
Journal of Algebra 319 (2008) 2113–2165

www.elsevier.com/locate/jalgebra

Mickelsson algebras and Zhelobenko operators

S. Khoroshkin a, O. Ogievetsky b,∗,1

a Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
b Centre de Physique Théorique, 2 Luminy, 13288 Marseille, France

Received 3 April 2007

Available online 1 May 2007

Communicated by Vera Serganova

Abstract
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1. Introduction

Mickelsson algebras were introduced in [M] for the study of Harish-Chandra modules of
reductive groups. The Mickelsson algebra, related to a real reductive group, acts on the space of
highest weight vectors of its maximal compact subgroup, and each irreducible Harish-Chandra
module of the initial reductive group is uniquely characterized by this action.

A similar construction can be given for any associative algebra A, which contains a universal
enveloping algebra U(g) (or its q-analog) of a contragredient Lie algebra g with a fixed Gauss
decomposition g = n− + h + n. Namely, we define the Mickelsson algebra Sn(A) as the quo-
tient of the normalizer N(An) of the left ideal An by this ideal. For any representation V of
A the Mickelsson algebra Sn(A) acts on the space V n of n-invariant vectors. This construc-
tion provides a reduction of a representation of A with respect to the action of U(g) and can be
viewed as a counterpart of Hamiltonian reduction. It has been applied for various problems of
representation theory, see the survey [T2] and references therein.

The structure of Mickelsson algebra simplifies after localizing it over a certain multiplicative
subset of U(h), where h is the Cartan subalgebra of g. The corresponding algebra Zn(A) is
generated by a finite-dimensional space of generators, which obey quadratic-linear relations.
These generators can be defined with a help of an extremal projector of Asherova–Smirnov–
Tolstoy [AST]. An application of the extremal projector to the study of the Mickelsson algebras
Zn(A) was proposed by Zhelobenko [Z2]. Besides, Zhelobenko developed the so called ‘dual
methods,’ and constructed another set of generators of the Mickelsson algebra by means of a
family of special operators, which form a cocycle on the Weyl group [Z1].

Later Mickelsson algebras appeared in the theory of dynamical quantum groups. Their basic
ingredients, the intertwining operators between Verma modules and the tensor products of Verma
modules with finite-dimensional representations actually form special Mickelsson algebras. Ma-
trix coefficients of these intertwining operators are very useful in the study of quantum integrable
models [ES]. Tarasov and Varchenko [TV] found the symmetries of the algebra of intertwining
operators, which originate from the morphisms of Verma modules. They satisfy the braid group
relations and transform the weights of the Cartan subalgebra by means of a shifted Weyl group
action. These symmetries got the name of a ‘dynamical Weyl group.’ The theory of dynamical
Weyl groups was generalized to the quantum groups setup in [EV]. The form of operators of
the dynamical Weyl group is very close to the factorized expressions for the extremal projector
and for the Zhelobenko cocycles [Z1]. However, the precise statements and the origin of such a
relation were not clear. One of our goals is to clarify this relation.

In this paper we describe a family of symmetries for a wide class of Mickelsson algebras.
They form a representation of the related braid group by automorphisms of the Mickelsson alge-
bra Zn(A) and transform the Cartan elements by means of the shifted Weyl group action. Each
generating automorphism is a product of the Zhelobenko ‘cocycle’ map qαi

and of an automor-
phism Ti of the algebra A, extending the action of the Weyl group on the Cartan subalgebra. The
new feature of our approach is the homomorphism property of Zhelobenko maps, that was not
noticed before. However, the proof of this property is not short and requires calculations with the
extremal projector.
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The construction of automorphisms of Mickelsson algebra Zn(A) is quite general. In par-
ticular, it covers the examples of Mickelsson algebras, related to reductions g′ ⊃ g from one
reductive Lie algebra to another, and of the smash product U(g) � S(V ) of U(g) with the sym-
metric algebra of a U(g)-module V . Here it becomes the dynamical Weyl group action after
certain specialization of the Cartan elements of g. It can be applied to the construction of finite-
dimensional representations of Yangians and of quantum affine algebras, see [KN1,KN2].

The paper is organized as follows. In Section 2 we collect all necessary information about the
extremal projector and the required extensions of U(g).

In Section 3 for a fixed contragredient Lie algebra g of finite growth we introduce a class of
associative algebras A, which we call g-admissible. They contain U(g) as a subalgebra, with a
requirement that the adjoint action of g in A has some special properties. In particular, as a g-
module with respect to the adjoint action A is isomorphic to a tensor product of U(g) and of some
subspace V ⊂ A. Mickelsson algebras, related to admissible algebras, have specific properties.
The crucial one is the existence of two distinguished subspaces of generators zv and z′

v , v ∈ V .
Section 4 is an exposition of the ‘Zhelobenko cocycle’ construction [Z1]. We present it with

complete proofs in order to eliminate the unnecessary restrictions, made in [Z1]. The story begins
from the map qα , which relates the universal Verma modules, attached to different maximal
nilpotent subalgebras of g. The product of such operators over the system of positive roots maps
the vectors v ∈ V to the generators z′

v of Mickelsson algebras. This invariant description proves
the cocycle properties of the maps qα .

Section 5 describes the homomorphism properties of the Zhelobenko maps. We prove first that
for a simple root αi the Zhelobenko map qαi

establishes an isomorphism of a double coset algebra
and of the Mickelsson algebra. This implies that the compositions q̌i of the Zhelobenko maps
qαi

with the extensions of Weyl group automorphisms are automorphisms of the Mickelsson
algebras, satisfying the braid group relations.

In Sections 6 and 8 we calculate the images of the generators of Mickelsson algebras and of
the standard modules with respect to q̌i and show that the dynamical Weyl group is a particular
case of our construction. Section 7 is devoted to the Mickelsson algebra Zn−(A), defined as
the localizations of the quotient of the normalizer N(n−A) of the right ideal n−A by this ideal.
These algebras are used for the study of n−-coinvariants of A-modules.

Section 9 is a sketch of extensions of our constructions to the quantized universal enveloping
algebras Uq(g). The new important detail here is that the compositions of the Zhelobenko maps
qαi

with the Lusztig automorphisms coincide with the compositions of qαi
with the adjoint action

of the Lusztig automorphisms, see Propositions 9.2 and 9.4. This allows us to prove both the
homomorphisms properties and the braid group relations. We conclude with remarks about the
range of assumptions on g-admissible algebras, used in the paper.

2. Extremal projector

In this section we review Zhelobenko’s approach to the extremal projector of Asherova–
Smirnov–Tolstoy [AST]. Our exposition follows [Z2] in the main details.

2.1. Taylor extension of U(g)

Let g be a contragredient Lie algebra of finite growth with symmetrizable Cartan matrix ai,j ,
i, j = 1, . . . , r . Let

g = n− + h + n (2.1)
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be its Gauss decomposition, where h is a Cartan subalgebra, n = n+ ⊂ b and n− ⊂ b− are nil-
radicals of two opposite Borel subalgebras b+ (which is also denoted as b) and b−. We use the
notation Π for the system of simple positive roots; Δ+, Δ− and Δ = Δ+ �Δ− for the system of
positive, negative and all roots; Δre+, Δre− and Δre = Δre+ �Δre− for the system of positive, negative
and all real roots. Let ( , ) be the scalar product in h∗, such that (αi, αj ) = diai,j = djaj,i , for
αi,αj ∈ Π and di ∈ N.

Denote by Q ⊂ h∗ the root lattice, Q = Z · Δ, and put Q± = Z�0 · Δ±. For any g-module
M and μ ∈ h∗ we denote by Mμ the subspace of elements m ∈ M , such that h(m) = 〈μ,h〉m,
in particular the space U(n)μ consists of elements x ∈ U(n)μ, such that [h,x] = 〈μ,h〉x. We
adopt the normalization of the Chevalley generators eαi

∈ n, e−αi
∈ n−, and of the coroots hαi

=
αi

∨ ∈ h, where αi ∈ Π , such that

[eαi
, e−αj

] = δi,j hαi
, [hαi

, e±αj
] = ±ai,j e±αj

= ±〈hαi
, αj 〉e±αj

,

ad
1−ai,j
e±αi

e±αj
= 0 if i �= j. (2.2)

For any γ ∈ Δ+ we define a coroot hγ ∈ h by the rule

(α,α)hα + (β,β)hβ = (α + β,α + β)hα+β, if α,β,α + β ∈ Δ+.

Due to (2.2), we have

[hγ , e±αj
] = ±〈hγ ,αj 〉e±αj

, 〈hγ ,αj 〉 ∈ Z. (2.3)

Let W be the Weyl group of g. For any w ∈ W we denote by Tw :U(g) → U(g) a lift of the
map w :h → h to the automorphism of the algebra U(g), satisfying the braid group relations
Tww′ = TwTw′ , if l(ww′) = l(w) + l(w′), where l(w) is the length of w. For instance, we may
choose Tw , as in [L] (see (9.2) for the quantum group version). We adopt a shortened notation Ti

for automorphisms Tsαi
, where αi ∈ Π .

Denote by D the localization of the free commutative algebra U(h) with respect to the multi-
plicative set of denominators, generated by

{hα + k | α ∈ Δ, k ∈ Z}. (2.4)

To any μ ∈ h∗ we associate an automorphism τμ of the algebra D. It is uniquely defined by the
conditions

τμ(h) = h + 〈h,μ〉 for any h ∈ h. (2.5)

Due to (2.3) the algebra U(g) satisfies the Ore condition with respect to the above set of denom-
inators. Denote by U ′(g) the extension of U(g) by means of D:

U ′(g) = U(g) ⊗U(h) D ≈ D ⊗U(h) U(g).

Note that the algebra U ′(g) is a D-bimodule and any automorphism Tw admits a canonical
extension to an automorphism of U ′(g), which we denote by the same symbol.

Choose a normal ordering (see [T] for the definition) γ1 ≺ γ2 ≺ · · · ≺ γn of the system Δ+
of positive roots of g (n = |Δ+| may be infinite). Let e±α , where α ∈ Δ, be the Cartan–Weyl
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generators, constructed by the recursive procedure, attached to this order, see [T]. We assume
that they are normalized in such a way that

[eα, e−α] = hα, [hα, e±β ] = ±〈hα,β〉e±β. (2.6)

For any k ∈ Z
n
�0, k = (k1, . . . , kn), with

∑
ki < ∞ denote by ek the monomial ek =

e
k1
γ1 · · · ekn

γn ∈ U(b+) and by ẽk the monomial e
k1−γ1

· · · ekn−γn
∈ U(b−). For every μ ∈ Q denote

by (Fg,n)μ the vector space of series

xμ =
∑

k,r∈Z
n
�0

ẽkxk,r er , xk,r ∈ D, (2.7)

of the total weight μ. Set

Fg,n =
⊕
μ∈Q

(Fg,n)μ.

Proposition 2.1. (See [Z2, Section 3.2.3].) The space Fg,n is an associative algebra with respect
to the multiplication of formal series. Its definition does not depend on a choice of the normal
ordering ≺.

Clearly, the algebra Fg,n contains U ′(g) as a subalgebra. We call Fg,n Taylor extension of
U ′(g), related to the decomposition (2.1).

A choice of normal ordering is a technical tool for a description of the algebra Fg,n. It is used
for constructing particular bases in the weight components of the algebras U(n±). Instead, one
can fix for any ν ∈ Q+ a basis {eν,j } of the finite-dimensional space U(n)ν and, for any ν ∈ Q−,
a basis {ẽν,j } of the finite-dimensional space U(n−)ν . Then the space Fμ,g consists of formal
series

xμ =
∑

ν∈Q+, ν′∈Q−, j,j ′
ẽν′,j ′xν′,j ′,ν,j eν,j , xν′,j ′,ν,j ∈ D,

of the total weight μ ∈ Q.

2.2. Universal Verma module and the extremal projector

Set

Mn(g) = U ′(g)/U ′(g)n.

The space Mn(g) is a left U ′(g)-module and a D-bimodule. It is called the universal Verma
module. Since Mn(g) is a U(h)-bimodule, we have an adjoint action of U(h) in Mn(g), defined
as adh(m) = [h,m] for any h ∈ h and m ∈ Mn(g). We have the weight decomposition of Mn(g)

with respect to the adjoint action of U(h):

Mn(g) =
⊕ (

Mn(g)
)
μ
.

μ∈Q−
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Denote by E′(g) the algebra of those endomorphisms of Mn(g), which commute with the right
action of U(h). We have a linear map ξ :U ′(g) → E′(g), induced by the multiplication in U ′(g)

and establishing on Mn(g) the structure of the left U ′(g)-module. For any μ ∈ Q, define

Eμ(g) = {
a ∈ E′(g)

∣∣ [
ξ(h), a

] = 〈μ,h〉a for any h ∈ h
}
,

and set

E(g) =
⊕
μ∈Q

Eμ(g).

Proposition 2.2. (See [Z2, Section 3.2.4–3.2.5].) The map ξ induces an isomorphism of algebras:

ξ :Fg,n → E(g). (2.8)

The proof of Proposition 2.2 is based on the nondegeneracy of the Shapovalov form. Recall
[S] that the Shapovalov form A(x,y) :U(g)⊗U(g) → U(h) is defined by the relation A(x,y) =
β(xt · y), where x �→ xt is the Chevalley antiinvolution (et±α = e∓α, ht = h, (xy)t = ytxt ) in
U(g) and β :U(g) → U(h) is the projection with respect to the decomposition

U(g) = U(h) ⊕ (
n−U(g) + U(g)n

)
.

The Shapovalov form vanishes on the left ideal U(g)n and is nondegenerate on U(n−). It admits
an extension to a nondegenerate form on Mn(g) with values in D.

For the proof of the isomorphism (2.8) we choose for any ν ∈ Q− a basis {ẽν,j } of U(n−)ν ,
which is orthogonal with respect to the Shapovalov form, and take e−ν,j = (ẽ−

−ν,j )
t .

Proposition 2.3. (See [Z2, Section 3.2.8].) There exists a unique element Pn ∈ Fg,n, satisfying
equations

eαPn = Pne−α = 0 for all α ∈ Δ+ (2.9)

with the zero term β(Pn) = 1. It is a self-adjoint projector of zero weight, P2
n = Pn, Pt

n = Pn.

The definition and the construction of the projector Pn depend on a choice of the nilpotent
subalgebra n ⊂ g. When n coincides with a fixed nilpotent subalgebra n, appearing in the de-
composition (2.1), we omit the label n and denote the projector simply by P.

Note an important property of P, which follows from Proposition 2.3:

P − 1 ∈ Fg,nn ∩ n−Fg,n. (2.10)

By means of Proposition 2.2, the element P is described as an element of E(g), which projects
the universal Verma module Mn(g) to the subspace (Mn(g))n = Mn(g)0 of n-invariants along
n−Mn(g) = ⊕

γ<0(Mn(g))γ . The element P is called the extremal projector.
There are three distinguished cases of the use of the extremal projector.

(1) Let V be a Fg,n-module. Then P projects V on the subspace V n of n-invariants along the
subspace n−V .
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(2) Let V be a module over U ′(g), locally finite with respect to n. Then P projects V on the
subspace V n of n-invariants along the subspace n−V .

(3) Let V be a module over U(g), locally finite with respect to b. Assume that μ ∈ h∗ satisfies
the conditions:

〈μ + ρ,hα〉 �= −1,−2, . . . for any α ∈ Δ+, (2.11)

where ρ is a weight such that (ρ,αi) = (αi, αi)/2 for all i. Denote by Vμ the generalized
weight subspace of V of the weight μ. Then P projects Vμ on Vμ ∩ V n along Vμ ∩ n−V .

In the following, for any left U(g)-module M , on which the action of the projector P is
defined, we denote the corresponding element of EndM by p, and for any right U(g)-module N ,
on which the action of the projector P is defined, we denote the corresponding element of EndN

by p.
The operator p satisfies the relations

p(e−γ m) = eγ p(m) = 0 for any γ ∈ Δ+, m ∈ M, p2 = p. (2.12)

Similarly, the operator p satisfies the relations

p(neγ ) = p(n)e−γ = 0 for any γ ∈ Δ+, n ∈ N, p2 = p. (2.13)

2.3. Multiplicative formula for extremal projector

The extremal projector P for any simple Lie algebra was discovered and investigated by
Asherova, Smirnov and Tolstoy [AST]. They gave a multiplicative expression for P, which was
later generalized to affine Lie superalgebras and their q-analogs. We reproduce here the multi-
plicative formula from [AST].

