strong splitting in a Fraïssé 
class, which capture the idea of ‘flexible’ amalgamation. Then we prove (Theorem 3.5) 
that F1 has no WAP, provided that one of following holds: F is a Fraïssé class that does 
not have the 1-Hrushovski property, and it always strongly splits, or F is a full order 
expansion of K (i.e., F is the class of all linear orderings on elements of K), where K is 
a Fraïssé class that strongly splits. On the other hand, we show (Theorem 3.10) that the 
class SB1 of partial automorphisms of ordered boron trees, and (Theorem 3.13) the class 
P1 of partial automorphisms of ordered partial orders, have CAP, so, in particular, they 
have WAP. It seems that these are, except for Aut(Q) (see Truss [17]), the only known 
order classes such that the automorphism group of the limit has a comeager conjugacy 
class. We also give (Theorem 3.8) a short and elementary proof of a result of Slutsky [16]
who showed that the class (QU≺)1 of partial automorphisms of ordered metric spaces 
with rational distances has no WAP.

Next, we turn to the two-dimensional case. For a Fraïssé class F , we formulate a 
simple but efficient condition (Proposition 4.1) implying that F2 has no WAP, and we 
verify it for a number of cases such as precompact Ramsey expansions of ultrahomo-
geneous directed graphs, in particular for P2. Using a similar approach, we also show 
(Theorem 4.4) that SB2 does not have WAP. Then we investigate topological similarity 
classes. For a Polish group G, n ≥ 1, and an n-tuple (f1, . . . , fn) in G, the n-dimensional 
topological similarity class of (f1, . . . , fn) is the family of all n-tuples (g1, . . . , gn) in G
such that the mapping fi �→ gi (uniquely) extends to a topological group isomorphism. 
Clearly, this is a generalization of the notion of the diagonal conjugacy class, and it is 
still not known whether there exists a Polish group G such that for some n ≥ 2 there is 
a non-meager n-dimensional topological similarity class, but all n-dimensional diagonal 
conjugacy classes are meager. Generalizing methods and results of Slutsky [16], we show 
(Theorem 5.5) that if M is the Fraïssé limit of a Fraïssé class F that is a full order 
expansion and that satisfies certain additional conditions, then all 2-dimensional topo-
logical similarity classes in Aut(M) are meager. In particular, this is true if K is a class 
with free amalgamation, or the class of ordered tournaments (Theorem 5.7).
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2. Definitions

A topological group is Polish if its topology is separable, and completely metriz-
able. A Polish group is non-archimedean if it has a neighborhood basis at the identity 
consisting of open subgroups, or, equivalently, it is topologically isomorphic to the auto-
morphism group Aut(M) of a countable structure, equipped with the product topology 
(i.e., Aut(M) ⊆ MM , where M is regarded as a discrete space).

By a structure we always mean a relational structure (i.e., a set equipped with re-
lations), and we consider only classes of finite structures. Let A be a structure, and 
let B, C ⊆ A. By qftpA(B/C), we denote the quantifier-free type of B over C in 
A. Let p be a partial automorphism of A. We write def(p) = dom(p) ∪ rng(p), and 
supp(p) = {x ∈ def(p) : p(x) �= x}. An orbit of p is a maximal subset O ⊆ A that can be 
enumerated into {a0, . . . , am} so that p(ai) = ai+1 for i < m. If p(am) = a0, we say that 
O is a cyclic orbit. An orbit is trivial if it consists of a single element.

Let F be a class of structures in a given signature. We say that F has JEP (the joint 
embedding property) if any two A, B ∈ F can be embedded in a single C ∈ F . We say 
that F has AP (the amalgamation property) if for every A, B, C ∈ F and embeddings 
α : A → B, β : A → C there is D ∈ F and embeddings γ : B → D, δ : C → D such that 
γ ◦α = δ ◦ β. In that case, we say that B and C amalgamate over A. We say that F has 
SAP (the strong amalgamation property) if, additionally, γ[B] ∩ δ[C] = γ ◦α[A]. We say 
that F has CAP (the cofinal amalgamation property) if there is a cofinal (with respect 
to inclusion) subclass of F with AP. We say that F has WAP (the weak amalgamation 
property) if for every A ∈ F there is A′ ∈ F and an embedding φ : A → A′ such that for 
every B, C ∈ F and embeddings α : A′ → B, β : A′ → C there is D ∈ F and embeddings 
γ : B → D, δ : C → D such that γ ◦ α ◦ φ = δ ◦ β ◦ φ. Clearly, if F has CAP, then it 
has WAP. Actually, in the definition of AP (CAP and WAP), it suffices to consider B, C
such that B ∩ C = A (B ∩ C = A′), and only trivial embeddings, i.e., inclusions.

A class of finite structures F is a Fraïssé class, if it is countable up to isomorphism, 
closed under isomorphism, closed under taking substructures, and has JEP and AP. 
A countable first-order structure M is ultrahomogeneous if every isomorphism between 
finite substructures of M can be extended to an automorphism of the whole M . Then 
Age(M) – the class of all finite substructures embeddable in M – is a Fraïssé class. 
Conversely, by the classical theorem due to Fraïssé, for every Fraïssé class F of finite 
structures, there is a unique up to isomorphism countable ultrahomogeneous structure 
M such that F = Age(M). We call this M the Fraïssé limit of F .

A Fraïssé class F is called an order class if its signature includes a binary relation 
defining a linear ordering on each element of F . If F is an order class, F− denotes the 
reduct of F obtained by removing the order relation < from the signature of F . We call 
F a full order expansion if F = F− ∗LO, i.e., it is a class of elements of the form (A, <), 
where A ∈ F−, and < is any linear ordering of A. We will frequently use the observation 
that if M is the Fraïssé limit of a full order expansion with SAP, then for any finite 
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A ⊂ M , b ∈ M , and any <-interval I in M , there exists b′ ∈ I such that A ∪ {b} is 
isomorphic to A ∪ {b′} via an isomorphism that pointwise fixes A.

We will be mostly interested in classes of tuples of partial automorphisms of structures 
coming from a given class F . Formally, for n ≥ 1, denote

Fn = {(A, p1, . . . , pn) : A ∈ F , pi is a partial automorphism of A, i ≤ n}.

Often, we will think of elements of Fn simply as tuples of partial automorphisms. 
Then (p1, . . . , pn) is identified with (

⋃
i def(pi), p1, . . . , pn). A map φ : (A, p1, . . . , pn) →

(B, q1, . . . , qn) will be called an embedding if it is an embedding of A into B, and 
φ ◦ pi = qi ◦ φ for i ≤ n. Using this notion of embedding, we can also define prop-
erties JEP, AP, CAP, and WAP for classes Fn. Then we have:

Theorem 2.1 (Kechris-Rosendal [8]). Let F be a Fraïssé class, and let M be the Fraïssé 
limit of F .

(1) There exists a dense diagonal n-conjugacy class in Aut(M) iff Fn has JEP,
(2) there exists a comeager diagonal n-conjugacy class in Aut(M) iff Fn has JEP and 

WAP.

In particular, it follows that if Fn has JEP but no WAP, then Aut(M) has all n-
dimensional diagonal conjugacy classes meager.

Let Fn = Fn(s1, . . . , sn) denote the free group on n generators s1, . . . , sn. For a word 
w ∈ Fn, and an n-tuple f̄ = (f1, . . . , fn) in a group G, the evaluation w(f̄) denotes 
the element of G obtained from w by substituting fi for si, and performing the group 
operations on the resulting sequence. By a word, we will always mean a reduced word.

3. The one-dimensional case. Conjugacy classes

3.1. A condition that implies the failure of WAP

Recall that a family F of finite structures in a given signature has the Hrushovski 
property if for every n ∈ N, A ∈ F and a tuple (f1, . . . , fn) of partial automorphisms of A, 
there exists B ∈ F such that A ⊆ B, and every fi can be extended to an automorphism 
of B. We say that F has the n-Hrushovski property if the above holds for a given n.

In [10, Theorem 4.7], we proved the following trichotomy.

Theorem 3.1. Let M be a Fraïssé limit of a Fraïssé family F such that algebraic closures 
of finite subsets of M are finite. Then one of the following holds:

(1) F has the Hrushovski property,
(2) F does not have the 1-Hrushovski property,
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(3) there exists n such that none of n-dimensional topological similarity classes in 
Aut(M) is comeager. In particular, Aut(M) does not have ample generics.

It is well known that if a Fraïssé class F has the Hrushovski property, and sufficiently 
free amalgamation, then the automorphism group Aut(M) of its limit M has ample 
generics. By the above trichotomy, if F does not have the Hrushovski property, ample 
generics may be present in Aut(M) only if F does not even have the 1-Hrushovski 
property – which is true, in particular, for order classes. In this section, we prove (in 
Theorem 3.5) that such situations always presuppose a very rigid form of amalgamation 
in F . In order to specify what ‘rigid’ is about in this context, let us introduce two 
definitions that capture what ‘flexible’ amalgamation means for us.

In [14], Panagiotopolus studies extensions of automorphisms of generic substructures 
of a given structure. He introduces the notion of splitting in a Fraïssé class F . An element 
C ∈ F splits F if for every D ∈ F with C ⊆ D there exist D1, D2 ∈ F with D � D1, D2, 
and a bijection f : D1 → D2 such that

(1) f pointwise fixes D,
(2) f � (D1 \ C) is an isomorphism between D1 \ C and D2 \ C,
(3) f is not an isomorphism between D1 and D2.

Analogously, we will say that C ∈ F strongly splits F if for all D, D1 ∈ F with 
C ⊆ D � D1 there exists D2 ∈ F with D � D2, and a bijection f : D1 → D2 such that 
Conditions (1)-(3) above hold. We will say that F strongly splits if there exists C ∈ F
that strongly splits F , and that F always strongly splits if every C ∈ F strongly splits 
F .

We can think of C in the above definitions as one ‘ear’ of an amalgamation diagram 
U � V, W , i.e., C = V \ U and D = V . Then C strongly splits if for any other ‘ear’ 
W \ U (i.e., D1 \D), there are at least two non-equivalent ways in which we can define 
relations involving elements from the ‘ears’ V \ U and W \ U to form an amalgam of V
and W over U : one represented by D1 (where W = D1 \C), the other one by D2 (where 
D2 \ C is an isomorphic copy of W ).

In particular, the property of always strong splitting can be also expressed as a variant 
of the amalgamation property: F always strongly splits if amalgamation in F is not too 
rigid, that is, if there is always more than one way of amalgamating structures. To be 
more precise, fix C, D and D1 as above, and think of D1 as an amalgam of D and D1 \C
over D\C. Then any other non-isomorphic amalgam with the same underlying sets gives 
a required D2. In other words, a class F always strongly splits if for any A, U, V ∈ F
with A < U, V there exist two non-isomorphic amalgams W1, W2 of U and V over A, 
with U ∪V as the underlying set, and such that U and V embed in both W1 and W2 by 
the identity mapping.

