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1. Introduction

The number k(G) of conjugacy classes of a finite group G, which is equal to the number 
of complex irreducible characters of G, is a fundamental invariant in group theory and 
representation theory. For instance, Higman’s famous conjecture is to show that if p is 
a prime and G is a Sylow p-subgroup of the general linear group GLn(q), then k(G) is 
a polynomial in q with integer coefficients. The celebrated k(GV ) theorem states that if 
V is a finite, faithful, coprime G-module for a finite group G then the number k(GV ) of 
conjugacy classes of the semidirect product GV is at most |V |.

Lower bounds for the number of conjugacy classes of a finite group have a long history. 
Landau [28], in response to a question of Frobenius, proved in 1903 that for a given k
there are only finitely many groups having k conjugacy classes. This result may be 
translated to a lower bound on the number of conjugacy classes of a finite group G only 
in terms of the order of G. Problem 3 of Brauer’s list of problems [6] was to give a 
substantially better lower bound for k(G). This was solved by Pyber [36] and his bound 
was later slightly improved by several authors, see [3,4,27]. In general it is not known 
whether there is a universal constant c > 0 such that for every finite group G we have 
k(G) > c · log |G|.

Bounding k(G) only in terms of a prime divisor p of |G| is another fundamental 
problem. It is related to Problem 21 of Brauer [6] and a conjecture of Héthelyi and 
Külshammer [19] that for any p-block B of any finite group G the number k(B) of 
complex irreducible characters in B is 1 or is at least 2

√
p− 1. As observed by Pyber, 

work of Brauer [5] implies that k(G) ≥ 2
√
p− 1 for G a finite group whose order is 

divisible by a prime p but not by p2. Since then, this bound had been conjectured to be 
true for all groups G and all primes p dividing |G|.

Proving k(G) ≥ 2
√
p− 1 for all G and p has turned out to be a hard problem. Building 

on a series of relevant works by Héthelyi-Külshammer [19,20], Malle [30], Keller [26], and 
Héthelyi-Horváth-Keller-Maróti [21], the conjecture was finally confirmed in [32].

One of the purposes of this paper is to obtain a p-modular analog of the bound 
k(G) ≥ 2

√
p− 1; that is, to obtain a bound for the number of p-regular classes, which is 

also the number of irreducible p-modular representations, of G. On the other hand, we 
observe that since the class number k(G) is a global characteristic of G while the bound 
2
√
p− 1 depends only on p, it is natural to expect that the same bound would hold for 

a certain subset of conjugacy classes or irreducible characters that are defined locally in 
terms of p. We confirm this expectation from both perspectives: classes and characters, 
by considering orders of group elements and fields of character values.

An element of a finite group G is called p-regular if it has order coprime to p. Through-
out let kp′(G) denote the number of conjugacy classes of p-regular elements in G and let 
kp(G) denote the number of conjugacy classes of non-trivial p-elements in G.

Theorem 1.1. If G is a finite group and p is a prime dividing the order of G, then

kp(G) + kp′(G) ≥ 2
√

p− 1
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with equality if and only if 
√
p− 1 is an integer, G = Cp � C√

p−1 and CG(Cp) = Cp.

Let IBrp(G) denote the set of irreducible p-modular representations of G. As 
|IBrp(G)| = kp′(G), Theorem 1.1 provides a somewhat unexpected lower bound for the 
number of irreducible p-Brauer characters, namely |IBrp(G)| ≥ 2

√
p− 1 − kp(G), and 

therefore, it can be viewed as a modular version of the bound k(G) ≥ 2
√
p− 1 for the 

number of ordinary irreducible characters of G.
We make the bound |IBrp(G)| ≥ 2

√
p− 1 − kp(G) more explicit in the case when G

is non-p-solvable.

Theorem 1.2. Let p be a prime. Let G be a non-p-solvable finite group. The number 
|IBrp(G)| of irreducible p-Brauer characters of G is larger than 2

√
p− 1 unless possibly 

if p ≤ 257. In any case, |IBrp(G)| > √
p− 1.

Next we turn to fields of character values. For a positive integer n, let Qn denote the 
cyclotomic field extending rational numbers Q by a primitive nth root of unity. We say 
that a character χ is p-rational if there is n ∈ N coprime to p such that χ(g) ∈ Qn

for all g ∈ G. Also, χ is p′-rational if χ(g) ∈ Q|G|p for all g ∈ G. Let Irrp−rat(G)
and Irrp′−rat(G) respectively denote the sets of p-rational irreducible and p′-rational 
irreducible characters of G. Note that Irrp−rat(G) ∩ Irrp′−rat(G) is equal to IrrQ(G), the 
set of rational irreducible characters of G.

Theorem 1.3. If G is a finite group and p is a prime dividing the order of G, then

|Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ 2
√

p− 1

with equality if and only if 
√
p− 1 is an integer, G = Cp � C√

p−1 and CG(Cp) = Cp.

Theorems 1.1 and 1.3 show that, in groups of order divisible by a prime p, there is a 
correlation between kp(G) and kp′(G) as well as |Irrp−rat(G)| and |Irrp′−rat(G)|: if one 
is small, the other must be large (compared to p, of course). In the minimal situations 
where one number is minimal/small, the bound indeed could be improved. We plan to 
address this at another time.

On the way to the proofs of Theorems 1.1, 1.2 and 1.3, we have to bound the number of 
p-regular classes in finite simple groups. The following uniform bound for simple groups 
of Lie type is of independent interest and might be useful in other applications.

Theorem 1.4. If S is a simple group of Lie type defined over the field of q elements with 
r the rank of the ambient algebraic group and p is any prime, then

kp′(S) > qr
.
17r2
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Better and more refined bounds for different types and different p are given in Sec-
tions 3, 4 and 5. We remark that the problem of bounding the class number (both upper 
and lower bounds) of finite groups of Lie type has been well studied, for instance in the 
influential work of Fulman and Guralnick [14]. To provide a relative comparison between 
kp′(S) and k(S), we note that the best general lower bound for k(S) is qr/d, where d is 
the order of the group of diagonal automorphisms of S.

Theorems 1.1, 1.2, and 1.3 are proved in Sections 7, 8, and 9, respectively. In Sections 2, 
3, 4 and 5 we prove various bounds for the number of p-regular and p′-regular classes 
in finite nonabelian simple groups S, as well as the number of Aut(S)-orbits on those 
classes. Finally, Theorem 1.4 is proved in Section 6.

2. Orbits of p-regular and p’-regular classes of simple groups

Let p be a prime and let S be a nonabelian finite simple group. Recall that an element 
is p-regular in S if it has order coprime to p. We denote the set of p-regular elements 
in S by Sp′ , the set of p-regular conjugacy classes in S by Clp′(S), and the number of 
p-regular conjugacy classes in S by kp′(S). We denote the set of non-trivial p-elements 
in S by Sp, the set of all conjugacy classes in S contained in Sp by Clp(S), and the 
number of conjugacy classes in S contained in Clp(S) by kp(S). The classes in Clp(S)
are sometimes referred to as p′-regular classes. When a group G acts on a set X, we use 
n(G, X) to denote the number of G-orbits on X.

To prove our main results we need to bound the number of Aut(S)-orbits on p-regular 
and p′-regular classes of S for all nonabelian simple groups S, as presented in the following 
theorem. We will prove it in this and the next three sections.

Theorem 2.1. Let S be a nonabelian finite simple group and let p be a prime divisor of 
|S|. We have

(i) The number of Aut(S)-orbits on the set Clp′(S) ∪ Clp(S) is larger than 2
√
p− 1

except if (S, p) is equal to (A5, 5) or to (PSL2(16)), 17).
(ii) The number of Aut(S)-orbits on p-regular classes of S is at least 2(p − 1)1/4. The 

equality occurs if and only if (S, p) = (PSL2(16)), 17).
(iii) The number of Aut(S)-orbits on p-regular classes of S is greater than 2

√
p− 1 unless 

possibly when (S, p) is listed in Table 1.

We mention an obvious consequence of Theorem 2.1(iii) that will be needed in the 
proof of Theorem 1.2.

Corollary 2.2. Let S be a nonabelian finite simple group and let p be a prime divisor of 
|S|. Then the number of Aut(S)-orbits on p-regular classes of S is greater than 

√
p− 1.
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Table 1
Possible exceptions for the bound 
n(Aut(S), Clp′ (S)) > 2

√
p − 1.

S p n(Aut(S),Clp′ (S))
A5 5 3
PSL2(7) 7 4
A6 5 4
PSL2(8) 7 4
PSL2(11) 11 6
PSL2(16) 17 5
PSL2(27) 13 5
PSL2(32) 11 6
PSL2(32) 31 6
PSL2(81) 41 10
PSL2(128) 43 12
PSL2(128) 127 12
PSL2(243) 61 15
PSL2(256) 257 21
PSL3(8) 73 13
PSU3(16) 241 ≥ 27
2B2(8) 13 6
2B2(32) 31 8
2B2(32) 41 9
2B2(128) 113 ≥ 19
2B2(128) 127 ≥ 14
Ω−

8 (4) 257 ≥ 32

2.1. Some generalities

Observe that any nonabelian finite simple group has order divisible by at least three 
distinct primes by Burnside’s Theorem. It immediately follows that

n(Aut(S),Clp′(S)) ≥ 3

and so Theorem 2.1 is true for p = 2 and p = 3. Thus we may assume in this and the 
following sections that p ≥ 5.

Lemma 2.3. Theorem 2.1 is true for S a sporadic simple group, the Tits group, and 
groups of Lie type of rank r ≥ 3 in characteristic p ≥ 5.

Proof. The statement follows for S a sporadic simple group or S the Tits group using 
[8,15]. Assume that S is of Lie type of rank r ≥ 3 in characteristic p. Let S be of the 
form G/Z(G), where G = GF is the set of fixed points of a simple algebraic group G of 
simply connected type defined in characteristic p, under a Frobenius endomorphism F . 
By [7, Theorem 3.7.6], the number of semisimple classes of G is qr, where q is the size 
of the underlying field of G and r is the rank of G. Therefore,

kp′(S) ≥ kp′(G) ≥ qr = qr
,

kp′(Z(G)) |Z(G)| d
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where d is the order of the group of diagonal automorphisms of S. Here the first inequality 
follows from [14, Lemma 2.3]. It follows that

n(Aut(S),Clp′(S)) ≥ qr

d · |Out(S)| .

To prove the lemma, it is sufficient to show that qr/(d|Out(S)|) > 2
√
p− 1. This turns 

out to be true for all S and relevant values of p, q, and r. �
The next result is essential in our proofs as it helps to reduce from a classical group 

to one of smaller rank. From now on q is always a prime power �f , where � is a prime 
and f is a positive integer.

Let π be either of the symbols p or p′. We denote the number of Aut(S)-orbits on the 
set Clπ(S) by n(Aut(S), Clπ(S)).

Lemma 2.4. If S and T are (non-abelian) finite simple groups such that

(S, T ) ∈ {(An,An−1), (PSLn(q),PSLn−1(q)), (PSUn(q),PSUn−1(q))}

or (S, T ) = (PSp2n(q), PSp2n−2(q)) with q odd, then

n(Aut(S),Clπ(S)) ≥ n(Aut(T ),Clπ(T )).

Proof. Let (S, T ) = (An, An−1). Observe that n ≥ 6 by assumption. The group T may 
be considered as a point-stabilizer in S. Note that Aut(Am) = Sm for every integer m
at least 5 and different from 6. Assume that n ≥ 8. In this case n(Aut(S), Clπ(S)) and 
n(Aut(T ), Clπ(T )) are equal to the number of elements in Sπ and Tπ of different cycle 
shapes. The desired bound follows since Tπ is contained in Sπ. Assume that n ∈ {6, 7}. 
The group Aut(A6) contains S6 as a subgroup of index 2. Since p ≥ 5 and since Aut(A6)
fuses the two conjugacy classes of A6 both consisting of elements of prime order 3, we see 
that n(Aut(A6), Clp(A6)) is equal to the number of possible cycle shapes of non-trivial 
p-elements in A6 and n(Aut(A6), Clp′(A6)) is equal to the number of possible cycle shapes 
of p-regular elements in A6 minus 1. The desired bound follows for π = p and also for 
n = 7. Let n = 6 and π = p′. Since p ≥ 5 and n = 6, we must have p = 5. Finally, 
n(Aut(A6), Cl5′(A6)) = 4 > 3 = n(Aut(A5), Cl5′(A5)).

Observe that since T is assumed to be non-abelian and simple, n ≥ 3 in the linear 
and unitary cases and n ≥ 2 in the symplectic case.

Consider the case when both S and T are projective special linear groups.
Let V be the natural GLn(q)-module of dimension n defined over the field of size q. 