For any α ∈ Δ+ and any λ ∈ h∗ let fα,n[λ] and gα,n[λ] be the following elements of D:

fα,n[λ] =
n∏

j=1

(
hα + 〈hα,λ〉 + j

)−1
, gα,n[λ] =

n∏
j=1

(−hα + 〈hα,λ〉 + j
)−1

. (2.14)

Define Pα[λ] ∈ Fg,n and P−α[λ] ∈ Fg,n− by the relations

Pα[λ] =
∞∑

n=0

(−1)n

n! fα,n[λ]en−αen
α, P−α[λ] =

∞∑
n=0

(−1)n

n! gα,n[λ]en
αen−α. (2.15)

Set

Pα = Pα[ρ], P−α = P−α[ρ]. (2.16)

Proposition 2.4. (See [AST].) Let γ1 ≺ · · · ≺ γn be a normal ordering of Δ+. Then the extremal
projector P is equal to the product

P =
≺∏

γ∈Δ+
Pγ , (2.17)

where the order in the product coincides with the chosen normal order ≺.
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Analogously, the product
∏≺

γ∈Δ+ P−γ is equal in Fg,n− to the projector Pn− .
For a generalization of (2.17) to arbitrary contragredient Kac–Moody Lie algebras of finite

growth and their q-analogs, see [T,KT].
We can also define the elements P[λ] and P−[λ] for any λ ∈ h∗ by the relations

P[λ] =
≺∏

γ∈Δ+
Pγ [λ], P−[λ] =

≺∏
γ∈Δ+

P−γ [λ]. (2.18)

It is known (see [Z2], and also Section 3.5 of the present paper), that P[λ] and P−[λ] do not
depend on a choice of the normal order. In this notation, P = P[ρ] and Pn− = P−[ρ].

3. Mickelsson algebras

3.1. g-Admissible algebras

Let A be an associative algebra, which contains U(g) as a subalgebra. Then A has a natural
structure of a U(g)-bimodule. Since U(g) is a Hopf algebra, the bimodule structure produces an
adjoint action of U(g) in A. We have

adg(x) =
∑

i

g′
ixS

(
g′′

i

)
, (3.1)

where the coproduct Δ(g) of an element g ∈ U(g) has a form Δ(g) = ∑
i g

′
i ⊗g′′

i and S(g) is the
antipode of g. The adjoint action adg of g ∈ g on a ∈ A is the commutator, adg(a) = ga − ag.
In the sequel we use the following notation for the adjoint action:

ĝ(a) ≡ adg(a), g ∈ U(g), a ∈ A.

We call A a g-admissible algebra if:

(a) there is a subspace V ⊂ A, invariant with respect to the adjoint action of U(g), such that the
multiplication m in A induces the following isomorphisms of vector spaces

(a1) m :U(g) ⊗ V → A, (a2) m :V ⊗ U(g) → A;
(b) the adjoint action of real root vectors eγ ∈ U(g) on V is locally nilpotent, the adjoint action

of the Cartan subalgebra h in V is semisimple.

Sometimes we call V an ad-invariant generating subspace of the g-admissible algebra A. The
condition (a) says, in particular, that A is a free left U(h)-module and a free right U(h)-module.

Since the adjoint action of real root vectors in U(g) is locally nilpotent, the conditions (a) and
(b) imply that the adjoint action of real root vectors eγ is locally nilpotent in A, that is, for any
a ∈ A and γ ∈ Δre vectors adn

eγ
(a) are zero for sufficiently large n. Thus the restriction of the

adjoint action of U(g) to any sl2-subalgebra, generated by real root vectors e±γ , where γ ∈ Δre+,
is locally finite in A. Since the adjoint action of the Cartan subalgebra U(h) is semisimple,
A admits a weight decomposition with respect to the adjoint action of U(h).

There are two main classes of g-admissible algebras.
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(1) Let g be a reductive finite-dimensional Lie algebra and g1 a contragredient Lie algebra of
finite growth, which contains g. Then the adjoint action of g on g1 is locally finite and
A = U(g1) is a g-admissible algebra.

(2) Let V be a U(g)-module algebra with a locally nilpotent action of real root vectors. This
means that V is an associative algebra, equipped with a structure of a U(g)-module, such
that the action of real root vectors is locally finite. These two structures are related: the
action of Lie generators g ∈ g satisfies the Leibniz rule:

g(v1v2) = g(v1)v2 + v1g(v2). (3.2)

Denote by U(g)�V the smash product of U(g) and V . It is an associative algebra, generated
by elements g ∈ U(g) and v ∈ V , satisfying the relation

gv − vg = g(v), g ∈ g, v ∈ V, (3.3)

and, more generally, ∑
i

g′
ivS

(
g′′

i

) = g(v), g ∈ U(g), v ∈ V, (3.4)

where S is the antipode in U(g), Δ(g) = ∑
i g

′
i ⊗ g′′

i is the comultiplication in U(g). The
smash product U(g) � V is a g-admissible algebra.

(2a) Let V be a U(g)-module and End0 V be the algebra of the endomorphisms of V , finite with
respect to the adjoint action of real root vectors of U(g). Then the tensor product U(g) ⊗
End0 V is a g-admissible algebra. This construction is a particular case of the previous one:
the tensor product U(g) ⊗ End0 V is a smash product of C ⊗ End0 V and of diagonally
embedded U(g), generated by the elements g ⊗ 1 + 1 ⊗ g, g ∈ g.

3.2. Definitions of Mickelsson algebras

Let A be a g-admissible algebra. Let Nr(An) be the normalizer of the left ideal An:

x ∈ Nr(An) ⇔ nx ⊂ An.

Denote by Sn(A) the quotient space

Sn(A) = Nr(An)/An.

Proposition 3.1.

(i) The space Sn(A) is an algebra with respect to the multiplication in A;
(ii) Let M be an A-module. Then the space Mn of n-invariant vectors in M is a Sn(A)-module.

The algebra Sn(A) is called the Mickelsson algebra [M]. Since h normalizes n±, we have the
inclusion U(h) ⊂ Sn(A). Denote by A′ the localization

A′ = D ⊗U(h) A.
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The condition (a), (b) of a g-admissible algebra imply that the eigenvalues of operators
ĥγ :A → A are integers for any γ ∈ Δ. Therefore the algebra A satisfies the Ore conditions
with respect to the set of denominators (2.4). Besides, we have a canonical embedding of A into
A′ and thus an adjoint action of U(g) in A′, compatible with the adjoint action of U(g) in A.

Define the Mickelsson algebra Zn(A) as the quotient

Zn(A) = Nr(A′n)/A′n,

where Nr(A′n) is the normalizer of the left ideal A′n of A′. The algebra Zn(A) is a localization
of the algebra Sn(A):

Zn(A) = D ⊗U(h) Sn(A).

We can change the order of taking quotients and subspaces in the definition of Mickelsson al-
gebra. Then the Mickelsson algebra Zn(A) is defined as a subspace of n-invariants in a left
U ′(g)-module Mn(A′) = A′/A′n:

Zn(A) = (
Mn(A′)

)n = {
m ∈ Mn(A′)

∣∣ nm = 0
}
.

The algebra Zn acts in the space Mn of n-invariants of any A′-module M .

3.3. Double coset algebra

Suppose that a g-admissible algebra A satisfies the additional local highest weight condition:

(HW) For any v ∈ V , the adjoint action of elements x ∈ U(n)μ on v is nontrivial, x̂(v) �= 0, only
for a finite number of μ ∈ h∗.

With this assumption the quotient Mn(A′) = A′/A′n has a structure of a left Fg,n-module,
extending the action of A′ by the left multiplication. In particular, the extremal projector P acts
on the left Fg,n-module Mn(A′).

The properties of the extremal projectors imply the relation

Zn(A) = Im p ⊂ Mn(A′), (3.5)

where p ∈ EndMn(A′) is the action of P in Mn(A′), see Section 2.2.
Denote by n−An the double coset space

n−An = n−A′ \A′/A′n ≡ A′/(n−A′ +A′n). (3.6)

Equip n−An with a binary operation ◦ : n−An ⊗ n−An → n−An:

a ◦ b = aPb
def= a · p(b). (3.7)

The rule (3.7) means the following. For a class x in n−An, we take its representative x ∈ A′.
For a class y in n−An, we take its representative y ∈ Mn(A′). Consider an element xp(y) in
Mn(A′) = A′/A′n. Then its class modulo n−Mn(A′) defines an element x ◦ y of n−An. It does
not depend on a choice of the representatives.
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We call the double coset space n−An, equipped with the operation (3.7) the double coset
algebra n−An.

Define the linear maps φ+ :Zn(A) → n−An and ψ+ : n−An → Zn(A) by the rules

φ+(x) = x mod n−Mn(A′), ψ+(y) = p(y), x ∈ Zn(A), y ∈ n−An. (3.8)

Let us explain the formula ψ+(y) = p(y). For a class y in n−An = A′/n−A′ +A′n, we choose
its representative y ∈ Mn(A′) = A′/A′n and take p(y). The result does not depend on a choice
of a representative and is denoted by ψ+(y).

Proposition 3.2. Assume that a g-admissible algebra A satisfies the condition (HW). Then

(i) The operation (3.7) equips n−An with the structure of an associative algebra.
(ii) The linear maps φ+ and ψ+ are inverse to each other and establish an isomorphism of

algebras Zn(A) and n−An.

Proof. Let x ∈ Zn(A′). Then p(x) = x mod A′n due to (2.10). Thus ψ+ ·φ+ = IdZn(A). On the
other hand, due to the same property (2.10) of P, for any y ∈ A′/A′n,

p(y) = y mod n−A′ +A′n.

Thus φ+ · ψ+ = Id
n−An

. So the maps φ+ and ψ+ are inverse to each other.
Let now x ∈ A′ and y ∈A′ be representatives of classes x̃ and ỹ in n−An. Let x = x mod A′n

and y = y mod A′n be their images in Mn(A′). We have ψ+(x̃) = p(x), ψ+(ỹ) = p(y) and
ψ+(x̃ ◦ ỹ) = p(x · p(y)).

On the other hand, the multiplication rule m in Zn(A) can be written as follows. Let z,u ∈
Zn(A′). Let z′ ∈ Nr(A′n) be a representative of a class z ∈ A′/A′n. Then m(z ⊗ u) = z′ · u as
an element of Mn(A′). By (3.5), m(z,u) = p(z′ · u). Thus we have in Zn(A′)

m
(
p(x) ⊗ p(y)

) = p
(
p(x)′ · p(y)

)
,

where p(x)′ is a representative of a class p(x) in A′. By the property (2.10),

p(x)′ = x + x′ + x′′,

where x′ ∈ n−A′ and x′′ ∈ A′n. Thus

p
(
p(x)′ · p(y)

) = p
(
x · p(y)

)
due to (2.10) and (2.12). Thus ψ+ is a homomorphism, which proves simultaneously (i)
and (ii). �
3.4. Generators of Mickelsson algebras

Let A be a g-admissible algebra with an ad-invariant generating subspace V , satisfying the
highest weight condition (HW). By the condition (a) of a g-admissible algebra (see Section 3.1)
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and the PBW theorem for the algebra U(g), any element of A′ can be uniquely presented in the
following form

x =
∑

i

fidieivi, where fi ∈ U(n−), di ∈ D, ei ∈ U(n), vi ∈ V .

Due to the highest weight condition (HW), we can move all ei to the right and get a presentation

x =
∑

i

f ′
i d

′
iv

′
ie

′
i , where f ′

i ∈ U(n−), d ′
i ∈ D, e′

i ∈ U(n), v′
i ∈ V .

In the double coset space this presentation gives

x =
∑

i

d ′
iv

′
i , mod n−A′ +A′n, where d ′

i ∈ D, v′
i ∈ V .

Proposition 3.3. Let A be a g-admissible algebra satisfying the highest weight condition (HW).
Then

(i) Each element of the double coset algebra n−An can be uniquely presented in a form x =∑
i divi , where di ∈ D, vi ∈ V , so that n−An is a free left (and right) D module, isomorphic

to D ⊗ V (V ⊗ D).
(ii) For each v ∈ V there exists a unique element zv ∈ Zn(A) of the form

zv = v +
∑
i=1

difivi, fi ∈ n−U(n−), di ∈ D, vi ∈ V, (3.9)

such that the algebra Zn(A) is a free left (and right) D-module, generated by the ele-
ments zv . The element zv is equal to p(v).

Proof. The part (i) is already proved. Applying Proposition 3.2, we see that any element of
Zn(A) can be presented in a form

∑
i dip(wi), where di ∈ D, vi ∈ V . The element zv = p(v)

has a form (3.9) due to the definition of the operator p and is uniquely characterized by this
presentation. �

Mickelsson algebras have distinguished generators of another type. Their existence is implied
by the following proposition. Let A be an arbitrary g-admissible algebra with an ad-invariant
generating subspace V .

Proposition 3.4. For each v ∈ V there exists at most one element z′
v ∈ Zn(A) of the form

z′
v = v +

∑
i

divifi, fi ∈ n−U(n−), di ∈ D, vi ∈ V . (3.10)

Proof. If m ∈ Mn(A′) = A′/A′n is a highest weight vector, that is eαm = 0 for any α ∈ Δ+,
then dm is also a highest weight vector for any d ∈ D. Thus (i) is equivalent to the statement that
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for any γ ∈ h∗ there is no highest weight vector of the form

x =
∑

i

divifi, fi ∈ n−U(n−), di ∈ D, vi ∈ V, (3.11)

where all the terms have the weight γ with respect to the adjoint representation of h. In other
words, we should prove that the conditions [eαi

, x] = 0 in Mn(A) imply x = 0 in Mn(A) if all
fj ∈ n−U(n−).

By the condition (a2) of a g-admissible algebra and the PBW theorem for U(g) the elements
vifi form a basis of Mn(A′) over D if vi form a basis of V and fi form a basis of U(n−).
Consider those terms at the right-hand side of (3.11), where vj have minimal weights comparing
to the other weights which occur in (3.11). Then the expression [eαi

, x] contains terms vj [eαi
, fj ]

which are nonzero for some αi if fj ∈ n−U(n−). This is because all the highest weight vectors
of Mn(g) have zero weight. Thus x cannot be a highest weight vector. �
Theorem 3.5. Let g be a finite-dimensional reductive Lie algebra and A a g-admissible algebra
with generating subspace V . Then for any v ∈ V there exists a unique element z′

v ∈ Zn(A) (3.10).
The algebra Zn(A) is generated by elements z′

v as a free left (and right) D-module.

The proof of Theorem 3.5 will be given in the next section.

Remark. When the choice of a nilpotent subalgebra n is not unique, we use the notation zn,v

and z′
n,v for the elements (3.9) and (3.10).

3.5. Relations between two sets of generators

Extend the notation of canonical generators of Mickelsson algebras to the elements of D⊗CV
and V ⊗C D. We set for any d ∈ D and v ∈ V

zd⊗v = d · zv, z′
d⊗v = d · z′

v, zv⊗d = zv · d, z′
v⊗d = z′

v · d in Zn(A).

(3.12)

Fix a positive real root α. We define now certain operators on a vector space V ⊗D. Adopt the
notation A(1) for the operator A ⊗ 1 on a vector space V ⊗ D, and A(2) for the operator 1 ⊗ A.

Let α be a real root. For any μ ∈ h∗ and n � 0 define the operators f
(1)
n,α[μ], g

(1)
n,α[μ], B(1)

α [μ]
and C(1)

−α[λ] ∈ End(V ⊗ D) by the relations

f (1)
n,α[μ] =

n∏
k=1

(
ĥ(1)

α + h(2)
α + 〈hα,μ〉 + k

)−1
,

g(1)
n,α[μ] =

n∏
k=1

(−ĥ(1)
α − h(2)

α + 〈hα,μ〉 + k
)−1

, (3.13)

B(1)
α [μ] =

∞∑
n=0

(−1)n

n! f (1)
n,α[μ](ê(1)

−α

)n(
ê(1)
α

)n
,

C(1)
−α[μ] =

∞∑ (−1)n

n! g(1)
n,α[μ](ê(1)

α

)n(
ê
(1)
−α

)n
. (3.14)
n=0
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Here ĥ
(1)
α = ad(1)

hα
is the adjoint action of hα on V , h

(2)
α is the operator of multiplication by hα

on D.
Define also the operators f

(2)
n,α[μ], g

(2)
n,α[μ], C(2)

α [μ] and B(2)
−α[λ] ∈ End(D ⊗ V) by the fol-

lowing relations:

f (2)
n,α[μ] =

n∏
k=1

(
ĥ(2)

α − h(1)
α + 〈hα,μ〉 + k

)−1
,

g(2)
n,α[μ] =

n∏
k=1

(−ĥ(2)
α + h(1)

α + 〈hα,μ〉 + k
)−1

, (3.15)

C(2)
α [μ] =

∞∑
n=0

(−1)n

n! f (2)
n,α[μ](ê(2)

−α

)n(
ê(2)
α

)n
,

B(2)
−α[μ] =

∞∑
n=0

(−1)n

n! g(2)
n,α[μ](ê(2)

α

)n(
ê
(2)
−α

)n
. (3.16)

Here ĥ
(2)
α = ad(2)

hα
is the adjoint action of hα in V , h

(1)
α is the operator of multiplication by hα

in D.
Let g be a reductive finite-dimensional Lie algebra. Let ≺ be a normal ordering of the system

Δ+ of positive roots. Set

B(1)[λ] =
≺∏

γ∈Δ+
B(1)

γ [λ], C(1)
− [λ] =

≺∏
γ∈Δ+

C(1)
−γ [λ],

C(2)[λ] =
≺∏

γ∈Δ+
C(2)

γ [λ], B(2)
− [λ] =

≺∏
γ∈Δ+

B(2)
−γ [λ].