Proving the next two lemmas is straightforward, and left to the reader.
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Lemma 3.2. If F is a full order expansion of a class that (always) strongly splits, then 
F also (always) strongly splits.

Lemma 3.3. Let p be a partial automorphism of a structure A, and let x ∈ rng(p) \
dom(p). Suppose that y, y′ ∈ A are such that p ∪ (x, y) is a partial automorphism, and 
qftpA(y/rng(p)) = qftpA(y′/rng(p)). Then p ∪(x, y′) is also a partial automorphism of A.

Lemma 3.4. Let F be a full order expansion with SAP. Then for every p ∈ F1, there 
exists q ∈ F1 extending p such that for every r ∈ F1 extending q, distinct orbits of p are 
contained in distinct orbits of r.

Proof. Fix p ∈ F1, and let O0, . . . , On be orbits of p. Fix i < j ≤ n, and suppose that 
there exists an extension q′ of p such that Oi and Oj are in the same orbit of q′. Then 
there must exist a partial automorphism q′′ extending p, and x, y ∈ rng(q′′)�dom(q′′), 
x in the orbit of q′′ determined by Oi, y in the orbit of q′′ determined by Oj , and we 
can extend q′′ by putting q′′(x) = y or (q′′)−1(x) = y. Without loss of generality, we can 
assume that x < y, and q′′ ∪ (x, y) extends q′′. Since F is a full order expansion with 
SAP, there exists C ∈ F with def(q′′) ⊆ C, and y′ ∈ C \ def(q′′) with y′ > y, and such 
that qftpC(y/rng(q′′)) = qftpC(y′/rng(q′′)). But then, by Lemma 3.3, q = q′′ ∪ (x, y′)
also extends q′′, and x < y < q(x). Clearly, Oi and Oj stay distinct in any extension of 
q. By iterating this construction, we can find q that works for all i < j ≤ n. �
Theorem 3.5. Let F be a Fraïssé class. Suppose that

(1) F does not have the 1-Hrushovski property, and it always strongly splits, or
(2) F is a full order expansion with SAP, and it strongly splits.

Then F1 has no WAP.

Proof. Assume that Condition (1) holds. Fix p ∈ F1 witnessing that F does not have 
the 1-Hrushovski property. We show that p also witnesses that F1 does not have WAP.

Fix q ∈ F1 that extends p. Clearly, there must exist an orbit O of q intersecting 
dom(p) that is non-cyclic – otherwise the union of such orbits would be a structure in F
invariant under q. Let O = {o0, . . . , on} with q(oi) = oi+1 for i < n. As O is not cyclic, q
is not defined on on. Fix y0 /∈ def(q) such that q0 = q∪(on, y0) is a partial automorphism 
of D1 = def(q) ∪ {y0}. Since F always strongly splits, by putting C = dom(q) \ rng(q)
(note that o0 ∈ C, so C �= ∅), D = def(q) (and D1 = def(q) ∪ {y0}), we can find y1 such 
that D2 = def(q) ∪ {y1} witnesses that C strongly splits. However, this means that

qftpC(y0/rng(q)) = qftpC(y1/rng(q)) (1)

but
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qftpC(y0/(def(q))) �= qftpC(y1/(def(q))). (2)

Then (1) together with Lemma 3.3 implies that q1 = q∪(on, y1) is also a partial automor-
phism. On the other hand, for every r ∈ F1 such that q0 and q1 can be embedded into r by 
embeddings e0 and e1, respectively, that agree on def(q), we must have e0(y0) = e1(y1), 
and this is impossible because of (2). Moreover, the same argument can be applied to 
any extension of p, so, in fact, if e0, e1 agreed on def(p), they would agree on def(q) as 
well. Thus, q0, q1 cannot be amalgamated over p. As q was arbitrary, p witnesses that 
F1 does not have WAP.

Assume now that Condition (2) holds. Fix A ∈ F witnessing that F strongly splits. 
Fix p ∈ F1 such that A = dom(p) \ rng(p) (this can be easily done using the assumption 
that F is a full order expansion with SAP), and extend p to a partial automorphism q
as in Lemma 3.4. Then for every extension r ∈ F1 of q, there exists A′ ⊆ dom(r) \ rng(r)
that is isomorphic with A, and so A′ also witnesses that F strongly splits. Now we 
proceed as in the proof of (1). Fix a (non-cyclic) orbit O = {o0, . . . , on} of r intersecting 
dom(p), find y0 such that r0 = r∪{(on, y0)} is a partial automorphism, and put C = A′, 
D = def(r), D1 = def(r) ∪ {y0} to obtain y1 such that r0 and r1 = r ∪ (on, y1) cannot 
be amalgamated over p. �
Proposition 3.6. The classes of ordered graphs, and ordered tournaments always strongly 
split.

Proof. Let F be either the class of ordered graphs or ordered tournaments. Fix 
C, D, D1 ∈ F with C ⊆ D � D1. Fix c ∈ C and d1 ∈ D1 \ D. For graphs, define 
D2 to be the graph that differs from D1 only in that {c, d1} is an edge in D2 if and only 
if {c, d1} is not an edge in D1. Similarly, for ordered tournaments, define D2 to be the 
ordered tournament that differs from D1 only in that (d1, c) is an arrow in D2 if and 
only if (c, d1) is an arrow in D1. �
Corollary 3.7.

(1) The class of partial automorphisms of finite ordered tournaments has no WAP.
(2) (Slutsky) The class of partial automorphisms of finite ordered graphs has no WAP.

Proof. Finite ordered graphs and finite ordered tournaments are full order expansions 
with SAP. By Proposition 3.6, both of them always strongly split, so, by Theorem 3.5, 
they have no WAP. �

On the other hand, it is easy to see that both of these classes have JEP, which means 
(by Theorem 2.1), that automorphism groups of the universal ordered tournament and 
the universal ordered graph (i.e., Fraïssé limits of the above classes) have all conjugacy 
classes meager.
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Slutsky [16] also proved that the automorphism group Aut(QU≺) of the ordered 
rational Urysohn space QU≺, i.e., the full order expansion of finite ordered metric spaces 
with rational distances, has meager conjugacy classes. One of the ingredients of his 
proof is a deep theorem of Solecki saying that the class of finite metric spaces has the 
Hrushovski property. Theorem 3.5 cannot be used to recover Slutsky’s result because 
the class of ordered finite metric spaces with rational distances does not strongly split. 
However, a similar approach gives rise to a more elementary argument. We sketch it 
below. Note that (QU≺)1 has JEP, therefore it will suffice to prove that it has no WAP.

Theorem 3.8 (Slutsky). The class (QU≺)1 has no WAP.

Proof. First fix A ∈ QU , and x ∈ A. Without loss of generality, we can assume that 
A ⊆ QU. Suppose that y ∈ QU is such that the type qftpA(y/(A \ {x})) determines 
d(x, y). By the triangle inequality, this is possible only when there are a, a′ ∈ A such 
that

d(y, x) = d(y, a) + d(a, x),

d(a′, x) = d(a′, y) + d(y, x).

But then, in particular, d(x, y) ≤ diam(A). Thus, if for some partial automorphism p
there was an automorphism q extending p such that any two extensions r0, r1 of q could 
be amalgamated over p, then for every automorphism φ of QU≺ extending q, orbits of 
φ determined by p would be bounded by diam(def(q)). But it is well known (see, e.g., 
Section 3.1 in [3]) that every partial isometry q of QU with no cyclic orbits can be 
extended to an isometry of QU with unbounded orbits. And since QU≺ is a full order 
expansion of QU , every partial automorphism of a finite subspace of UQ≺ also can be 
extended to an automorphism of QU≺ with unbounded orbits. �
Remark 3.9. Using a similar approach, and a construction as in the proof of Lemma 5.6, 
one can also prove that the class of partial automorphisms of ordered Kn-free graphs 
does not have WAP, for every n ≥ 3. It is not hard to see that this class does not strongly 
split.

It is known that the class of partial automorphisms of finite linear orderings has JEP 
and WAP. In the next two sections, we present two others such order classes: ordered 
boron trees, and ordered posets.

3.2. Ordered boron trees - a comeager conjugacy class

In this section, we prove that the automorphism group of the universal ordered 
boron tree has a comeager conjugacy class. The class of boron trees was introduced 
by Cameron [1].



76 A. Kwiatkowska, M. Malicki / Journal of Algebra 557 (2020) 67–96
Fig. 1. Expanding (A = {a, b, c, d, e}, RA) by SA and <A
lex.

Let T denote the class of all graph-theoretic trees such that the valency of each 
vertex is equal to 1 or 3. If T ∈ T and a, b, c, d ∈ T , we let ab|cd iff arcs ab and cd do 
not intersect. To each T ∈ T we assign a structure (B(T ), RB(T )) such that B(T ) is the 
set of endpoints of T , and RB(T )(a, b, c, d) iff a, b, c, d are pairwise different and ab|cd. 
Structures (B(T ), RB(T )), together with the one point structure, we call boron trees, and 
we denote the class of all these structures by B. The universal boron tree is the Fraïssé 
limit of B.

Let 2<n denote the set of binary sequences of the length < n, including the empty 
sequence. Let T ′

n denote the binary tree, that is, a graph with the set of vertices equal to 
2<n and edges exactly between vertices s and si, i = 0, 1, s ∈ 2<n. Let Tn be the graph 
obtained by removing the vertex ∅ from T ′

n and replacing edges [∅, 0] and [∅, 1] by the 
edge [0, 1], and denote Bn = B(Tn). Let ≤n be the lexicographical order on Bn, i.e. we 
let s ≤n t iff s = t or s(i) < t(i), where i is the least such that s(i) �= t(i). For s ∈ 2<n

we define the height as the length of s, i.e. ht(s) = |s|. For a fixed n and s, t ∈ T ′
n, we 

let s < t if s is an initial segment of t, and let for s, t ∈ T ′
n the meet of s and t, denoted 

meet(s, t), be the least upper bound of s and t with respect to the partial order <. Let 
(A, RA) ∈ B and let φ : (A, RA) → (Bn, RBn) be an embedding (with respect to R, this 
is not necessarily a graph embedding). We let ≤A

lex to be the order inherited from ≤n

and define a ternary relation SA on A as follows:

SA(a, b, c) ⇐⇒ φ(a), φ(b) <n
lex φ(c) and ht(meet(φ(a), φ(b))) > ht(meet(φ(b), φ(c))).

There are multiple ways to expand an (A, RA) ∈ B by adding relations SA and <A
lex. 

Intuitively, the relation SA adds a root at an edge of the tree T such that B(T ) = A, 
viewed as a graph. We illustrate the construction of an expansion in Fig. 1. Structures 
(A, RA, SA, ≤A

lex), we call ordered boron trees, and we denote the class of all these struc-
tures by SB. The universal ordered boron tree is the Fraïssé limit of SB. From the work 
of Jasiński [6], it follows that the automorphism group of the universal ordered boron 
tree is extremely amenable.