The group SLn(q) acts naturally on V . Let W be a 1-dimensional subspace in V and let 
U be a complementary (n − 1)-dimensional subspace in V . There is a group SLn−1(q)
which acts naturally on U and fixes W . All automorphisms of S can be described by 
automorphisms of SLn(q) and the group Out(S) is isomorphic to D2(n,q−1) × Cf , see 
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[45, Section 3.3.4]. The field automorphisms and the inverse transpose automorphism 
of SLn(q) restrict naturally to the subgroup SLn−1(q) just defined. Moreover, by [29, 
Section 1], elements a and b of SLn−1(q) lie in the same GLn(q)-orbit if and only if a
and b are conjugate in GLn−1(q).

Let C be the set of all π-elements of SLn(q) which fix some 1-dimensional subspace 
of V and leave invariant some complementary (n − 1)-dimensional subspace. The group 
Aut(SLn(q)) leaves C invariant. Let the number of orbits of Aut(SLn(q)) on C be denoted 
by N . By the previous paragraph, N ≥ n(Aut(SLn−1(q)), Clπ(SLn−1(q))). Since T =
PSLn−1(q) is a factor group of SLn−1(q) and all automorphisms of T can be described 
by automorphisms of SLn−1(q), we have

n(Aut(SLn−1(q)),Clπ(SLn−1(q))) ≥ n(Aut(T ),Clπ(T )).

By taking the images in PSLn(q) of the elements of C, we see that the set of 
Aut(SLn(q))-orbits of C can injectively be mapped into the set of Aut(PSLn(q))-orbits 
on Clπ(PSLn(q)). In particular,

N ≤ n(Aut(PSLn(q)),Clπ(PSLn(q))) = n(Aut(S),Clπ(S)).

Let S and T be projective special unitary groups.
Let V be the natural GUn(q)-module of dimension n defined over the field of size q2. 

The module V is equipped with a non-singular conjugate-symmetric sesquilinear form f . 
The group SUn(q) acts naturally on V . Let W be a 1-dimensional non-singular subspace 
in V with respect to f . Let U be the (n − 1)-dimensional non-singular subspace of V
perpendicular to W with respect to the form f . There is a subgroup SUn−1(q) which 
acts naturally on U and fixes W . The automorphisms of the simple group PSUn(q) are 
described in [45, Section 3.6.3]. All outer automorphisms of PSUn(q) come from outer 
automorphisms of SUn(q), these are diagonal automorphisms or field automorphisms. 
Field automorphisms preserve the subgroup SUn−1(q). By a result of Wall [44, p. 34, 13, 
2], elements a and b of SUn−1(q) lie in the same GUn(q)-orbit if and only if a and b are 
conjugate in GUn−1(q).

The proof can now be completed as in the linear case by replacing the groups SLn(q), 
SLn−1(q), PSLn−1(q), PSLn(q) by SUn(q), SUn−1(q), PSUn−1(q), PSUn(q) respectively.

Let S and T be projective symplectic groups.
Let V be the natural Sp2n(q)-module of dimension n defined over the field of size q. 

The module V is equipped with a non-singular alternating bilinear form f . Let W be 
a 2-dimensional non-singular subspace in V with respect to f . Let U be the (2n − 2)-
dimensional non-singular subspace of V perpendicular to W with respect to the form 
f . There is a subgroup Sp2n−2(q) which acts naturally on U and which fixes W . The 
automorphisms of the simple group PSp2n(q) are described in [45, Section 3.5.5]. All 
outer automorphisms of PSp2n(q) come from outer automorphisms of Sp2n(q) and these 
are diagonal automorphisms and field automorphisms since we are assuming that q is 
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odd. All outer automorphisms of Sp2n(q) preserve the subgroup Sp2n−2(q). By a result 
of Wall [44, p. 36], elements a and b of Sp2n−2(q) lie in the same Sp2n(q)-orbit if and 
only if a and b are conjugate in Sp2n−2(q). See also [13, 210, 211].

The proof can now be completed as in the linear or unitary case. �
To have good estimates of n(Aut(S), Clp′(S)) and n(Aut(S), Clp(S) ∪ Clp′(S)), espe-

cially for low rank classical groups and exceptional groups, we will use so-called strongly 
self-centralizing maximal tori. A subgroup T of G is said to be strongly self-centralizing if 
CG(t) = T for every 1 �= t ∈ T . These groups are useful because of the following lemma 
due to Babai, Pálfy and Saxl.

Lemma 2.5. Let G be a finite group with a strongly self-centralizing subgroup T . Let p be 
a prime.

(i) If p | |T |, then

|Gp′ | > |G| − |G|
|NG(T )/T |

and

|Gp| ≥
|G|

|NG(T )/T |
|T | − 1
|T | >

|G|
|NG(T )/T | + 1 .

(ii) If p � |T |, then

|Gp′ | ≥ |G|
|NG(T )/T |

|T | − 1
|T | >

|G|
|NG(T )/T | + 1 .

Moreover, if G contains pairwise non-conjugate strongly self-centralizing subgroups 
T1, T2, . . . , Tk such that p � |Ti| for all 1 ≤ i ≤ k, then

|Gp′ | >
k∑

i=1

|G|
|NG(Ti)/Ti| + 1 .

Proof. See [2, Proposition 1.15] and its proof. There the authors used the language 
of proportion of p-regular elements but one can transfer to the number of p-regular 
elements. �
2.2. Alternating groups

We finish this section by proving Theorem 2.1 for the alternating groups.

Lemma 2.6. Theorem 2.1 holds for S = An with n ≥ 5.
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Proof. Assume first that p ≥ 7. We claim that n(Aut(S), Clp′(S)) > 2
√
p− 1. Assume 

for a contradiction that S = An is a counterexample to the claim with n ≥ 7 minimal. 
The prime p divides |An| but does not divide |An−1| by Lemma 2.4. It follows that n = p. 
The group Ap has cycles of every odd length up to p − 2 and has 	p/3
 cycle types of 
elements of order 3. Therefore we have

n(Aut(S),Clp′(S)) ≥ (p− 1)/2 + 	p/3
 > 2
√

p− 1,

from which the claim follows.
Let p = 5. From the previous paragraph we have n(Aut(A7), Clp′(A7)) > 2

√
p− 1. 

This implies n(Aut(S), Clp′(S)) > 2
√
p− 1 for n ≥ 7 by Lemma 2.4. We find 

n(Aut(A6), Cl5′(A6)) = 4 and n(Aut(A5), Cl5′(A5)) = 3. Parts (ii) and (iii) follow.
The number of orbits of Aut(S) on Clp(S) ∪Clp′(S) is 4 if S = A5 and is 5 if S = A6. 

Part (i) follows and the proof is complete. �
3. Theorem 2.1: linear and unitary groups

In this section we prove Theorem 2.1 for S being PSLn(q) and PSUn(q). To do so, 
we prove several general bounds for the number of Aut(S)-orbits on p-regular and p′-
regular classes, see Lemmas 3.1, 3.6, 3.8. These bounds and Lemma 2.4 allow us to 
achieve Theorem 2.1 in most cases when either n or q is large enough. For smaller n and 
q, some detailed analysis is needed with the help of Lemma 2.5 and [15].

3.1. Linear groups

In this subsection, we will prove Theorem 2.1(i) for S = PSLn(q) with n ≥ 2, q = �f

where � is a prime, and (n, q) /∈ {(2, 2), (2, 3)}. We keep the notation introduced in 
Section 2 and start with the following technical lemma.

Lemma 3.1. Let n ≥ 2 be an integer and let ε be 1 or 2 depending on whether n = 2 or 
n > 2 respectively. Let S = PSLn(q) be a simple group. Let

m = qn − 1
(q − 1)(n, q − 1) .

If p divides m, then

n(Aut(S),Clp(S)) ≥ p− 1
εfn

.

If p does not divide m, then

n(Aut(S),Clp′(S)) ≥ ϕ(m)
εfn

where ϕ is Euler’s totient function.
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Proof. Let A = Aut(S) and let a be an element of S. Let g be the preimage of a in 
SLn(q) ≤ GLn(q). Assume that g acts irreducibly on the natural module V for GLn(q). 
The centralizer of g in GLn(q) is a cyclic group C of order qn − 1 and the normalizer of 
〈g〉 in GLn(q) is C : 〈σ〉 where σ is a field automorphism of order n. There is a subgroup 
B in A defined in a natural way which contains S and which is isomorphic to PGLn(q). 
We have |B : S| = (n, q − 1) and |A : B| = εf . Observe that

|CB(a)| = |C|
(n, q − 1)

and

|NB(〈a〉)| = n|C|
(n, q − 1) .

It follows that |CA(a)| ≥ |CB(a)| = |C|/(n, q − 1) and

|NA(〈a〉)| ≤ εf |NB(〈a〉)| ≤ εfn|C|
(n, q − 1) .

Thus |NA(〈a〉)/CA(〈a〉)| ≤ εfn. Assume now that a is of order m. It follows that there 
are at least ϕ(m)/(εfn) conjugacy classes of A all contained in S which consist of ele-
ments of order m. The desired bound now follows in the case when p does not divide m. 
If p divides m, then the bound also follows by noting that ϕ(m) ≥ p − 1. �
Lemma 3.2. Theorem 2.1 holds for S = PSL2(q) with q ≥ 4.

Proof. Let q ≤ 256. By a Gap [15] calculation n(Aut(S), Clp′(S)) > 2
√
p− 1 unless q ∈

{4, 5, 7, 8, 9, 11, 16, 27, 32, 81, 128, 243, 256}. The exceptional cases account for the possi-
bilities in Table 1. Furthermore, if q belongs to {512, 1024}, then n(Aut(S), Clp′(S)) >
2
√
p− 1 for every possible value of p.
Assume first that p divides q + 1. There are q − 1 diagonal elements in SL2(q) with 

respect to a fixed basis. Thus there are at least q − 1 conjugacy classes of p-regular 
elements in GL2(q) and so at least (q − 1)/2 conjugacy classes of PGL2(q) consisting of 
p-regular elements in PSL2(q). Thus n(Aut(S), Clp′(S)) ≥ (q − 1)/(2f). This is larger 
than 2√q subject to the restrictions q > 256 and q /∈ {512, 1024}. This proves parts (ii) 
and (iii) in the case when p divides q + 1. We now turn to the proof of part (i) in the 
case when p divides q + 1. We may assume that the pair (S, p) appears in Table 1.

We have n(Aut(S), Clp(S)) ≥ (p − 1)/(2f) by Lemma 3.1. The exact values of 
n(Aut(S), Clp′(S)) may be found in Table 1. Using this information, for any pair (S, p)
in Table 1 such that p divides q + 1, we get

n(Aut(S),Clp′(S)) + n(Aut(S),Clp(S)) > 2
√

p− 1,
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unless (S, p) = (PSL2(16), 17) when n(Aut(S), Clp′(S)) + n(Aut(S), Clp(S)) = 7. This 
latter pair is an exception in part (i). This proves part (i) in the case p divides q + 1. 
The case p = � or p | q − 1 is similar, and we skip the details. �
Lemma 3.3. Theorem 2.1 holds for S = PSL3(q).

Proof. We will show that n(Aut(S), Clp′(S)) > 2
√
p− 1 in all cases except when (S, p) =

(PSL3(8), 73). We may exclude q ≤ 19 using [8,15]. By [37] we have |CS(g)| ≥ q2/(3, q−1)
for every g ∈ S. We also know that S has a strongly self-centralizing maximal torus T
of order

(q2 + q + 1)/(3, q − 1) = Φ3(q)/(3, q − 1)

with |NS(T )/T | = 3, see [2, p. 16] for instance.
Suppose first that p | |T |. Then by Lemma 2.5, we have |Sp′ | > 2

3 |S| and thus kp′(S) >
2q2/(3(3, q − 1)), which yields

n(Aut(S),Clp′(S)) > q2

3f(3, q − 1)2 =: R(q).

It is easy to check that R(q) ≥ 2
√
p− 1, and we are done.

Now we suppose p � |T |. By Lemma 2.5, we have |Sp′ | > |S|(|T | − 1)/3|T |. Hence

kp′(S) > q2(|T | − 1)
3(3, q − 1)|T | ,

implying that

n(Aut(S),Clp′(S)) > q2(|T | − 1)
6f(3, q − 1)2|T | := R′(q).

It is easy to check that R′(q) ≥ 2√q ≥ 2
√
p− 1 unless q ∈ {25, 64}. In fact we still have 

R′(q) ≥ 2
√
p− 1 when q ∈ {25, 64} since p ≤ 13 in those cases. This proves parts (ii) 

and (iii) by noting that the pair (S, p) = (PSL3(8), 73) appears in Table 1.
For the proof of part (i) we may now assume that (S, p) = (PSL3(8), 73). Then S has 

a maximal torus of order Φ3(8) = 73 with the relative Weyl group of order 3, and thus S
has at least 72/3 = 24 conjugacy classes of elements of order 73. It follows that there are 
at least 24/3 = 8 Aut(S)-orbits on Clp(S). We now have n(Aut(S), Clp(S) ∪ Clp′(S)) ≥
8 + 13 > 2

√
p− 1, as desired. �

Lemmas 2.4, 3.1 and [14, Corollary 3.7] are used to establish the following.