Theorem 3.6. Let A be an admissible algebra with a generating subspace V over a finite-
dimensional reductive Lie algebra g. Then for any v ∈ V we have the following equality in Zn(A)

zv = z′
B(1)[ρ](v⊗1)

. (3.17)

In particular, operators B(1)[ρ](v) : V ⊗D → V ⊗D do not depend on a choice of the normal
ordering ≺.

Proof. Consider the left Fg,n-module Mn(A) = A′/A′n. The multiplication in A′ induces an
isomorphism of vector spaces Mn(A) and V ⊗ Mn(g), where Mn(g) = U ′(g)/U ′(g)n:

m :V ⊗ Mn(g) → Mn(A). (3.18)

With this identification the tensor product V ⊗ Mn(g) becomes a Fg,n-module. As a U(g)-
module it coincides with the tensor product of V , equipped with a structure of the adjoint
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representation of U(g), and of the left U(g)-module Mn(g) = U ′(g)/U ′(g)n. This follows from
the Leibniz rule

g(v · x) = (gv − vg) · x + v · (gx) = ĝ(v) · x + v · gx,

for any g ∈ g, v ∈ V and x ∈ U ′(g)/U ′(g)n.
The elements of D act by the following rule: for any d ∈ D, v ∈ V of the weight μv and

x ∈ Mn(A) we have d · (v ⊗ x) = v ⊗ τμv (d)x. Due to local finiteness of the adjoint action on V
these rules define correctly an action of Fg,n in V ⊗ Mn(g).

Under the identification (3.18) we have

zv = p(v ⊗ 1).

In order to express zv via z′
v , we should write it in a form v′

i ⊗ di + lower order terms, where
‘lower order terms’ contain vectors, whose second tensor component lies in D · n−U(n−). Write
P as a series over ordered monomials of eγi

, and e−γi
, where γi ∈ Δ+, with coefficients being

rational functions of hγi
such that in any monomial all e−γi

stand before all eγj
, in accordance

with the rules of Fg,n,

P = P(hγi
, e−γi

, eγi
).

By the coproduct rule, in the action of P in V ⊗ Mn(g) we substitute instead of e±γi
, the sum

ê
(1)
±γi

+ e
(2)
±γi

, and instead of hγi
, the sum ĥ

(1)
γi

+ h
(2)
γi

with each term acting on the corresponding

tensor component. The action of e
(2)
γi

on v ⊗ 1 vanishes, the action of e
(2)
−γi

gives ‘lower order
terms.’ So the term we are looking for is equal to

p
((

ĥ(1)
γi

+ h(2)
γi

)
, ê

(1)
−γi

, ê(1)
γi

)
(v ⊗ 1).

This is precisely B(1)[ρ](v ⊗ 1). �
The operators B(1)[ρ], B(2)

− [ρ], C(2)[−ρ] and C(1)
− [−ρ], are closely related to the operators

P[λ] and P−[λ], see (2.18). Namely, denote by ρ(1) and ρ(2) the expressions

ρ(1) = 1

2

∑
γ∈Δ+

hγ ⊗ γ, ρ(2) = 1

2

∑
γ∈Δ+

γ ⊗ hγ .

Then

B(1)[ρ] = p̂(1)
[(

ρ + ρ(2)
)]

, C(1)
− [−ρ] = p̂(1)

−
[−(

ρ + ρ(2)
)]

,

B(2)
− [ρ] = p̂(2)

−
[(

ρ + ρ(1)
)]

, C(2)[−ρ] = p̂(2)
[−(

ρ + ρ(1)
)]

.

The operator B(1)[ρ] of the ‘change of coordinates’ in Theorem 3.6 (see also Theorem 7.3
below) can be reversed by means of the relation

Pα[λ]P−α[−λ] = hα + 〈hα,λ〉
. (3.19)
〈hα,λ〉
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This relation makes sense for a generic λ in any finite-dimensional representation of sl2, see [TV,
Theorem 10].

We have so

B(1)[ρ]−1 = C(1)
− [−ρ]

∏
α∈Δ+

h
(2)
α + 〈hα,ρ〉

ĥ
(1)
α + h

(2)
α + 〈hα,ρ〉

,

B(2)
− [ρ]−1 = C(2)[−ρ]

∏
α∈Δ+

h
(1)
α + 〈hα,ρ〉

h
(1)
α − ĥ

(2)
α + 〈hα,ρ〉

. (3.20)

Proof of Theorem 3.5. The inversion relations (3.20) imply that

z′
v = z

γ1C(1)
− [−ρ](1⊗v)

, (3.21)

where γ1 = ∏
α∈Δ+

h
(2)
α +〈hα,ρ〉

ĥ
(1)
α +h

(2)
α +〈hα,ρ〉 . Thus we have correctly defined elements z′

v , which proves

the first statement of the theorem. Other statements follow from the corresponding statements of
Proposition 3.3. �
Remark. If we replace the ring D by the field of fractions D̃ = Frac(U(h)), the statement of
Theorem 3.5 does not require the precise inversion relation (3.21). We just note that all the
elements vi , appearing at the right-hand side of (3.9), belong to a finite-dimensional ad-invariant
subspace V ⊂ V , generated by v. We move then all fi to the right and get a sum of elements
z′
vk

with coefficients in D. If we allow the coefficients to be in D̃, such a transformation defines

an injective operator in D̃ ⊗ V , which is a finite-dimensional vector space over D̃. Thus this
operator is invertible. A use of the precise formula (3.21) is to show that the inverse matrix has
coefficients in D.

4. Zhelobenko maps

4.1. Maps q(k)
α and qα

Let α be a real root of g. For any x ∈A and k � 0 denote by q(k)
α (x) the following element of

A′/A′eα :

q(k)
α (x) =

∞∑
n=k

(−1)n

(n − k)! ê
n−k
α (x) · en−α · gn,α mod A′eα, (4.1)

where

gn,α = (
hα(hα − 1) · · · (hα − n + 1)

)−1
. (4.2)
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The assignment (4.1) has the following properties [Z2]:

(i) q(k)
α (xe−α) = 0,

(ii)
[
h,q(k)

α (x)
] = q(k)

α

([h,x]), h ∈ h,

(iii) q(k)
α (xh) = q(k)

α (x)
(
h + 〈h,α〉), h ∈ h,

(iv) eαq(k)
α (x) = q(k)

α (eαx) = −kq(k−1)
α (x).

(4.3)

Note that the quotient A′/A′eα admits the left and right actions of D, so the commutator
[h,q(k)

α (x)] is well defined in (ii). The property (iii) in the notation (2.5) can be written as

q(k)
α (xh) = q(k)

α (x)τα(h), h ∈ U(h). (4.4)

We extend the assignment (4.1) to the linear map q(k)
α :A′ → A′/A′eα by means of the relation

(iii) and denote by qα the linear map q(0)
α :A′ → A′/A′eα ,

qα(x) =
∞∑

n=0

(−1)n

n! ên
α(x) · en−α · gn,α mod A′eα. (4.5)

The relations (4.3)(i), (iv) show that the image of qα belongs to the normalizer of A′eα in A′ and
that the ideals eαA′ and A′e−α are in the kernel of qα .

Consider the one-dimensional vector space Ceα as an abelian Lie algebra nα = Ceα , and the
one-dimensional vector space Ce−α as an abelian Lie algebra n−α = Ce−α . Extending the nota-
tion of Section 3.2, denote by Znα (A) = Nr(A′eα)/A′eα the Mickelsson algebra, corresponding
to the reduction over the subalgebra, generated by eα .

Proposition 4.1. The map qα defines an isomorphism of the vector spaces nαAn−α ≡ eαA′ \
A′/A′e−α and Znα (A), such that for any x ∈ nαAn−α and d ∈ D

[
d,qα(x)

] = qα

([d, x]), qα(xd) = qα(x)τα(d). (4.6)

Proof. First of all note that the properties (4.3)(i) and (iv) say that the map qα vanishes on
nαA′ + A′n−α and thus defines a map of nαAn−α to A′/A′nα . Its image belongs to Zn(A)

by (4.3)(iv).
Let gα be the subalgebra of g, generated by eα , e−α and h.
Since α is a real root, the adjoint action of gα in g is locally finite and semisimple. So there is

a decomposition g = gα + p, invariant with respect to adjoint action of gα . Poincaré–Birkhoff–
Witt theorem implies that the multiplication in U(g) defines an isomorphism of tensor products
U(gα)⊗ S(p) and S(p)⊗U(gα) with U(g). Here S(p) is regarded as a subspace of U(g), which
consists of symmetric noncommutative polynomials on p. The space S(p) is invariant with re-
spect to adjoint action of gα . Thus U(g) is gα-admissible. Since the adjoint representation of
U(gα) in U(g) is locally finite, and A is a g-admissible algebra, it is gα admissible as well.
Let Vα ⊂ A be a subspace of A, invariant with respect to the adjoint action of ga , such that the
multiplication in A induces an isomorphism of vector spaces U(gα) ⊗ Vα and A.

The double coset space nαAn−α is a free D-module, generated by the vector space Vα (see
Section 3.4 where n has been replaced by n−α). On the other hand, the Mickelsson algebra
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Znα (A) is also a free D-module generated, in the notation of Remark in Section 3.4, by the
vectors z′

nα,v , v ∈ Vα , see Theorem 3.5. Using the structure of the map qα , see (4.1), we have

qα(v) = v +
∑

vifidi,

where vi ∈ Vα , fi is a polynomial on e−α without a constant term, and di ∈ D. In other words,

qα(v) = z′
nα,v. (4.7)

The relations (4.7) and (4.4) prove the proposition. �
Let us restrict the map qα to the normalizer Nr(A′n−α). Due to (4.3)(i), this restriction de-

fines a map qα|Nr(A′n−α) :Zn−α (A) → Znα (A). We have also a map in the opposite direction,
q−α|Nr(A′nα) :Znα (A) → Z−nα (A).

Proposition 4.2. We have equalities

q−αqα(x) = (hα + 1)x(hα + 1)−1 for any x ∈ Zn−α (A),

qαq−α(y) = (hα + 1)−1y(hα + 1) for any y ∈ Znα (A). (4.8)

In particular, the restriction of the map qα to the normalizer Nr(A′e−α) defines an isomor-
phism of the vector spaces Zn−α (A) and Znα (A). The inverse map is given by the formula

y �→ (hα + 1)−1q−α(y)(hα + 1), y ∈ Znα (A).

Proof. Take y ∈ Znα (A). We have

qαq−α(y) = qα

( ∑
n�0

(−1)n

n! ên−α(y)en
α · gn,−α

)

= qα

( ∑
n�0

1

n! ê
n−α(y)en

α

)
· ((hα + 2)(hα + 3) · · · (hα + n + 1)

)−1

= qα

( ∑
n�0

(−1)n

n! ên
αên−α(y)

)
· ((hα + 2)(hα + 3) · · · (hα + n + 1)

)−1

=
∑

m,n�0

(−1)n+m

n!m! êm
α ên

αên−α(y) · em−α

(
(hα + 2) · · · (hα + n + 1)

)−1 · gm,α.

Since qαq−α(y) ∈ Znα (A), we can replace it by pα(qαq−α(y)), where Pα is the projection oper-
ator P, related to the algebra gα , and pα is the action of Pα in A′/A′nα . Since pα(e−αz) = 0 for
any z ∈A′/A′nα , we have
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qαq−α(y)

= pα

( ∑
m,n�0

(−1)n

n!m! êm−αêm
α ên

αên−α(y)
(
(hα + 2) · · · (hα + n + 1)

)−1 · gm,α

)

= pα

( ∑
m,n�0

(−1)n

n!m!
m∏

k=1

(ĥα − hα + k − 1)−1
n∏

k=1

(−ĥα + hα + k + 1)−1êm−αêm
α ên

αên−α(y)

)
.

The expression inside brackets can be interpreted as

p̂(2)
α

[−h(1)
α ⊗ ρ − ρ

] · p̂(2)
−α

[
h(1)

α ⊗ ρ + ρ
]
(1 ⊗ y)

in D ⊗Znα (A). Due to (3.19), it is equal to ĥα−h
(1)
α −1

−h
(1)
α −1

(1⊗y) = −ĥα+h
(1)
α +1

h
(1)
α +1

(1⊗y). It means that

qαq−α(y) = pα

(−ĥα + hα + 1

hα + 1
y

)
= pα

(
(hα + 1)−1y(hα + 1)

)
= (hα + 1)−1pα(y)(hα + 1) = (hα + 1)−1y(hα + 1).

In the last line we used again the relation y = pα(y) mod A′nα for any y ∈ Znα (A). The second
relation is proved in an analogous manner. �
4.2. Maps q(k)

α,m and qα,m

Let α be a real root of g, eα the corresponding root vector with respect to the decomposi-
tion (2.1). Let m be a maximal nilpotent subalgebra of g, conjugated to n by means of an element
of the Weyl group W , such that eα is a simple positive root vector of m. Set m− = mt , where
x �→ xt is the Chevalley antiinvolution in U(g), see Section 2.2. For any x ∈ A and k � 0 denote
by q(k)

α,m(x) the following element of A′/A′m:

q(k)
α,m(x) =

∞∑
n=k

(−1)n

(n − k)! ê
n−k
α (x) · en−α · gn,α mod A′m, (4.9)

where gn,α is given by the relation (4.2). In other words,

q(k)
α,m(x) = πm,α · q(k)

α (x), (4.10)

where πm,α :A/Aeα → A/Am is the natural factorization map. Due to (4.10), the assignment
(4.9) enjoys the property (4.3) and admits an extension to a map q(k)

α,m :A′ →A′/A′m, satisfying
the relation [

d,q(k)
α,m(x)

] = q(k)
α,m

([d, x]), q(k)
α,m(xd) = q(k)

α,m(x)τα(d), (4.11)

for any x ∈ A′ and d ∈ D. We denote by qα,m the map q(0)
α,m :A′ → A′/A′m.

For any element w ∈ W of the Weyl group of g, and for any maximal nilpotent subalgebra
m ⊂ g, we denote by mw ⊂ g the nilpotent subalgebra mw = Tw(m), see Section 2.1.
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Lemma 4.3. For any k � 0,

q(k)
α,m

(
A′msα

) = 0.

Proof. Denote by m(α) ⊂ m the nilpotent subalgebra of m, generated as a vector space by all
root vectors of m except for eα . Due to (4.3)(i), it is sufficient to prove that qα,k(Am(α)) = 0. The
basic theory of root systems for simple Lie algebras says that ê±α(m(α)) ⊂ m(α). Thus for any
n � 0 we have ên

α(Am(α)) ⊂ Am(α) and m(α)en−αg−1
n,α ⊂ A′m(α), which imply the statement of

the lemma. �
Due to Lemma 4.3, the maps q(k)

α,m induce linear maps of A′/A′msα to A′/A′m. We denote
them by the same symbol:

q(k)
α,m :A′/A′msα →A′/A′m.

Proposition 4.4.

(i) The map qα,m transforms the normalizer Nr(A′msα ) to the Mickelsson algebra Zm(A) =
Nr(A′m)/A′m.

(ii) The restriction of the map qα,m to the normalizer Nr(A′msα ) defines an isomorphism of
vector spaces Zmsα

(A) and Zm(A), satisfying (4.11) with k = 0.

Proof. We prove the statement (i) first. Let Δ+(m) be the system of positive roots, related to the
decomposition g = m− + h + m. By assumption, α is a simple root of Δ+(m).