Note that for a <lex b <lex c <lex d we have R(a, b, c, d) iff S(a, b, c) or (¬S(a, b, c)
and ¬S(b, c, d)). Therefore, we can recover R from S and <lex.

Theorem 3.10. The family SB1 has CAP.
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For A ∈ SB, denote by TA the binary tree such that A = B(TA). For every A there 
exists unique such a TA. The root of TA, denoted by ρA, is the <-least element of TA. 
By <A we denote the usual tree partial ordering of being an initial segment on elements 
of TA. In the sequel, the structure A in symbols ≤A

lex, <A, RA, and SA will be always 
clear from the context, so, in order to simplify notation, we will simply write ≤lex, <, 
R, and S, respectively.

Let (A, p) ∈ SB1. We say that a non-trivial orbit O = {a0, . . . , an} of p is increasing
if a0 <lex . . . <lex an; analogously, we define a decreasing orbit. Clearly, every orbit is 
either increasing, decreasing, or trivial. Note that, setting ti = meet(ai, ai+1), we either 
have t0 < t1 < t2 < . . . < tn−1 or tn−1 < . . . < t2 < t1 < t0. In the first case, we say 
that O is meet-increasing, and in the second that it is meet-decreasing. If (B, p) ∈ SB1
extends (A, p), then we will denote by OB the extension of O in B.

Let A = (A, p) ∈ SB1. We will call two orbits O = {a0, . . . , am} and P =
{b0, . . . , bn} of p intertwining if the ≤lex-intervals (min{a0, am}, max{a0, am})lex and 
(min{b0, bn}, max{b0, bn})lex intersect. Say that O is ≤lex-contained in P if (min{a0, am},
max{a0, am})lex is contained in (min{b0, bn}, max{b0, bn})lex. A point x ∈ A is meet-
locked by O if for every extension (B, q) of (A, p) such that a−1 = q−1(a0) and 
am+1 = q(am) are defined, denoting ti = meet(ai, ai+1), we have the following. (1) If O
is increasing and meet-increasing, then am+1 <lex x and t−1 < meet(x, am+1) < tm, (2) 
if O is decreasing and meet-increasing, then x <lex am+1 and t−1 < meet(x, am+1) < tm, 
(3) if O is increasing and meet-decreasing, then x <lex a−1 and t−1 < meet(x, a−1) < tm, 
(4) if O is decreasing and meet-decreasing, then a−1 <lex x and t−1 < meet(x, a−1) < tm. 
Two orbits O and P are meet-intertwining if there is x ∈ O meet-locked by P or there is 
x ∈ P meet-locked by O. Note that if O and P are meet-intertwining then one of them 
is increasing and the other one is decreasing. Moreover, either both are meet-increasing 
or both are meet-decreasing.

We call a cone any set Conet = {s ∈ A : t ≤ s}, for some t ∈ TA. The root of the 
orbit O is the meet tO ∈ TA of all points a0, . . . , an (which, in fact is the meet of two 
first elements in the orbit, if the orbit is meet-increasing, or the last two, if it is meet-
decreasing), and the cone ConeO of O is defined as ConetO . Note that any two cones are 
either disjoint or one is contained in the other. Denote by Cone(p) the collection of all 
cones of orbits of p.

For A ∈ SB, by a segment we mean an ordered pair (x, y) with x, y ∈ TA such that 
x < y and there is no z ∈ TA satisfying x < z < y. For A, E ∈ SB and a segment (x, y)
in A, let K = A(x, y, E, ∅) ∈ SB be the result of attaching E to A on (x, y) on the left. 
Specifically, think that elements of each of TA and TE are binary sequences, in particular, 
if x = s and y = t, then t = s0 or t = s1. We let TK to consist of the following binary 
sequences. If r ∈ TA does not extend properly x = s, we let r ∈ TK . We let t ∈ TK . If 
tr ∈ TA for some r, we let t1r ∈ TK and if r ∈ TE , let t0r ∈ TK . This defines K ∈ SB. 
Analogously, define K = A(x, y, ∅, F ) ∈ SB as the result of attaching E to A on (x, y)
on the right. More generally, for A ∈ SB, E = (E1, . . . , Em) and F = (F1, . . . , Fn) and 
a segment (x, y) in A, we define K = A(x, y, E , F) ∈ SB as the result of attaching 
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E1, . . . , Em to the segment (x, y) on the left in a way that E1 <lex . . . <lex Em and 
attaching F1, . . . , Fn to the segment (x, y) on the right in a way that F1 <lex . . . <lex Fn

and the root of each Ei is below the root of each Fj. In that case, we may also write 
(x, y, E , F) for {z ∈ TK : x < meet(y, z) < y}.

We say that (A, p) ∈ SB1 is in a simple normal form if (1) there are or-
bits P = {a0, . . . , an} <lex Q = {b0, . . . , bn}, n ≥ 2, of p, such that for every 
i = 0, . . . , n − 1, meet(ai, ai+1) < meet(bi, bi+1) and for every i = 0, . . . , n − 2, 
meet(bi, bi+1) < meet(ai+1, ai+2), (2) any non-trivial orbit O = {c0, . . . , cl} in A is 
≤lex-contained in P or in Q and it holds l = n − 1, (3) for any x with p(x) = x it holds 
max{a0, an} <lex x <lex min{b0, bn}, where min and max are taken with respect to the 
<lex order.

We say that (A, p) is in a normal form if (1) A = def(p), and any non-constant orbit 
of p has at least 3 elements, (2) p cannot be extended to a partial automorphism q
such that some two orbits that did not intertwine (or meet-intertwine) in p now they 
intertwine (or meet-intertwine, respectively) or they form one orbit in q, and (3) there 
is a partition PA of A into singletons {x} and closed ≤lex-intervals that will be grouped 
into pairs ([a, b], [c, d]) so that if {x} ∈ PA, then p(x) = x, and if ([a, b], [c, d]) ∈ PA, then 
the structure p � ([a, b] ∪ [c, d]) is in a simple normal form without a non-trivial orbit, 
witnessed by some P = {a0, . . . , an} and Q = {b0, . . . , bn} with a = a0, b = an, c = bn, 
d = b0 (or b = a0, a = an, d = bn, c = b0). We will sometimes identify ([a, b], [c, d]) ∈ PA

with the set [a, b] ∪ [c, d].

Lemma 3.11. Any (A, p) ∈ SB1 can be extended to (A′, p′) ∈ SB1, which is in a normal 
form.

Proof. Conditions (1) and (2) can be easily satisfied. To have (3), consider the equiv-
alence relation on orbits: O and P are equivalent iff there is a sequence of orbits 
O = O1, . . . , P = On such that for each i, Oi and Oi+1 intertwine or meet intertwine. 
An equivalence class E either is a singleton containing a constant orbit, or it does not 
contain a constant orbit. In the second case, after extending A if necessary, the class E
contains two meet-intertwining orbits P0 <lex Q0 (there are usually many such choices). 
Extend P0 to P and Q0 to Q so that every orbit in E is contained in P or in Q. Finally, 
extend the remaining orbits in E so that (2) in the definition of simple normal form is 
satisfied. We do the induction on the number of equivalence classes E. �

Let (A, p) ∈ SB1 be in a normal form and let X ∈ PA. Then (X, pX) ∈ SB1, where 
pX = p � X, is in a simple normal form. The tree TX can be naturally identified with 
a subtree of TA (in fact, TX is the closure of X in TA under taking the meet), let ρX
be the root of TX , and let ConeX = ConeρX

. To X as above we associate X∗ ∈ SB, 
and (X∗, p∗X) ∈ SB1 in a simple normal form as follows. If X = {x}, let p∗(x) = x. 
Otherwise, if X = ([a, b], [c, d]), we let

X∗ = X ∪ {z = ConeY : z is maximal in ({ConeZ � ConeX : Z ∈ PA},⊆) }
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and we let p∗X to be the extension of pX that is equal to the identity on X∗ \ X. The 
set of all X∗ obtained in this way we denote by (PA)∗. Definitions introduced above are 
illustrated in Example 3.12.

Proof of Theorem 3.10. Let (A, p) ∈ SB1 and consider extensions (B, q), (C, r) ∈ SB1
of (A, p). By φ, ψ, we denote the identity embeddings of (A, p) into (B, q), (C, r), respec-
tively. We show that if (A, p) is in a normal form, then we can amalgamate (B, q) and 
(C, r) over (A, p). Since the family of all elements in a normal form is cofinal in SB1, 
this will finish the proof.

(1) Suppose that (A, p) is in a simple normal form.
Let P = {a0, . . . , an} and Q = {b0, . . . , bn} be as in the definition of the simple normal 

form. Without loss of generality, P is increasing, and hence Q is decreasing. Set ti =
meet(ai, ai+1) and let si = meet(bi, bi+1). Note that all trees TXi

with Xi = [ai, ai+1]lex
are isomorphic, and all trees TYi

with Yi = [bi+1, bi]lex are isomorphic as well.
Pick some N such that each of q−N (a0), qN (an), q−N (b0), qN (bn), r−N (a0), rN (an), 

r−N (b0), rN (bn) is undefined. Let φ : TA → TB and ψ : TA → TC be the unique meet-
preserving extensions of φ and ψ.

For every k, let (Ak, pk) be defined as follows. Take an extension p′ of p such that for 
every x ∈ [a0, a1)lex ∪ (b1, b0]lex, the values qn+k(x) and q−k(x) are defined and every 
orbit in p′ extends an orbit in p. Then let

pk = p′ � [a−k, an+k]lex ∪ {(c, c) : c ∈ A, an <lex c <lex bn} ∪ p′ � [b−k, bn+k]lex,

where ai = qi(a0) and bi = qi(b0), and let Ak = def(pk). Note that p = p0 and that 
each pk is in a simple normal form as witnessed by Pk = {a−k, . . . , an+k} and Qk =
{b−k, . . . , bn+k}. Consider D0 = AN , s0 = pN for N as above.

Let

AB = {y ∈ B : (∃x ∈ A, k ∈ Z) qk(x) = y},

and define AC similarly. Let α : AB → D0 and β : AC → D0 be the unique embeddings 
that agree on A. Denote by ᾱ : TAB

→ TD0 and β̄ : TAC
→ TD0 the tree embeddings 

corresponding to α and β. We clearly have ρB ≤ φ(ρA) or ρC ≤ ψ(ρA), where ρA, ρB , ρC
are roots of TA, TB, TC , and both inequalities can be strict. Then, to obtain the required 
amalgam (D, s), first consider T̂D0 obtained from TD0 by adding a new point v, which 
satisfies v < ρD0 , where ρD0 is the root of TD0 . Next, fix a segment (x, y) in T̂D0 , and 
let (xB , yB) = (ᾱ−1(x), ᾱ−1(y)), if defined, and (xC , yC) = (β̄−1(x), β̄−1(y)), if defined. 
Suppose that EB, EC , FB , FC are such that {z ∈ TB : xB < meet(yB , z) < yB} can 
be identified with (xB, yB , EB , FB) and {z ∈ TC : xC < meet(yC , z) < yC} can be 
identified with (xC , yC , EC , FC). Then replace (x, y) in T̂D0 by (x, y, (EBEC), (FCFB)), 
where (EBEC) and (FCFB) are concatenations of sequences EB with EC and FC with 
FB , respectively. We additionally require that the root of every TEC is above the root 
i
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of every TFB
j

and the root of every TFC
i

is above the root of every TEB
j

, where EC
i ∈ EC , 

etc. The obtained tree T defines D ∈ SB such that TD = T , and it defines embeddings 
α : B → D and β : C → D of structures in SB. We let s(a) = b iff α−1(a), α−1(b) are 
defined and q(α−1(a)) = α−1(b), or β−1(a), β−1(b) are defined and r(β−1(a)) = β−1(b), 
or pN (a) = b. For every segment (x, y) in T̂D0 and z ∈ TD, x < z < y, we will call the 
subtree Conez of TD a triangle (coming from B or from C).