Lemma 3.4. Theorem 2.1(i) holds for S = PSLn(q) with n ≥ 4.
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Proof. Assume for a contradiction that part (i) fails for the group S = PSLn(q) with 
n ≥ 4 minimal. The prime p divides |PSLn(q)| but does not divide |PSLn−1(q)| by 
Lemma 2.4. This implies that p divides

m = qn − 1
(q − 1)(n, q − 1) .

We get

n(Aut(S),Clp(S)) ≥ p− 1
2fn

by Lemma 3.1. By Lemma 2.4 and [14, Corollary 3.7 (2)] we also have

n(Aut(S),Clp′(S)) ≥ k(PSLn−1(q))
2f(n− 1, q − 1) ≥ qn−2

2f(n− 1, q − 1)2
.

From these it follows that

n(Aut(S),Clp(S)) + n(Aut(S),Clp′(S)) ≥

≥ p− 1
2fn + 2fn + qn−2

δf(n− 1, q − 1)2
− 2fn ≥ 2

√
p− 1 + qn−2

2f(n− 1, q − 1)2
− 2fn.

We may thus assume that qn−2 ≤ 4f2n(n− 1, q − 1)2. An easy computation with 
[15] then shows that n ≤ 6 and q ≤ 64. For these exceptional cases, we find that 
n(Aut(S), Clp′(S)) > 2

√
p− 1, using Lemma 2.4 together with the bound

n(Aut(S),Clp′(S)) ≥ k(PSLn−1(q))/2f(n− 1, q − 1). �
3.2. Unitary groups

We continue to prove Theorem 2.1(i) for S = PSUn(q).

Lemma 3.5. Theorem 2.1 holds for S = PSU3(q).

Proof. The proof is similar to that of Lemma 3.3. We skip the details and just mention 
that S has a strongly self-centralizing maximal torus T of order (q2−q+1)/(3, q+1) with 
|NS(T )/T | = 3, and therefore Lemma 2.5 and [37] are applied to achieve the bound. �

We proceed to prove part (i) for the groups S = PSUn(q) with n ≥ 4. If (n, q) = (4, 2), 
then p = 5 since we are assuming p ≥ 5 and so n(Aut(S), Clp′(S)) = 14 > 4 by [15]. 
Assume from now on that (n, q) �= (4, 2) (and n ≥ 4). In this case PSUn−1(q) is a simple 
group.
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Lemma 3.6. In order to prove Theorem 2.1(i) for S = PSUn(q) with n ≥ 4, we may 
assume that

n(Aut(S),Clp′(S)) ≥ qn−2

2f(n− 1, q + 1)2

and that the prime p divides qn − (−1)n. Moreover, if n is odd then p is a primitive 
prime divisor of q2n − 1.

Proof. The prime p divides |S| by assumption and p ≥ 5. Since (n, q) �= (4, 2), we may 
assume by Lemma 2.4 that p does not divide |PSUn−1(q)|. This has two implications. 
Firstly,

n(Aut(S),Clp′(S)) ≥ k(PSUn−1(q))
2f(n− 1, q + 1) ≥ qn−2

2f(n− 1, q + 1)2

by Lemma 2.4 and [14, Corollary 3.11 (2)] and secondly p | qn − (−1)n.
Let n ≥ 5 be odd. We claim that p is a primitive prime divisor of q2n − 1. Assume 

for a contradiction that p | qk − 1 for some integer k with 1 ≤ k < 2n. Since p does not 
divide |PSUn−1(q)|, it cannot divide qr + 1 for r < n odd and it cannot divide qr − 1 for 
r < n even.

Assume that k ≤ n. By the previous paragraph, k must be odd. Since p divides 
(qn + 1) + (qk − 1), the prime p must divide qn−k + 1. Thus k < n. Since p divides 
(qk − 1) + (qn−k + 1), it must divide q|n−2k| + 1. This is a contradiction since |n − 2k| is 
odd. It follows that n < k. Since p divides (q2n − 1) − (qk − 1), it must divide q2n−k − 1. 
This is a contradiction since 2n − k < n. �
Lemma 3.7. Theorem 2.1(i) holds for S = PSUn(q) with n ≥ 4 even.

Proof. By Lemma 3.6, we may assume p | qn − 1, and thus p − 1 ≤ qn/2. Also, 
we are finished if qn−2/(2f(n− 1, q + 1)2) > 2qn/4, and thus we may assume that 
q(3n/4)−2 ≤ 4f(n− 1, q + 1)2. Taking into account that p ≥ 5 divides qn − 1 but p
does not divide |PSUn−1(q)| and using Lemma 2.4 as in the proof of Lemma 3.4, we find 
no counterexample for Theorem 2.1(i) with S = PSUn(q) and n ≥ 4 even. �
Lemma 3.8. Let n ≥ 5 be odd. Let p ≥ 5 be a prime which divides qn + 1 and which is 
a primitive prime divisor of q2n − 1. Let S = PSUn(q). The number of orbits of Aut(S)
on the set of elements of S of orders divisible by p but not equal to p is

qn+1
(q+1)(n,q+1) − p

2fn .

Proof. Let g ∈ GUn(q) be an element of order divisible by p. Since GUn(q) ≤ GLn(q2)
and p is a primitive prime divisor of q2n − 1, we see that g acts irreducibly on the 
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underlying vector space of dimension n over the field of size q2. It is contained in a 
Singer cycle C of GUn(q) defined to be a cyclic irreducible subgroup of GUn(q) of 
maximal possible order and whose existence is proved by Huppert in [24]. The group C
is the intersection of GUn(q) with the Singer cycle of GLn(q2) (which is a cyclic subgroup) 
containing g. Since the centralizer of g in GLn(q2) is the Singer cycle containing g, it 
follows that the centralizer of g in GUn(q) is C. The group C has order qn + 1 by [24, 
Satz 4]. Since p is a primitive prime divisor of q2n− 1, C contains a Sylow p-subgroup P
of GUn(q). The centralizer in GUn(q) of any non-trivial element of P is C. It follows that 
all Singer cycles in GUn(q) are conjugate and also that the centralizer of g in GUn(q) is 
C. The group NGLn(q2)(〈g〉)/CGLn(q2)(〈g〉) is cyclic of order n, so NGUn(q)(〈g〉) = C.m

for some divisor m of n. Since g is contained in an extension field subgroup GU1(qn).n
of GUn(q), we obtain m = n.

The image F of C∩SUn(q) in S has order (qn+1)/((q+1)(n, q+1)). Cyclic subgroups 
of this order are all conjugate in Aut(S) by the previous paragraph. Every element of 
S of order divisible by p is contained in some conjugate of F in Aut(S). Observe that 
|NAut(S)(F )/F | = 2fn. The lemma follows. �

We are now in position to complete the proof of Theorem 2.1(i) for the unitary groups.

Lemma 3.9. Theorem 2.1(i) holds for S = PSUn(q) with n ≥ 5 odd.

Proof. Let n ≥ 5 be odd. We may assume that p is a primitive prime divisor of q2n − 1
by Lemma 3.6. Thus

n(Aut(S),Clp′(S)) + n(Aut(S),Clp(S)) ≥ k(S)
2f(n, q + 1) − qn + 1

2fn(q + 1)(n, q + 1) + p

2fn

by Lemma 3.8. This is at least

p

2fn + 2fn− 2fn + qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1) ≥

≥ 2√p + qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1) − 2fn

by [14, Corollary 3.11 (2)]. This latter expression is at least 2√p if and only if

qn−1 ≥ (qn + 1)(n, q + 1)
n(q + 1) + 4f2n(n, q + 1)2.

This is satisfied unless (n, q) ∈ {(5, 2), (5, 4), (5, 9), (9, 2)}. Taking into account that the 
prime p ≥ 5 divides qn + 1, the triple (n, q, p) must belong to

{(5, 2, 11), (5, 4, 5), (5, 4, 41), (5, 9, 5), (5, 9, 1181), (9, 2, 19)}.
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Among these exceptions, we have

qn−1

2f(n, q + 1)2
− qn + 1

2fn(q + 1)(n, q + 1) > 2
√

p− 1

unless (n, q, p) ∈ {(5, 4, 5), (5, 4, 41), (5, 9, 1181)}. If (n, q, p) ∈ {(5, 4, 5), (5, 4, 41)}, then

n(Aut(S),Clp′(S)) ≥ n(Aut(PSU4(q)),Clp′(PSU4(q))) > 2
√
p− 1

by Lemma 2.4 and [15]. Let (n, q, p) = (5, 9, 1181). The precise number of conjugacy 
classes of S can be computed using [29]. This is k(S) = 7596. Plugging this into the first 
displayed expression of the present proof, we obtain

n(Aut(S),Cl1181′(S)) + n(Aut(S),Cl1181(S)) > 2
√

1180,

and this finishes the proof. �
3.3. Theorem 2.1(ii) and (iii): linear and unitary groups of dimension at least 4

The method in Subsections 3.1 and 3.2 can be revised to prove parts (ii) and (iii) 
for S = PSLn(q) and PSUn(q), but we present here another path to do it. As the case 
n ≤ 3 has been proved in Lemmas 3.2, 3.3, and 3.5, we will assume that n ≥ 4 in this 
subsection.

We use PSL+
n (q) for the linear groups and PSL−

n (q) for the unitary groups.

Lemma 3.10. Let S = PSLε
n(q) for n ≥ 4 and p a prime divisor of |S| but p � q. Assume 

that p | (qn − (ε1)n) but p � (qi − (ε1)i) for every 1 ≤ i ≤ n − 1. Then

n(Aut(S),Clp′(S)) > qn−1(n− 1)
2nf(n, q − ε1)H(n, q, ε),

where

H(n, q,+) = 1
er

with r := min{x ∈ N : x ≥ logq(n + 1)} and

H(n, q,−) =
(

q2 − 1
er′(q + 1)2

)1/2

with r′ := min{x ∈ N : x odd and x ≥ logq(n + 1)}.

Proof. By [14, Theorems 6.4 and 6.7] and their proofs, the minimal centralizer size of 
an element in GLε

n(q) is at least
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qn−1(q − ε1)H(n, q, ε).

Since GLε
n(q) has center of order q − ε1, the minimal centralizer size of an element 

in PGLε
n(q) is at least qn−1H(n, q, ε). There exists a normal subgroup B of Aut(S)

isomorphic to PGLε
n(q) with the property that S is normal in B. Thus the minimal 

centralizer size in Aut(S) of an element in S is at least qn−1H(n, q, ε). It follows that 
every Aut(S)-orbit on S has size at most

|Aut(S)|
qn−1H(n, q, ε) .

On the other hand, by [1, Lemmas 3.1 and 4.1], we know that the proportion of p-
regular elements in PSLε

n(q) is at least the proportion of elements in Sn that have no 
cycles of length divisible by n. As the latter proportion is (n − 1)/n, we have |Sp′ | ≥
(n − 1)|S|/n, and it follows from the conclusion of the previous paragraph that

n(Aut(S),Clp′(S)) > (n− 1)|S|
n|Aut(S)| · q

n−1H(n, q, ε).

The result now follows by |Aut(S)| = 2f(n, q − ε1)|S|. �
Proposition 3.11. Let S = PSLε

n(q) for n ≥ 4 and ε = ± and let p be a prime divisor of 
|S|. The number of Aut(S)-orbits on p-regular classes of S is greater than 2

√
p− 1.

Proof. Note that the case p | q has been done in Lemma 2.3, and so we assume that 
p � q. Furthermore, if p | |PSLε

n−1(q)| then we are done by Lemma 2.4 and induction. So 
we assume also that p | (qn − (ε1)n) but p � (qi − (ε1)i) for every 1 ≤ i ≤ n − 1, which 
means that p is a primitive prime divisor of qn − 1 when ε = + or 4 | n and ε = −, and 
a primitive prime divisor of qn/2 − 1 when n ≡ 2 (mod 4) and ε = −, and a primitive 
prime divisor of q2n − 1 when n is odd and ε = −. Lemma 3.10 then implies that

n(Aut(S),Clp′(S)) > qn−1(n− 1)
2nf(n, q − ε1)H(n, q, ε).

A straightforward computation shows that this bound is greater than 2
√
p− 1, and 

therefore we are done, unless q = 2 and n ≤ 9, or q = 3 and n ≤ 5, or (n, q, ε) ∈
{(4, 4, ±), (4, 5, +), (5, 4, ±)}.