Let x be an element of the normalizer of the ideal A′msα , x ∈ Nr(A′msα ). It means that
e−αx ∈A′msα and eγ x ∈A′msα for any root γ ∈ Δ+(m), γ �= α.

Since eαqα,m = 0 by (4.3)(iv), we have to prove that

eγ qα,m(x) = 0 for any γ ∈ Δ+(m) \ {α}. (4.12)

Fix a positive root γ ∈ Δ+(m) \ {α}. Let γ0, . . . , γm be an ‘α-string’ of roots, starting with γ ,
that is γ0 = γ , and γk+1 = γk + α. Since α is simple, all roots γk are positive, γk ∈ Δ+(m) \ {α},
and for any k = 0, . . . ,m we have

êk
α(eγ ) = akeγk

, k = 0, . . . ,m, ak ∈ C, êk
α(eγ ) = 0, k > m. (4.13)

For any y ∈A we have by (4.13)

qα(eγ y) =
m∑

k=0

ak

∞∑
n=k

(−1)n

(n − k)!eγk
êα(y)en−α · gn,α,

therefore

eγ qα(y) = qα(eγ y) −
m∑

akeγk
q(k)
α (y). (4.14)
k=1
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Iterations of (4.14) and the factorization by A′m give the relation

eγ qα,m(x) = qα,m(eγ x) +
m∑

k=1

bkq(k)
α,m(eγk

x), bk ∈ C. (4.15)

The right-hand side of (4.15) is zero by our assumption. This proves (4.12) and the statement (i)
of the proposition.

Let us prove (ii). The root −α is a simple positive root for the algebra msα . Thus by (i) the map
q−α,msα maps the normalizer Nr(A′m) and the Mickelsson algebra Zm(A) to the Mickelsson
algebra Zmsα

(A). This implies that the map

q′−α,msα = Ad−1
hα+1 · q−α,msα ,

which sends x ∈ Nr(A′m) to (hα + 1)−1 · q−α,msα (x) · (hα + 1), also maps Zm(A) to the Mick-
elsson algebra Zmsα

(A). Proposition 4.2 says that q′−α,msα is inverse to the map of Zmsα
(A) to

Zm(A), induced by the restriction of qα,m to Nr(A′msα ). This proves the statement (ii). �
4.3. Maps qw,m

Let m be a maximal nilpotent subalgebra of g, conjugated to n by an automorphism Tw′ ,
where w′ ∈ W : m = Tw′(n), and m− = Tw′(n−) the opposite maximal nilpotent subalgebra.
Assume that w ∈ W satisfies the condition

dimTw(m) ∩ m− = l(w), (4.16)

where l(w) is the length of w in W . Since m = Tw′(n), the condition (4.16) is equivalent to the
relation l(w′w) = l(w′) + l(w). Let w denote a pair, consisting of an element w ∈ W and of a
reduced decomposition of w:

w := {w,w = sαi1
sαi2

· · · sαin
}. (4.17)

Let n = l(w). Define a sequence w0,w1, . . . ,wn,wn = w of elements of the Weyl group W ,
a sequence γ1, γ2, . . . , γn of positive roots, and a sequence m1, . . . ,mn of maximal nilpotent
subalgebras of g by the following inductive rules:

w0 = 1, wk+1 = wk · sαik+1
, (4.18)

γk = w′wk−1(αik ), mk = Tw′wk−1(n). (4.19)

The relations (4.16), (4.18)–(4.19) imply that for any k = 1, . . . , n the root vector eγk
is a simple

positive root vector for the algebra mk , and the composition

qw,m = qγ1,m1 · qγ2,m2 · . . . · qγn,mn , (4.20)

is a well-defined map qw,m :A′/A′mw →A′/A′m. The index w indicates that this map is related
by the construction to the reduced decomposition (4.17).

Denote by Δw(m) the set of roots γ1, . . . , γn, defined in (4.19). Alternatively, Δw(m) consists
of all roots γ ∈ Δ(m) = w′(Δ+), such that w−1(γ ) ∈ Δ(m−) = w′(Δ−).
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Lemma 4.5. (See [Z2, Section 5.2.4].) Let x ∈A′. Then in the notation (4.18), (4.20)

(i) qw,m(xd) = qw,m(x) · τw′(ρ)−w′w(ρ)(d) for any d ∈ D,

(ii) eα · qw,m(x) = 0 for any α ∈ Δw(m),

(iii) qw,m(eαx) = 0 for any α ∈ Δw(m),

(iv) ew′w(α)qw,m(x) = qw,m(ew′w(α)x) if l(w′wsα) > l(w′w),

(v) ew′(α)qw,msα (x) = qw,msα (ew′(α)x) if l(w′sαw) > l(w′w).

Proof. The property (i) is a direct consequence of (4.11)(ii). Indeed, the relation (4.11)(ii), for
k = 0, implies that for any x ∈A′ and d ∈ D we have

qw,m(xd) = qw,m(x)τγ1+···+γn(d) = qw,m(x) · τw′(ρ)−w′w(ρ)(d).

Suppose that the relations (ii)–(iv) take place for all m = w′(n), and for all reduced decomposi-
tions of any element w of the Weyl group of length less than n, such that l(w′w) = l(w′)+ l(w).
Let (4.17) be a reduced decomposition of the element w of length n.

In the notation of (4.18)–(4.20) we have the equality qw,m = qwn−1,mqγn,mn , with l(wn−1) =
n − 1. Thus, by the induction assumption, for any x ∈ A′, eγi

qwn−1,m(x) = 0 for i = 1, . . . ,

n − 1 and eγnqwn−1,m(x) = qwn−1,meγn(x). This implies the equalities eγi
qw,m(x) = 0 for i =

1, . . . , n − 1 and

eγnqw,m(x) = qwn−1,m(x)eγnqγn,mn(x).

The expression in the last line is zero due to (4.11)(iii). This makes the induction step for the
statement (ii).

On the other hand, let us present w as a product w = sγ1w
′′, where w′′ is an element of the

length n − 1 with a given reduced decomposition w′′ = sαi2
· . . . · sαin

. Again, we denote by w′′
the pair {w′′,w′′ = sαi2

· . . . · sαin
}. We have a decomposition qw,m = qγ1,m · qw′′,m2 , where

qw′′,m2 = qγ2,m2 qγ3,m3 · . . . · qγn,mn . (4.21)

The induction assumptions say that qw′′,m2(eγi
x) = 0 for i = 2, . . . , n by (ii) and that

qw′′,m2(eγ1x) = eγ1qw′′,m2(x)

by (v). Thus qw,m(eγi
x) = 0 for i = 2, . . . , n and

qw,m(eγ1x) = qγ1,mqw′′,m2(eγ1x) = qγ1,m

(
eγ1 qw′′,m2(x)

) = 0

by (4.3)(iv). This makes the induction step for (iii).
Let us make the induction step for (iv). Take a simple root α, such that l(w′wsα) > l(w′w).

Let γ = w′w(α). Then γ is a positive root, and the sequence

γ1, . . . , γn, γ (4.22)

is convex, that is, the sum of any two elements of the sequence lies between them, if the sum is a
root. Let μ0, . . . ,μm be the finite ‘γ1-sequence’ of positive roots, starting with γ , that is, μ0 = γ ,
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μk+1 = μk + γ1. Then each μk belongs to the set (4.22), μk = γik , such that ik ∈ {2, . . . , n} if
k > 0, and êk

α(eγ ) = akeμk
with ak ∈ C, and êk

α(eγ ) = 0 for k > m. This implies, see the proof of
Proposition 4.4, that

eγ qγ1(y) = qγ1(eγ y) +
m∑

k=1

bkq(k)
γ1

(eμk
y), bk ∈ C. (4.23)

The relation (4.23) implies the equality

eγ qw,m(x) = qγ1,m

(
eγ qw′′,m2(x)

) +
m∑

k=1

bkq(k)
γ1,m

(
eμk

qw′′,m2(x)
)
,

where qw′′,m2 is defined in (4.21). The induction assumption says that eγ qw′′,m2(x) =
qw′′,m2(eγ x) and eμk

qw′′,m2 = 0 for any k � 1. This makes the induction step for (iv). The
statement (v) is proved in an analogous manner.

4.4. Map qw0

In this section we assume that g is a finite-dimensional reductive Lie algebra and A is a g-
admissible algebra. In this case, the Weyl group W is finite and the adjoint action of g on A is
locally finite.

Set m = n and for any w ∈ W and any reduced decomposition w = sαi1
· · · sαik

denote the
map qw,n as qw:

qw ≡ qw,n.

Let w0 = sαi1
· · · sαin

be a reduced decomposition of the longest element w0 ∈ W and w0 the
corresponding pair w0 = {w0,w0 = sαi1

· · · sαin
}. The map qw0 has the following properties: the

right ideal nA′ is in the kernel of qw0 by Lemma 4.5(ii), and the image of qw0 is in the normalizer
of the left ideal A′n by Lemma 4.5(iii). It means that it induces the map of the double coset space
nAn− = nA′ \A′/A′n− to the Mickelsson algebra Zn(A):

qw0 : nAn− → Zn(A).

Let V ⊂ A be an ad-invariant generating subspace of A. Let z′
w , where w ∈ V , be the canonical

generators of the D-module Zn(A), see Theorem 3.5.

Proposition 4.6. The mapping qw0 of vector spaces defines an isomorphism of the double coset
space nAn− and Zn(A), such that for any x ∈ n−An, d ∈ D and v ∈ V

[
d,qw0(x)

] = qw0

([d, x]), qw0(xd) = qw0(x)τρ−w0(ρ)(d), (4.24)

qw0(v) = z′
v. (4.25)

Proof. The arguments are the same as in the proof of Proposition 4.1.
The double coset space nAn− is a free right (and left) D-module, generated by the vec-

tor space V . On the other hand, the Mickelsson algebra Zn(A) is also a free right (and left)
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D-module, generated by the vectors z′
v , v ∈ Vα , see Theorem 3.5. Using the structure of the

map qw0 ,

qw0(v) = w +
∑

vigi,

where gi ∈ U ′(g), and vi ∈ V have the weight strictly bigger then the weight of v, that is,
μ(v − vi) ∈ Q+, μ(v − vi) �= 0, where μ(x) ∈ h∗ denotes the weight of x. We can present
further any gi as a sum gi = ∑

j fi,j di,j ei,j , where fi,j ∈ U(n−), di,j ∈ D and ei,j ∈ U(n). The
terms where ei,j �= 1, vanish by definition in Zn(A), so we have the equality (4.25). �

Proposition 4.6 implies that the map qw0 does not depend on a reduced decomposition of w0.
We will denote it by qw0 ,

qw0 ≡ qw0 .

Corollary 4.7. The restriction of the map qw0 to the normalizer Nr(A′n−) defines an isomor-
phism of the vector spaces Zn−(A) and Zn(A), such that

[
d,qw0(x)

] = qw0

([d, x]), qw0(xd) = qw0(x)τρ−w0(ρ)(d), d ∈ D,

qw0(zn−,v) = z′
n,v, v ∈ V . (4.26)

Here zn−,v are generators of the Mickelsson algebra Zn−(A) of the ‘first type,’ see Propo-
sition 3.3, z′

n,v
≡ z′

v are generators of the Mickelsson algebra Zn(A) of the ‘second type,’ see
Proposition 3.4.

Proof. We have n− = nw0 and all the statements of the corollary follow by induction from
Proposition 4.4. We should prove only the equality (4.26). By the definition (3.9), the element
zn−,v ∈ Zn−(A) has a form

zn−,v = v +
∑
i=1

dieivi, ei ∈ nU(n), di ∈ D, vi ∈ V,

that is, zn−,v = v mod nA′. Using the properties of the map qw0 , given in Proposition 4.6, we
have qw0(zn−,v) = qw0(v) = z′

v. �
4.5. Cocycle properties

In this section g is an arbitrary contragredient Lie algebra of finite growth, A is a g-admissible
algebra, m a maximal nilpotent subalgebra of g, conjugated to n by an element of the Weyl
group W , and w an element of W , satisfying the condition (4.16).

Proposition 4.8. Maps qw,m do not depend on reduced decompositions of w ∈ W .

Proof. First we take an element w ∈ W , equal to the longest element of a reductive subalgebra
g′ ⊂ g of rank two. Then the algebra g′ = n′− +h+n′ is generated by the elements e±γi

and h ∈ h,
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where γ1, . . . , γn are the terms of the sequence (4.19), such that all eγi
∈ m by the condition

(4.16). By Proposition 4.6, the map

qw,n′ :A′ →A′/A′n′

does not depend on a reduced decomposition of w. The map

qw,m :A′ →A′/A′m

is the composition of qw,n′ with the natural projection of A′/A′n′ to A′/A′m, and thus also does
not depend on a choice of the reduced decomposition of w.

This result implies the statement of the proposition for a general w, since any two reduced
decompositions are related by a sequence of flips of reduced decompositions of longest elements
of rank two subalgebras. �

With the use of Proposition 4.8, we further simplify the notation for the maps qw,m and qw

and write them as qw,m and qw:

qw,m ≡ qw,m, qw ≡ qw ≡ qw,n.

Proposition 4.8 can be formulated as the condition

qw′w,m = qw′,mq
w,mw′ , if l(w′w) = l(w′) + l(w). (4.27)

This statement is known as ‘Zhelobenko cocycle condition’ [Z1].

5. Homomorphism properties of Zhelobenko maps

5.1. Homomorphism property of maps qα

Let A be an admissible algebra over a contragredient Lie algebra g of finite growth. Let α

be a real root of g, and gα the subalgebra of g, generated by e±α and h, n±α = Ce±α . Since the
algebra A is g-admissible and the adjoint action of gα on g is locally finite, A is gα-admissible
as well, see Section 4.1. In this setting we proved in Section 3.3 that the double coset space
nαAn−α = nαA′ \A′/A′n−α can be equipped with a structure of an associative algebra with the
multiplication rule

a ◦ b = ap−α(b) = p−α(a)b,

in the notation of Sections 2.2 and 3.3.
The following theorem is the basic source for applications of the Zhelobenko operators to the

representation theory of Mickelsson algebras.

Theorem 5.1. The map qα : nαAn−α → Znα (A) is a homomorphism of algebras.
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Theorem 5.1 and Proposition 4.1 imply that qα establishes an isomorphism of the double coset
algebra nαAn−α and Mickelsson algebra Znα (A). On the other hand, Theorem 5.1 implies the
equality

qα(xy) = qα(x)qα(y), for any x ∈A′, y ∈ Nr(A′n−α). (5.1)

Indeed, if y ∈ Nr(A′n−α), and y is the class of y in A′/A′n−α then y = p−α(y) and the first
equality in (4.12) is a corollary of the first statement of Theorem 5.1.

Proof. Let P−α be the extremal projector, related to the decomposition gα = nα + Chα + n−α

of the algebra gα . It is given by the relations (2.15) and (2.16). The corresponding operators
p−α :A′/n−αA′ → A′/n−αA′ and p−α :A′nα \A′ → A′nα \A′ can be written as

p−α(x) =
∑
m�0

1

m!
1

(hα − 2) · · · (hα − m − 1)
eαêm−α(x) mod A′e−α, (5.2)

p−α(x) =
∑
m�0

(−1)m

m! êm
α (x)em−α

1

(hα − 2) · · · (hα − m − 1)
mod eαA′. (5.3)

We should establish an equality

qα

(
p−α(x)y

) = qα(x)qα(y) for any x ∈ nαA′ \A′, y ∈ A′. (5.4)

Suppose y ∈A is a weight vector such that [hα, y] = μyy. We have

qα

(
p−α(x)y

) = qα

( ∑
m�0

(−1)m

m! êm
α (x)em−α

1

(hα − 2) · · · (hα − m − 1)
y

)

= qα

( ∑
m�0

(−1)m

m! êm
α (x)em−αy

1

(hα − 2 + μy) · · · (hα − m − 1 + μy)

)

= qα

( ∑
m�0

(−1)m

m! êm
α (x)em−αy

)
1

(hα + μy) · · · (hα − m + 1 + μy)

=
∑

n,m�0

(−1)n+m

n!m! ên
α

(
êm
α (x)em−αy

)
en−α

1

gn,α

1

(hα + μy) · · · (hα − m + 1 + μy)

=
∑

n,m�0

(−1)n+m

n!m!