We have to show that s is a partial automorphism of D. Clearly <lex is preserved. 
Let s̄0 be the meet-preserving extension of s0 to T̂D0 . Then, clearly, a triangle attached 
to a segment (x, y) is mapped to a triangle attached to a segment (s̄0(x), ̄s0(y)). The key 
observation is that for every k, and in particular for k = N , and every X ⊆ dom(pk), 
the tree TX are isomorphic with the tree Ts0(X) via the tree isomorphism extending 
the bijection x �→ s0(x), x ∈ X. Moreover, for a, b ∈ D that lie in different triangles, 
meet(a, b) is equal to the meet of the roots of the triangles to which a and b belong. Note 
also that if ρ ≤ ρ′ are roots of two triangles then s̄(ρ) ≤ s̄(ρ′). Therefore, if x, y, z ∈ D

lie in different triangles, we have S(x, y, z) iff S(s(x), s(y), s(z)). Clearly, if all x, y, z lie 
in the same triangle, then the conclusion holds. If x ≤lex y ≤lex z and x and y lie in 
a triangle T and z lies in a different triangle S, if ρT and ρS denote roots of S and T , 
then S(x, y, z) holds iff ρS < ρT and S(s(x), s(y), s(z)) holds iff s̄0(ρS) < s̄0(ρT ), hence 
S(x, y, z) iff S(s(x), s(y), s(z)). The case when y and z lies in the same triangle and x
lies in a different one is analogous.

(2) Suppose that (A, p) is in a normal form.
Without loss of generality, (B, q) and (C, r) are also in the normal form. Let P̂B be 

the partition of B into points and pairs of closed ≤lex-intervals, which is a coarsening 
of PB , and has the following property: for every ([a, b], [c, d]) ∈ P̂B there is exactly one 
([a0, b0], [c0, d0]) ∈ PA such that [a0, b0] ⊆ [a, b] and [c0, d0] ⊆ [c, d]. We define (PA)∗ out 
of PA, and the corresponding partial automorphisms p∗X , in a way explained earlier. We 
define (P̂B)∗ and (P̂C)∗ similarly, but with respect to P̂B and P̂C . Let

X∗ = X ∪ {z = ConeY : z is maximal in ({ConeZ � ConeX : Z ∈ P̂B},⊆) },

and we let p∗X to be the extension of pX that is equal to the identity on X∗\X. The set of 
all X∗ obtained in this way we denote by (P̂B)∗. We similarly define (P̂C)∗. For a given 
X ∈ PA, let XB ∈ P̂B and XC ∈ P̂C be the unique sets containing X. Amalgamate 
(X∗

B , q
∗
XB

) and (X∗
C , r

∗
XC

) over (X∗, p∗X), as we did in (1). We obtain DX ∈ SB, a 
partial automorphism sX of DX , and a pair of embeddings αX : X∗

B → (DX , sX) and 
βX : X∗

C → (DX , sX) such that αX � X∗ = βX � X∗. Let ρX be the root of TX , and 
let ρX1 , . . . , ρXlX be an enumeration of all z = ConeY from the definition of X∗. To the 
tuple (X∗, ρX , ρX1 , . . . , ρXlX ) we associate the tuple (DX , ρDX

, ρDX
1 , . . . , ρDX

lX
), where ρDX

is the root of TDX
, and ρDX

i = αX(ρXi ) = βX(ρXi ) for each i. By the definition of (PA)∗, 
the tree TA is the disjoint union of {TX∗ : X ∈ PA} after the identification of each ρXi
with a ρY for some Y ∈ (PA). Finally, let TD be obtained by taking the disjoint union of 
{TDX

: X ∈ PA}, and then identifying a ρDX
i with a ρDY

if and only if ρXi was identified 
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Fig. 2. A structure A.

Fig. 3. From left to right: X∗, Y ∗, Z∗.

with a ρY , X, Y ∈ PA. This TD defines D ∈ SB and let s =
⋃

X∈PA sX � X. Then 
(D, s) ∈ SB1. Clearly, s preserves <lex. To show that it preserves S, observe first the 
following.

(i) If x ∈ DX and y ∈ DY with X �= Y , and ρDX
and ρDY

are incomparable in 
(TD, ≤), then meet(x, y) = meet(ρDX

, ρDY
) = meet(s(x), s(y)).

(ii) If x ∈ DX and y ∈ DY with X �= Y and ρDX
≤ ρDY

, then meet(x, y) =
meet(x, ρDY

) and meet(s(x), s(y)) = meet(s(x), ρDY
). Moreover, in that case, if y′ ∈ DY , 

then meet(x, y), meet(x, y′) < meet(y, y′).
Let (x, y, z) be a <lex ordered triple of points in D. There are several cases to con-

sider. Clearly, if there is some X ∈ PA such that x, y, z ∈ DX , then S(x, y, x) iff 
S(s(x), s(y), s(z)). If x, y ∈ DX , z ∈ DY with X �= Y and ρDX

and ρDY
are incom-

parable, then both S(x, y, z) and S(s(x), s(y), s(z)) hold. Similarly, if x ∈ DX and 
y, z ∈ DY with X �= Y and ρDX

and ρDY
are incomparable then none of S(x, y, z), 

S(s(x), s(y), s(z)) holds. In the case when ρDX
≤ ρDY

, two of the x, y, z belong to DX

and the remaining point belongs to DY , X �= Y , then using (ii) we get that s preserves 
S on (x, y, z) because pX preserves S (the point belonging to DY we can replace with an 
appropriate ρDX

i ). If two of the x, y, z belong to DY and the remaining point belongs to 
DX , use the second sentence of (ii) to get the conclusion. Finally, suppose that x ∈ DX , 
y ∈ DY , z ∈ DZ with X, Y, Z pairwise different. There are a few cases to consider, ρDX

and ρDY
can be comparable or not, and the same for the other two pairs. Each time, 

reasoning similarly as above and using (i) and (ii), we get the required conclusion. �
Example 3.12. Let (A, p) ∈ SB1 be as in Fig. 2 with p(a0) = a1, p(a1) = a2, p(a′0) =
a′1, p(a′1) = a′2, etc. Then PA = {X = ([a0, a2], [a′2, a′0]), Y = ([b0, b3], [b′3, b′0]), Z =
([d0, d2], [d′2, d′0])}. Fig. 3 illustrates X∗, Y ∗, Z∗, where p∗Z(x) = x and p∗Z(y) = y.
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3.3. Ordered posets - a comeager conjugacy class

In this part, we will show that the automorphism group of the universal ordered poset 
has a comeager conjugacy class.

A poset is a shortcut for a partially ordered set. By an ordered poset, we mean a 
structure of the form (P, ≺, <), where (P, ≺) is a finite poset, and < is a linear ordering 
of P extending ≺. We denote the class of all finite ordered posets by P. Then the universal 
ordered poset is the Fraïssé limit of P. Kuske-Truss [12] showed that the class of partial 
automorphisms of finite posets has CAP, and hence the corresponding automorphism 
group has a comeager conjugacy class. The same turns out to be true for the class P1.

We will see that the proof of Kuske-Truss generalizes to our context.

Theorem 3.13. The class P1 has CAP.

Below, we will always use the symbol ≺ for the poset relation, and < for the linear 
order. For A = (A, p) ∈ P1, and an orbit O = {a0, a1, . . . , an} of p, we say that O
is <-increasing if a0 < . . . < an, otherwise, it is <-decreasing. As with boron trees, if 
(B, q) ∈ P1 extends (A, p), the orbit of q extending O will be denoted by OB .

We say that a pair of orbits (O, N) is determined if for any extensions (B, q), (C, r) of 
(A, p), such that for every k ∈ Z and x ∈ O∪N we have that qk(x) is defined iff rk(x) is 
defined, the following holds: (OB∪NB , q � (OB∪NB)) and (OC ∪NC , r � (OC ∪NC)) are 
isomorphic via a mapping which is the identity on O ∪N . Clearly, (O, N) is determined 
iff (N, O) is determined. An orbit O is determined if the pair (O, O) is determined.

Let (A, p) be given. Let O be an orbit in (A, p) and x ∈ O. Denote

t(O, x) = {n ∈ Z : pn(x) ∈ O and x ≺ pn(x)}.

Note that if O is <-increasing then t(O, x) consists of non-negative integers and if O is 
<-decreasing then t(O, x) consists of non-positive integers. Moreover, if n ∈ t(O, x) then 
by the transitivity of ≺, for every positive integer k, we have that if pkn(x) ∈ O then 
kn ∈ t(O, x). More generally, if (O, N) are orbits in (A, p) and x ∈ O, y ∈ N , then let

t(O,N, x, y) = {n ∈ Z : pn(y) ∈ N and x ≺ pn(y)}.

We say that (O, N, x, y) is positive determined if orbits O and N are determined and 
for any extensions (B, q), (C, r) of (A, p), such that for every k ∈ Z we have that qk(x)
is defined iff rk(x) is defined and qk(y) is defined iff rk(y) is defined, we have that 
t(OB , NB , x, y) ∩N = t(OC , NC , x, y) ∩N. We similarly define when (O, N, x, y) is negative 
determined. We let (O, N, x, y) to be determined iff (O, N, x, y) is both positive and 
negative determined. The (O, x) is determined if for any extensions (B, q), (C, r) of (A, p), 
such that for every k ∈ Z we have that qk(x) is defined iff rk(x) is defined, it holds 
t(OB , x) = t(OC , x). Note that a pair of orbits (O, N) is determined iff for every x ∈ O, 
y ∈ N , the (O, N, x, y) and (N, O, y, x) are determined iff for some x ∈ O, y ∈ N , the 
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(O, N, x, y) and (N, O, y, x) are determined. Similarly, O is determined iff for some/every 
x ∈ O, the (O, x) is determined.