We now consider these exceptions in a case by case basis.
Let q = 2. First the cases S = SL±

4 (2), SL±
5 (2), and PSU6(2) can be checked directly 

using [8]. The case of SL6(2) is not under consideration since 26 − 1 has no primitive 
prime divisor. For n = 7, 8, 9 we will show that the number of different element orders 
coprime to p is greater than 2

√
p− 1, and for that purpose it is enough to, and we will, 

assume that n = 7 as the maximal prime divisor of S is a divisor of |SLε
7(2)|. Here in 

fact p = 127 = 27 − 1 for ε = + and p = 43 = (27 + 1)/3 for ε = −. We consider the 
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embeddings SLε
4(2) × SLε

3(2) ⊂ SLε
7(2) and SLε

5(2) × SLε
2(2) ⊂ SLε

7(2) and inspect the 
element orders in the groups SLε

k(2) for 2 ≤ k ≤ 5 in [8] to produce more than 2
√
p− 1

element orders of SLε
7(2), proving the desired inequality.

Let q = 3. Again the case of S = PSL±
4 (3) is available in [8], and so we assume that 

S = PSL±
5 (3). The case S = PSL5(3) is in fact easy as p = 11 and PSL5(3) = SL5(3)

contains SL4(3), which has more than 7 different element orders. So it remains to consider 
S = PSU5(3), in which case p must be 61 = (35 + 1)/4. But by using the embedding 
SU4(3) ⊂ SU5(3) = PSU5(3) and inspecting the element orders of SU4(3), we find that 
PSU5(3) has at least 17 element orders coprime to p = 61, and hence the bound follows 
in this case.

Let (n, q, ε) = (4, 4, ±). Then we have p = 17. From [8] we observe that SLε
3(4) has 

more than 8 = 2
√
p− 1 different element orders, and thus, as S = SLε

4(4) ≥ SLε
3(4), it 

follows that n(Aut(S), Clp′(S)) > 2
√
p− 1. Similarly when (n, q, ε) = (5, 4, ±), by using 

[8] and considering the embeddings SL3(4) ⊂ SL5(4) = PSL5(4) and SU3(4) × SL2(4) ⊂
SU5(4) one can produce at least 13 different orders coprime to p of S, and therefore 
proving the inequality as p ≤ 41 in this case.

Finally for (n, q, ε) = (4, 5, +) we have p = 13 and on the other hand, using the 
embeddings SL2(5) × SL2(5) ⊂ SL4(5) and SL3(5) ⊂ SL4(5) one easily sees that S has 
element orders 1, 2, 3, 5, 6, 15, 31, implying that n(Aut(S), Clp′(S)) ≥ 7 > 2

√
p− 1. �

4. Theorem 2.1: symplectic and orthogonal groups

The aim of this section is to prove the following theorem, which implies Theorem 2.1
for the symplectic and orthogonal groups.

Theorem 4.1. Let S = PSp2n(q), Ω2n+1(q) for n ≥ 2 and (n, q) �= (2, 2), or S = PΩ±
2n(q)

for n ≥ 4. Let p be a prime divisor of |S|. Then

n(Aut(S),Clp′(S)) > 2
√
p− 1,

with a single possible exception of (S, p) = (Ω−
8 (4), 257), in which case 2

√
p− 1 = 32 ≤

n(Aut(S), Clp′(S)).

We note that for the exception (S, p) = (Ω−
8 (4), 257), we found by using [15] that S

has exactly 32 different element orders coprime to p, and therefore it is unlikely that 
this pair is a true exception. In any case, since n(Aut(S), Clp(S)) ≥ 1, the wanted bound 
n(Aut(S), Clp(S) ∪ Clp′(S)) > 2

√
p− 1 in Theorem 2.1(i) still holds for this exception.

To achieve Theorem 4.1, we prove a bound for the number of unipotent classes of S
in terms of partition functions (see Lemmas 4.3 and 4.4) and the number of semisimple 
classes in terms of the size of certain large torus of S (see Lemmas 4.3 and 4.5).

As the cases p = 2, 3 or p | q and n ≥ 3 have been considered in Section 2, we will 
assume that p ≥ 5. Moreover, we assume p � q except in the case of S = PSp4(q) ∼= Ω5(q), 
due to Lemma 2.3.
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4.1. Symplectic groups and odd-dimensional orthogonal groups

Lemma 4.2. Theorem 4.1 holds for S = PSp4(q) ∼= Ω5(q) with q �= 2.

Proof. We assume that q ≥ 7 as the cases q = 3, 4, 5 can be confirmed directly using 
[8]. First suppose that p | q. Recall that p ≥ 5, and so q is odd. Then kp′(S) ≥ q2/2
and therefore n(Aut(S), Clp′(S)) > q2/4f . One can check that q2/(4f) > 2

√
p− 1 for 

all q ≥ 7.
So it remains to assume that p � q. From [11,38], we observe that |CS(g)| ≥ (q2 −

1)/(2, q − 1) for every g ∈ S. Suppose that p | (q2 − 1). [1, Lemma 5.1] then implies 
that the proportion of p-regular elements in S is at least 3/8. Therefore kp′(S) ≥ 3(q2 −
1)/8(2, q − 1), and thus

n(Aut(S),Clp′(S)) > 3(q2 − 1)
8f(2, q − 1)2(2, q) .

This bound is larger than 2√q ≥ 2
√
p− 1 if q ≥ 23. When q < 23 we must have p ≤ 7

since p | (q2 − 1) and we are done as |S| is divisible by at least four primes.
The remaining case p | (q2 + 1) is treated similarly, with remark that the proportion 

of p-regular elements in S is now at least 1/2 again by [1, Lemma 5.1]. �
Let p(i) be the number of distinct ways of representing i as a sum of positive integers 

and p0(i) be the number of distinct ways of representing i as a sum of odd positive 
integers.

Lemma 4.3. Let p ≥ 3 be a prime not dividing q. We have

kp′(PSp2n(q)) ≥

⎧⎪⎪⎨
⎪⎪⎩

∑n
i=0 p(i)p0(n− i) +

⌈
qn − 2

4n

⌉
if q is odd

p(n) +
⌈
qn − 2

2n

⌉
if q is even,

and

kp′(Ω2n+1(q)) ≥

⎧⎪⎪⎨
⎪⎪⎩

∑�(2n+1)/4�
i=0 p(i)p0(2n + 1 − 4i) +

⌈
qn − 2

4n

⌉
if q is odd

p(n) +
⌈
qn − 2

2n

⌉
if q is even.

Proof. Note that, by the assumption, p cannot divide both qn − 1 and qn + 1. So let 
T be a maximal torus of G := Sp2n(q) of order qn ± 1 such that p � |T |. Since the 
fusion of (semisimple) elements in this torus is controlled by the relative Weyl group of a 
Sylow n-torus with order 2n (see [31, Proposition 5.5] and its proof), there exist at least 
(|T | − 1)/(2n) nontrivial semisimple classes of G with representatives in T . It follows 
that S has at least (qn − 2)/(2n(2, q − 1)) nontrivial p-regular semisimple classes.
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Suppose first that q is odd. Let Jk denote the unipotent Jordan block of size k, which 
is the k×k matrix with 1 on the main and second main diagonals, and 0 everywhere else. 
Let r, s, a1, . . . , ar, b1, . . . , bs be integers, k1, . . . , kr be distinct non-negative integers, 
and l1, . . . , ls be distinct positive integers such that 

∑r
i=1 aiki +

∑s
j=1 bj(2lj + 1) = n. 

Consider a matrix g in GL2n(q) conjugate to a block matrix with ai Jordan blocks J2ki

and 2bj Jordan blocks J2lj+1 in the main diagonal. By [18, Proposition 2.3], there are 2r

unipotent classes of Sp2n(q) (and therefore of PSp2n(q)) of elements having such form. 
These classes are all p-regular since p � q. Since there are 

∑n
i=0 p(i)p0(n − i) such Jordan 

forms, we obtain the desired bound in this case.
Symplectic groups in even characteristic and odd-dimensional orthogonal groups fol-

low from [18, Proposition 2.4 and Theorem 3.1] in a similar way. �
We are now ready to prove Theorem 4.1 for S = PSp2n(q) and S = Ω2n+1(q) for 

n ≥ 3. The treatments for these two families are almost identical, so let us provide 
details only for symplectic groups.

Suppose first that q is odd. Then by Lemma 4.3 and its proof, we obtain

n(Aut(S),Clp′(S)) ≥ 1 +
⌈∑n

i=0 p(i)p0(n− i) − 1
2f

⌉
+
⌈
qn − 2
8fn

⌉
=: R(q, n),

as |Out(S)| = 2f and note that the trivial class is an Aut(S)-orbit itself. Note also 
that p ≤ (qn + 1)/2 for n ≥ 4 and p ≤ q2 + q + 1 for n = 3. One now can check that 
R(q, n) > 2

√
p− 1 for all relevant values.

Next suppose that q is even. We now have

n(Aut(S),Clp′(S)) ≥ 1 +
⌈
p(n) − 1

f

⌉
+
⌈
qn − 2
2fn

⌉
=: R′(q, n).

Again one can check that �(qn − 2)/(2fn)� > 2qn/2 ≥ 2
√
p− 1 unless (n, q) ∈ S :=

{(3, 2), (3, 4), (4, 2), (4, 4), (5, 2), (5, 4)} or 6 ≤ n ≤ 10 and q = 2. We then observe that 
R′(n, q) > 2

√
p− 1 in the latter case.

Note that if n = 5 then p ≤ (q5−1)/(q−1) and the desired bound R′(n, q) > 2
√
p− 1

still holds for (n, q) = (5, 4). For (n, q) = (5, 2), the only prime failing the inequality 
R′(n, q) > 2

√
p− 1 is p = 31 = qn − 1, but in this case we remark that there are at 

least �(qn/10f)� = 4 nontrivial semisimple p-regular classes and at least p(5) − 1 = 6
nontrivial unipotent classes, totaling to at least 11 p-regular classes of S, and hence 
n(Aut(S), Clp′(S)) = kp′(S) ≥ 11 > 2

√
p− 1, as required.

For n = 3 we note that p ≤ q2 + q + 1 and PSp6(q) has at least 9 unipotent classes, 
and thus the bound holds for (n, q) = (3, 2) or (3, 4). For n = 4 we note that PSp8(q)
has at least 24 unipotent classes and so we are done for (n, q) = (4, 2) and (n, q) = (4, 4)
as well. The proof is complete.
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4.2. Orthogonal groups in even dimension

Let S = PΩε
2n(q) for n ≥ 4, ε = ±, and q = �f where � is a prime.

We start this subsection by proving a lower bound for the number of unipotent classes 
in even-dimensional orthogonal groups.

Lemma 4.4. The following holds:

(i) PΩ±
2n(q) has at least 

∑�n/2�
i=0 p(i)p0(2n − 4i) unipotent classes if q is odd.

(ii) PΩ+
2n(q) has at least p(n) +

∑
i�=j;i+j≤n;i,j odd p(n − i − j) unipotent classes if q is 

even.
(iii) PΩ−

2n(q) has at least 
∑

1≤i≤n;i odd p(n − i) unipotent classes if q is even.

Proof. First suppose that q is odd. Recall that Jk denotes the unipotent Jordan block of 
size k, as defined in Subsection 4.1. Let r, s, a1, . . . , ar, b1, . . . , bs be integers, k1, . . . , kr
be distinct non-negative integers, and l1, . . . , ls be distinct positive integers such that

r∑
i=1

ai(2ki + 1) + 4
s∑

j=1
bj lj = 2n.

Consider a matrix g in GL2n(q) conjugate to a block matrix with ai Jordan blocks J2ki+1
and 2bj Jordan blocks J2lj in the main diagonal. It was shown in [18, Proposition 2.4]
that the unipotent elements g with such a Jordan form fall into 2r−1 classes in each of 
GO+

2n(q) and GO−
2n(q), with the exception that if r = 0, it is 1 class in GO+

2n(q) and none 
in GO−

2n(q). As q is odd, these classes are inside Ω±
2n(q) and different classes produce 

different corresponding classes of S. Now (i) follows since the number of those Jordan 
forms is 

∑�n/2�
i=0 p(i)p0(2n − 4i), with the remark that there is at least one such form 

with r ≥ 2.
In a similar way, (ii) and (iii) follow from the description of unipotent classes of 

GO±
2n(2f ) as well as PΩ±

2n(2f ) = Ω±
2n(2f ) in [18, Theorem 3.1]. �

Lemma 4.5. Suppose that p is odd and (n, ε) �= (4, +). There are at least

1 +
⌈

qn−1 − 2
4f(n− 1)(4, qn − ε1)2

⌉
.

Aut(S)-orbits of p-regular semisimple classes of S = PΩ±
2n(q).