·
n∑

k=0

(
n

k

)
êk
α

(
êm
α (x)em−α

)
ên−k
α (y)en−α

1

gn,α

1

(hα + μy) · · · (hα − m + 1 + μy)

=
∞∑ (−1)m

m!k! êk
α

(
êm
α (x)em−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y). (5.5)
k,m=0
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The sum of the terms with k = 0 in (5.5) is qα(x) · qα(y). So it is sufficient to prove the
following identity in A′/A′eα :

∞∑
k=1

∞∑
m=0

(−1)m

m!k! êk
α

(
êm
α (x)em−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y) = 0 (5.6)

for any x, y ∈A.
We have for any k � 1:

êk
α

(
êm
α (x)em−α

) = êk−1
α

(
êm+1
α (x)em−α + mêm

α (x)em−1−α (hα − m + 1)
)

= êk−1
α

(
êm+1
α (x)em−α

) + mêk−1
α

(
êm
α (x)em−1−α

)
(hα − m + 1)

− 2m(k − 1)êk−2
α

(
êm
α (x)em−1−α

)
eα. (5.7)

Denote the left-hand side of (5.6) by S. Substitute (5.7) into S. We get

S =
∞∑

k=1

∞∑
m=0

(−1)m

m!k!
(

êk−1
α

(
êm+1
α (x)em−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

+ mêk−1
α

(
êm
α (x)em−1−α

) (hα − m + 1)

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

− 2m(k − 1)êk−2
α

(
êm
α (x)em−1−α

)
eα

1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

)
.

Substitute (hα − m + 1) = (hα + 2k − m + 1) − 2k into the second sum and use the relation
(4.3)(iv) in the third sum. We get

S =
∞∑

k=1

∞∑
m=0

(−1)m

m!k!
(

êk−1
α

(
êm+1
α (x)em−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

+ mêk−1
α

(
êm
α (x)em−1−α

) 1

(hα + 2k) · · · (hα + 2k − m + 2)
q(k)
α (y)

− 2kmêk−1
α

(
êm
α (x)em−1−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

+ 2mk(k − 1)êk−2
α

(
êm
α (x)em−1−α

) 1

(hα+ 2k − 2) · · · (hα + 2k − m − 1)
q(k−1)
α (y)

)
.

Change the indices of summation: m to m + 1 in the second and in the third sum; m to m + 1
and k to k + 1 in the last sum. Then

S =
∞∑

k=1

∞∑
m=0

(−1)m

m!k!
(

êk−1
α

(
êm+1
α (x)em−α

) 1

(hα + 2k) · · · (hα + 2k − m + 1)
q(k)
α (y)

− êk−1
α

(
êm+1
α (x)em−α

) 1
q(k)
α (y)
(hα + 2k) · · · (hα + 2k − m + 1)
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+ 2kêk−1
α

(
êm
α (x)em−1−α

) 1

(hα + 2k) · · · (hα + 2k − m)
q(k)
α (y)

− 2kêk−2
α

(
êm
α (x)em−1−α

) 1

(hα + 2k) · · · (hα + 2k − m)
q(k)
α (y)

)
= 0.

The theorem is proved. �
5.2. Properties of maps qα,m and qw,m

Let α be a real root of the Lie algebra g, eα the corresponding root vector with respect to the
decomposition (2.1). Put m = nw , where w ∈ W , a maximal nilpotent subalgebra of g, such that
eα is a simple positive root vector of m.

Theorem 5.2. For any x ∈A′, y ∈ Nr(A′msα )

qα,m(xy) = qα,m(x)qα,m(y).

Proof. Since y ∈ Nr(A′msα ), its image y in Mmsα (A′) = A′/A′msα satisfies the relations
eγ y = 0 for all γ ∈ Δ+(msα ). In particular, we have the equality

e−αy = 0 in A′/A′msα . (5.8)

Let gα ⊂ g be the subalgebra, generated by e±α and h. Since A is g-admissible, it is gα-
admissible as well and Mmsα (A′) is locally nilpotent with respect to e−α . Thus the extremal
projector P−α , related to n−α = Ce−α , acts on Mmsα (A′). Denote, following the notation of Sec-
tion 2.2, its image in EndMmsα (A′) by p−α . By (5.8) and the properties of the extremal projector,
we have

y = p−α(y) in A′/A′msα . (5.9)

The equality (5.9) can be read as

y ∈ Nr(A′n−α) mod A′msα ,

that is y = y′ + z, where y′ ∈ Nr(A′m−α) and z ∈ A′msα .
Indeed, p−α(y) ∈ Nr(A′m−α) mod A′m−α and A′m−α ⊂ A′msα . Due to Theorem 5.1, see

(5.1) and the properties of the maps qα,m, we have

qα,m(xy) = qα,m(xy′) = qα,m(x)qα,m(y′) = qα,m(x)qα,m(y). �
Combining Theorem 5.1 with the statements of Propositions 4.4 and 7.5, we conclude that the

restriction of the map qα,m to the normalizer Nr(A′msα ) defines an isomorphism of the algebras
Zmsα

(A) and Zm(A).
Iterations of these conclusions yield the following statement.
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Proposition 5.3. For any w′,w, such that l(w′w) = l(w′) + l(w) and m = nw′
, the restriction of

the map qw,m to the normalizer Nr(A′mw) defines an isomorphism of the algebras Zmw
(A) and

Zm(A) such that for any x ∈ Zmw
(A) and d ∈ D[

d,qw,m(x)
] = qw,m

([d, x]), qw,m(xd) = qw,m(x) · τw′(ρ)−w′w(ρ)(d).

The case of a finite-dimensional reductive Lie algebra g and the element w0 ∈ W of the max-
imal length is special. In this case we have the following statements:

Proposition 5.4.

(i) The map qw0 defines an isomorphism of the double coset algebra nAn− and Mickelsson
algebra Zn(A) such that for any d ∈ D, v ∈ V and x ∈ nAn−

qw0(v) = z′
v,

[
d,qw0(x)

] = qw0

([d, x]), qw0(xd) = qw0(x)τρ−w0(ρ)(d);

(ii) the restriction of the map qw0 to the normalizer Nr(A′n−) defines an isomorphism of the
Mickelsson algebras Zn−(A) and Zn(A) such that for any d ∈ D, v ∈ V and x ∈ Zn−(A)

qw0(zn−,v) = z′
v,

[
d,qw0(x)

] = qw0

([d, x]), qw0(xd) = qw0(x)τρ−w0(ρ)(d).

6. Braid group action

6.1. Operators q̌i

Suppose that the automorphisms Tw :U(g) → U(g), w ∈ W , admit extensions to automor-
phisms Tw :A → A of a g-admissible algebra A. Such an extension is uniquely determined by
the automorphisms Ti :A → A, defined for all simple positive roots αi , which extend the auto-
morphisms Ti :U(g) → U(g), see Section 2.1, and satisfy braid group relations, related to g:

TiTjTi · · ·︸ ︷︷ ︸
mi,j

= TjTiTj · · ·︸ ︷︷ ︸
mi,j

, i �= j, (6.1)

where mi,j = 2, if ai,j = 0; mi,j = 3, if ai,j aj,i = 1; mi,j = 4, if ai,j aj,i = 2; mi,j = 6, if
ai,j aj,i = 3. There is no relation, if ai,j aj,i > 3. Having (6.1), for any w ∈ W we define the
automorphism Tw :A → A by the relation Tw = Ti1

· · ·Tik
, where w = sαi1

· · · sαik
is a reduced

decomposition of w. Then the elements Tw do not depend on a choice of the reduced decompo-
sition and satisfy the relations

Tw′w = Tw′ · Tw, if l(w′w) = l(w′) + l(w). (6.2)

The automorphisms Ti (and Tw) admit unique extensions to automorphisms of the algebra A′,
satisfying (6.1). We denote them by the same symbols.

For any maximal nilpotent subalgebra m = nw , where w ∈ W , and any root α, such that the
root vector eα is a simple positive root vector of m, we have the following relation:

qα,m = Twqw−1(α),nT −1
w . (6.3)
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For each αi ∈ Π define the operators q̌i :A′/A′n → A′/A′n by the relations

q̌i = qsαi
· Ti. (6.4)

In (6.4), we understand qsαi
≡ qαi ,n as the maps qαi ,n :A′/A′nsαi → A′/A′n, given by the

relations (4.9)–(4.11). Using the same agreement for any w ∈ W we define the operators
q̌w :A′/A′n → A′/A′n as

q̌w = qw · Tw. (6.5)

The relation (6.3), Proposition 4.8 and its analog for the maps q̃w,m imply

Proposition 6.1. Operators q̌i satisfy the braid group relations

q̌i q̌j · · ·︸ ︷︷ ︸
mi,j

= q̌j q̌i · · ·︸ ︷︷ ︸
mi,j

, i �= j. (6.6)

In other words, for any reduced decomposition w = sαi1
· · · sαim

we have equalities q̌w =
q̌i1 · · · q̌im such that

q̌w′w = q̌w′ q̌w, if l(w′w) = l(w′) + l(w). (6.7)

Proof. Let w′,w ∈ W and l(w′w) = l(w′) + l(w). We have by (4.27) and (6.3)

q̌w′w = qw′w,nTw′w = qw′,nq
w,nw′ Tw′w

= qw′,n
(
Tw′qw,nT −1

w′
)
Tw′w = qw′,nTw′qw,nTw = q̌w′ q̌w.

Thus we have (6.7), which are equivalent to the braid group relations. �
For any w ∈ W denote by w◦ the shifted action of w in h∗:

w ◦ μ = w(μ + ρ) − ρ.

It induces the shifted action by automorphisms of W on D, characterized by the relations

w ◦ hα = hw(α) + 〈
hα,w(ρ) − ρ

〉
. (6.8)

Theorem 5.2 and Proposition 5.3 imply

Proposition 6.2. For any x ∈A′/A′n, y ∈ Zn(A) and d ∈ D we have

q̌i

([d, x]) = [
sαi

(d), q̌i (x)
]
, q̌i (xd) = q̌i (x) · (sαi

◦ d),

q̌i (xy) = q̌i (x) · q̌i (y). (6.9)
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Corollary 6.3.

(i) The restriction of operators q̌i to Zn(A) defines an automorphism of Zn(A), satisfying (6.9).
(ii) For any x ∈ Zn(A) we have

q̌2
i (x) = (hαi

+ 1)−1T 2
i (x)(hαi

+ 1).

Proof. The statement (i) of the corollary is a direct consequence of Proposition 6.2. The state-
ment (ii) follows from Proposition 4.2 and the relation (6.3). Namely, for any x ∈ Zn(A) we
have by Proposition 4.2

q̌2
i (x) = qαi ,nTiqαi ,nTi(x) = qαi ,nq−αi ,n

sα

(
T 2

i (x)
) = (hαi

+ 1)−1T 2
i (x)(hαi

+ 1). �
Clearly, all the statements of Proposition 6.2 remain valid for all operators q̌w , w ∈ W . The

properties (6.9), (7.16) look as

q̌w

([h,x]) = [
w(h), q̌w(x)

]
, q̌w(xd) = q̌w(x) · (w ◦ d),

q̌w(xy) = q̌w(x) · q̌w(y). (6.10)

6.2. Calculation of q̌i (zv)

Denote by In− the image of the right ideal n−A′ in A′/A′n:

In− = (n−A′ +A′n)/A′n.

Lemma 6.4. For any αi ∈ Π we have an inclusion

q̌i (In−) ⊂ In− . (6.11)

Proof. We have to prove that for any γ ∈ Δ+ and any x ∈A′

qαi

(
Ti(e−γ x)

) =
∑
j

e−μj
yj (6.12)

for some μj ∈ Δ+ and yj ∈A′/A′n. If γ �= αi then

qαi

(
Ti(e−γ x)

) = qαi

(
e−γ ′ · Ti(x)

)
,

where γ ′ = sαi
(γ ) ∈ Δ+ \ {αi}, and the statement of the lemma follows from the invariance

of the subalgebra n−(αi) with respect to the action of êαi
. Here n−(αi) is generated by root

vectors e−γ , where γ ∈ Δ+ \ {αi}.
If γ = αi then the right-hand side of (6.12) vanishes due to (4.3)(i). �
Suppose that an ad-invariant generating subspace V of a g-admissible algebra A is invariant

with respect to the action of the automorphisms Ti , Ti(V) = V . Suppose that A satisfies the
highest weight (HW) condition, see Section 3.3. With this assumption we calculate the elements
q̌i (zv), where v ∈ V and zv are the generators of Zn(A), defined in Section 3.4.
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Keep the notation of Sections 3.4 and 3.5. The operators C(2)
±α[λ] were defined in Section 3.5.

Proposition 6.5. Assume that A satisfies the HW condition. Then

q̌i (zv) = z
C(2)

αi
[−ρ](1⊗Ti(v))

.

Proof. Assume that A satisfies the HW condition. By definition of the elements zv , we have
zv = v mod In− . Lemma 6.4 then implies the equality

q̌i (zv) = q̌i (v) mod In− .

We have

q̌i (zv) = q̌i (v) mod In−

=
∑
n�0

(−1)n

n! ên
α(v)en−αgα,n mod In−

=
∑
n�0

1

n! ê
n−αên

α(v)gα,n mod In−

=
∑
n�0

(−1)n

n!
(−1)n

(ĥα − hα)(ĥα − hα + 1) · · · (ĥα − hα + n − 1)
ên−αên

α(v) mod In− .

This is precisely the statement of the proposition. �
Remark. Let w = sα1 · · · sαn be a reduced decomposition of an element w ∈ W . Let γ1, . . . , γn

be the corresponding sequence of positive roots: γ1 = α1, γ2 = sα1(α2), . . . . Then the properties
of the maps q̌i , see Proposition 6.2, imply the following relation:

q̌w(zv) = z
C(2)

γ1 [−ρ]···C(2)
γn [−ρ](1⊗Tw(v))

.

6.3. Calculation of q̌i (z
′
v)

In this section we assume that g is an arbitrary contragredient Lie algebra of finite growth
and that the generating subspace V of the g-admissible algebra A is invariant with respect to the
action of the automorphisms Ti . With this assumption we calculate the elements q̌i (z

′
v), where

v ∈ V and z′
v are the generators of Zn(A), defined in Section 3.4.

Proposition 6.6. Assume that the element z′
v ∈ Zn(A) is defined. Then the element q̌i (z

′
v) is also

defined and is given by the relation

q̌i

(
z′
v

) = z′
B(2)

−αi
[ρ](1⊗Ti (v))

. (6.13)

The proof of Proposition 6.6 is based on the following lemma.
Let α be a simple positive root, and n±(α) the subalgebras of n±, generated by all root vectors

except e±α respectively.
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Lemma 6.7. Suppose that the element z′
v exists. Then it admits a presentation

z′
v = qα(v) +

∑
n�0,j

en−αvj,ndj,nfj,n, (6.14)

where vj,n ∈ V , dj,n ∈ D, fj,n ∈ n−(α)U(n−(α)).

Proof. Using the PBW theorem, present z′
v as z′

v = x + y, where

x = v +
∑

k

vkdke
k−α, vk ∈ V, dk ∈ D,

y =
∑

n�0,j

ṽj,ne
n−αdj,nfj,n, ṽj,n ∈ V, dj,n ∈ D, fj,n ∈ n−(α)U

(
n−(α)

)
.

By definition, z′
w satisfies the relation [eα, z′

v] = 0 mod A′n. Since the algebra n−(α) is invariant
with respect to the adjoint action of eα , the commutator [eα, y] is an element z of the same kind,
so we have two equations

[eα, x] = 0 mod A′n and [eα, y] = 0 mod A′n.

The first equation has a unique solution x = qα(v). To finish the proof of the lemma, we move
all factors en−α in the presentation of y to the left, using the commutation relations in A. �
Proof of Proposition 6.6. The application of the automorphism Ti to the presentation (6.14)
gives:

Tiqαi ,n(u) = Tiqαi ,n(v) +
∑

n�0,j

en
αi

vj,ndj,nf j,n, (6.15)

where vj,n = Ti(ṽj,n) ∈ V , f j,n = Ti(f̃j,n) ∈ n−(αi)U(n−(αi)) and dj,n = Ti(d̃j,n) ∈ D. Now
we apply the map qαi ,n to both sides of (6.15). The images of the terms in the last sum with
n > 0 vanish, since qαi ,n(eαi

x) = 0 for any x ∈ A′ by (4.3)(iv). The images of the terms in the
last sum with n = 0 do not contribute to the ‘leading term,’ since the algebra n−(αi) is invariant
with respect to the adjoint action of êαi

. We obtain

Lemma 6.8. The leading term of q̌i (z
′
v) is equal to the leading term of qαi ,nTiqαi

(v).