An orbit O will be called an antichain if for every extension (B, q) of (A, p) and for 
every/some x ∈ O, we have t(OB, x) = ∅. An X ⊂ Z is called positive eventually periodic
if there exist N, k ≥ 0 such that X ∩ [N, ∞) = {N + kn : n ≥ 0}. The number k we will 
call the positive period of X. We similarly define a negative eventually periodic set and 
the negative period. We call a set eventually periodic if it is both positive and negative 
periodic. We will call two orbits O = {a0, . . . , am} and N = {b0, . . . , bn} of p inter-
twining if the <-intervals (min{a0, am}, max{a0, am})< and (min{b0, bn}, max{b0, bn})<
intersect.

Proof of Theorem 3.13. The proof is similar to the proof of Kuske-Truss [12].
Step 1. Every (A, p) ∈ P1 can be extended to some (B, q) ∈ P1, in which every orbit 

is determined. Moreover, we can do it so that we do not add new orbits.
Take an orbit O and x ∈ O, and without loss of generality suppose that O is <-

increasing. If O is an antichain then it is already determined. Otherwise, let (perhaps 
after passing to an extension) k ∈ t(O, x). Now for every positive integer n, we have 
that if pkn(x) ∈ O then kn ∈ t(O, x). Using this remark, we obtain (B, q), an extension 
of (A, p), such that for every i = 1, . . . , k − 1, if there is an extension (B1, q1) of (B, q)
with nik + i ∈ t(OB1 , x), for some ni ≥ 0, then, in fact, for every extension (B2, q2) of 
(B, q), it holds nik+ i ∈ t(OB2 , x), as long as nik+ i ∈ OB2 . To obtain such a (B, q), we 
construct a sequence of extensions (A1, p1), . . . , (Ak−1, pk−1) of (A, p) such that (Ai, pi)
has the required property for i, and we take (B, q) = (Ak−1, pk−1). Then clearly OB is 
determined.

Step 2. Every (B, q) ∈ P1 can be extended to some (D, s) ∈ P1, in which every pair of 
orbits is determined. For this we find a (D, s) such that for every pair of orbits (O, N), 
x ∈ O, y ∈ N , there is an almost periodic set X ⊆ Z such that for every extension 
(D1, s1) of (D, s), if m1, m2 are the least such that s1

m1(y) and s1
−m2(y) are undefined, 

we have X ∩ (−m1, m2) = t(OD, x).
Step 2a. The (B, q) obtained in Step 1 can be extended to some (C, r) ∈ P1 such that 

all pairs of orbits in which both orbits are antichains, are determined. Moreover, we can 
do it in a way that for each such a pair we add four new orbits, none of which is an 
antichain.

We fix a pair (O, N) of such orbits and let x ∈ O. As in Kuske-Truss, after possibly 
extending N , find y ∈ N and 0 < n with qn(y) ∈ rng(q) \dom(q) such that for every z ∈
def(q) \N , it holds: z ≺ y iff z ≺ qn(y), y ≺ z iff qn(y) ≺ z, z is incomparable with y iff z is 
incomparable with qn(y). For this pick some y0 ∈ N and, possibly extending q, using the 
pigeonhole principle, choose k1 < k2 sufficiently large so that qk2(y0) ∈ rng(q) \ dom(q), 
z ≺ qk1(y0) iff z ≺ qk2(y0), qk1(y0) ≺ z iff qk2(y0) ≺ z, z is incomparable with qk1(y0) iff 
z is incomparable with qk2(y0). Take y = qk1(y0) and n = k2 − k1.

Let us proceed to the construction. Take {ai : 0 ≤ i ≤ n} and {bi : 0 ≤ i ≤ n} disjoint 
from each other and from def(q) and such that for all 0 ≤ i < j ≤ n, z ∈ def(q) \N :
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(1) ai and aj are incomparable except for a0 ≺ an,
(2) bi and bj are incomparable except for bn ≺ b0,
(3) ai ≺ qi(y) ≺ bi,
(4) z ≺ bi iff z ≺ qi(y),
(5) ai ≺ z iff qi(y) ≺ z,
(6) ai ≺ bi, a0 ≺ bn, an ≺ b0,
(7) a0 < . . . < an < def(q) < bn < . . . < b0.

Denote the obtained structure by (B1, ≺, <). Let q1 extend q by q1(ai) = ai+1 and 
q1(bi+1) = bi, i = 0, . . . , n −1. It is straightforward to see that ≺ is transitive, < extends 
≺, p preserves ≺ and <. As in Kuske-Truss, we have that in any extension (B2, q2) of 
(B1, q1),

t(OB2 , NB2 , x, y) = {kn + i : k ∈ N, 0 ≤ i < n, x ≺ qi(y)} ∩B2,

hence (O, N, x, y) is positive determined. Indeed, let (B2, q2) be an extension of (B1, q1)
and denote X = {kn + i : k ∈ N, 0 ≤ i < n, x ≺ qi(y)} ∩ B2. Since a0 ≺ an and 
ai ≺ qi(y), we get t(OB2 , NB2 , x, y) ⊇ X. Since bn ≺ b0 and qi(y) ≺ bi, using (4), we get 
t(OB2 , NB2 , x, y) ⊆ X.

By considering (B1, q
−1
1 ) and repeating the argument above, we further extend (B1, q1)

to obtain (C, r) in which (O, N) is determined.
Step 2b. The (C, r) obtained in Step 2a can be extended to some (D, s) ∈ P1 such 

that all pairs of orbits such that at least one of them is not an antichain are determined. 
Moreover, we can do it in a way that we do not add new orbits.

We fix a pair (O, N) of such orbits and let x ∈ O and y ∈ N . If for every ex-
tension (C1, r1) of (C, r), t(O, N, x, y) = ∅ and t(N, O, y, x) = ∅, then (O, N) is al-
ready determined. Therefore, by passing to an extension if necessary, we assume that 
t(O, N, x, y) �= ∅ or t(N, O, y, x) �= ∅. Note that at least one of the sets t(O, N, x, y)
and t(N, O, y, x) is empty. Without loss of generality, let us assume that x ≺ y and 
t(N, O, y, x) = ∅.

If k ∈ t(O, x) and l ∈ t(N, y), then for every n1, n2 ≥ 0, if qkn1+ln2(y) ∈ N , then 
kn1 + ln2 ∈ t(O, N, x, y). Hence if there is a positive number k ∈ t(O, x) or a positive 
number l ∈ t(N, y), reasoning as in Step 1, we can find an extension in which (O, N, x, y)
is positive determined. Similarly, if there is a negative number k ∈ t(O, x) or a negative 
number l ∈ t(N, y), we can find an extension in which (O, N, x, y) is negative determined. 
Therefore, without loss of generality, what is left to be shown is the following. Suppose 
that O and N are <-increasing, at least one of them is not an antichain, and (O, N, x, y)
is positive determined. Then we can extend (C, r) to (C1, r1) so that (OC1 , NC1 , x, y) is 
negative determined.

Without loss of generality, O is not an antichain. Take some k such that x ≺ rk(x). 
Then, clearly, for every n > 0, it holds x ≺ rnk(x). Take an extension (C1, r1) such 
that for every 0 ≤ i < k either for some ni, we have r1−(nik+i)(y) ∈ C1 and x ≺
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r1
−(nik+i)(y) does not hold, or, for every extension (C2, r2) of (C1, r1) and every n > 0, 

x ≺ r1
−(nk+i)(y) holds. Then (OC1 , NC1 , x, y) is negative determined. Indeed, note that 

if i and n0 are such that x ≺ r1
−(n0k+i)(y) does not hold, then in every extension (C2, r2)

of (C1, r1) and n1 > n0, x ≺ r1
−(n1k+i)(y), does not hold either by the choice of k.

We apply this procedure to every pair of orbits such that at least one of them is not 
an antichain. The resulting extension, which we denote by (D, s), is as required.

We will show that P1 has CAP, i.e. we will show that for every (A0, p0) ∈ P1 there 
is (A, p) ∈ P1 extending (A0, p0) such that for any (B, q), (C, r) ∈ P1 extending (A, p)
there exists (D, s) ∈ P1, which is an amalgam of (B, q) and (C, r) over (A, p). For this 
fix (A0, p0) ∈ P1 and extend it to an (A, p) ∈ P1 such that any pair of orbits in A is 
determined, and there is no extension (A1, p1) of (A, p) in which some two orbits in A that 
did not intertwine, become one orbit or they intertwine in A1. Fix (B, q), (C, r) ∈ P1
extending (A, p). Without loss of generality, we have that A ⊆ dom(q) ∩ rng(q), and 
similarly, A ⊆ dom(r) ∩ rng(r), as well as that for every a ∈ A and n ∈ Z, qn(a) is 
defined iff rn(a) is defined.

Enumerate the set {b ∈ B : (∃a ∈ A, n ∈ Z) b = rn(a)} into a <-increasing sequence 
aB1 , a

B
2 , . . . , a

B
k , and similarly, enumerate the set {c ∈ C : (∃a ∈ A, n ∈ Z) c = rn(a)}

into aC1 , a
C
2 , . . . , a

C
k so that it is <-increasing. By the assumptions on A, for any a, b ∈ A

and m, n ∈ Z, if xB = qm(a), yB = qn(b), xC = rm(a), yC = qn(b) are defined, then 
xB < yB iff xC < yC . Denote Bi = {b ∈ B : aBi < b < aBi+1}, i = 1, . . . , k − 1, 
B0 = {b ∈ B : b < aB1 }, Bk = {b ∈ B : aBk < b}, and similarly define Ci’s.

We first amalgamate B and C over A in P. Let D be the disjoint union of B and C
with aBi and aCi identified. Set ai = aBi = aCi , and let

BD
0 < CD

0 < a1 < BD
1 < CD

1 < a2 < . . . < ak < BD
k < CD

k .

Denote by ≺B the partial ordering relation on B, by ≺C the partial ordering relation on 
C, and let ≺D be the transitive closure of ≺B ∪ ≺C . Then (D, ≺D) is a partial ordering 
such that the linear ordering <D extends ≺D, and so D is an amalgam of B and C
over A.

We finally let s(x) = y iff x = b1, y = b2 for some b1, b2 ∈ B and q(b1) = b2, or 
x = c1, y = c2 for some c1, c2 ∈ C and r(c1) = c2. This is a partial automorphism. In 
particular, if for some b ∈ B, c ∈ C, it holds b ≺D c and s(b), s(c) are defined, then there 
is a ∈ {a1, . . . , ak} such that b ≺B a and a ≺C c, or b ≺C a and a ≺B c. Without loss of 
generality, it holds b ≺B a and a ≺C c. Note that q(a) and r(a) are defined and hence 
we have q(b) ≺B q(a) and r(a) ≺C r(c). This implies s(b) ≺D s(c). Hence (D, s) is the 
required amalgam. �
4. The two-dimensional case. Conjugacy classes

We provide a condition, which we will use to obtain many examples of ordered struc-
tures M such that Aut(M) has no comeager 2-dimensional diagonal conjugacy class.
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Given a partial automorphism p of a structure A, and a ∈ A, say that a ∈ A is locked
by p if there are x ≤ a ≤ y, x, y ∈ A such that p(x) = y or p(y) = x.