Proof. From the assumption on p, we know that p does not divide both qn−1 − 1 and 
qn−1 + 1. Let T be a torus of G := Spinε

2n(q) of order qn−1 ± 1 such that p � |T |. The 
relative Weyl group of a Sylow (n − 1)-torus has order 2(n − 1), and thus there are 
at least (|T | − 1)/(2(n − 1)) nontrivial semisimple classes of G with representatives in 
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T . It follows that S has at least (qn−1 − 2)/(2(n − 1)(4, qn − ε1)) nontrivial p-regular 
semisimple classes. The lemma now follows as |Out(S)| = 2f(4, qn − ε1). �

Now we are ready to prove Theorem 4.1 for even-dimensional orthogonal groups of 
rank at least 4. We recall that p ≥ 5 and p � q.

A) Suppose that p | (qm ± 1) for some m ≤ n/2. One can check that the bound 
in Lemma 4.5 is greater than 2

√
p− 1 unless n = 5 and q = 2, 3, 5, 7, 9; n = 6 and 

q = 2, 3, 5; or (n, q) = (7, 2), (7, 3), (8, 2), (8, 3).
For these exceptional cases, we will prove the desired bound by also taking into account 

the unipotent classes of S. For instance, when (n, q) = (8, 3) we have that S has at 
least 

∑4
i=0 p(i)p0(16 − 4i) = 69 unipotent classes by Lemma 4.4(i), producing at least 

�69/8� = 9 orbits of Aut(S) on unipotent classes of S. Together with at least 5 orbits on 
nontrivial p-regular semisimple classes by Lemma 4.5, we obtain n(Aut(S), Clp′(S)) ≥
14 > 2

√
p− 1 since p ≤ 41. Other cases are treated similarly.

B) Suppose that p does not divide qi± 1 for every i ≤ n/2. Let m be minimal subject 
to the condition p | qm ± 1. In particular, m ≥ 3. Using [1, Lemma 6.1], we then know 
that the proportion of p-regular elements in S is at least the proportion of elements in 
Sn that have no cycles of length divisible by m. As the latter proportion is (m − 1)/m, 
we deduce that

|Sp′ | ≥ m− 1
m

|S| > n− 2
n

|S|,

where we recall that Sp′ denotes the set of p-regular elements in S.
On the other hand, according to the proof of [14, Theorem 6.13], the centralizer size 

of an element in SO±
2n(q) is at least

qn
[
1 − 1/q

2re

]1/2

,

where

r := min{x ∈ N : max{4, logq(4n)} ≤ 2x}.

Thus, for every g ∈ S, we have

|CS(g)| ≥ qn(2, qn − ε1)
2(4, qn − ε1)

[
1 − 1/q

2re

]1/2

,

and therefore

kp′(S) ≥ qn(n− 2)(2, qn − ε1)
n

[
1 − 1/q

r

]1/2
2n(4, q − ε1) 2 e
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for every prime p, since |Sp′ | ≥ (n− 2)|S|/n. It follows that

n(Aut(S),Clp′(S)) ≥ qn(n− 2)(2, qn − ε1)
4fn(4, qn − ε1)2

[
1 − 1/q

2re

]1/2

=: R(n, q)

as |Out(S)| = 2f(4, qn − ε1).
Taking into account the maximum value of p and assuming that n ≥ 5, we get 

R(n, q) > 2
√
p− 1 unless possibly if n = 5 and q ∈ {2, 3, 4, 5}, or n ∈ {6, 7} and 

q ∈ {2, 3}, or (n, q, ε) = (8, 3, +), or q = 2 and n ∈ {8, 9, 10}. For these small cases, 
we use various techniques, including Lemmas 4.4 and 4.5, counting element orders, and 
embeddings of classical groups to prove the bound n(Aut(S), Clp′(S)) > 2

√
p− 1.

As an example let us consider the case (n, q, ε) = (7, 3, ±) or (8, 3, +), perhaps the 
most difficult one. The bound then is still straightforward unless p = 547 = (37 + 1)/4
or p = 1093 = (37 − 1)/2. We consider the natural embeddings

Spin+
8 (3) × SL4(3) ∼= Spin+

8 (3) × Spin+
6 (3) ⊂ Spin+

14(3) ⊂ Spin+
16(3)

and

Spin−
8 (3) × SU4(3) ∼= Spin−

8 (3) × Spin−
6 (3) ⊂ Spin−

14(3),

which lead to the embeddings

PΩ+
8 (3) × PSL4(3) ⊂ PΩ+

14(3) ⊂ PΩ+
16(3)

and

PΩ−
8 (3) × PSU4(3) ⊂ PΩ−

14(3),

respectively (see [35, Lemma 2.5]). We now use the information on element orders of 
PΩ±

8 (3) and PSL±
4 (3) (here PSL−

4 (3) := PSU4(3)) in [8,15] to find that the set of element 
orders of PΩε

14,16(3) coprime to both 547 and 1093 is greater than 67. It then follows 
that n(Aut(S), Clp′(S)) > 67 > 2

√
1092 ≥ 2

√
p− 1 as wanted.

The proof of Theorem 4.1 is completed by the following lemma.

Lemma 4.6. Theorem 4.1 holds for S = PΩ±
8 (q)

Proof. We provide details only for S = PΩ+
8 (q). Note that

|S| = q12Φ1(q)4Φ2(q)3Φ3(q)Φ4(q)2Φ6(q)/(4, q4 − 1).

First we suppose that p divides Φ3(q), Φ4(q) or Φ6(q). According to [1, Lemma 6.1], the 
proportion of p-regular elements in S is then at least the proportion of elements in S4
with no cycles of length divisible by 2, which is 13/24. As above, we get
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n(Aut(S),Clp′(S)) ≥ 13q4

288f(2, q − 1)3

[
1 − 1/q

4e

]1/2

.

The assumption on p guarantees that this bound is greater than 2
√
p− 1, unless q ∈

{2, 3, 4, 5, 7, 9}.
If q = 2, then n(Aut(S), Clp′(S)) ≥ 24 > 2

√
p− 1 by [15], as p ≤ 7. Let q = 3. Since 

p ≥ 5, we have p ∈ {5, 7, 13}. The number of different orders of elements in S which are 
coprime to p is at least 12 by [15]. Thus n(Aut(S), Clp′(S)) ≥ 12 > 2

√
13 − 1. Let q = 4. 

The set of prime divisors of the order of S is {2, 3, 5, 7, 13, 17}. Thus n(Aut(S), Clp′(S)) ≥
6. This forces p ∈ {13, 17}. Using random searches by [15] one finds that S contains 
elements of orders 15, 21, 30. It follows that n(Aut(S), Clp′(S)) ≥ 9 > 2

√
p− 1. Let 

q = 5. The set of prime divisors of |S| is {2, 3, 5, 7, 13, 31}. Thus n(Aut(S), Clp′(S)) ≥ 6. 
Assume that p ∈ {13, 31}. Using random searches by [15], one finds that S contains 
elements of orders 10, 62, 63 from which we obtain the desired bound for p = 13, and 
elements of orders 10, 26, 39, 63, 156, from which we get the bound for p = 31. Let 
q = 7. The set of prime divisors of |S| is {2, 3, 5, 7, 19, 43}. Thus n(Aut(S), Clp′(S)) ≥ 6. 
Assume that p ∈ {19, 43}. Using random searches by [15], one finds that S contains 
elements of orders 16, 25, 168, 600, from which the desired bound follows for p = 19, and 
16, 24, 25, 57, 168, 171, 600, from which we get the bound for p = 43. Let q = 9. The 
set of prime divisors of |S| is {2, 3, 5, 7, 13, 41, 73}. Thus n(Aut(S), Clp′(S)) ≥ 7. Assume 
that p ∈ {41, 73}. Since GO+

6 (9) ×GO+
2 (9) is a subgroup of GO+

8 (9), there is a subgroup 
of S isomorphic to PΩ+

6 (9) ∼= PSL4(9). Using random searches by [15], one sees that 
PΩ+

6 (9) (and so S) contains elements of orders 9, 16, 20, 24, 40, 60, 80, 91, 182, from 
which the desired bound follows for p = 41, and an additional element of order 205 from 
which the case p = 73 follows.

Next we suppose that p divides Φ1(q) or Φ2(q). Arguing similarly as in Lemma 4.5, 
we then have that S has at least

1 +
⌈

q3 − 2
36f(2, q − 1)4

⌉

Aut(S)-orbits on its p-regular semisimple classes. This bound is greater than 2
√
p− 1

unless q ∈ {2, 3, 4, 5, 7, 9, 11}. For all these exceptions, we have p ≤ 5 as p | (q2 − 1), and 
the bound easily holds as |S| has at least 5 different prime divisors. �
5. Theorem 2.1: exceptional groups

In this section S will be a simple exceptional group of Lie type, but not the Tits 
group. Then S is of the form G/Z(G), where G = GF is the set of fixed points of a 
simple algebraic group of simply connected type, under a Frobenius endomorphism F
associated to the field of q = �f elements, where � is a prime. Let r be the rank of G, 
which we also call the rank of S. We then have |CG(g)| ≥ (q − 1)r for all g ∈ G, which 
implies that |CS(g)| ≥ (q − 1)r/|Z(G)| for all g ∈ S.
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Table 2
Upper bounds for p(S).

S upper bound for p(S)
2B2(q), q = 22m+1 Φ+

4 (q)
G2(q) Φ3(q)

2G2(q), q = 32m+1 Φ+
6 (q)

F4(q) Φ8(q)
2F4(q), q = 22m+1 Φ+

12(q)
3D4(q) Φ12(q)
E6(q) Φ9(q)
2E6(q) Φ18(q)
E7(q) Φ7(q)
E8(q) Φ30(q)

Table 3
Strongly self-centralizing maximal tori of exceptional groups.

S conditions |T | |NS(T )/T |
2B2(q) q = 22m+1 Φ±

4 (q) 4

G2(q)
q �≡ 1(mod3)
q �≡ 2(mod3)

Φ3(q)
Φ6(q)

6
2G2(q) q = 32m+1 Φ±

6 (q) 6
F4(q) Φ12(q) 12
2F4(q) q = 22m+1 Φ±

12(q) 12
3D4(q) Φ12(q) 4
E6(q) Φ9(q)/(3, q − 1) 9
2E6(q) Φ18(q)/(3, q + 1) 9

E8(q)
Φ24(q)
Φ15(q)
Φ30(q)

24
30
30

Let Φn(q) denote the value of the n-cyclotomic polynomial at q and let p(S) be the 
maximal prime divisor of S. Also, let Φ±

4 (q) := q ± √
2q + 1 for q = 22m+1, Φ±

6 (q) :=
q±√

3q+ 1 for q = 32m+1, and Φ±
12(q) := q2 ±

√
2q3 + q±√

2q+ 1 for q = 22m+1. Using 
the order formulas of S [8], one can find an upper bound for p(S), which we record in 
Table 2. We observe that in all the cases p(S) ≤ ΨS(q) for a polynomial ΨS of degree at 
most r(S). In fact, deg(Ψn(S)) = r in all cases except S = E7(q).

We recall from Section 2 that a subgroup T of G is said to be strongly self-centralizing 
if CG(t) = T for every 1 �= t ∈ T . It turns out that every group of exceptional types 
other than E7(q) has one or more strongly self-centralizing torus, as worked out in [2]. 
This information is collected in Table 3 for convenient reference.

We will follow the following strategy to prove Theorem 2.1 for groups of exceptional 
types. First we use a strongly self-centralizing torus and Lemma 2.5 to obtain a lower 
bound for |Sp′ |. This and the lower bound |CS(g)| ≥ (q − 1)r/|Z(G)| on the centralizer 
size then yield lower bounds for kp′(S) and n(Aut(S), Clp′(S)). This turns out to be 
sufficient when q is large enough. For smaller q, some ad hoc arguments are needed.

1) S = 2B2(q) with q = 22m+1 ≥ 23. We will assume that m ≥ 3 as information 
on 2B2(8) and 2B2(32) are available in [8]. As seen in Table 3, S contains two strongly 
self-centralizing tori T1 and T2 of order Φ±

4 (q) such that |NS(Ti)/Ti| = 4. Assume first 



JID:YJABR AID:18010 /FLA [m1L; v1.303] P.25 (1-39)
N.N. Hung, A. Maróti / Journal of Algebra ••• (••••) •••–••• 25
that p divides either Φ+
4 (q) or Φ−

4 (q). We then have |Sp′ | > 3|S|/4 by Lemma 2.5(i). 
Therefore,

kp′(S) > 3(q − 1)
4 ,

which implies that

n(Aut(S),Clp′(S)) > 3(q − 1)
4(2m + 1) ,

as |Out(S)| = 2m + 1. We observe that

3(q − 1)/(4(2m + 1)) > 2
√

Φ+
4 (q) − 1 ≥ 2

√
p− 1

for all q ≥ 29. So we are done unless q = 27. In fact, when q = 27 we still have 
3(q − 1)/(4(2m + 1)) > 2

√
p− 1 unless p = 113.