Let us compute the leading term of qαi ,nTiqαi
(v). We have

qαi ,nTiqαi
(v) = qαi ,nTi

( ∞∑
n=0

(−1)n

n! ên
αi

(v)en−αi
gn,αi

)

= qαi ,n

( ∞∑
n=0

1

n! ê
n−αi

(
Ti(v)

)
en
αi

(
(hαi

)(hαi
+ 1) · · · (hαi

+ n − 1)
)−1

)

= qαi ,n

( ∞∑ 1

n! ê
n−αi

(
Ti(v)

)
en
αi

)(
(hαi

+ 2)(hαi
+ 3) · · · (hαi

+ n + 1)
)−1

,

n=0
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by the property (4.3)(iii). Since qαi ,n(eαi
x) = 0 for any x ∈ A′, we further get

qαi ,nTiqαi
(v) =

∞∑
n=0

(−1)n

n! qαi ,n

(
ên
αi

ên−αi

(
Ti(v)

))(
(hαi

+ 2) · · · (hαi
+ n + 1)

)−1
.

Since ên
αi

ên−αi
(Ti(v)) belongs to V , the leading term of qαi ,n(ên

αi
ên−αi

(Ti(v))) is equal to
ên
αi

ên−αi
(Ti(v)) and the leading term of qαi ,nTiqαi ,n(v) is equal to the sum

∞∑
n=0

(−1)n

n! ên
αi

ên−αi

(
Ti(v)

)(
(hαi

+ 2) · · · (hαi
+ n + 1)

)−1
,

which can be written as B(2)
−αi

[ρ](1 ⊗ Ti(v)). This ends the proof of Proposition 6.6. �
As well as in the previous section, for any reduced decomposition w = sα1 · · · sαn of an el-

ement w ∈ W and the corresponding sequence of positive roots: γ1 = α1, γ2 = sα1(α2), . . . we
have, assuming the existence of z′

v ,

q̌w

(
z′
v

) = z′
B(2)

−γ1
[ρ]···B(2)

γn [ρ](1⊗Tw(v))
.

7. Mickelsson algebra Zn−(A)

In this section we collect the results of the previous section for the Mickelsson algebra
Zn−(A), see the definition below. This algebra deserves the special attention, since it acts
on the space of n−-coinvariants, which are sometimes more convenient than n-invariants. If
a g-admissible algebra A admits an antiinvolution, which extends the Cartan antiinvolution
t :U(g) → U(g), then all the results of this section can be obtained by an application of this
antiinvolution to corresponding results from the previous sections.

7.1. Algebra Zn−(A) and related structures

For any g-admissible algebra A, we define Mickelsson algebras Sn−(A) and Zn−(A) as the
quotients

Sn−(A) = n−A \ Nr(n−A), Zn−(A) = n−A′ \ Nr(n−A′),

where Nr(n−A) (respectively Nr(n−A′)) is the normalizer of the right ideal n−A (respec-
tively n−A′). The algebra Zn−(A) is a localization of the algebra Sn−(A): Zn−(A) = D ⊗U(h)

Sn−(A).
Alternatively, the Mickelsson algebra Zn−(A) can be defined as the subspace of n−-invariants

in a right U(g)-module M̃n−(A′) = n−A′ \A′:

Zn−(A) = (
M̃n−(A′)

)n− = {
m ∈ M̃n(A′)

∣∣ mn− = 0
}
.

As well as Sn(A), the space Sn−(A) is an associative algebra, containing U(h), and for any
left A-module M , the space Mn− = M/n−M of n−-coinvariants is a Sn−(A)-module, see Propo-
sition 3.1. The algebra Zn− acts in the space Mn− of n−-coinvariants of any left A′-module M .
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Suppose that a g-admissible algebra A satisfies the additional local lowest weight condition

(LW) For any v ∈ V the adjoint action of elements x ∈ U(n−)μ on v is nontrivial, x̂(v) �= 0, only
for a finite number of μ ∈ h∗.

Then the quotient M̃n−(A′) = n−A′ \ A′n has a structure of a right Fg,n-module, extending
the action of A′ by the right multiplication. In particular, the extremal projector P acts in the right
Fg,n-module M̃n−(A′). Denote the corresponding operator by p ∈ End M̃n−(A′), see Section 2.2.

The properties of the extremal projectors imply the relation

Zn−(A) = Im p ⊂ M̃n−(A′). (7.1)

Equip the double coset space n−An, see (3.6), with a multiplication ◦ : n−An ⊗n− An →
n−An:

a ◦ b = aPb
def= p(a) · b. (7.2)

We also call the double coset space n−An, equipped with the operation (7.2), the double coset
algebra n−An. In a case, when both conditions (HW) and (LW) are satisfied, the multiplication
rules (3.7) and (7.2) coincide.

Define the linear maps φ− :Zn−(A) → n−An and ψ− : n−An → Zn−(A) by the rules

φ−(x) = x mod A′n, ψ+(y) = p(y), x ∈ Zn−(A), y ∈ n−An. (7.3)

Proposition 7.1. Assume that a g-admissible algebra A satisfies the condition (LW). Then

(i) The operation (3.7) equips n−An with a structure of an associative algebra.
(ii) The linear maps φ− and ψ− are inverse to each other and establish an isomorphism of the

algebras Zn−(A) and n−An.

We have the ‘lowest weight counterpart’ of Propositions 3.3 and 3.4.

Proposition 7.2. Let A be a g-admissible algebra satisfying the condition (LW). Then

(i) Each element of the double coset algebra n−An can be uniquely presented in a form x =∑
i divi , where di ∈ D, wi ∈ V , so that n−An is a free left (and right) D-module, isomorphic

to D ⊗ V .
(ii) For each v ∈ V there exists a unique element z̃v ∈ Zn−(A) of the form

z̃v = v +
∑

i=1,...,k

vieidi, ei ∈ nU(n), di ∈ D, vi ∈ V, (7.4)

so that the algebra Zn−(A) is a free left (and right) D-module, generated by the elements z̃v .
The element z̃v is equal to p(v).

(iii) For each v ∈ V there exists at most one element z̃′
v ∈ Zn−(A) of the form

z̃′
v = v +

∑
j

ej vj dj , ej ∈ nU(n), dj ∈ D, vj ∈ V . (7.5)
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Next, we have an analog of Theorems 3.5 and 3.6:

Theorem 7.3. Let g be reductive and finite-dimensional, and let A be a g-admissible algebra
with a generating subspace V . Then for any v ∈ V

(i) there exists a unique element z̃′
v ∈ Zn−(A) of the form (7.5). The algebra Zn−(A) is gener-

ated by the elements z̃′
v as a free left (and right) D-module;

(ii) we have the following equality in Zn−(A)

z̃v = z̃′
B(2)

− [ρ](1⊗v)
. (7.6)

Here z̃d⊗v = d · z̃v , z̃′
d⊗v = d · z̃′

v , z̃v⊗d = z̃v · d , z̃′
v⊗d = z̃′

v · d .

7.2. Zhelobenko maps

For any real root α, the relations

q̃α(x) =
∞∑

n=0

1

(n)!gn,α · en
α · ên−α(x) mod n−αA′, x ∈A,

q̃α(dx) = τα(d)q̃α(x), d ∈ D,

define a map q̃α :A′ → n−αA′ \A′, such that for any x ∈ A′

q̃α(eαx) = 0, q̃α(xe−α) = q̃α(x)e−α = 0. (7.7)

Here gn,α is given by (4.2), n±α = Ce±α . We have the analogs of Propositions 4.1, 4.2 and
Theorem 5.1.

Theorem 7.4.

(i) The map q̃α defines an isomorphism of algebras q̃α : nαAn−α → Zn−α (A), such that for any
d ∈ D,

[
d, q̃α(x)

] = q̃α

([d, x]), q̃α(dx) = τα(d)q̃α(x).

(ii) For any x ∈ Znα (A) and y ∈ Zn−α (A) we have

q̃−α q̃α(x) = (hα + 1)x(hα + 1)−1, q̃α q̃−α(y) = (hα + 1)−1y(hα + 1). (7.8)

Theorem 7.4 implies the equality

q̃α(xy) = q̃(x)q̃(y) for any x ∈ Nr(nαA′), y ∈A′.

For a maximal nilpotent subalgebra m of g, such that eα is a simple positive root vector of m,
define the linear map q̃(k)

α,m :A′ → m−A′ \A′ by the prescriptions
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q̃α,m(x) =
∞∑

n=0

1

(n)!gn,α · en
α · ên−α(x) mod m−A′, x ∈A, (7.9)

q̃α,m(dx) = τα(d)q̃α(x), d ∈ D. (7.10)

The assignment q̃α,m satisfies the relation q̃α,m(m
sα−A′) = 0 and determines the map

q̃α,m :msα−A′ \A′ → m−A′ \A′.

We have (see Proposition 4.4 and Theorem 5.2):

Proposition 7.5.

(i) The map q̃α,m transforms Nr(msα−A′) to the Mickelsson algebra Zm−(A), and

q̃α,m(zu) = q̃α,m(z)q̃α,m(u) for any z ∈ Nr
(
m

sα−A′), u ∈ A′.

(ii) The restriction of the map q̃α,m to the normalizer Nr(msα−A′) defines an isomorphism of the
algebras Zm

sα− (A) and Zm−(A), satisfying the relations

[
d, q̃α,m(x)

] = q̃α,m

([ , x]), q̃α,m(xd) = q̃α,m(x)τα(d), d ∈ D. (7.11)

For any w ∈ W , satisfying the condition (4.16), and its reduced decomposition (4.17), we
define a map q̃w,m : mw−A′ \A′ → m−A′ \A′ by the relation

q̃w,m = q̃γ1,m1 · q̃γ2,m2 · . . . · q̃γn,mn ,

where the positive roots γk and the maximal nilpotent subalgebras mk are defined by the pre-
scriptions (4.18)–(4.19). This map does not depend on the choice of a reduced decomposition of
w and satisfies the relations

q̃w′w,m = q̃w′,mq̃
w,mw′ , if l(w′w) = l(w′) + l(w), (7.12)[

h, q̃w,m(x)
] = q̃w,m

([h,x]), q̃w,m(dx) = τw′(ρ)−w′w(ρ)(d) · q̃w,m(x), (7.13)

for any x ∈ A′, h ∈ h and d ∈ D.
The restriction of q̃w,m to the normalizer Nr (mw−A′) defines an isomorphism of the algebras

Zmw−(A) and Zm−(A), satisfying (7.13). We denote q̃w ≡ q̃w,n.
The following counterpart of Proposition 4.6 is valid.

Proposition 7.6. Let g be a finite-dimensional reductive Lie algebra. Let w0 be the longest ele-
ment of the Weyl group W . Then

(i) The map q̃w0 defines an isomorphism of the algebras n−An and Zn−(A), such that for any
x ∈ n−An, d ∈ D and v ∈ V

[
d, q̃w0(x)

] = q̃w0

([d, x]), q̃w0(dx) = τρ−w0(ρ)(d)q̃w0(x),

q̃w0(v) = z̃′
v. (7.14)
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(ii) The restriction of q̃w0 to the normalizer Nr (nA′) defines an isomorphism of the algebras
Zn(A) and Zn−(A), satisfying (7.14), such that

q̃w0(z̃n,v) = z̃′
n−,v, v ∈ V .

Here z̃n,v are the generators of the Mickelsson algebra Zn(A) of the ‘first type,’ see Proposi-
tion 7.2(i), z̃′

n−,v are the generators of the Mickelsson algebra Zn−(A) of the ‘second type,’ see
Proposition 7.2(ii).

7.3. Braid group action

Keep the notation of Section 6. We suppose again that the automorphisms Ti :U(g) → U(g),
i = 1, . . . , r , see Section 2.1, admit extensions to automorphisms Ti :A → A of a g-admissible
algebra A, satisfying the braid group relations (6.1).

Then for each maximal nilpotent subalgebra m = nw , where w ∈ W , and any root α, such that
the root vector eα is a simple positive root vector of m, we have the relations:

q̃α,m = Twq̃w−1(α),nT −1
w . (7.15)

For each αi ∈ Π define the operators q̆i :n−A′ \A′ → n−A′ \A′ and q̆w :n−A′ \A′ → n−A′ \A′
as

q̆i = q̃sαi
· Ti, q̆w = q̃w · Tw.

The operators q̆i satisfy the braid group relations,

q̆i q̆j · · ·︸ ︷︷ ︸
mi,j

= q̆j q̆i · · ·︸ ︷︷ ︸
mi,j

, i �= j,

that is,

q̆w′w = q̆w′ q̆w, if l(w′w) = l(w′) + l(w).

For any w ∈ W , x ∈ Zn−(A), y ∈ n−A′ \A′ and d ∈ D we have by Proposition 7.5:

q̆w

([h,x]) = [
w(h), q̆w(x)

]
, q̆w(dx) = (w ◦ d) · q̆w(x),

q̆w(xy) = q̆w(x) · q̆w(y). (7.16)

Corollary 7.7.

(i) The restriction of q̆i to Zn−(A) defines an automorphism of the algebra Zn−(A), satisfying
(7.16).

(ii) For any y ∈ Zn−(A) we have

q̆2
i (y) = (hαi

+ 1)−1T 2
i (y)(hαi

+ 1).



S. Khoroshkin, O. Ogievetsky / Journal of Algebra 319 (2008) 2113–2165 2151
The following proposition describes the action of the automorphisms q̆i on the canonical
generators of the Mickelsson algebra Zn−(A).

Proposition 7.8.

(i) Assume that A satisfies the LW condition. Then

q̆i (z̃v) = z̃
C(1)

−αi
[−ρ](Ti (v)⊗1)

.

(ii) Assume that the element z̃′
v ∈ Zn−(A) is defined. Then q̆i (z̃

′
v) is also defined and is given by

the relation

q̆i

(
z̃′
v

) = z̃′
B(1)

αi
[ρ](Ti (v)⊗1)

.

The operators C(1)
±α[λ] and B(1)

±α[λ] were defined in Section 3.5.

Remark. Let w = sα1 · · · sαn be a reduced decomposition of an element w ∈ W . Let γ1, . . . , γn

be the corresponding sequence of positive roots: γ1 = α1, γ2 = sα1(α2), . . . . Then the properties
of the maps q̆i imply the following relations:

q̆w(z̃v) = z̃
C(1)

−γ1
[−ρ]···C(1)

−γn
[−ρ](Tw(v)⊗1)

, q̆w

(
z̃′
v

) = z̃′
B(1)

γ1 [ρ]···B(1)
−γn

[ρ](Tw(v)⊗1)
.

8. Standard modules and dynamical Weyl group

8.1. Double coset space

Recall the notation n−An = n−A′ \A′/A′n of Section 3.3.

Lemma 8.1. The multiplication in A′ equips the double coset space n−An with the structure of
a left Zn−(A)-module and of a right Zn(A)-module.

Proof. It follows from the definition of normalizers. �
If A satisfies the HW condition, Proposition 3.2 says that the double coset space n−An is a

free right Zn(A)-module of rank one, generated by the class of 1. If A satisfies the LW condition,
Proposition 7.1 says that the double coset space n−An is a free left Zn−(A)-module of rank one,
generated by the class of 1.

Lemma 6.4 says that the operators q̌i :A′/A′n → A′/A′n and q̆i :n−A′ \ A′ → n−A′ \ A′
correctly define operators on the double coset space n−An. We denote them by the same symbol.
According to definitions, they are given by the formulas

q̌i (x) =
∞∑

n=0

(−1)n

n! ên
αi

(
Ti(x)

) · en−αi
· gn,αi

mod n−A′ +A′n,

q̆i (x) =
∞∑ 1

n!gn,αi
· en

αi
· ên−αi

(
Ti(x)

)
mod n−A′ +A′n,
n=0
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where gn,αi
= (hαi

(hαi
− 1) · · · (hαi

− n + 1))−1. Equivalently,

q̌i (x) =
∞∑

n=0

1

n! ê
n−αi

ên
αi

(
Ti(x)

) · gn,αi
mod n−A′ +A′n, (8.1)

q̆i (x) =
∞∑

n=0

1

n!gn,αi
· ên

αi
ên−αi

(
Ti(x)

)
mod n−A′ +A′n. (8.2)

They satisfy all the properties, mentioned in Propositions 6.1, 6.2, Corollary 6.3.
In the notation of Section 3.5, the formulas (8.1) and (8.2) mean that for any v ∈ V we have

the following equalities in n−An:

q̌i (v) = m
(
C(2)

αi
[−ρ](1 ⊗ Ti(v)

))
, q̆i (v) = m

(
C(1)

−αi
[−ρ](Ti(v) ⊗ 1

))
, (8.3)

where m :D ⊗ V →A′ and m :V ⊗ D → A′ are the multiplication maps.
Let M be a module over an associative algebra U . Denote by ξM the corresponding homo-

morphism ξM :U → End(M). Let T : U → U be an automorphism of the algebra U . Denote
by MT the U -module M , conjugated by the automorphism T . It can be described as follows.
MT coincides with M as a vector space, while the map ξMT :U → End(M) ≡ End(MT ) is

ξMT = ξM · T .