Proposition 4.1. Let F be an Fraïssé order class. Suppose that for every (A, p) ∈ F1 and 
a ∈ A not locked by p, there are extensions (B, r), (C, s) ∈ F1 of (A, p) such that r(a) < a

and a < s(a). Then F2 has no WAP.

Proof. It suffices to show that for a given (A′, p′, q′) ∈ F2 and x ∈ A such that x < p′(x)
there exists (A′′, p′′, q′′) ∈ F2 which is an extension of (A′, p′, q′), and a word w(s, t) ∈ F2, 
such that w(p′′, q′′)(x) is defined and not locked by p′′ or q′′. Indeed, let (A, p, q) ∈ F2

and x ∈ A be such that x < p(x) (wlog there is such an x in A), let (A′, p′, q′) ∈ F2 be an 
arbitrary extension of (A, p, q), and let (A′′, p′′, q′′) ∈ F2 and w(s, t) be as above. Then 
y = w(p′′, q′′)(x) is not locked (wlog) by p′′. Apply the assumptions of the proposition 
to (A′′, p′′) and y to find the corresponding (B, r), (C, s) ∈ F1. Then (B, p′′, r), (C, p′′, s)
cannot be amalgamated over (A, p, q).

We construct the required (A′′, p′′, q′′) and w inductively. Let (A′′
0 , p

′′
0 , q

′′
0 ) = (A′, p′, q′), 

and w0 = 1. Suppose that we already constructed (A′′
n, p

′′
n, q

′′
n) and wn(s, t), and 

suppose that wn−1(p′′n−1, q
′′
n−1)(x) = wn−1(p′′n, q′′n)(x) < wn(p′′n, q′′n)(x). Denote y =

wn(p′′n, q′′n)(x) and, if y is locked by p′′n or q′′n, proceed as follows. Let z1 ≤ y ≤ z2, 
and f ∈ {p′′n, (p′′n)−1, q′′n, (q′′n)−1} be such that f(z1) = z2. Take (A′′

n+1, p
′′
n+1, q

′′
n+1)

to be an extension of (A′′
n, p

′′
n, q

′′
n) such that |A′′

n+1 \ A′′
n| ≤ 1 and f(y) is defined; 

clearly, z2 < f(y). Let u = s if f = p′′n, let u = s−1 if f = (p′′n)−1, let u = t

if f = q′′n, and let u = q−1 if f = (q′′n)−1, and set wn+1(s, t) = uwn(s, t). Clearly, 
wn(p′′n, q′′n)(x) = wn(p′′n+1, q

′′
n+1)(x) < wn+1(p′′n+1, q

′′
n+1)(x). Since p′ and q′ are finite 

and the sequence (wn(p′′n, q′′n)(x))n is increasing, after finitely many steps we will ob-
tain N such that wN (p′′N , q′′N )(x) is not locked by p′′N or is not locked by q′′N . Set 
(A′′, p′′, q′′) = (A′′

N , p′′N , q′′N ), w = wN , and y = wN (p′′, q′′)(x). �
Corollary 4.2. Suppose that K is a Fraïssé class, and let F be a full order expansion of 
K. Then F2 has no WAP.

Corollary 4.3. The class P2 has no WAP.

Proof. Let P = (P, ≺P , <P ) be an ordered poset, and let p be a partial automorphism 
of P . Let (Q, <Q) be an extension of (P, <P ) such that |Q \P | = 1. Let x ∈ P , y ∈ Q \P , 
and suppose that q = p ∪{(x, y)} is a partial automorphism of (Q, <Q). Then there is ≺Q

extending ≺P such that (Q, ≺Q, <Q) is an ordered poset, and q is a partial automorphism 
of (Q, ≺Q, <Q). Indeed, define ≺Q as follows: for a <Q y, a ∈ P , we set a ≺Q y iff there 
is a ≤Q b <Q y, b ∈ rng(p), such that (1) a ≺P b if a �= b and (2) α−1(b) ≺P x.

Similarly, for y <Q d, d ∈ P , we set y ≺Q d iff there is y <Q c ≤Q d, c ∈ rng(p), such 
that (1) x ≺P α−1(c) and (2) c ≺P d if c �= d.

Thus, assumptions of Proposition 4.1 are satisfied. �
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It is straightforward to verify that P2 has JEP. Therefore Corollary 4.3 implies that 
the automorphism group of the universal ordered poset has all 2-dimensional diagonal 
conjugacy classes meager.

We show that there is no comeager 2-dimensional diagonal conjugacy class in the 
automorphism group of the universal ordered boron tree. In fact, since SB2 has JEP, 
which is not hard to check, this will imply that all 2-dimensional diagonal conjugacy 
classes of the group are meager.

Theorem 4.4. The class SB2 has no WAP.

Let (A, p) ∈ SB1, let x ∈ A, and let O = {a0, . . . , an} be an orbit of p, n ≥ 2. Suppose 
that O is increasing and meet-increasing, other 3 cases being similar. We have therefore 
a0 <lex . . . <lex an, and if ti = meet(ai, ai+1), then t0 < t1 < . . . < tn−1. Now the 
following two claims easily follow from the definition of the relation S. We will use them 
frequently.

Claim 1. If an <lex x with x ∈ ConeO and (B, q) ∈ SB1 is an extension of (A, p) such 
that q(x) is defined, then ti−1 < meet(x, an) < ti implies ti < meet(q(x), an) < ti+1, 
for i = 1, . . . , n − 2, tn−2 < meet(x, an) < tn−1 implies tn−1 < meet(q(x), an), and 
tn−1 < meet(x, an) implies tn−1 < meet(q(x), an).

Claim 2. If x ∈ ConeO is such that x <lex a0 and (B, q) ∈ SB1 is an extension of (A, p)
such that q−1(x) is defined, then meet(q−1(x), a0)) < t0 (in particular, q−1(x) /∈ ConeO).

A point x ∈ A is locked by O if for every extension (B, q) of (A, p) such that q−1(a0)
and q(am) are defined, x belongs to the ≤lex-interval with endpoints q−1(a0) and q(am). 
It is locked by p if it is locked by some orbit of p. This definition of locked, which we will 
use only in this section to discuss SB, is slightly different than the one we used earlier 
in this section. A point x ∈ A is cone-locked by the cone CO, if it is contained in CO, 
and it is locked or meet-locked by OA. Finally, say that a point x ∈ A is cone-locked by 
p if it is cone-locked by some C ∈ Cone(p).

Proof of Theorem 4.4. Let us start with some observations. Take (A, p) ∈ SB1 such that 
every orbit has at least 3 points and let a ∈ A. If a is not cone-locked by a cone from 
Cone(p), then there are extensions (B, q), (C, r) ∈ SB1 of (A, p) such that q(a) <lex a

and a <lex r(a). To see this, simply take v, the immediate predecessor of a in TA with 
respect to <, add a new point b to obtain B such that b is the immediate predecessor of 
a in B with respect to <lex, v < meet(b, a) < a, and q(a) = b. The claim below shows 
that this gives the required (B, q). We will then similarly define (C, r).

Claim. The map q preserves S.
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Proof of the Claim. Since for every x ∈ A, meet(b, x) = meet(a, x), equivalently, we 
have to show the following.
(�) For every a, b ∈ A, we have S(a, b, c) iff S(p(a), p(b), c), and similarly, S(a, c, b) iff 
S(p(a), c, p(b)) and S(c, a, b) iff S(c, p(a), p(b)).

We have to consider a number of cases. Denote m = meet(a, p(a)), n = meet(b, p(b)), 
m1 = meet(p(a), p2(a)) and n1 = meet(p(b), p2(b)) (if necessary, extend (A, p) so that 
p2(a) and p2(b) are defined). Let Oa and Ob be orbits to which a and b belong, respec-
tively. Without loss of generality, suppose that Oa is increasing and meet-increasing. We 
will frequently use the following simple observations:

(i) If x <lex a and m < meet(x, a) or a <lex x <lex p2(a), then x is Oa locked.
(ii) If p(a) <lex x and m < meet(x, p(a)) < m1, then x is meet-locked by Oa.
(iii) If c < meet(m, n) then (�) holds.
We have to consider the following cases.

(1) It holds b <lex a and meet(b, a) < m. In that case, we can have (a) p(b) <lex b, or 
(b) b <lex p(b), and meet(p(b), a) < m, or (c) b <lex p(b), and m < meet(p(b), a), in 
which case, by (i), Oa and Ob intertwine.

(2) It holds b <lex a and m < meet(b, a), or a <lex b <lex p(a), in which case, by (i), Oa

and Ob intertwine.
(3) It holds p(a) <lex b and m < meet(p(a), b). In this case, p2(a) <lex p(b). We can 

have that:
(a) It holds p(a) <lex b <lex p2(a), in which case Oa and Ob intertwine.
(b) It holds p2(a) <lex b and m1 < meet(b, p2(a)), in which case p2(a) <lex p(b)
and m < meet(p(b), p2(a)). In fact, we have m1 < meet(p(b), p2(a)), as otherwise Ob

would be an increasing orbit meet intertwining with Oa, which is impossible.
(c) It holds p2(a) <lex b and m < meet(b, p2(a)) < m1, in which case, by (ii), Oa

and Ob meet intertwine and hence m1 < meet(p(b), p2(a)).
(4) It holds p2(a) <lex b and meet(b, p2(a)) < m. Then p2(a) <lex p(b) and either 

meet(p(b), p2(a)) < m (with b <lex p(b) or p(b) <lex b) or m < meet(p(b), p2(a)) <
m1, in which case Oa and Ob meet intertwine.

This reduces checking to the following cases.
Case 1: Oa and Ob intertwine. Without loss of generality, a <lex b <lex p(a) (meaning 

that, if instead a <lex pn(b) <lex p(a), for n = 1 or n = 2, then the reasoning will 
be essentially the same). This has two subcases: (1a) m < meet(a, b), in which case 
m1 < meet(p(a), p(b)) and (1b) m < meet(b, p(a)), in which case m1 < meet(p(b), p2(a)).

Taking into account (i), (ii) and (iii), all we have to do is to directly verify that (�)
holds in (1a) and (1b) for a c such that p2(a) <lex c and m1 < c.

Case 2: Oa and Ob meet intertwine. Without loss of generality, m < b < m1 (again, 
meaning that, if instead m < p(b) < m1, then the reasoning will be essentially the same).

Taking into account (i), (ii) and (iii), all we have to do is to directly verify that (�)
holds when p2(a) <lex c <lex p(b) and either m1 < meet(c, p2(a)) or m1 < meet(c, p(b)).
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Case 3: b, p(b) <lex a and meet(b, a), meet(p(b), a) < m.
Then possibilities on c are: (3a) b, p(b) <lex c <lex a and meet(c, a) < m, (3b) 

p(a) <lex c and m < meet(p(a), c), (3c) p(a) <lex c and meet(b, a), meet(p(b), a) <
meet(p(a), c) < m, (3d) p(a) <lex c and meet(p(a), c) is between meet(b, a) and 
meet(p(b), a) (this cannot happen though, otherwise c would be meet-locked by Ob).