Next we assume p � Φ4(q) = Φ+
4 (q) · Φ−

4 (q), which means that p | 2(q − 1). By 
Lemma 2.5(ii), we have |Sp′ | > 2|S|/5. Therefore, kp′(S) > 2(q − 1)/5, and it fol-
lows that n(Aut(S), Clp′(S)) > 2(q − 1)/5(2m + 1). As p ≤ q − 1, we deduce that 
n(Aut(S), Clp′(S)) > 2

√
p− 1 for q ≥ 213. Indeed, we have p ≤ 89 when q = 211

and p ≤ 73 when q = 29 and thus the desired bound still holds in those cases. We are 
left with (S, p) = ( 2B2(27), 127).

Let S = 2B2(27). We have |Out(S)| = 7. Suzuki [39] proved that S has 27 + 3
conjugacy classes. The trivial element of S forms a single Aut(S)-orbit. The group S has 
1 class of involutions. It has 2 classes of elements of order 4 accounting for 2 Aut(S)-
orbits. The group S has 63 conjugacy classes of elements of order 127 accounting for at 
least 9 Aut(S)-orbits. It has 28 conjugacy classes of elements of order 113 forming at 
least 4 orbits. There are 36 classes of elements in a cyclic torus of order 145, where 1 of 
them is for elements of order 5, 7 of them for elements of order 29, and 28 of them for 
elements of order 145. These give at least 6 orbits. Adding all these together we have 
n(Aut(S), Clp′(S)) ≥ 14 for the pair (S, p) = ( 2B2(27), 127) and n(Aut(S), Clp′(S)) ≥ 19
for the pair (S, p) = ( 2B2(27), 113), as appearing in Table 1. We also note that for these 
two exceptions, n(Aut(S), Clp′(S)) ≥ 14 > 2(p −1)1/4 and n(Aut(S), Clp(S) ∪Clp′(S)) =
23 > 2

√
p− 1.

The cases S = 2G2(q) with q = 32m+1 ≥ 33 and S = 2F4(q) with q = 22m+1 ≥ 8 are 
treated similarly.

2) S = G2(q) with q = �f ≥ 3. We will assume that q ≥ 7 as the cases q = 3, 4, 5 are 
available in [8]. First we consider p | Φ3(q). If q �≡ 1 (mod 3) then S has a strongly self-
centralizing torus T of order Φ3(q) such that |NS(T )/T | = 6. Lemma 2.5 then implies 
that |Sp′ | > 5|S|/6. Thus n(Aut(S), Clp′(S)) > 5(q − 1)2/(6fg) for g = 2 if � = 3 and 
g = 1 otherwise. Therefore n(Aut(S), Clp′(S)) > 2

√
Φ3(q) − 1 ≥ 2

√
p− 1 unless q = 9, 

but in this exceptional case p is at most 13 and the bound still follows.
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So assume that q ≡ 1 (mod 3). Then S has a maximal torus of order Φ6(q) with the 
relative Weyl group of order 6 as above, implying that there are (q2 − q)/6 classes of S
with representatives being nontrivial elements in this torus. Consider another torus of 
order (q + 1)2 with the relative Weyl group of order 12, we find another (q2 + 2q)/12f
nontrivial different classes. We now have

kp′(S) ≥ 1 + q2 − q

6 + q2 + 2q
12 ,

and thus

n(Aut(S),Clp′(S)) ≥ 1 + q2 − q

6f + q2 + 2q
12f .

This bound is greater than 2
√

Φ3(q) − 1 ≥ 2
√
p− 1, and hence we are done, unless 

q = 7. When q = 7 we have p = 19 and the above bound is still greater than 2
√
p− 1.

The case p | Φ6(q) is similar, so suppose that p � Φ3(q)Φ6(q). Then by Lemma 2.5
we have n(Aut(S), Clp′(S)) > (q − 1)2/(7fg) for g = 2 if � = 3 and g = 1 otherwise, 
but now p ≤ q + 1. One can check that (q − 1)2/(7fg) > 2√q ≥ 2

√
p− 1 unless q = 7

or 9. But in those cases we have p ≤ 7 or 5, respectively, and hence we still have 
n(Aut(S), Clp′(S)) > 2

√
p− 1.

Similar arguments also work for S = F4(q) and 3D4(q).

3) S = E6(q) with q = �f . We again assume q ≥ 3 as the case E6(2) is available in 
[8]. We know that S has a strongly self-centralizing tori T of order Φ9(q)/(3, q− 1) such 
that |NS(T )/T | = 9. Assume that p | |T |. Recall that CS(g) ≥ (q − 1)6/(3, q− 1) for all 
g ∈ S and |Out(S)| = 2f(3, q − 1). Now we have

n(Aut(S),Clp′(S)) > 4(q − 1)6

9f(3, q − 1)2 .

It turns out that 4(q − 1)6/9f(3, q − 1)2 > 2
√
p− 1 unless q = 3 or 4. When q = 4 we 

have p ≤ 73 so the bound n(Aut(S), Clp′(S)) > 2
√
p− 1 still holds. When q = 3 the only 

prime we need to check is p = 757 = Φ9(3). So let (S, p) = (E6(3), 757). The union of the 
set of prime divisors of |E6(3)| with the set of element orders of the sections PSL6(3), 
PSL3(3) ×PSL3(3) ×PSL3(3), PSL3(27) and PSL5(3) ×PSL2(3) consists of 47 integers 
none of which is divisible by 757. The group PΩ+

10(3) is also a section of E6(3) and by 
finding orders of random elements in PΩ+

10(3) using [15], we may obtain 8 extra integers, 
namely 21, 35, 45, 70, 82, 84, 90 and 164, apart from the 47 previously found. Finally, 
55 > 2

√
757 − 1.

Suppose p � |T |, and so we have p ≤ q4 + 1. Let G be the extension of S be diagonal 
automorphisms. Then G has a maximal torus of order Φ9(q) = q6+q3+1 with the relative 
Weyl group of order 9. Therefore there are at least (q6 + q3)/9 nontrivial classes with 
representatives in that torus. Therefore G has at least (q6 + q3)/9 nontrivial p-regular 
classes, and thus, by the orbit counting formula,
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n(Aut(S),Clp′(S)) ≥ 1 + q6 + q3

18f(3, q − 1) ,

which is larger than 2q2 ≥ 2
√
p− 1 for all q ≥ 3.

The cases S = 2E6(q) and S = E8(q) are similar.

4) S = E7(q) with q = �f . As the case q = 2 is available in [8], we assume that q ≥ 3. 
This is the only family of exceptional groups that do not always possess a strongly self-
centralizing maximal torus. It was shown in [2, Theorem 3.4] that the proportion of 
p-regular elements in S is at least 1/15, for every prime p. Therefore

n(Aut(S),Clp′(S)) > (q − 1)7

15f(2, q − 1)2 =: R(q).

Recall from Table 2 that p ≤ Φ7(q) = (q7 − 1)/(q − 1) and one can check that 
R(q) > 2

√
Φ7(q) − 1 for all q ≥ 5. When q = 4 we observe that the largest prime 

divisor of S is 257 and hence the inequality R(q) > 2
√
p− 1 still holds. For q = 3 the 

bound is also good unless p = 757 = Φ9(3) or 1093 = Φ7(3). The case of (S, p) =
(E7(3), 757) follows from the case (S, p) = (E6(3), 757) we already examined above. 
Finally let (S, p) = (E7(3), 1093). We know that E6(3), and hence E7(3), has at least 55 
different element orders coprime to 757 as well as 1093. On the other hand elements in 
a maximal torus of (E7)ad(3) of order Φ9(3)Φ1(3) = 2 · 757 are controlled by its relative 
Weyl group of order 18, implying that there are at least 42 classes of elements of order 
757 with representatives in this torus, which in turn produce at least 21 Aut(S)-orbits 
on those classes. We now have at least 55 + 21 > 2

√
1092, orbits of Aut(S) on p-regular 

classes of S.
We have finished the proof of Theorem 2.1.

6. Bounding the number of p-regular classes in finite groups of Lie type

The following is Theorem 1.4 in the introduction.

Theorem 6.1. Let S be a simple group of Lie type defined over the field of q elements 
with r the rank of the ambient algebraic group. We have

kp′(S) > qr

17r2

for every prime p.

Proof. The theorem is known in the case p � |S|, as we already mentioned in the intro-
duction that k(S) > qr/d where d is the order of the group of diagonal automorphisms 
of S and the values of d for various groups are known, see [8] for instance. We are also 
done in the case p is the defining characteristic of S, since in which case kp′(S) > qr/d

by using the same arguments as in the proof of Lemma 2.3 and d < 17r2 by directly 
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checking the available values of the order d of the group of diagonal automorphisms of 
S from [8, Table 5]. For S an exceptional group, the theorem follows from our work in 
Section 5. Here we note that all the bounds obtained are of the form c(q − 1)r where 
c is a constant depending on the rank r only. It is then straightforward to check that 
c(q − 1)r > qr/(17r2) for all types and all q > 2. The case q = 2 can be proved by a 
direct check using [8,15].

Suppose S = PSp2r(q) or Ω2r+1(q). The case of odd p follows from Lemma 4.3. 
When p = 2 similar arguments as in the proof of Lemma 4.3 apply, with the remark 
that either (qr − 1)/2 or (qr + 1)/2 is odd (when q is odd), and hence the bound is 
kp′(S) > qr/8r > qr/(17r2).

Let S = PΩ±
2r(q). From Subsection 4.2 we know that the minimum centralizer size of 

an element in S is at least

qr(2, qr − ε1)
2(4, qr − ε1)

[
1 − 1/q

2ke

]1/2

,

where k := min{x ∈ N : max{4, logq(4r)} ≤ 2x}. On the other hand, by [2, Theorem 
1.1], the proportion of p-regular elements in S is at least 1/4r. Since kp′(S) ≥ m|Sp′ |/|S|
where m is the minimum centralizer size of an element in S, we deduce that

kp′(S) ≥ qr(2, qr − ε1)
8r(4, qr − ε1)

[
1 − 1/q

2ke

]1/2

,

which is greater than qr/17r2 for all possible values of q ≥ 2 and r ≥ 4.
Finally let S = PSLε

r+1(q) for ε = ±. From the proof of Lemma 3.10, we know that 
the minimum centralizer size of an element in S is at least

qrH(r, q, ε)
(r + 1, q − ε1) ,

where

H(r, q,+) = 1
ek

with k := min{x ∈ N : x ≥ logq(r + 2)} and

H(r, q,−) =
(

q2 − 1
ek′(q + 1)2

)1/2

with k′ := min{x ∈ N : x odd and x ≥ logq(r + 2)}. Moreover, by [1, Theorem 1.1], the 
proportion of p-regular elements in S is at least 1/(r + 1) (note that p � q). We deduce 
that

kp′(S) ≥ qrH(r, q, ε)
.
(r + 1)(r + 1, q − ε1)
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It is straightforward to check that this bound is again larger than qr/(17r2) for all 
possible q and r. �

We remark that it is possible to prove that kp′(S) > qr/(12r2) for every S but the 
estimates are a lot more tedious. Also, when S is an even-dimensional orthogonal group, 
there is an explicitly computed constant c > 0 such that kp′(S) > cqr/r. By following 
the proof of Theorem 6.1, we therefore have:

Theorem 6.2. Let S be a simple group of Lie type defined over the field of q elements 
with r the rank of the ambient algebraic group. Suppose that S is not linear or unitary. 
There exists a universal constant c > 0 such that

kp′(S) > cqr

r

for every prime p.

7. p-Regular and p’-regular conjugacy classes

In this section we prove Theorem 1.1.
We start with an easy observation.

Lemma 7.1. Let G be a finite group and N�G. Then kp(G/N) ≤ kp(G) and kp′(G/N) ≤
kp′(G).

Proof. Recall that kp′(G) is exactly the number of p-Brauer irreducible characters of G
and every character of G/N can be viewed as a character of G. Therefore the inequality 
kp′(G/N) ≤ kp′(G) follows.

Now let gN be a p-element of G/N . Suppose that g = gpgp′ = gp′gp where gp is 
a p-element and gp′ is a p′-element. Then we have gN = gpNgp′N = gp′NgpN where 
gpN is a p-element and gp′N is a p-regular element of G/N . Since gN is a p-element, it 
follows that gp′N = N . Thus gN = gpN , which means that every p-element of G/N has 
a representative which is a p-element of G, proving that kp(G/N) ≤ kp(G). �

Next we improve a key result of [32].

Lemma 7.2. Let V be an irreducible and faithful FH-module for some finite group H
and finite field F of characteristic p. Suppose that p does not divide |H|. Then we have 
k(H) + n(H, V ) − 1 ≥ 2

√
p− 1 with equality if and only if 

√
p− 1 is an integer, |V | =

|F | = p and |H| = √
p− 1.