In this notation, Proposition 6.2 states the equivariance of the maps q̌i and q̆i :

Proposition 8.2.

(i) The map q̌i , given by (8.1) is a morphism of the right Zn(A)-modules:

q̌i : n−An → (n−An)q̌i .

(ii) The map q̆i , given by (8.2) is a morphism of the left Zn−(A)-modules:

q̆i : n−An → (n−An)q̆i .

The same statement holds for the operators q̌w and q̆w , defined as products of (8.1) and (8.2),
for any w ∈ W .

Let λ ∈ h∗ be a generic weight, that is, 〈hα,λ〉 /∈ Z for all α ∈ Δ. Then the following quotients
of the double coset space are well defined:

n−An,λ = n−A′ \A′/A′ · (n,
(
h − 〈h,λ〉)∣∣

h∈h

)
,

λ,n−An = ((
h − 〈h,λ〉)∣∣

h∈h
,n−

)
A′ \A′/A′n. (8.4)

The space n−An,λ is a left Zn−(A)-module, the space λ,n−An is a right Zn(A)-module.
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Corollary 8.3. For a generic λ ∈ h∗,

(i) the map (8.1) defines a morphism of the right Zn(A)-modules:

q̌i,λ : λ,n−An → (sαi
◦λ,n−An)q̌i ;

(ii) the map (8.2) defines a morphism of the left Zn−(A)-modules:

q̆i,λ : n−An,λ → (n−An,sαi
◦λ)q̆i .

Due to (8.3), we have

q̌i,λ(v) = p̂αi
[λ − ρ](Ti(v)

)
, q̆i,λ(v) = p̂−αi

[λ − ρ](Ti(v)
)
,

that is,

q̌i,λ(v) =
∑
n�0

(−1)n

n!
n∏

k=1

(
ĥαi

+ 〈hαi
, λ − ρ〉 + k

)−1
ên−αi

ên
αi

(
Ti(v)

)
,

q̆i,λ(v) =
∑
n�0

(−1)n

n!
n∏

k=1

(−ĥαi
+ 〈hαi

, λ − ρ〉 + k
)−1

ên
αi

ên−αi

(
Ti(v)

)
.

More generally, for any element w ∈ W , the maps q̌w :A′/A′n → A′/A′n and q̆w :n−A′ \
A′ → n−A′ \ A′ define morphisms of modules over Mickelsson algebras q̌w,λ : λ,n−An →
(w◦λ,n−An)q̌w and q̆w,λ : n−An,λ → (n−Aw◦λ,n)q̆w . For a reduced decomposition w = sα1 · · · sαn

of an element w ∈ W and a corresponding sequence of positive roots γ1, . . . , γn, we have

q̌w,λ(v) = p̂γ1[λ − ρ] · · · p̂γn[λ − ρ](Tw(v)
)
,

q̆i,λ(v) = p̂−γ1[λ − ρ] · · · p̂−γn [λ − ρ](Tw(v)
)
.

Remark. By the definition, the double coset space n−Ãn,λ = n−A \A/An is a left Sn−(A) and
a right Sn(A) module. Its quotients

n−Ãn,λ = n−A \A/A · (n,
(
h − 〈h,λ〉)∣∣

h∈h

)
,

λ,n−Ãn = (
n−,

(
h − 〈h,λ〉)∣∣

h∈h

)
A \A/An

coincide with the spaces (8.4) for generic λ: n−Ãn,λ = n−An,λ and λ,n−Ãn = λ,n−An. They
have the structure of a left Sn−(A) and a right Sn(A) module, correspondingly. The module

n−Ãn,λ can be interpreted as a space of n−-coinvariants in the left A-module Mn,λ(A) = A/A ·
(n, h − 〈h,λ〉 | h ∈ h). The module λ,n−Ãn can be interpreted as a space of n-coinvariants in the
right A-module M̃λ(A) = (n−, h − 〈h,λ〉 | h ∈ h)A \A.

For each i, the operators q̌i and q̆i define homomorphisms of Mickelsson algebras Sn(A) and
Sn−(A) to their localizations with respect to denominators, generated by monomials (hαi

+ k),
k ∈ Z. If λ ∈ h∗ satisfies the condition 〈hαi

, λ〉 /∈ Z, these localizations act on (sα ◦λ,n−Ãn)q̌i and

i
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(n−Ãn,sαi
◦λ)q̆i correspondingly. In this sense the operators q̌i and q̆i define morphisms of the

right Sn(A) modules and of the left Sn−(A) modules:

q̌i,λ : λ,n−Ãn → (sαi
◦λ,n−Ãn)q̌i and q̆i,λ : n−Ãn,λ → (n−Ãn,sαi

◦λ)q̆i . (8.5)

One can regard (8.5) as a family of operators with the meromorphic dependence on a parameter λ,
study their singularities, residues, etc.

8.2. Quotients of free modules

As any associative algebra with unit, the Mickelsson algebra is a free left and a free right
module over itself of rank one. Let us restrict ourselves to the Mickelsson algebra Zn(A) and the
corresponding free right module of rank one.

Let λ ∈ h∗ be a generic weight. Consider the following quotient of the free right Zn(A)-
module

Φλ = (
h − 〈h,λ〉)∣∣

h∈h
Zn(A) \ Zn(A). (8.6)

It can be realized as follows. The multiplication m in A induces an isomorphism of the two left
U(g)-modules:

V ⊗ Mn(g) ∼= Mn(A′), (8.7)

where Mn(g) is the ‘universal Verma module’ U ′(g)/U ′(g)n, Mn(A′) = A′/A′n, and the mod-
ule structure of V is the restriction of the adjoint representation of g in A. The map (8.7) is also
an isomorphism of the right D-modules, where the structure of D-modules in the left-hand side
of (8.7) is given by the rule (v ⊗ m) · d = v ⊗ (m · d) for any v ∈ V , m ∈ Mn(g), d ∈ D. The
Mickelsson algebra is the space of highest weight vectors in Mn(A′), so with the identification
(8.7) we have the following isomorphism of D-bimodules:

Zn(A) ∼= (
V ⊗ Mn(g)

)n
. (8.8)

Recall that Zn(A) is a U(h)-bimodule and admits the weight decomposition with respect to
the adjoint action of h. This implies that the right Zn(A)-module Φλ(A) is a semisimple right
U(h)-module and admits a decomposition

Φλ =
⊕

ν

Φλ,λ−ν,

where the sum is taken over the weights ν of A such that for any ϕ ∈ Φλ,μ we have

ϕ · h = 〈h,μ〉ϕ, (8.9)

and Φλ,μ coincides with the double coset

Φλ,μ = (
h − 〈h,λ〉)∣∣

h∈h
· Zn(A) \ Zn(A)/Zn(A) · (h − 〈h,μ〉)∣∣

h∈h
.

Analogously, the left Zn(A)-module Φ̃μ
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Φ̃μ = Zn(A)/Zn(A) · (h − 〈h,μ〉)∣∣
h∈h

admits a presentation

Φ̃μ =
⊕

ν

Φμ+ν,μ.

With the identification (8.8), the relation (8.9) can be interpreted as follows: any element
φ ∈ Φλ,μ is a highest weight vector in the tensor product V ⊗ Mμ of the weight λ. Here Mμ =
U(g)/U(g) · (n, (h−〈h,μ〉)h ∈ h) is the Verma module of g with the highest weight μ. We have
proved

Lemma 8.4. Let λ ∈ h∗ be generic and ν ∈ h∗ a weight of Zn(A). Then the weight space Φλ,λ−ν

of the right Zn(A)-module Φλ is isomorphic to the space of intertwining operators

Φλ,λ−ν
∼= HomU(g)(Mλ,V ⊗ Mλ−ν). (8.10)

Denote by Iλ the class of unit 1 ∈ Zn(A) in Φλ. The vector Iλ generates Φλ as Zn(A)-module.
For any v ∈ V denote by Φv

λ the element of the right Zn(A)-module Φλ, obtained by applying of
the element z′

v to Iλ. It is equal to the class of z′
v in Φλ. Let ν be the weight of v. In the description

(8.10) of Φλ,λ−ν , the element Φv
λ corresponds to a map from Hom U(g)(Mλ,V ⊗ Mλ−ν), such

that

Φv
λ(1λ) = v ⊗ 1λ−ν + l.o.t.

where 1λ is the highest weight vector of Verma module Mλ and l.o.t. means the terms which
have lower weight on the second tensor component.

The properties of the operators q̌w imply that q̌w(Φλ,μ) = Φw◦λ,w◦μ, so that each operator q̌w

defines the morphisms of the right and left Zn(A)-modules:

q̌w,λ :Φλ → (Φw◦λ)q̌w , q̌w,.μ : Φ̃μ → (Φ̃w◦μ)q̌w(A). (8.11)

Proposition 6.6 gives a formula for transformations of vectors Φv
λ :

q̌w,λ

(
Φv

λ

) = Φ
p̂−γ1 [λ+ρ]···p̂−γn [λ+ρ](Tw(v))

w◦λ , (8.12)

where γ1, . . . , γn is the sequence of positive roots, attached to a reduced decomposition w =
sαi1

· · · sαin
by the standard rule γ1 = αi1 , γ2 = sαi1

(αi2), . . . .

8.3. Connections to dynamical Weyl group

Let V be a U(g)-module algebra with a locally nilpotent action of real root vectors and AV =
U(g) � V be a smash product of U(g) and V , see Example 2 in Section 3.1.

The typical examples are: the tensor algebra of an integrable highest weight representation of
g and the symmetric algebra of an integrable highest weight representation of g.
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Due to assumptions above, the g-module structure in V lifts to an action of the Weyl group of
g in V by standard formulas

T̂i = exp êαi
· exp−ê−αi

· exp êαi
. (8.13)

Due to (8.13), the operators T̂i are automorphisms of the algebra V .
The operators T̂i admit lifts to automorphisms of the algebra A by the relation Ti(gv) =

Ti(g)T̂i(v), where g ∈ U(g), v ∈ V , and Ti(g) is the automorphism of U(g), as in Section 2.1.
Actually, they are given by the same relation (8.13) with respect to the adjoint action of g on A.

The elements of the right Zn(A)-modules Φλ(A) are known in this case as the intertwining
operators. The morphisms q̌w,λ form the dynamical Weyl group action, see [EV,TV].

The space of intertwining operators Φλ(A) form an algebroid with respect to the composition
operation. The composition of intertwining operators can be described as follows.

For a generic λ ∈ h∗, any morphism ϕλ :Mλ → V ⊗ Mλ−ν of g-modules admits a lift to a
morphism ϕλ :V ⊗ Mλ → V ⊗ Mλ−ν of A′-modules by the rule ϕλ(v ⊗ m) = v · ϕλ(m) for
any m ∈ Mλ. Then the composition ϕ′

λ−ν ◦ ϕλ of the intertwining operators ϕλ ∈ Φλ,λ−ν and
ϕ′

λ−ν ∈ Φλ−ν,λ−ν−ν′ is an element ϕ′′
λ ∈ Φλ,λ−ν−ν′ , such that

ϕ′′
λ = ϕ′

λ−ν ◦ ϕλ.

The composition of intertwining operators coincides with the structure multiplication map of the
right Zn(A)-module in Φλ. Namely, in the notation of the previous section, for any x ∈ Zn(A)

denote by Φx
λ its class in Φλ, considered as intertwining operator. Then we have

Proposition 8.5. (See [K].) Let z′, z′′ ∈ Zn(A) and the weight of z′ with respect to the adjoint
action of h is ν. Then

Φz′z′′
λ = Φz′′

λ−ν ◦ Φz′
λ .

In this context the statement that the maps q̌w,λ are morphisms of Zn(A)-modules, see (8.11),
is equivalent to the compatibility of the dynamical Weyl group action with the composition of
intertwining operators.

9. Quantum group settings

9.1. Notation and assumptions

In this section we announce basic results of this paper for Mickelsson algebras, related to
reductions relative to quantized universal enveloping algebras. We restrict our attention to the
Mickelsson algebras Zn(A).

Keep the notation of Section 2.1. Let q be an indeterminate; di ∈ N are defined by the condi-
tion that the matrix (αi, αj ) = diai,j = djaj,i is symmetric. Here ai,j is the Cartan matrix of g.

For any root γ ∈ Δ put qγ = q(γ,γ )/2, [a]p = pa−p−a

p−p−1 , and (a)p = pa−1
p−1 for any symbols a and p.

We also use the notation qi = qαi
= qdi for simple roots αi .

Denote by Uq(g) the Hopf algebra, generated by the Chevalley generators eαi
∈ Uq(n), e−αi

∈
Uq(n−), k±1

α = q
±hαi ∈ Uq(h), where αi ∈ Π , so that
i i
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[eαi
, e−αj

] = δi,j [hαi
]qi

, where [hαi
]qi

:= kαi
− k−1

αi

qi − q−1
i

,

kαi
e±αj

k−1
αi

= q
±ai,j

i e±αj
= q±(αi ,αj )e±αj

,

∑
r+s=1−ai,j

(−1)re
(r)
±αi

e±αj
e
(s)
±αi

= 0, i �= j, where e
(k)
±αi

:= ek±αi

[k]qi
! ,

Δ(eαi
) = eαi

⊗ 1 + kαi
⊗ eαi

, Δ(e−αi
) = 1 ⊗ e−αi

+ e−αi
⊗ k−1

αi
,

Δ(kαi
) = kαi

⊗ kαi
, S(kαi

) = k−1
αi

,

S(eαi
) = −k−1

αi
eαi

, S(e−αi
) = −e−αi

kαi
.

The adjoint action (3.1) of the Chevalley generators has the form

êαi
(x) ≡ adeαi

(x) = eαi
x − kαi

xk−1
αi

eαi
,

ê−αi
(x) ≡ ade−αi

(x) = [e−αi
, x] · kαi

. (9.1)

Let Ti ≡ Tsi :Uq(g) → Uq(g) be automorphisms of Uq(g), defined by the relations

Ti(eαi
) = −kαi

e−αi
, Ti(e−αi

) = −eαi
k−1
αi

, Ti(kαj
) = ksαi

(αj ),

Ti(eαj
) =

∑
r+s=−ai,j

(−1)rqr
i e

(r)
αi

eαj
e(s)
αi

, i �= j,

Ti(e−αj
) =

∑
r+s=−ai,j

(−1)rq−r
i e

(s)
−αi

e−αj
e
(r)
−αi

, i �= j. (9.2)

Here we use the Cartan generators kγ , γ ∈ Δ. They are defined by the rules k−α = k−1
α , and

kα+β = kαkβ .
In Lusztig’s notation [L], Ti ≡ T ′

i,+. For any w ∈ W they define automorphisms Tw :Uq(g) →
Uq(g), as in Section 6.1.

Denote by Dq the localization of the commutative algebra Uq(h) relative to the multiplicative
set of denominators, generated by{[hα + k]qα

∣∣ α ∈ Δ, k ∈ Z
}
.

Denote by U ′
q(g) the extension of Uq(g) by means of Dq :

U ′
q(g) = Uq(g) ⊗Uq(h) Dq ≈ Dq ⊗Uq(h) Uq(g).

As well as in the undeformed case (q = 1), there exists an extension F
q
g,n of the alge-

bra U ′
q(g) and an element P = Pn ∈ F

q
g,n (the extremal projector), satisfying the conditions

eαi
P = Pe−αi

= 0, P2 = P, see [KT].
In particular, for the algebra Uq(sl2), generated by e±α and k±1

α , we have two projection
operators, P = Pα[ρ], and P− = P−α[ρ], where
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Pα[λ] =
∞∑

n=0

(−1)n

[n]qα ! q
−〈hα,λ−ρ〉
α fα,n[λ]en−αen

α,

P−α[λ] =
∞∑

n=0

(−1)n

[n]qα ! q
〈hα,λ−ρ〉
α gα,n[λ]en

αen−α (9.3)

and

fα,n[λ] =
n∏

j=1

[
hα + 〈hα,λ〉 + j

]−1
qα

, gα,n[λ] =
n∏

j=1

[−hα + 〈hα,λ〉 + j
]−1
qα

.