Case 4: p(a) <lex b, p(b) and meet(b, p(a)), meet(p(b), p(a)) < m. This is very similar 
to Case 3.

Case 5: p2(a) <lex b, p(b) and m1 < meet(b, p2(a)), meet(p(b), p2(a)). Let p =
max{meet(b, p2(a)), meet(p(b), p2(a))}. Then possibilities on c are: (5a) p2(a) <lex c <lex

b and p < meet(c, p2(a)), (5b) p2(a) <lex c <lex b and meet(c, p2(a)) ≤ p, (5c) 
b, p(b) <lex c and m1 < meet(c, p(b)) < n. �

Now we show that for a given (A, p, q) ∈ SB2 and x ∈ A such that x < p(x) there 
exists (A′, p′, q′) ∈ SB2, an extension of (A, p, q), and a word w(s, t) ∈ F2, such that 
w(p′, q′)(x) is defined and not cone-locked by p′ or q′. Then an argument presented in 
the first paragraph of the proof of Proposition 4.1, will finish the proof.

Without loss of generality, every non-trivial orbit of p and q consists of at least three 
points. As for any (A, p) ∈ SB1, A is a substructure of the Fraïssé limit M of SB, we 
consider

clp = {x ∈ M : x is cone-locked by an orbit of p}.

Note that for every orbit O of p, the set {x ∈ M : x is cone-locked by O} is the union of 
two ≤lex-intervals, one of them constitutes of points locked by p, and the other one of 
points meet-locked by p. This implies that clp is the union of at most 2mp disjoint ≤lex-
intervals, where mp is the number of orbits in p. Denote this collection of ≤lex-intervals 
by Ip, and its cardinality by np. Observe that the following hold:

(∗) For every I ∈ Ip and x ∈ I, there is an extension (A′, p′) of (A, p) so that 
(p′)m(x) <lex I <lex (p′)n(x) for some m, n ∈ Z.

(∗∗) For every (A′, p′) ∈ SB1 extending (A, p) with A′ \ A = {(p′)ε(a), . . . , (p′)εk(a)}
for some a ∈ A, ε ∈ {−1, 1}, and k ∈ N, and for every I ∈ Ip′ , there is J ∈ Ip such that 
J ⊆ I. In particular, np′ ≤ np.

We construct the required (A′, p′, q′) and w inductively. Let (A′
0, p

′
0, q

′
0) = (A, p, q) and 

w0 = 1. Suppose that we already constructed (A′
n, p

′
n, q

′
n) and wn(s, t) and suppose that 

wn−1(p′n−1, q
′
n−1)(x) = wn−1(p′n, q′n)(x) <lex wn(p′n, q′n)(x). Denote y = wn(p′n, q′n)(x)

and if y is cone-locked by p′n and q′n, proceed as follows. Let Ip,y ∈ Ip′
n

be the ≤lex-interval 
containing y, and similarly define Iq,y. If the right endpoint of Ip,y is <lex-greater or equal 
than the right endpoint of Iq,y, there must exist k ∈ Z such that y <lex (q′′)k(y) /∈ Ip,y
in some extension (A′′, p′′, q′′) of (A′

n, p
′
n, q

′
n). Take the smallest such k, set wn+1(s, t) =

tkwn(s, t) and let (A′
n+1, p

′
n+1, q

′
n+1) be a minimal such extension. This can be done 

by observation (∗). Similarly, if the right endpoint of Iq,y is <lex-greater than the right 
endpoint of Ip,y, there must exist k ∈ Z such that, in some extension (A′′, p′′, q′′), we 
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have y <lex (p′′)k(y) /∈ Iq,y. Take the smallest such k, set wn+1(s, t) = skwn(s, t) and let 
(A′

n+1, p
′
n+1, q

′
n+1) be a minimal such extension.

Observation (∗∗) implies that after at most np +nq many steps, this construction will 
stop, i.e., that for some n ≤ np + nq, we will have that wn(p′n, q′n)(x) is not cone-locked 
by p′n or by q′n. �

Directed ultrahomogeneous graphs were classified by Cherlin [2] and their precompact 
Ramsey expansions were described by Jasiński-Laflamme-Nguyen van Thé-Woodrow [7]. 
See page 74 in [2] for the list of them, see also page 5 in [7]. By Kechris-Pestov-Todorcevic 
[11] and Nguyen Van Thé [13], automorphism groups of those expansions are extremely 
amenable. The notation we will use comes from [7].

Theorem 4.5. Let M be a precompact Ramsey expansion of a directed ultrahomogeneous 
graph, and let F = Age(M). Then F2 does not have WAP.

Sketch of the proof. Proposition 4.1 applies to the age of each of these structures. A 
number of those structures are directly taken care of by Corollary 4.2. These are rational 
numbers and precompact Ramsey expansions of: the random tournament Tω, Γn– the 
random directed graph that does not embed the edgeless graph on n vertices, n ≤ ω, T
– the random directed graph that does not embed finite tournaments from some fixed 
set T . Moreover, structures S(2)∗ and S(3)∗, that is, precompact Ramsey expansions of 
S(2) and S(3), are first-order simply bi-definable with structures Q2 and Q3, discussed 
by Nguyen van Thé [13], whose age is of the form as in Corollary 4.2.

Furthermore, the proofs for the precompact Ramsey expansion of the structures of 
the form T [In], In[T ], where In is the edgeless graph on n vertices, n ≤ ω, and T is a 
homogeneous tournament, as well as of Q̂, T̂ω and of the complete n-partite random 
directed graph, n ≤ ω, are essentially the same as those for the structures taken care 
of by Corollary 4.2 (perhaps there are some additional unary predicates that do not 
change the proof in an essential way). Let us discuss here one of these structures. We 
describe Age(T [In]∗) of the expansion T [In]∗ of T [In], where T is a generic tournament 
and In is the edgeless directed graph on n < ω vertices with the usual ordering (inherited 
from the natural numbers). Consider the language L = {E, <, L1, . . . , Ln}, where E, <
are binary predicates and L1, . . . , Ln are unary predicates. We will use E for the edge 
relation and < for the linear order. We let the Age(T [In]∗) consist of substructures of 
structures whose universe is of the form S×In, where S is a linearly ordered tournament 
(the choice of a linear ordering is arbitrary). A pair ((x, i), (y, j)) is an edge in S × In
iff the pair (x, y) is an edge in S. The ordering we put on S × In is lexicographic with 
respect to the order on S and on In. Finally, we set Li(x, j) iff i = j. It is clear how to 
modify the proof from Corollary 4.2 to prove that assumptions of Proposition 4.1 are 
satisfied for Age(T [In]∗) as well.

We have already discussed the universal ordered poset in Corollary 4.3. The precom-
pact Ramsey expansion P(3)∗ of the ‘twisted’ universal ordered poset P(3) is first-order 
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simply bi-definable with the Fraïssé limit of the family K0 of ordered posets, additionally 
equipped with 3 subsets (described using unary predicates) forming a partition of the 
universe of the ordered poset, see the bottom of the page 21 in [7].

Proposition 4.1 also applies to the age of S∗, the precompact Ramsey expansion of the 
semigeneric directed graph S, which is rather straightforward to check. In fact, for given 
(A, p) and a ∈ A not locked by p, the required q(a) and r(a) (notation taken from the 
statement of Proposition 4.1) can be chosen in the same equivalence class with respect 
to the non-edge equivalence relation in which a is. �
5. The two-dimensional case. Similarity classes

Slutsky [16] showed that all 2-dimensional topological similarity classes in Aut(Q) are 
meager. In this section, we extract from Slutsky’s arguments a general condition on a 
structure M that implies that all 2-dimensional topological similarity classes in Aut(M)
are meager (Theorem 5.5).

Let F be a Fraïssé class. Generalizing the terminology introduced in [16], for A, B ∈ F
with B ⊆ A, and a partial automorphism q of A such that def(q) ∩ B = ∅, we say that 
B is free from q if for every n, every relation symbol R in the signature of F of arity n, 
for all x1, . . . , xn ∈ B ∪ dom(q) we have R(x1, . . . , xn) iff R(y1, . . . , yn), where yi = xi if 
xi ∈ B, and yi = q(xi) if xi ∈ dom(q). In other words, we can extend q so that q(x) = x

for every x ∈ B.
We say that F has liberating automorphisms if for any partial automorphisms p, q of 

A ∈ F with no cyclic orbits there exists N ∈ N such that, for every N ′ > N , p can be 
extended to a partial automorphism p′ of an element of F so that (p′)n[A] is free from 
q for all n with N ≤ n ≤ N ′.

Let F be an Fraïssé order class with an order relation <, and let M be the limit of 
F . Let p be a partial automorphism of M . For a convex A ⊆ M (i.e., x, y ∈ A, and 
x < z < y entails that z ∈ A), we say that p is increasing on A if for every x ∈ A, p can 
be extended so that p(x) > x; it is decreasing on A if for every x ∈ A, p can be extended 
so that p(x) < x; it is monotone on A if it is increasing or decreasing on A. We say that 
an extension p′ of p does not change monotonicity of p if there are no new fixed points 
in p′, and p′ is increasing (decreasing) on (a, b) iff p is increasing (decreasing) on (a, b), 
for a, b ∈ def(p). We say that p is eventually increasing if there exist x, y ∈ supp(p) such 
that z < p(z) for every z ∈ supp(p) such that either z ≤ x or y ≤ z (i.e., the first and 
the last orbits of p are increasing).

Let (p, q) be a pair of partial automorphisms of M . We say that x is in a final segment
(or initial segment) of (p, q) if there exists a common fixed point y of p and q such that 
p is monotone on [x, y) (or (y, x]). We say that (p, q) is elementary if both p and q are 
eventually increasing, and the only common fixed points of p and q are the minimum 
min(dom(p)) = min(dom(q)), and the maximum max(dom(p)) = max(dom(q)) of their 
domains. A pair (p, q) is piecewise elementary if we can find E0 ≤ . . . ≤ En, called ele-
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mentary components of (p, q), such that 
⋃

i Ei = def(p) ∪def(q), and (p, q) is elementary 
when restricted to each Ei.

Lemma 5.1. Let F be a full order expansion with SAP. Let (p, q) be an elementary pair. 
Then there exists an extension (p′, q′) of (p, q), and w ∈ F (s, t), such that p′ does not 
change monotonicity of p, and w(p′, q′)[def(q′)] is in the unique final segment of (p′, q′).

Proof. Without loss of generality, we can assume that min(supp(p)) < supp(q). Let 
a0 < . . . < am be the enumeration of def(p) \{min(def(p)), max(def(p))}. We can assume 
that a0 is not a fixed point of p.

We construct wi ∈ F (s, t), i ≤ m, and extensions (pi, qi) of (pi−1, qi−1) such that 
wi . . . w0(pi, qi)(a0) > ai. Moreover, we require that the only new element in def(pi) or 
def(qi) above ai is wi . . . w0(pi, qi)(a0).