Proof. This follows from [32, Theorem 2.1] for p ≥ 59. We take this opportunity to note 
that [32, Lemma 3.2] should be replaced by a different but similar statement, namely by 
“With the above notation and assumptions,
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max{t + 1, k} ≤
(
t + k − 1
k − 1

)
≤ n(G,V ).′′

(in the notation of [32]). The statement is [12, Lemma 2.6]. This does not affect the proof 
of [32, Theorem 2.1], only straightforward and minor changes are to be made.

Assume that p < 59. For convenience, let f(H, V ) = k(H) + n(H, V ) − 1.
If |V | = p, then H is cyclic of order dividing p − 1 and

f(H,V ) = |H| + p− 1
|H| ≥ 2

√
p− 1

with equality if and only if 
√
p− 1 is an integer and |H| = √

p− 1. From now on assume 
that |V | > p.

Let |V | = p2. Assume first that H is solvable. The argument of Héthelyi, Külshammer 
[20, p. 661-662] gives f(H, V ) ≥ (49p +1)/60. It is easy to see that (49p +1)/60 > 2

√
p− 1

unless p ∈ {2, 3}. Let p ∈ {2, 3}. We are finished if k(H) ≥ 3 > 2
√
p− 1. Otherwise |H| ≤

2 and the integer f(H, V ) is at least 1 +(p2−1)/2 ≥ 5/2, and so f(H, V ) ≥ 3 > 2
√
p− 1.

Assume now that |V | = p2 and H is non-solvable. Then H ≤ Z(GL(V )) ·SL(V ) by [17, 
Theorem 3.5] and so H/Z(H) is isomorphic to A5 and p ∈ {5, 11, 31, 41} by [23, p. 213-
214] or [9, p. 285]. Moreover, since |Z(SL(V ))| = 2, the factor group H/(Z(SL(V )) ∩H)
is a direct product of A5 and a cyclic group of order (at least) |Z(H)|/2. This implies 
that k(H) ≥ 2.5 · |Z(H)|. We thus have

f(H,V ) ≥ 2.5 · |Z(H)| + p2 − 1
60 · |Z(H)| = 2.5 · |Z(H)| + (2.5/60) · (p2 − 1)

2.5 · |Z(H)| . (7.1)

The right-hand side of (7.1) is at least 2
√

(2.5/60) · (p2 − 1) > 0.4
√
p2 − 1, which is 

larger than 2
√
p− 1 unless p ∈ {5, 11}. If p = 5, then H = SL(2, 5) = SL(V ) and 

f(H, V ) = 10 > 2
√
p− 1. Assume that p = 11. If Z(H) is non-trivial, then k(H) ≥ 9

and so f(H, V ) ≥ 7 > 2
√

10 − 1. If H is isomorphic to A5 (a case which probably does 
not occur), then k(H) = 5 and (112 − 1)/|H| = 2 and so f(H, V ) ≥ 7.

Assume that |V | ≥ p3. Let c = (p − 1)/(p3 − 1). If k(H) > c · |H|, then

f(H,V ) > c · |H| + p3 − 1
|H| = c · |H| + c · (p3 − 1)

c · |H| ≥ 2
√

c · (p3 − 1) = 2
√
p− 1.

Thus assume that k(H) ≤ c · |H|.
Observe that c ≤ 1/7. The list of finite groups X with k(X) ≤ 4 found in [41] shows 

that k(X) > |X|/7. We may thus assume that k(H) ≥ 5.
If p ≤ 7, then f(H, V ) ≥ 5 + 1 > 2

√
7 − 1 ≥ 2

√
p− 1. We may have p ≥ 11.

Observe that c ≤ 1/133. The list of finite groups X with k(X) ≤ 8 found in [41] shows 
that k(X) > |X|/133. We may thus assume that k(H) ≥ 9.

If p ≤ 23, then f(H, V ) ≥ 9 + 1 > 2
√

23 − 1 ≥ 2
√
p− 1. Assume that p ≥ 29.
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Now c ≤ 1/871. The list of finite groups X with k(X) ≤ 9 found in [41] shows that 
k(X) > |X|/871. We may thus assume that k(H) ≥ 10.

If p ≤ 31, then f(H, V ) ≥ 10 + 1 > 2
√

31 − 1 ≥ 2
√
p− 1. Assume that p ≥ 37.

Let k(H) = 10 or k(H) = 11. The list in [41] shows that |H| ≤ 20160 in the first case 
and |H| ≤ 29120 in the second. Thus f(H, V ) ≥ k(H) + (p3 − 1)/|H| > 2

√
p− 1 for 

every prime p with 37 ≤ p ≤ 53. Thus k(H) ≥ 12.
We have f(H, V ) ≥ 12 + 1 > 2

√
p− 1 for p ≤ 53, unless p = 47 or p = 53. Moreover, 

if k(H) ≥ 14, then f(H, V ) ≥ 14 + 1 > 2
√

53 − 1 ≥ 2
√
p− 1. Thus we may assume that 

(k(H), p) ∈ {(12, 47), (12, 53), (13, 47), (13, 53)}.
Let k(H) = 12. Then |H| ≤ 43320 or H is isomorphic to the Mathieu group M22 by 

[42]. In the former case f(H, V ) ≥ 12 +(p3 − 1)/43320 > 2
√
p− 1. Observe that |M22| is 

equal to 443520, which does not divide |GL(3, p)| (for p ∈ {47, 53}). Thus in the second 
case f(H, V ) ≥ 12 + (p4 − 1)/|H| > 23 > 2

√
p− 1.

Finally, let k(H) = 13 and p ∈ {47, 53}. If p = 47, then f(H, V ) ≥ 14 which is larger 
than 2

√
p− 1. Let p = 53. If H is not a nilpotent group, then the list in [43] shows that 

|H| ≤ 4840 and so f(H, V ) ≥ 13 +(533−1)/4840 > 2
√

53 − 1. Let H be nilpotent. Since 
13 = k(H) =

∏t
i=1 k(Pi) where Pi is a Sylow pi-subgroup of H and {p1, . . . , pt} is the set 

of distinct prime divisors of |H| and since 13 is prime, we must have t = 1 and that H is 
a p1-group. Now H cannot be transitive on V \ {0} since 52 = (p − 1) | (|V | − 1) cannot 
divide |H|. This means that f(H, V ) ≥ 13 + 2 > 2

√
53 − 1. The proof is complete. �

We finally can prove Theorem 1.1, which is restated below.

Theorem 7.3. Let p be a prime and G be a finite group of order divisible by p. We have

kp(G) + kp′(G) ≥ 2
√
p− 1.

Moreover, the equality occurs if and only if 
√
p− 1 is an integer, G = Cp � C√

p−1 and 
CG(Cp) = Cp.

Proof. If 
√
p− 1 is an integer, G = Cp � C√

p−1 and CG(Cp) = Cp, then

kp(G) + kp′(G) = 2
√
p− 1.

Assume that G is different from the group G = Cp � C√
p−1 with CG(Cp) = Cp when √

p− 1 is an integer. We proceed to show by induction on the size of G that kp(G) +
kp′(G) > 2

√
p− 1.

This is clearly true in case G is a cyclic group of order p (different from C2). If G is 
an almost simple group, the claim follows from Theorem 2.1 unless (Soc(G), p) = (A5, 5)
or (Soc(G), p) = (PSL2(16), 17). Even in these two exceptional cases the bound can be 
checked using [8].
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Let N be a non-trivial normal subgroup of G. We have

kp(G/N) + kp′(G/N) ≤ kp(G) + kp′(G)

by Lemma 7.1. We may assume by induction that p � |G/N |, or 
√
p− 1 is an integer, 

G/N = Cp � C√
p−1 with CG/N (Cp) = Cp and

2
√
p− 1 = kp(G/N) + kp′(G/N) ≤ kp(G) + kp′(G).

In this latter case we are finished by Lemma 7.1 unless kp(G/N) = kp(G) and kp′(G/N) =
kp′(G). However, kp(G/N) < kp(G) if p | |N | and kp′(G/N) < kp′(G) if p � |N |. We are 
thus left with the case that p � |G/N | and p | |N |. Since p � |G/N | and p | |N | hold for 
every non-trivial normal subgroup N of G, the group G must have a unique minimal 
normal subgroup V .

Assume that V is elementary abelian. Then G has a complement H for V by the Schur-
Zassenhaus theorem. The subgroup H of G acts faithfully, coprimely and irreducibly on 
V . We have k(H) + n(H, V ) − 1 > 2

√
p− 1 by Lemma 7.2. Observe that kp′(G) ≥

kp′(G/V ) = kp′(H) = k(H) and that kp(G) ≥ n(H, V ) − 1 since each H-orbit on V
produces a G-conjugacy class of p-elements. These give the desired kp′(G) + kp(G) >
2
√
p− 1 bound.
It remains to assume that V is non-abelian and thus it is isomorphic to a direct product 

of copies of a non-abelian simple group S. Since almost simple groups G have been treated 
before, we may assume that V is the direct product of at least two copies of S. As p | |V |, 
we have p | |S|. First suppose that (S, p) is neither (A5, 5) nor (PSL2(16), 17). From The-
orem 2.1, we know that there are more than 2

√
p− 1 Aut(S)-orbits of conjugacy classes 

of p-regular and p′-regular elements of S, and therefore there are more than 2
√
p− 1 G-

orbits of those classes of V . Clearly, the number of these orbits is at most kp(G) +kp′(G), 
and hence the theorem follows. Even in the case (S, p) ∈ {(A5, 5), (PSL2(16), 17)} we 
are also done since the number of G-orbits on p-regular classes of V is, by [31, Sec-
tion 3.2] (and, in case S is abelian, by [12, Lemma 2.6]), at least k(k + 1)/2, where 
k = n(Aut(S), Clp′(S)) = 4 for (S, p) = (A5, 5) and 5 for (S, p) = (PSL2(16), 17). We 
have finished the proof. �
8. The number of Brauer characters of non-p-solvable groups

In this section we prove Theorem 1.2. Let p be a prime. The set of irreducible p-
Brauer characters of a finite group G is denoted by IBrp(G). We give two lower bounds 
for |IBrp(G)| in case G is a non-p-solvable finite group. Our result can be compared to 
[33, Theorem 1.1] where it was shown that |IBrp(G)| is bounded below by a function of 
|G/O∞(G)| where O∞(G) denotes the largest solvable normal subgroup of G.

Let G be a non-p-solvable finite group. Let N := O∞(G). We have |IBrp(G)| =
kp′(G) ≥ kp′(G/N) = |IBrp(G/N)| by Lemma 7.1. It is sufficient to establish the bounds 



JID:YJABR AID:18010 /FLA [m1L; v1.303] P.33 (1-39)
N.N. Hung, A. Maróti / Journal of Algebra ••• (••••) •••–••• 33
for the group G/N , that is, we may assume that G has no elementary abelian minimal 
normal subgroup. We may also assume by the same argument that every minimal normal 
subgroup of G has order divisible by p.

Let Soc(G) denote the socle of G which is defined to be the product of all minimal 
normal subgroups of G. In this case this is a characteristic subgroup which is a direct 
product of non-abelian simple groups. Let S be a non-trivial direct summand of Soc(G).

Assume first that S is G-invariant. Observe that kp′(G) is at least the number of 
G-orbits of p-regular elements in S. This latter number is greater than 2

√
p− 1 by (iii) 

of Theorem 2.1, unless S and p appear in Table 1 and thus p ≤ 257. In any case, 
kp′(G) >

√
p− 1.

We are left with the case when S is not G-invariant. Let k = n(Aut(S), Clp′(S)). By 
Corollary 2.2, we have k >

√
p− 1. Let t denote the number of different conjugates of S

under G. By [31, Section 3.2] (and, in case S is abelian, by [12, Lemma 2.6]), we have

kp′(G) ≥ n(G,Clp′(Soc(G))) ≥
(
k + t− 1

t

)
≥ k(k + 1)

2 .

If p > 257, then k(k + 1)/2 > 2(p − 1) > 2
√
p− 1. If p ≤ 257, then

k(k + 1)/2 > (p− 1)/2 ≥
√
p− 1,

unless p ≤ 3. Finally, assume that p ≤ 3. The group G has at least three different prime 
divisors by Burnside’s Theorem. Thus kp′(G) ≥ 3 >

√
p− 1.

9. p-Rational and p’-rational characters

In this section we prove Theorem 1.3.
We first prove Theorem 1.3 for p-solvable groups. In fact, we can do a bit more. The 

following implies Theorem 1.3 for p-solvable groups. Here Qp denotes the cyclotomic 
extension of rational numbers by a primitive pth root of unity. Also, we use the standard 
notation Q(χ) for the field of values of a character χ.

Theorem 9.1. Let G be a finite p-solvable group of order divisible by p. Then

|Irrp−rat(G) ∪ IrrQp
(G)| ≥ 2

√
p− 1.