Let A be an associative algebra, containing Uq(g). We call A a Uq(g)-admissible algebra if:

(a) there is a subspace V ⊂ A, invariant with respect to the adjoint action of Uq(g), such that the
multiplication m in A induces isomorphisms of vector spaces

(a1) m :Uq(g) ⊗ V → A, (a2) m :V ⊗ Uq(g) →A;
(b) the adjoint action on V of all real root vectors eγ ∈ Uq(g), related to any fixed normal or-

dering of the root system, is locally nilpotent. The adjoint action of the Cartan subalgebra
Uq(h) on V is semisimple.

In particular, A is isomorphic to Uq(g)⊗V and to V ⊗Uq(g) as a Uq(g)-module with respect to
the adjoint action.

Denote by n the linear subspace of Uq(g) generated by the elements eαi
, αi ∈ Π . Denote

by n− the linear subspace of Uq(g) generated by the elements e−αi
, i ∈ Π . Let Uq(n) be the

subalgebra of Uq(g), generated by n and Uq(n−) the subalgebra of Uq(g), generated by n−.
For any Uq(g)-admissible algebra A put A′ = A⊗Uq(h) Dq and define the Mickelsson alge-

bras Sn(A) and Zn(A), as in Section 3.2:

Sn(A) = Nr(An)/An, Zn(A) = Nr(A′n)/A′n,

and the double coset algebra n−An, see Section 3.3,

n−An = n−A′ \A′/A′n ≡ A′/(n−A′ +A′n),

equipped with the multiplication structure (3.7).
With the conditions of Section 3.4, the Mickelsson algebra Zn(A) has distinguished genera-

tors zv , z′
v , v ∈ V , determined by the relations (3.9) and (3.10).

9.2. Basic constructions

Let α ∈ Π be a simple root, nα = Ceα , n−α = Ce−α . Let x ∈ A be an element of A, finite
with respect to the adjoint action of eα . Denote by qα(x) the following element of A′/A′nα :

qα(x) =
∑ (−1)n

[n]qα !
(
k̂−1
α êα

)n
(x)en−αgn,α mod A′nα, (9.4)
n�0
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where gn,α = ([hα]qα [hα − 1]qα · · · [hα − n + 1]qα )−1. The assignment (9.4) has the properties

(i) qα(xe−α) = 0,

(ii) qα

(
xk−1

α

) = qα(x)k−1
α q−2

α , qα

(
k−1
α x

) = q−2
α k−1

α qα(x),

(iii) qα(xkγ ) = qα(x)kγ , qα(kγ x) = kγ qα(x), if 〈hα, γ 〉 = 0,

(iv) k−1
α eαqα(x) = qα

(
k−1
α eαx

) = 0.

We extend the assignment (9.4) to the map qα :A′ → A′/A′nα with a help of the properties (ii)
and (iii). It satisfies the properties

qα(xd) = qα(x)τα(d), qα(dx) = τα(d)qα(x), d ∈ Dq, (9.5)

where τμ :Dq → Dq , μ ∈ h∗ is uniquely characterized by the conditions

τα(kγ ) = q(μ,γ )kγ .

Due to the property (iv) the map qα defines a map qα : nαAn−α → Znα (A). We have an analog
of Theorem 5.1:

Proposition 9.1. The map

qα : nαAn−α → Znα (A)

is an isomorphism of algebras.

In the following we assume that the automorphisms (9.2) admit extensions Ti :A′ → A′,
which satisfy the braid group relations (6.1), though, as well as in the case q = 1, part of the
results below do not depend on such an extension.

Let w ∈ W be an element of the Weyl group of g, α ∈ Π a simple root, such that l(wsα) =
l(w) + 1. Set γ = w(α), e±γ = Tw(e±α) and Tγ = TwTαT −1

w . Denote by m = nw the linear
span of the vectors Tw(eαi

), αi ∈ Π and by msγ the space Tγ (m). Let qγ,m be the linear map
qγ,m : A′ → A′/A′m, defined by the rule:

qγ,m(x) =
∑
n�0

(−1)n

[n]qγ !
(
k̂−1
γ êγ

)n
(x)en−γ gn,γ

=
∑
n�0

(−1)n

[n]qγ ! q
−n(ĥγ −n+1)
γ ên

γ (x)en−γ gn,γ mod A′m,

for all x ∈ A, which are adjoint finite with respect to eγ . In general we present any y ∈ A′ as
y = dx with x ∈A being adjoint finite with respect to eγ and d ∈ Dq and then use the properties,
analogous to (i) and (ii) for the map qα . Here gn,γ = ([hγ ]qγ [hγ − 1]qγ · · · [hγ − n + 1]qγ )−1.



2160 S. Khoroshkin, O. Ogievetsky / Journal of Algebra 319 (2008) 2113–2165
Proposition 9.2.

(i) We have qγ,m(A′msγ ) = 0, so that qγ,m defines a map qγ,m :A′/A′msγ → A′/A′m;
(ii) For α = w−1(γ ) we have the equality

qγ,m = Twqα,nT −1
w . (9.6)

Remark. Note that the statement (ii) is nontrivial for q �= 1, since

Tw adx T −1
w (y) �= adTw(x)(y).

The proof of (ii) uses coalgebraic properties of Lusztig automorphisms.
Let w = {w,w = sαi1

sαi2
· · · sαin

} be a pair, consisting of an element w of the Weyl group
and of a reduced decomposition of w. Let γ1, . . . , γn be a related sequence of positive roots:
γ1 = αi1, . . . , γk = sαi1

· · · sαik−1
(αik ), . . . . Proposition 9.2(i) implies that there is a well-defined

map

qw :A′/A′nw →A′/A′n: qw = qγ1,nqγ2,n
sγ1 · · ·qγn,n

sγn−1 ···sγ1 .

Proposition 9.3. Let g be of finite dimension. Then for any reduced decomposition w0 of the
longest element w0 of W the map qw0 sends a vector v ∈ V to the generator z′

v of the Mickelsson
algebra Zn(A).

Proposition 9.3 implies that the maps qγ,m satisfy the cocycle conditions, that is, the map qw

does not depend on a reduced decomposition w of w ∈ W ; hence it can be denoted as qw .
Set q̌i = qsαi

· Ti :A′/A′n → A′/A′n. Then we have the braid group relations:

q̌i q̌j · · ·︸ ︷︷ ︸
mi,j

= q̌j q̌i · · ·︸ ︷︷ ︸
mi,j

, i �= j,

and, due to Proposition 9.1, the restriction of q̌i to Zn(A) is an automorphism of the Mickelsson
algebra, such that

q̌i (dx) = (sαi
◦ d) · q̌i (x), q̌i (xd) = q̌i (x) · (sαi

◦ d) for d ∈ Dq, x ∈A′.

Here w ◦ d is the natural extension of the shifted action of w ∈ W on h∗, see (6.8), to the auto-
morphism of Dq , defined by the conditions

w ◦ kγ = kw(γ ) · q〈γ,w(ρ−ρ)〉
γ .

9.3. Some calculations

There is a standard construction of the extension of the Hopf algebra Uq(g) by means of
automorphisms Ti . Namely, let UW

q (g) be the smash product of Uq(g) with the algebra, generated

by the elements T±1
i , satisfying the braid group relations

TiTj · · ·︸ ︷︷ ︸
m

= Tj Ti · · ·︸ ︷︷ ︸
m

, i �= j.
i,j i,j
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The cross-product relations are

TigT−1
i = Ti(g), g ∈ Uq(g). (9.7)

Due to the coalgebraic properties of Lusztig automorphisms [L], the smash product UW
q (g) can

be equipped with a structure of a Hopf algebra, if we put

Δ(Ti ) = Ti ⊗ Ti · R̃i ,

where

R̃i = exp
q−2
i

((
qi − q−1

i

)
e−αi

⊗ eαi

) =
∑
n�0

(qi − q−1
i )n

(n)
q−2
i

! en−αi
⊗ en

αi
.

In the same way we extend the algebra A′ to the cross-product AW , using the relations (9.7).
Since UW

q is a Hopf algebra, the adjoint action T̂i of Ti on AW is well defined. It preserves

the subalgebra A′ ⊂ AW : T̂i (A′) ⊂ A′. The following statement is nontrivial for q �= 1 and is
important for calculations of the maps q̌i .

Proposition 9.4. For any x ∈ A′ we have

q̌i (x) = qi

(
TixT−1

i

) = qi

(
T̂i (x)

)
.

Now we describe the squares of the automorphisms q̌i : Zn(A) → Zn(A). Assume that the
elements vm,j ∈ V , m ∈ Z�0, j = 0,1, . . . ,m form a finite-dimensional representation of the
algebra Uq(sl2), generated by e±αi

and k±1
αi

with respect to the adjoint action, such that:

êj+1
αi

(vm,j ) = ê
m−j+1
−αi

(vm,j ) = 0, ĥαi
(vm,j ) = (m − 2j)vm,j . (9.8)

In particular, vm = vm,0 is the highest weight vector of this representation, and vm,j = ê
(j)
−αi

(vm).
Define the operator εi evaluating the parity of the dimension of a representation of this Uq(sl2),
εi(vm,j ) = (−1)mvm,j .

Proposition 9.5. Assume that vm,j ∈ V satisfy (9.8). Then

q̌2
i (vm,j ) = q−j (m−j+1)−(j+1)(m−j) · [hαi

+ 1]−1
qi

· T̂2
i (vm,j ) · [hαi

+ 1]qi
. (9.9)

The property (9.9) simplifies under the natural assumptions on operators T̂i :V → V . Namely,
suppose that the operators T̂i :V → V satisfy the properties of Lusztig symmetries T ′

i,+, that is,
(see [L, Section 5.2.2]),

T̂i (vm,j ) = (−1)j qj (m+1−j)vm,m−j . (9.10)

Corollary 9.6. With the conditions (9.10) for any x ∈ Zn(A) we have

q̌2
i (x) = [hαi

+ 1]−1
qi

· εi(x) · [hαi
+ 1]qi

. (9.11)
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Keep the notation (3.12) of Section 3.4. For a real root α ∈ Δre, set

f (2)
n,α[μ] = q−2n

α

(
k(1)
α

)−n
n∏

k=1

([
ĥ(2)

α − h(1)
α + 〈hα,μ〉 + k

]
qα

)−1
,

g(2)
n,α[μ] = (

k(1)
α

)n
n∏

k=1

([−ĥ(2)
α + h(1)

α + 〈hα,μ〉 + k
]
qα

)−1
.

Here ĥ
(2)
α = ad(2)

hα
is the adjoint action of hα in V , h

(1)
α is the operator of multiplication by hα

in D. For μ ∈ h∗ define operators C(2)
α [μ] :D ⊗ V → D ⊗ V and B(2)

−α[μ] :D ⊗ V → D ⊗ V by
the relations (3.16):

C(2)
α [μ] =

∞∑
n=0

(−1)n

[n]qα ! f
(2)
n,α[μ](ê(2)

−α

)n(
ê(2)
α

)n
,

B(2)
−α[μ] =

∞∑
n=0

(−1)n

[n]qα ! g
(2)
n,α[μ](ê(2)

α

)n(
ê
(2)
−α

)n
.

Proposition 9.7. For any v ∈ V we have

q̌i

(
z′
v

) = z′
B(2)

−αi
[ρ](1⊗Ti(v))

, q̌i (zv) = z
C(2)

αi
[−ρ](1⊗Ti(v))

.

9.4. Another adjoint action

In this section we sketch the modifications of the above constructions for the second adjoint
action.

Let U
op
q (g) be the Hopf algebra Uq(g), described in Section 9.1, with the same multiplication

and opposite comultiplication,

Δop(eαi
) = kαi

⊗ eαi
+ eαi

⊗ 1, Δop(e−αi
) = e−αi

⊗ k−1
αi

+ 1 ⊗ e−αi
.

The adjoint action (3.1) for the algebra U
op
q (g) looks slightly different:

êαi
(x) ≡ adeαi

(x) = [eαi
, x] · k−1

αi
,

ê−αi
(x) ≡ ade−αi

(x) = e−αi
x − k−1

αi
xkαi

e−αi
. (9.12)

Let A be a U
op
q (g)-admissible algebra. We define the Zhelobenko operators, starting from the

assignment

qα(x) =
∑
n�0

(−1)n

[n]qα ! (êα)n(x)
(
en−αkα

)
gn,α

=
∑ (−1)n

[n]qα ! ê
n
α(x)en−αqn(hα−n+1)

α gn,α mod A′nα.
n�0
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The corresponding maps qα,m satisfy the cocycle conditions, such that the operators

q̌i = qαi ,n · T −1
i

are automorphisms of the Mickelsson algebra Zn(A), satisfying the braid group relations.

9.5. Relations to dynamical Weyl group

Let V be a Uq(g)-module algebra with a locally nilpotent action of real root vectors of Uq(g).
It means that V is an associative algebra and a Uq(g)-module, such that for any g ∈ Uq(g),
v1, v2 ∈ V , we have the equality

ĝ(v1 · v2) =
∑

i

ĝ′
i (v1) · ĝ′′

i (v2).

Here Δ(g) = ∑
i g

′
i ⊗ g′′

i , and ĝ(v) is an action of g ∈ Uq(g) on v ∈ V . Suppose that V is
equipped with an action of operators T̂i , which are automorphisms of the algebra V , satisfy the
braid group relations, and form an equivariant family with respect to operators (9.2), that is, for
any v ∈ V , g ∈ Uq(g),

T̂i

(
ĝ(v)

) = Ti(g)T̂i(v),

where Ti(g) means the application of operators (9.2).
These conditions imply, that V is a module algebra over UW

q (g). So we have a well-defined
smash product UW

q (g) �V , which contains Uq(g) �V and the elements Ti . The automorphisms
Ti :UW

q (g) � V → UW
q (g) � V , given as

Ti(x) = TixT−1
i ,

preserve the subalgebra Uq(g) �V . Moreover, the restriction of the adjoint action of Ti on V co-
incides with T̂i , that is: T̂i |V = T̂i . Thus the smash product A = Uq(g)�V is a Uq(g)-admissible
algebra.

The elements of the right Zn(A)-module Φλ(A), defined in (8.6), are intertwining operators
Φv

λ :Mλ → V ⊗Mλ. The operators q̌i give rise to the operators q̌i,λ of the dynamical Weyl group

q̌i,λ

(
Φv

λ

) = Φ
p̌−αi

[λ+ρ](T̂i (v))
sαi

and

q̌w,λ

(
Φv

λ

) = Φ
p̂−γ1 [λ+ρ]···p̂−γn [λ+ρ](T̂w(v))

w◦λ ,

where γ1, . . . , γn is the sequence of positive roots, attached to a reduced decomposition w =
sαi1

· · · sαi1
by the standard rule γ1 = αi1 , γ2 = sαi1

(αi2), . . . , and p̌−γk
[λ + ρ] is the adjoint

action of the operator (9.3), e±γk
= Tαi

· · ·Tαi
(e±αi

) are the Cartan–Weyl generators.

1 k−1 k
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10. Concluding remarks

We conclude with remarks on the assumptions on a g-admissible algebra A, used in the paper.
They are listed in Section 3.1.

The assumption (a) requires an existence of an ad-invariant subspace V ⊂ A, such that the
multiplication m in A induces isomorphisms of vector spaces

(a1) m :Uq(g) ⊗ V →A, (a2) m :V ⊗ Uq(g) → A.

The assumptions (a1) and (a2) are not of equal importance. For the Mickelsson algebra Zn(A)

we need the condition (a1) only when we use the generators zv , that is, in Proposition 3.3, The-
orem 3.6, Corollary 4.7, in Section 6.2 and in the corresponding statements of Section 9. On
the contrary, the construction of the Zhelobenko operators for the algebra Zn(A) requires the
condition (a1) from the very beginning. The condition (a2) is necessary for the existence of the
generators z′

v .
For the algebra Zn−(A) the situation is opposite. We need the condition (a1) for the construc-

tion of the Zhelobenko maps and generators z̃′
v , while the condition (a2) is related only to the

generators z̃v . Both conditions (a1) and (a2) are satisfied for basic examples, listed in Section 3.1.
The condition (b) requires local nilpotency of the adjoint action of real root vectors in V . It is

always satisfied if the space V is a sum of integrable representations or an affinization V (z) of a
locally finite representation of an affine algebra U ′

q(g) with the grading element excluded.
In the latter case the generators zv and z′

v do not formally exist, since neither the highest
weight condition (HW) from Section 3.3 nor the lowest weight condition (LW) from Section 7.1
is satisfied. Nevertheless, in this case the generators of the Mickelsson algebra exist as formal
series and could be used with a proper attention to convergence.
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