Put w−1 = ∅, p−1 = p, q−1 = q. Fix 0 ≤ i ≤ m, and suppose that wj, pj , qj have been 
already constructed for j < i. Set b = wi−1 . . . w0(pi−1, qi−1)(a0). If there is an extension 
pi of pi−1 such that (pi)εk(b) > ai for some k ∈ N, and ε ∈ {−1, 1}, we take the least 
such k, and put wi = sεk, qi = qi−1.

Suppose otherwise. If ai+1 is not a fixed point of q, put c = ai, and l = 0. Otherwise, 
as (pi−1, qi−1) is elementary, it is not a fixed point of pi−1, and so we can extend pi−1 to 
some pi by adding only elements below ai, so that, for some l ∈ Z, b < (pi)l(ai) < ai, and 
(b, (pi)l(ai)) has empty intersection with both def(pi−1) and def(qi−1). Put c = (pi)l(ai).

Let ε ∈ {−1, 1} be such that there exists an extension qi of qi−1 with (qi)ε(c) < c. 
Because F is a full order expansion with SAP, there is an extension of pi, which we will 
also denote by pi, such that pi(b) ∈ ((qi)ε(c), c). But then (qi)−ε(pi(b)) > c. Thus, for 
wi = s−lt−εs, we have that wi . . . w0(pi, qi)(a0) > ai and wi . . . w0(pi, qi)(a0) is the only 
new element in def(pi) or def(qi) above ai. �
Lemma 5.2. Let F be a full order expansion with SAP, and such that F− has liberating 
automorphisms. Let M be the limit of F . Let (p, q) be a piecewise elementary pair of 
partial automorphisms of M such that, for some w ∈ F (s, t), w(p, q)(x) is in a final 
segment of (p, q) for every x ∈ def(q). Then for any v ∈ F (s, t), and N ∈ N, there 
is N ′ ≥ N , and a pair (p′, q′) extending (p, q) such that vsN ′

w(p′, q′)(x) is in a final 
segment of (p, q) for x ∈ def(q′).

Proof. Let E0 ≤ . . . ≤ En ⊆ M be elementary components of (p, q). Because w(p, q)(x)
is in a final segment of (p, q) for every x ∈ def(q), and p is eventually increasing on each 
Ei, we can assume that there is N0 ∈ N such that

sN0w(p, q)(x) > supp(q) ∩ Ei

for every i ≤ n, and x ∈ supp(q) ∩ Ei. Then

x ≤ sN0w(p, q)(y) if and only if q(x) ≤ sN0w(p, q)(y) (3)
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for every x, y ∈ def(q).
Because F− has liberating automorphisms, and F is a full order expansion with SAP, 

we can find N1 ∈ N, and an extension p′ of p such that sN0+N1+nw(p′, q)[def(q)] is 
free from q in F for n ≤ 2 |v| + N , and (3) still holds for def(q). But this means that 
sN0+N1+nw(p′, q)[def(q)] is free from q in F , and we can extend q to q′ so that

q′(sN0+N1+nw(p′, q′)(x)) = sN0+N1+nw(p′, q′)(x)

for n ≤ 2 |v| + N and x ∈ def(q). It is easy to see that then

vsN0+N1+|v|+Nw(p′, q′)(x) ≥ w(p′, q′)(x)

for n ≤ N , and so vsN0+N1+|v|+Nw(p′, q′)(x) is in a final segment of p′, for x ∈ def(q′). 
Therefore N ′ = N0 + N1 + |v| + N is as required. �
Lemma 5.3. Let F be a full order expansion with SAP, and such that F− has liberating 
automorphisms. Then for every piecewise elementary pair (p, q) there exists a piecewise 
elementary pair (p′, q′) extending (p, q), and w ∈ F (s, t) such that w(p′, q′)(x) is in a 
final segment of (p′, q′) for x ∈ def(q′).

Proof. We prove the lemma by induction on the number r of elementary components of 
(p, q). For r = 1, this follows from Lemma 5.1. Suppose that the lemma is true for some 
r, and fix a piecewise elementary pair (p, q) with r + 1 elementary components.

Let us write E = E0 ∪E1 so that E0 ≤ E1, (p, q) is elementary when restricted to E0, 
and there are r elementary components in (p, q) when restricted to E1. Using Lemma 5.1, 
and the inductive assumption, we can fix an extension (p′, q′) of (p, q), so that, for (p0, q0)
denoting the restriction of (p′, q′) to E0, and (p1, q1) denoting the restriction of (p′, q′) to 
E1, the following holds. The mapping p0 does not change monotonicity of p restricted to 
E0, the pair (p1, q1) is piecewise elementary, and there exist w0, w1 ∈ F (s, t) such that 
w0(p0, q0)(x) is in the unique final segment of (p0, q0) for x ∈ def(q0), and w1(p1, q1)(x)
is in a final segment of (p1, q1) for x ∈ def(q1).

Let d0 = min(supp(p0)). As p0 does not change monotonicity of p restricted to E0, 
and so p0 is increasing on the initial segment of p0, in the case that w1(p0, q0)(d0) <
d0, we can assume that there exists N ∈ N such that sNw1(p0, q0)(d0) > d0. Then 
w0s

Nw1(p0, q0)(x) is in the final segment of p0 for x ∈ def(q0).
Moreover, applying Lemma 5.2, we can assume that N is large enough so that 

w0s
Nw1(p1, q1)(x) is in a final segment of p1 for x ∈ def(q1). Thus, the pair (p′, q′) ex-

tends (p, q), and, w(p′, q′)(x) is in a final segment of p′ for x ∈ def(q′), if w = w0s
Nw1. �

Theorem 5.4. Let F be a full order expansion with SAP, and such that F− has liberating 
automorphisms. Let M be the limit of F . Then there are comeagerly many pairs in 
Aut(M)2 generating a non-discrete group.
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Proof. Consider the following condition: for every pair (p, q) of partial automorphisms 
of M there exists an extension (p′, q′) of (p, q), and w ∈ F2 such that w(p′, q′)(x) = x

for x ∈ def(q). It is easy to verify that if it holds, then the set of pairs (f, g) ∈ Aut(M)2
generating a non-discrete group contains a dense Gδ subset of Aut(M)2, that is, it is 
comeager in Aut(M)2.

We verify this condition. Fix a pair (p, q) of partial automorphisms of M . Without 
loss of generality, we can assume that it is piecewise elementary. By Lemma 5.3, we can 
also assume that there exists w′ ∈ F (s, t) such that w′(p, q)(x) is in a final segment of p
for x ∈ def(q). But then, using our assumptions on F , and the fact that p is eventually 
increasing on each elementary component of (p, q), we can find N ∈ N, and an extension 
(p′, q′) of (p, q) such that

x ≤ sNw(p′, q′)(y) if and only if q(x) ≤ sNw(p′, q′)(y) (4)

for every x, y ∈ def(q′), and sNw′(p′, q′)[def(q′)] is free from q′ in F . Therefore we can 
put

q′(sNw(p′, q′)(x)) = sNw(p′, q′)(x)

for x ∈ def(q′). Then for w = (sNw)−1t(sNw), we have w(p′, q′)(x) = x for x ∈
def(q′). �
Theorem 5.5. Let F be a full order expansion with SAP, and such that F− has liberating 
automorphisms. Let M be the limit of F . Then all 2-dimensional topological similarity 
classes in Aut(M) are meager.

Proof. By the above theorem, there are comeagerly many pairs in Aut(M)2 generating a 
non-discrete group. As automorphisms of order structures have only infinite non-trivial 
orbits, in fact, there are comeagerly many pairs in Aut(M)2 generating a non-discrete 
and non-precompact group. By [10, Theorem 4.4], all 2-dimensional topological similarity 
classes in Aut(M) are meager. �

Recall that a Fraïssé class F has free amalgamation if for every A, B, C ∈ F with 
A ⊆ B, C, the structure D = B ∪ C is an amalgam of B and C over A. In other words, 
no tuple in D involving at the same time elements from B \A and from C \A is related 
in D. A typical example of a class with free amalgamation is the class of finite graphs.

Lemma 5.6. If F is a Fraïssé class with free amalgamation or the class of finite tourna-
ments, then F has liberating automorphisms.

Proof. Suppose that F has free amalgamation. Let (p, q) be a pair of partial auto-
morphisms of A ∈ F with no cyclic orbits. Without loss of generality, we can assume 
that A = def(p). Let N ∈ N be such that orbits in p have size at most N/2. Set 
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C = dom(p) \ rng(p), and fix N ′ > N . We put p0 = p, and construct partial automor-
phisms pi and sets Di, 0 < i ≤ N ′ in the following manner. Assuming that pi is already 
constructed, with an aid of free amalgamation, we extend pi to a partial automorphism 
pi+1 by defining it on D′ = rng(pi) \ dom(pi) in such a way that no relation involves at 
the same time elements from C and D = pi+1[D′] (where D is disjoint from def(pi)). To 
be more precise, put B = rng(pi). Then, for every relation R of arity n, and every n-tuple 
b̄ in B ∪D, whether R(ā) holds or not, is entirely determined by the requirement that 
pi+1 is supposed to be a partial automorphism. Moreover, regardless of how we amalga-
mate B ∪C and B ∪D over B, to get a structure E with underlying set B ∪C ∪D, pi+1
will be a partial automorphism of E. Thus, E obtained by freely amalgamating these 
structures works as def(pi+1). Finally, we put Di+1 = D.

Observe that no relation involves at the same time elements from pnN ′ [A] and A for 
N ≤ n ≤ N ′, which means, because def(q) ⊆ A, that each pnN ′ [A] is free from q. Indeed, 
by the construction of pi, for i > 0 and x ∈ Di, no relation involves x and elements 
from C. And then the same is true about any pni+1(x) and pii+1[C], i ≤ n ≤ N ′. As 
pnN ′ [A] ⊆

⋃
N≤i≤N ′ Di, and A ⊆

⋃
i≤N pi[C], this means that no relation involves at the 

same time elements from pnN ′ [A] and A, for N ≤ n ≤ N ′.
For finite tournaments, we proceed almost exactly as above. The only difference is 

that for every x ∈ dom(pi) \ rng(pi), y ∈ rng(pi) \dom(pi), we choose (x, y) as the arrow 
between x and y. Then (x, y) is an arrow for every x ∈ def(q) and y ∈ pnN ′ [def(q)], 
N ≤ n ≤ N ′. �
Corollary 5.7. Suppose that F is a full order expansion such that F− has free amalgama-
tion, or the class of finite ordered tournaments. Let M be the Fraïssé limit of F . Then 
all 2-dimensional topological similarity classes in Aut(M) are meager.

Corollary 5.8. Suppose that F is a full order expansion of a class with free amalgamation, 
and let M be the Fraïssé limit of F . Then all 2-dimensional topological similarity classes 
in Aut(M) are meager.

Remark 5.9. Compare the above corollary with Theorem 3.5 and Corollary 4.2.
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