Proof. By induction we may assume that for every minimal normal subgroup N of G
we have p � |G/N |. It follows that G has a unique minimal normal subgroup V and 
p � |G/V |. The group V has a complement H in G by the Schur-Zassenhaus theorem. 
The group V can be viewed as an irreducible and faithful FH-module where F is a finite 
field F of characteristic p. It follows by Lemma 7.2 that

k(H) + n(H,V ) − 1 ≥ 2
√

p− 1.
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Note that every irreducible character of H, viewed as a character of G, has values in 
Q|H|, and hence is p-rational. Therefore G has exactly k(H) p-rational characters whose 
kernels contain V .

We claim that G has at least m := n(H, V ) − 1 irreducible characters with values in 
Qp and their kernels do not contain V . Note that all characters of V have values in Qp.

Let θ1, θ2, . . . , θm be representatives of the H-orbits on Irr(V )\{1H}. For each 1 ≤
i ≤ m, the character θi has a canonical extension to IG(θi), say θ̂i such that Q(θ̂i) =
Q(θi) ⊆ Qp (see [34, Corollary 6.4] for instance). It follows that Q(θ̂i

G
) ⊆ Qp. Also, 

by Clifford’s theorem we have θ̂i
G

∈ Irr(G). Note that the θ̂i
G

are pairwise different. 
Therefore the claim follows.

Now we have

|IrrQp
(G) ∪ Irrp−rat(G)| ≥ k(H) + n(H,V ) − 1 ≥ 2

√
p− 1,

which proves the theorem. �
Lemma 9.2. Let G be a nonsolvable group. Then |Irr2−rat(G)| ≥ 3. Consequently, Theo-
rem 1.3 holds for p = 2.

Proof. By modding out a solvable normal subgroup if necessary, we assume that G
has a nonabelian minimal normal subgroup N , which is a direct product of copies of a 
nonabelian simple group S. By [22, Lemma 4.1], there exists a non-principal character 
θ ∈ Irr(S) that is extendible to a rational-valued character of Aut(S), and therefore G
has a rational irreducible character χ which extends θ × · · · × θ ∈ Irr(N).

If G/N has even order, then by Burnside’s theorem it has a nontrivial rational ir-
reducible character, and together with χ above and the trivial character, it follows 
that |IrrQ(G)| ≥ 3, as wanted. If |G/N | > 1 is odd, then every ϕ ∈ Irr(G/N) is 2-
rational and thus all the characters of the form χϕ ∈ Irr(G) are 2-rational, implying 
that |Irr2−rat(G)| ≥ 3.

We now can assume that G = N . It is in fact sufficient to show that |Irr2−rat(S)| ≥ 3
for every nonabelian simple group S. This is easy to check when S is a sporadic group, 
the Tits group, PSL2(q) with q ∈ {5, 7, 8, 9, 17}, PSL3(3), PSU3(3), or PSU4(2) using 
[8]. It is also easy for S = An by considering the restrictions of the irreducible characters 
of S labeled by the partitions (n − 1, 1) and (n − 2, 2). So we can, and we will, assume 
that S is not one of these groups. First note that the trivial and Steinberg characters 
of S are rational. We claim that S has a 2-rational semisimple character, and thus the 
required bound follows.

By the classification, we can find a simple algebraic group G of adjoint type and a 
Frobenius endomorphism F : G → G such that S = [G, G] for G := GF . Let (G∗, F ∗) be 
dual to (G, F ) and let G∗ := G∗F∗

. By Lusztig’s classification of the complex irreducible 
characters of finite reductive groups [10], each G∗-conjugacy class sG∗ of a semisimple 
element s ∈ G∗ corresponds to a semisimple character χs ∈ Irr(G). This χs has values 
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in Q|s| by [16, Lemma 4.2] and moreover, by [40, Proposition 5.1], if |s| is coprime to 
|Z(G∗)| then χs restricts irreducibly to S.

From the assumption on S, we have that |G∗| is divisible by at least three different odd 
primes, and thus G∗ always possesses a semisimple element s such that (|s|, 2|Z(G∗)|) =
1. This s then corresponds to a semisimple character χs ∈ Irr(G) such that χs restricts 
irreducibly to S and Q(χs) ⊆ Q|s|. Thus (χs)S is 2-rational.

Theorem 1.3 follows for p = 2 since the solvable case was already treated in Theo-
rem 9.1. �

The following observation is crucial in the proof of Theorem 1.3 for odd p. It is well-
known but we could not find a reference.

Lemma 9.3. For every finite group X and odd prime p, |Irrp−rat(X)| ≥ kp′(X).

Proof. The lemma is obvious when p � |X|. So we assume p | |X|. Consider the natural 
actions of Γ := Gal(Q|X|/Q|X|p′ ) ∼= Gal(Q|X|p/Q) on classes and irreducible characters 
of X. Note that Γ is cyclic of order |X|p(p −1)/p. Let ξ be a generator of Γ. By Brauer’s 
permutation lemma, ξ fixes the same number of irreducible characters and classes. Each 
irreducible character fixed by ξ has values in Q|X|p′ and therefore p-rational. On the other 
hand, for each conjugacy class Cl(g) of a p-regular element g, we have χ(g) ∈ Q|X|p′ for 
all χ ∈ Irr(X), implying that Cl(g) is fixed by ξ. The lemma now follows. �

Using the theory of the so-called Bp-characters [25], one can similarly show that, for 
a p-solvable group G, |Irrp′−rat(G)| is no less than the number of classes of p-elements. 
This seems to be true for all finite groups but remains to be confirmed.

Lemma 9.4. Let G be a finite group with a non-abelian normal subgroup

N ∼= S × · · · × S,

where S is simple, 2 < p | |S|, and there are at least two factors of S in N . Then 
|Irrp−rat(G)| > 2

√
p− 1.

Proof. Let k := n(Aut(S), Clp′(S)). Since there are at least two factors of S in N , as be-
fore we have n(Aut(N), Clp′(N)) ≥ k(k + 1)/2. Since k ≥ 2(p −1)1/4 by Theorem 2.1(ii) 
and G acts naturally on Clp′(N), it follows that n(G, Clp′(N)) > 2

√
p− 1, which in turn 

implies that kp′(G) > 2
√
p− 1. The lemma now follows by Lemma 9.3. �

Theorem 9.5. Let S be a nonabelian simple group of order divisible by p > 2 and S ≤
G ≤ Aut(S) be an almost simple group. Then

|Irrp−rat(G) ∪ Irrp′−rat(G)| > 2
√
p− 1.
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Proof. Suppose first that S is not listed in Table 1. Then by Theorem 2.1(iii) we 
have n(Aut(S), Clp′(S)) > 2

√
p− 1. It follows that kp′(G) > 2

√
p− 1, implying that 

|Irrp−rat(G)| > 2
√
p− 1 by Lemma 9.3.

We now go over the simple groups in Table 1 and establish the bound for each of 
them. Indeed we are able to check most of them directly using [8,15], except the ones 
below.

Let (S, p) = (PSU3(16), 241). In the proof of Lemma 3.5, we have shown that kp′(S) >
2(162 − 16 + 1)/3 > 160. Therefore, if |G/S| ≤ 4 then kp′(G) > 160/4 > 2

√
p− 1 and 

we are done. It remains to assume that G = Aut(S) = S � C8. Again in the proof of 
Lemma 3.5, we already showed that G = Aut(S) has at least 27 orbits on p-regular 
classes of S, and so kp′(G) ≥ n(G, Clp′(S)) + kp′(G/S) − 1 ≥ 27 + 7 = 34. We now have 
|Irrp−rat(G)| > 2

√
p− 1, as desired.

Let S = 2B2(128) and p = 113 or 127. If G = S then we have kp′(G) > 2
√
p− 1

as analyzed in Section 5 (1). So suppose G > S and thus G = Aut(S) = S � C7. 
First we note that the trivial and Steinberg characters of S have rational extensions 
to Aut(S). Also, S has a rational class of elements of order 5 that is Aut(S)-invariant, 
this semisimple class corresponds to a rational semisimple character of S of odd degree, 
which therefore has a rational extension to Aut(S) as well. By Gallagher’s theorem, we 
obtain 21 irreducible characters of G with values in Q7.

As mentioned in Section 5, Aut(S) has four orbits of size 7 on classes of elements of 
order 145. One (semisimple) element in such an orbit produces an irreducible semisimple 
character of S with values in Q145 and moreover has S as the stabilizer group in Aut(S), 
and thus gives rise to 1 irreducible character of Aut(S) with values in Q(χ) ⊆ Q145, by 
Clifford’s theorem. We now have 4 more irreducible p-rational characters of G = Aut(S), 
different from the 21 characters produced in the previous paragraph. We have shown 
that G has at least 25, which is larger than 2

√
p− 1, p-rational irreducible characters.

For (S, p) = (Ω−
8 (4), 257), using GAP we find that S has 32 = 2

√
p− 1 different 

element orders coprime to p, and so clearly kp′(G) > 32 if G �= S since there is at least 
one p-regular class of G outside S. In fact we still have kp′(G) > 32 when G = S since 
S has at least four unipotent classes by Lemma 4.4 and at least 29 semisimple classes 
coming from 29 different odd element orders coprime to p. �

We are now in position to prove Theorem 1.3 for all finite groups.

Theorem 9.6. Let G be a finite group and p a prime divisor of |G|. Then

|Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ 2
√

p− 1.

Moreover, the equality occurs if and only if 
√
p− 1 is an integer, G = Cp � C√

p−1 and 
CG(Cp) = Cp.

Proof. First we prove the inequality. The case p = 2 is done by Lemma 9.2, so we will 
assume that p is odd. We proceed in the same way as in the proof of Theorem 9.1 to 
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come up with the situation where G has a unique minimal normal subgroup N of order 
divisible by p such that p � |G/N |. If N is abelian then we are done by Theorem 9.1, so 
we assume furthermore that N is nonabelian, which means that N is isomorphic to a 
direct product of say k copies of a nonabelian simple group S.

If k ≥ 2, then we are done by Lemma 9.4. On the other hand, if N = S then G is an 
almost simple group with socle S, and thus we are done as well by Theorem 9.5. This 
completes the proof of the first part of the theorem.

We now move on to prove the second part. If 
√
p− 1 is an integer, G = Cp � C√

p−1
and CG(Cp) = Cp, then

|Irrp−rat(G) ∪ Irrp′−rat(G)| = |Irr(G)| = 2
√
p− 1.

Assume that G is different from the group Cp�C√
p−1 with CG(Cp) = Cp in case 

√
p− 1

is an integer. We proceed to prove by induction on the size of G that |Irrp−rat(G) ∪
Irrp′−rat(G)| > 2

√
p− 1. This is clear in case G is a cyclic group of order p (excluding 

the case p = 2).
Let N be a minimal normal subgroup of G. We have Irrp−rat(G/N) ⊆ Irrp−rat(G), 

Irrp′−rat(G/N) ⊆ Irrp′−rat(G) and

Irrp−rat(G/N) ∩ Irrp′−rat(G/N) = IrrQ(G/N) ⊆ IrrQ(G) = Irrp−rat(G) ∩ Irrp′−rat(G).

We may assume by induction that p � |G/N |, or that 
√
p− 1 is an integer, G/N =

Cp � C√
p−1 with CG/N (Cp) = Cp.

In fact the case p � |G/N | is done by Lemma 9.4 and Theorem 9.5 when N is non-
abelian and by Lemma 7.2 when N is abelian.

Assume that the latter case holds. First suppose that N is an elementary abelian 
r-group. It then may be viewed as an irreducible G/N -module. If the cyclic normal 
subgroup Cp of G/N acts fixed-point-freely on N and thus also on Irr(N), then there 
must be at least 1 p-rational irreducible character of G by Clifford’s theorem which 
does not contain N in its kernel. This proves the desired bound. Assume that the cyclic 
normal subgroup Cp of G/N has a non-trivial fixed point on N . In this case |N | = r and 
G contains an abelian normal subgroup M of order rp. Just as before, there is at least 1
p-rational irreducible character of G by Clifford’s theorem which does not contain N in 
its kernel. Next we suppose N is non-abelian. As mentioned in the proof of Lemma 9.2, 
N has a nontrivial irreducible character that is extendible to a rational character of its 
inertia subgroup in G, and thus producing a rational irreducible character of G which 
does not contain N in its kernel. In either case we always have

|Irrp−rat(G) ∪ Irrp′−rat(G)| > |Irrp−rat(G/N) ∪ Irrp′−rat(G/N)| > 2
√
p− 1,

as wanted. The proof is completed. �
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We conclude by remarking that although |Irrp−rat(G)| ≥ kp′(G) by Lemma 9.3 and 
|Irrp′−rat(G)| is conjecturally at least 1 + kp(G) (see the discussion after Lemma 9.3), 
it does not follow that |Irrp−rat(G) ∪ Irrp′−rat(G)| ≥ kp′(G) + kp(G), as Irrp−rat(G) and 
Irrp′−rat(G) have those rational characters, including the trivial character, in common. 
However, at the time of this writing, we have not found a counterexample yet.
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